CINXE.COM
(PDF) Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement | Thomas Santner - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="8GOr3sfCHYZZlaB5UBwebU6UD99CeUp0+d8FPDZjlQ1/FnSZT9rDD9fygZrBbBaNm8QuoAmfj469uz2FF2vpGw==" /> <meta name="citation_title" content="Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement" /> <meta name="citation_publication_date" content="2014/01/01" /> <meta name="citation_author" content="Thomas Santner" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement" /> <meta name="twitter:title" content="Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement" /> <meta name="twitter:description" content="Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement" /> <meta property="og:title" content="Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output" /> <meta property="article:author" content="https://independent.academia.edu/ThomasSantner" /> <meta name="description" content="Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output" /> <title>(PDF) Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement | Thomas Santner - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732399208000); window.Aedu.timeDifference = new Date().getTime() - 1732399208000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output (vector) on the Pareto Front; the inputs that produce outputs on the Pareto Front form the Pareto Set. This paper proposes a method for identifying the Pareto Front and the Pareto Set when the objective functions are expensive to compute. The method replaces the objective function evaluations by a rapidly computable approximator based on an interpolating Gaussian process (GP) model. It sequentially selects new input sites guided by an improvement function; the next input to evaluate each output is that vector which maximizes the conditional expected value of this improvement function given the current data. The method introduced in this paper provides two advances within this framework. First, it proposes an improvement function based on the mo...","author":[{"@context":"https://schema.org","@type":"Person","name":"Thomas Santner"}],"contributor":[],"dateCreated":"2022-03-17","dateModified":null,"datePublished":"2014-01-01","headline":"Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement","inLanguage":"en","keywords":[],"locationCreated":null,"publication":null,"publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-352e32ba4e89304dc0b4fa5b3952eef2198174c54cdb79066bc62e91c68a1a91.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2942c1f6bfc2dd2d84c918a5198ff1895cd5959140ea8039169d635aeb9bd4a5", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="QyQxcCAaggNuhEsFZelHpiYj8BeEVt39jR0BSw0Yh2rMUe43qAJciuDjaub0mU9G83PRaM+wGAfJeTnyLBD7fA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Ui4mRfFNW1NugZ3WPHnA3ZM+NT2m/W6aZz+ZVllnJuLdW/kCeVWF2uDmvDWtCcg9Rm4UQu0bq2AjW6HveG9a9A==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-bf3d831cde46cd0e142f29f81a3fc4ce5ab45a404c10c12a480e83de68aff851.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 37978259; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F73949557%2FOptimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F73949557%2FOptimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":82281281,"identifier":"Attachment_82281281","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":73949557,"created_at":"2022-03-17T07:00:43.085-07:00","from_world_paper_id":198761403,"updated_at":"2022-03-17T07:22:50.406-07:00","_data":{"abstract":"Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output (vector) on the Pareto Front; the inputs that produce outputs on the Pareto Front form the Pareto Set. This paper proposes a method for identifying the Pareto Front and the Pareto Set when the objective functions are expensive to compute. The method replaces the objective function evaluations by a rapidly computable approximator based on an interpolating Gaussian process (GP) model. It sequentially selects new input sites guided by an improvement function; the next input to evaluate each output is that vector which maximizes the conditional expected value of this improvement function given the current data. The method introduced in this paper provides two advances within this framework. First, it proposes an improvement function based on the mo...","publication_date":"2014,,"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [37978259]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":82281281,"attachmentType":"pdf"}"><img alt="First page of “Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/82281281/mini_magick20220317-25876-lskzig.png?1647525710" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="37978259" href="https://independent.academia.edu/ThomasSantner"><img alt="Profile image of Thomas Santner" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Thomas Santner</a></div><p class="ds-work-card--detail ds2-5-body-sm">2014</p><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output (vector) on the Pareto Front; the inputs that produce outputs on the Pareto Front form the Pareto Set. This paper proposes a method for identifying the Pareto Front and the Pareto Set when the objective functions are expensive to compute. The method replaces the objective function evaluations by a rapidly computable approximator based on an interpolating Gaussian process (GP) model. It sequentially selects new input sites guided by an improvement function; the next input to evaluate each output is that vector which maximizes the conditional expected value of this improvement function given the current data. The method introduced in this paper provides two advances within this framework. First, it proposes an improvement function based on the mo...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":82281281,"attachmentType":"pdf","workUrl":"https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":82281281,"attachmentType":"pdf","workUrl":"https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="82281281" data-landing_url="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="73949410" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73949410/Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement">Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37978259" href="https://independent.academia.edu/ThomasSantner">Thomas Santner</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><p class="ds-related-work--abstract ds2-5-body-sm">Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output (vector) on the Pareto Front; the inputs that produce outputs on the Pareto Front form the Pareto Set. This paper proposes a method for identifying the Pareto Front and the Pareto Set when the objective functions are expensive to compute. The method replaces the objective function evaluations by a rapidly computable approximator based on an interpolating Gaussian process (GP) model. It sequentially selects new input sites guided by an improvement function; the next input to evaluate each output is that vector which maximizes the conditional expected value of this improvement function given the current data. The method introduced in this paper provides two advances within this framework. First, it proposes an improvement function based on the mo...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement","attachmentId":82281253,"attachmentType":"pdf","work_url":"https://www.academia.edu/73949410/Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/73949410/Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="66455908" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions">An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="11579" href="https://sfu.academia.edu/GaryWang">Gary Wang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mechanical Design, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation models, this approach progressively provides a designer with a rich and evenly distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing and design application, PSP demonstrates considerable promises in efficiency, accuracy, and robustness. Properties of PSP and differences between PSP and other approximation-based methods are also discussed. It is believed that PSP has a great potential to be a practical tool for multiobjective optimization problems.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions","attachmentId":77640126,"attachmentType":"pdf","work_url":"https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="74054783" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74054783/Evolutionary_Multiobjective_Optimization_Based_on_Gaussian_Process_Modeling">Evolutionary Multiobjective Optimization Based on Gaussian Process Modeling</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49440025" href="https://independent.academia.edu/MlakarMiha">Miha Mlakar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Informatica (Slovenia), 2015</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper presents a summary of the doctoral dissertation of the author, which addresses the task of evolutionary multiobjective optimization using surrogate models. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Evolutionary Multiobjective Optimization Based on Gaussian Process Modeling","attachmentId":82346070,"attachmentType":"pdf","work_url":"https://www.academia.edu/74054783/Evolutionary_Multiobjective_Optimization_Based_on_Gaussian_Process_Modeling","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/74054783/Evolutionary_Multiobjective_Optimization_Based_on_Gaussian_Process_Modeling"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="86220581" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86220581/High_Fidelity_Surrogate_Based_Multi_Objective_Optimization_Algorithm">High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="56235852" href="https://independent.academia.edu/AdelY2">Adel Younis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Algorithms</p><p class="ds-related-work--abstract ds2-5-body-sm">The employment of conventional optimization procedures that must be repeatedly invoked during the optimization process in real-world engineering applications is hindered despite significant gains in computing power by computationally expensive models. As a result, surrogate models that require far less time and resources to analyze are used in place of these time-consuming analyses. In multi-objective optimization (MOO) problems involving pricey analysis and simulation techniques such as multi-physics modeling and simulation, finite element analysis (FEA), and computational fluid dynamics (CFD), surrogate models are found to be a promising endeavor, particularly for the optimization of complex engineering design problems involving black box functions. In order to reduce the expense of fitness function evaluations and locate the Pareto frontier for MOO problems, the automated multiobjective surrogate based Pareto finder MOO algorithm (AMSP) is proposed. Utilizing data samples taken f...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm","attachmentId":90724077,"attachmentType":"pdf","work_url":"https://www.academia.edu/86220581/High_Fidelity_Surrogate_Based_Multi_Objective_Optimization_Algorithm","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/86220581/High_Fidelity_Surrogate_Based_Multi_Objective_Optimization_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="23438924" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/23438924/Optimization_by_Gaussian_Processes_assisted_Evolution_Strategies">Optimization by Gaussian Processes assisted Evolution Strategies</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="45408923" href="https://independent.academia.edu/HolgerUlmer">Holger Ulmer</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Operations Research Proceedings, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Optimization by Gaussian Processes assisted Evolution Strategies","attachmentId":43881507,"attachmentType":"pdf","work_url":"https://www.academia.edu/23438924/Optimization_by_Gaussian_Processes_assisted_Evolution_Strategies","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/23438924/Optimization_by_Gaussian_Processes_assisted_Evolution_Strategies"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="87206557" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87206557/PAINT_Pareto_front_interpolation_for_nonlinear_multiobjective_optimization">PAINT: Pareto front interpolation for nonlinear multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="54321109" href="https://independent.academia.edu/MargaretWiecek">Margaret Wiecek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computational Optimization and Applications, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"PAINT: Pareto front interpolation for nonlinear multiobjective optimization","attachmentId":91482369,"attachmentType":"pdf","work_url":"https://www.academia.edu/87206557/PAINT_Pareto_front_interpolation_for_nonlinear_multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/87206557/PAINT_Pareto_front_interpolation_for_nonlinear_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="7520604" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/7520604/Response_surface_approximation_of_Pareto_optimal_front_in_multi_objective_optimization">Response surface approximation of Pareto optimal front in multi-objective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13469505" href="https://independent.academia.edu/GoelTushar">Tushar Goel</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computer Methods in Applied Mechanics and Engineering, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Response surface approximation of Pareto optimal front in multi-objective optimization","attachmentId":48438199,"attachmentType":"pdf","work_url":"https://www.academia.edu/7520604/Response_surface_approximation_of_Pareto_optimal_front_in_multi_objective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/7520604/Response_surface_approximation_of_Pareto_optimal_front_in_multi_objective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="30440556" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/30440556/Pareto_surface_construction_for_multi_objective_optimization_under_uncertainty">Pareto surface construction for multi-objective optimization under uncertainty</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24934662" href="https://ford.academia.edu/ChenLiang">Chen Liang</a></div><p class="ds-related-work--abstract ds2-5-body-sm">This paper presents a novel approach for multi-objective optimization under both aleatory and epistemic sources of uncertainty. Given paired samples of the inputs and outputs from the system analysis model, a Bayesian network (BN) is built to represent the joint probability distribution of the inputs and outputs. In each design iteration, the optimizer provides the values of the design variables to the BN, and copula-based sampling is used to rapidly generate samples of the output variables conditioned on the input values. Samples from the conditional distributions are used to evaluate the objectives and constraints, which are fed back to the optimizer for further iteration. The proposed approach is formulated in the context of reliability-based design optimization (RBDO). The joint probability of multiple objectives and constraints is included in the formulation. The Bayesian network along with conditional sampling is exploited to select training points that enable effective construction of the Pareto front. A vehicle side impact problem is employed to demonstrate the proposed methodology.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Pareto surface construction for multi-objective optimization under uncertainty","attachmentId":59918832,"attachmentType":"pdf","work_url":"https://www.academia.edu/30440556/Pareto_surface_construction_for_multi_objective_optimization_under_uncertainty","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/30440556/Pareto_surface_construction_for_multi_objective_optimization_under_uncertainty"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="7356909" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/7356909/Pareto_Based_Multi_output_Model_Type_Selection">Pareto-Based Multi-output Model Type Selection</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12965587" href="https://ugent.academia.edu/IvoCouckuyt">Ivo Couckuyt</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Pareto-Based Multi-output Model Type Selection","attachmentId":48519323,"attachmentType":"pdf","work_url":"https://www.academia.edu/7356909/Pareto_Based_Multi_output_Model_Type_Selection","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/7356909/Pareto_Based_Multi_output_Model_Type_Selection"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="27399840" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27399840/Towards_Efficient_Multiobjective_Optimization_Multiobjective_statistical_criterions">Towards Efficient Multiobjective Optimization: Multiobjective statistical criterions</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51488929" href="https://independent.academia.edu/TDhaene">Tom Dhaene</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012 IEEE Congress on Evolutionary Computation, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Towards Efficient Multiobjective Optimization: Multiobjective statistical criterions","attachmentId":47654581,"attachmentType":"pdf","work_url":"https://www.academia.edu/27399840/Towards_Efficient_Multiobjective_Optimization_Multiobjective_statistical_criterions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/27399840/Towards_Efficient_Multiobjective_Optimization_Multiobjective_statistical_criterions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":82281281,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":82281281,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_82281281" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="3586390" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3586390/Multi_objective_design_space_exploration_under_uncertainty">Multi-objective design space exploration under uncertainty</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4281105" href="https://chula.academia.edu/SoorathepKheawhom">Soorathep Kheawhom</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multi-objective design space exploration under uncertainty","attachmentId":50213184,"attachmentType":"pdf","work_url":"https://www.academia.edu/3586390/Multi_objective_design_space_exploration_under_uncertainty","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/3586390/Multi_objective_design_space_exploration_under_uncertainty"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="17852038" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17852038/Global_and_mid_range_function_approximation_for_engineering_optimization">Global and mid-range function approximation for engineering optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37767808" href="https://tue.academia.edu/LEtman">L. Etman</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematical Methods of Operations Research, 1997</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Global and mid-range function approximation for engineering optimization","attachmentId":39744364,"attachmentType":"pdf","work_url":"https://www.academia.edu/17852038/Global_and_mid_range_function_approximation_for_engineering_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/17852038/Global_and_mid_range_function_approximation_for_engineering_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="74054779" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74054779/Evolutionary_Multiobjective_Optimization_with_Gaussian_Process_Models">Evolutionary Multiobjective Optimization with Gaussian Process Models</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49440025" href="https://independent.academia.edu/MlakarMiha">Miha Mlakar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Evolutionary Multiobjective Optimization with Gaussian Process Models","attachmentId":82346071,"attachmentType":"pdf","work_url":"https://www.academia.edu/74054779/Evolutionary_Multiobjective_Optimization_with_Gaussian_Process_Models","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/74054779/Evolutionary_Multiobjective_Optimization_with_Gaussian_Process_Models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="89685091" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89685091/Using_Surrogate_Models_for_Process_Design_and_Optimization">Using Surrogate Models for Process Design and Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="208381787" href="https://independent.academia.edu/AhmedShokry59">Ahmed Shokry</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Uncertainty Modeling in Knowledge Engineering and Decision Making, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Using Surrogate Models for Process Design and Optimization","attachmentId":93437664,"attachmentType":"pdf","work_url":"https://www.academia.edu/89685091/Using_Surrogate_Models_for_Process_Design_and_Optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/89685091/Using_Surrogate_Models_for_Process_Design_and_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="76445389" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/76445389/Mathematical_Optimization_for_Engineering_Design_Problems">Mathematical Optimization for Engineering Design Problems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184847455" href="https://independent.academia.edu/BrianDandurand">Brian Dandurand</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Mathematical Optimization for Engineering Design Problems","attachmentId":84151359,"attachmentType":"pdf","work_url":"https://www.academia.edu/76445389/Mathematical_Optimization_for_Engineering_Design_Problems","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/76445389/Mathematical_Optimization_for_Engineering_Design_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="73568676" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73568676/On_the_Impact_of_Covariance_Functions_in_Multi_Objective_Bayesian_Optimization_for_Engineering_Design">On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14236250" href="https://swansea.academia.edu/AlmaRahat">Alma Rahat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">AIAA Scitech 2020 Forum, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design","attachmentId":82040113,"attachmentType":"pdf","work_url":"https://www.academia.edu/73568676/On_the_Impact_of_Covariance_Functions_in_Multi_Objective_Bayesian_Optimization_for_Engineering_Design","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/73568676/On_the_Impact_of_Covariance_Functions_in_Multi_Objective_Bayesian_Optimization_for_Engineering_Design"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="40119260" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/40119260/Industrial_Applications_of_Intelligent_Adaptive_Sampling_Methods_for_Multi_Objective_Optimization">Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6421204" href="https://nd.academia.edu/WaadSubber">Waad Subber</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization","attachmentId":60332396,"attachmentType":"pdf","work_url":"https://www.academia.edu/40119260/Industrial_Applications_of_Intelligent_Adaptive_Sampling_Methods_for_Multi_Objective_Optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/40119260/Industrial_Applications_of_Intelligent_Adaptive_Sampling_Methods_for_Multi_Objective_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="62309661" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62309661/Evolutionary_optimization_for_computationally_expensive_problems_using_gaussian_processes">Evolutionary optimization for computationally expensive problems using gaussian processes</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="55978011" href="https://cairo.academia.edu/MohammedElBeltagy">Mohammed El-Beltagy</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Evolutionary optimization for computationally expensive problems using gaussian processes","attachmentId":75119395,"attachmentType":"pdf","work_url":"https://www.academia.edu/62309661/Evolutionary_optimization_for_computationally_expensive_problems_using_gaussian_processes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/62309661/Evolutionary_optimization_for_computationally_expensive_problems_using_gaussian_processes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="4718042" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/4718042/Modeling_for_Optimization_MO_OP_Tools_for_Manufacturing_and_Design_Engineering_Problems">Modeling for Optimization (MO-OP): Tools for Manufacturing and Design Engineering Problems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6009282" href="https://issr.academia.edu/MohamedHGadallah">Professor Mohamed Hassan Mehany H . Gadallah</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Modeling for Optimization (MO-OP): Tools for Manufacturing and Design Engineering Problems","attachmentId":32041517,"attachmentType":"pdf","work_url":"https://www.academia.edu/4718042/Modeling_for_Optimization_MO_OP_Tools_for_Manufacturing_and_Design_Engineering_Problems","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/4718042/Modeling_for_Optimization_MO_OP_Tools_for_Manufacturing_and_Design_Engineering_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="5524586" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5524586/Performance_assessment_of_multiobjective_optimizers_an_analysis_and_review">Performance assessment of multiobjective optimizers: an analysis and review</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7813883" href="https://independent.academia.edu/carlosfonseca8">carlos fonseca</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Evolutionary Computation, 2003</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Performance assessment of multiobjective optimizers: an analysis and review","attachmentId":32626519,"attachmentType":"pdf","work_url":"https://www.academia.edu/5524586/Performance_assessment_of_multiobjective_optimizers_an_analysis_and_review","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5524586/Performance_assessment_of_multiobjective_optimizers_an_analysis_and_review"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="72998504" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72998504/Alternative_infill_strategies_for_expensive_multi_objective_optimisation">Alternative infill strategies for expensive multi-objective optimisation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31636764" href="https://independent.academia.edu/EversonR">Richard Everson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the Genetic and Evolutionary Computation Conference</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Alternative infill strategies for expensive multi-objective optimisation","attachmentId":81696130,"attachmentType":"pdf","work_url":"https://www.academia.edu/72998504/Alternative_infill_strategies_for_expensive_multi_objective_optimisation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/72998504/Alternative_infill_strategies_for_expensive_multi_objective_optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="75863792" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75863792/srMO_BO_3GP_A_sequential_regularized_multi_objective_Bayesian_optimization_for_constrained_design_applications_using_an_uncertain_Pareto_classifier">srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="220298067" href="https://independent.academia.edu/AnhDuyTran14">Anh Duy Tran</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mechanical Design, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier","attachmentId":83505322,"attachmentType":"pdf","work_url":"https://www.academia.edu/75863792/srMO_BO_3GP_A_sequential_regularized_multi_objective_Bayesian_optimization_for_constrained_design_applications_using_an_uncertain_Pareto_classifier","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/75863792/srMO_BO_3GP_A_sequential_regularized_multi_objective_Bayesian_optimization_for_constrained_design_applications_using_an_uncertain_Pareto_classifier"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="25075595" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/25075595/Two_phase_multiobjective_optimization">Two-phase multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48324577" href="https://independent.academia.edu/AlbertoCancela">Alberto Cancela</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Two-phase multiobjective optimization","attachmentId":45398505,"attachmentType":"pdf","work_url":"https://www.academia.edu/25075595/Two_phase_multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/25075595/Two_phase_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="41170614" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/41170614/Computational_Intelligence_and_Its_Applications_in_Uncertainty_Based_Design_Optimization">Computational Intelligence and Its Applications in Uncertainty-Based Design Optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24423053" href="https://rt.academia.edu/AliAsgharBataleblu">Ali Asghar Bataleblu</a></div><p class="ds-related-work--metadata ds2-5-body-xs">intechopen, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Computational Intelligence and Its Applications in Uncertainty-Based Design Optimization","attachmentId":61610808,"attachmentType":"pdf","work_url":"https://www.academia.edu/41170614/Computational_Intelligence_and_Its_Applications_in_Uncertainty_Based_Design_Optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/41170614/Computational_Intelligence_and_Its_Applications_in_Uncertainty_Based_Design_Optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="85364383" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85364383/Performance_Based_Pareto_Optimal_Design">Performance-Based Pareto Optimal Design</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1206274" href="https://tudelft.academia.edu/SevilSariyildiz">Sevil Sariyildiz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">bk.tudelft.nl</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Performance-Based Pareto Optimal Design","attachmentId":90083886,"attachmentType":"pdf","work_url":"https://www.academia.edu/85364383/Performance_Based_Pareto_Optimal_Design","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/85364383/Performance_Based_Pareto_Optimal_Design"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="23869640" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/23869640/Efficient_Pareto_frontier_exploration_using_surrogate_approximations">Efficient Pareto frontier exploration using surrogate approximations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="46056697" href="https://independent.academia.edu/DavidCappelleri">David Cappelleri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">8th Symposium on Multidisciplinary Analysis and Optimization, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Efficient Pareto frontier exploration using surrogate approximations","attachmentId":44261668,"attachmentType":"pdf","work_url":"https://www.academia.edu/23869640/Efficient_Pareto_frontier_exploration_using_surrogate_approximations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/23869640/Efficient_Pareto_frontier_exploration_using_surrogate_approximations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="523777" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/523777/A_pareto_compliant_surrogate_approach_for_multiobjective_optimization">A pareto-compliant surrogate approach for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="397428" href="https://uni-freiburg.academia.edu/IlyaLoshchilov">Ilya Loshchilov</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 12th …, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A pareto-compliant surrogate approach for multiobjective optimization","attachmentId":3459735,"attachmentType":"pdf","work_url":"https://www.academia.edu/523777/A_pareto_compliant_surrogate_approach_for_multiobjective_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/523777/A_pareto_compliant_surrogate_approach_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="96433818" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/96433818/A_penalty_based_algorithm_proposal_for_engineering_optimization_problems">A penalty-based algorithm proposal for engineering optimization problems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="128749202" href="https://deu.academia.edu/SabriErdem">Sabri Erdem</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Neural Computing and Applications</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A penalty-based algorithm proposal for engineering optimization problems","attachmentId":98333075,"attachmentType":"pdf","work_url":"https://www.academia.edu/96433818/A_penalty_based_algorithm_proposal_for_engineering_optimization_problems","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/96433818/A_penalty_based_algorithm_proposal_for_engineering_optimization_problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="6570524" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/6570524/Post_Pareto_Optimality_Analysis_to_Efficiently_Identify_Promising_Solutions_for_Multi_Objective_Problems">Post-Pareto Optimality Analysis to Efficiently Identify Promising Solutions for Multi-Objective Problems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="10561146" href="https://utep.academia.edu/HeidiTaboada">Heidi Taboada</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Post-Pareto Optimality Analysis to Efficiently Identify Promising Solutions for Multi-Objective Problems","attachmentId":48802171,"attachmentType":"pdf","work_url":"https://www.academia.edu/6570524/Post_Pareto_Optimality_Analysis_to_Efficiently_Identify_Promising_Solutions_for_Multi_Objective_Problems","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/6570524/Post_Pareto_Optimality_Analysis_to_Efficiently_Identify_Promising_Solutions_for_Multi_Objective_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="80025419" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80025419/Sensitivity_analysis_applied_to_decision_making_in_multiobjective_evolutionary_optimization">Sensitivity analysis applied to decision making in multiobjective evolutionary optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="167076750" href="https://ifsc.academia.edu/SERGIOLUCIANOAVILA">SERGIO LUCIANO AVILA</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Magnetics, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Sensitivity analysis applied to decision making in multiobjective evolutionary optimization","attachmentId":86544240,"attachmentType":"pdf","work_url":"https://www.academia.edu/80025419/Sensitivity_analysis_applied_to_decision_making_in_multiobjective_evolutionary_optimization","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/80025419/Sensitivity_analysis_applied_to_decision_making_in_multiobjective_evolutionary_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="67223488" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/67223488/Survey_of_multi_objective_optimization_methods_for_engineering">Survey of multi-objective optimization methods for engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="97270095" href="https://independent.academia.edu/AroraJasbir">Jasbir Arora</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Structural and Multidisciplinary Optimization, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Survey of multi-objective optimization methods for engineering","attachmentId":78120720,"attachmentType":"pdf","work_url":"https://www.academia.edu/67223488/Survey_of_multi_objective_optimization_methods_for_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/67223488/Survey_of_multi_objective_optimization_methods_for_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>