CINXE.COM
Double-sided 3D silicon detectors for the high-luminosity LHC - CERN Document Server
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if IEMobile 7]><html class="iem7" xmlns="http://www.w3.org/1999/xhtml" lang="zh" xml:lang="zh" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if lte IE 6]><html class="ie6 ie6-7 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="zh" xml:lang="zh" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if (IE 7)&(!IEMobile)]><html class="ie7 ie6-7 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="zh" xml:lang="zh" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if IE 8]><html class="ie8 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="zh" xml:lang="zh" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if (gte IE 9)|(gt IEMobile 7)]><!--><html xmlns="http://www.w3.org/1999/xhtml" lang="zh" xml:lang="zh" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><!--<![endif]--> <head> <title>Double-sided 3D silicon detectors for the high-luminosity LHC - CERN Document Server</title> <link href='https://framework.web.cern.ch/framework/2.0/fonts/PTSansWeb/PTSansWeb.css' rel='stylesheet' type='text/css' /> <link rel="stylesheet" href="https://cds.cern.ch/img/invenio.css?v=20141127" type="text/css" /> <link rel="stylesheet" href="https://cds.cern.ch/img/cern_theme/css/cern_theme.css?v=20141127" type="text/css" /> <link rel="stylesheet"href="/css/font-awesome.min.css"> <meta http-equiv="X-UA-Compatible" content="IE=Edge"/> <link rel="stylesheet" href="https://cds.cern.ch/img/cern_toolbar/css/toolbar.css" type="text/css" /> <!--[if lt IE 8]> <link href="https://cds.cern.ch/img/cern_toolbar/css/toolbar-ie.css" rel="stylesheet" type="text/css"> <![endif]--> <!--[if lt IE 8]> <link rel="stylesheet" type="text/css" href="https://cds.cern.ch/img/invenio-ie7.css" /> <![endif]--> <!--[if gt IE 8]> <style type="text/css">div.restrictedflag {filter:none;}</style> <![endif]--> <link rel="canonical" href="https://cds.cern.ch/record/2636106/export/hm" /> <link rel="alternate" hreflang="el" href="https://cds.cern.ch/record/2636106/export/hm?ln=el" /> <link rel="alternate" hreflang="fr" href="https://cds.cern.ch/record/2636106/export/hm?ln=fr" /> <link rel="alternate" hreflang="bg" href="https://cds.cern.ch/record/2636106/export/hm?ln=bg" /> <link rel="alternate" hreflang="zh-TW" href="https://cds.cern.ch/record/2636106/export/hm?ln=zh_TW" /> <link rel="alternate" hreflang="pt" href="https://cds.cern.ch/record/2636106/export/hm?ln=pt" /> <link rel="alternate" hreflang="no" href="https://cds.cern.ch/record/2636106/export/hm?ln=no" /> <link rel="alternate" hreflang="hr" href="https://cds.cern.ch/record/2636106/export/hm?ln=hr" /> <link rel="alternate" hreflang="ca" href="https://cds.cern.ch/record/2636106/export/hm?ln=ca" /> <link rel="alternate" hreflang="de" href="https://cds.cern.ch/record/2636106/export/hm?ln=de" /> <link rel="alternate" hreflang="it" href="https://cds.cern.ch/record/2636106/export/hm?ln=it" /> <link rel="alternate" hreflang="zh-CN" href="https://cds.cern.ch/record/2636106/export/hm?ln=zh_CN" /> <link rel="alternate" hreflang="sv" href="https://cds.cern.ch/record/2636106/export/hm?ln=sv" /> <link rel="alternate" hreflang="sk" href="https://cds.cern.ch/record/2636106/export/hm?ln=sk" /> <link rel="alternate" hreflang="en" href="https://cds.cern.ch/record/2636106/export/hm?ln=en" /> <link rel="alternate" hreflang="pl" href="https://cds.cern.ch/record/2636106/export/hm?ln=pl" /> <link rel="alternate" hreflang="ru" href="https://cds.cern.ch/record/2636106/export/hm?ln=ru" /> <link rel="alternate" hreflang="ka" href="https://cds.cern.ch/record/2636106/export/hm?ln=ka" /> <link rel="alternate" hreflang="ja" href="https://cds.cern.ch/record/2636106/export/hm?ln=ja" /> <link rel="alternate" hreflang="es" href="https://cds.cern.ch/record/2636106/export/hm?ln=es" /> <link rel="alternate" type="application/rss+xml" title="CERN Document Server RSS" href="/rss?ln=zh_TW" /> <link rel="search" type="application/opensearchdescription+xml" href="https://cds.cern.ch/opensearchdescription" title="CERN Document Server" /> <link rel="unapi-server" type="application/xml" title="unAPI" href="https://cds.cern.ch/unapi" /> <link rel="apple-touch-icon" href="/apple-touch-icon.png"/> <link rel="apple-touch-icon-precomposed" href="/apple-touch-icon-precomposed.png"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta http-equiv="Content-Language" content="zh_TW" /> <meta name="description" content="To extend the physics potential of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, a luminosity upgrade is planned. The HL-LHC (High-Luminosity LHC) is foreseen to start operation approximately in the year 2024. The peak instantaneous luminosity will be increased by a factor of five compared to the design specification of the LHC. The increased track density requires a finer segmentation of the detectors employed to investigate the particle collisions. Over the projected lifetime of the HL-LHC, the tracking detectors will have to withstand a five to ten times higher radiation dose than that at the LHC. In silicon detectors, radiation damage increases the leakage current, the effective doping concentration and the charge carrier trapping probability. These effects lead to a decrease of the signal-to-noise ratio after high radiation fluences. As the silicon detectors currently installed in the LHC experiments are not expected to be sufficiently radiation tolerant for the HL-LHC, novel detector technologies are under study. In the current ATLAS detector at the LHC, planar n-in-n silicon pixel detectors and planar p-in-n silicon strip detectors are used. For the ATLAS upgrade, planar silicon n-in-p detectors are foreseen for the region to be equipped with strip detectors. In the inner pixel layer, which is closest to the interaction point, the detectors will have to withstand an unprecedentedly high radiation fluence of 2x10^16 n_eq/cm^2 (1 MeV neutron equivalent particles per square centimetre). An option for extremely radiation hard detectors are 3D detectors with columnar electrodes etched into the substrate perpendicular to the surface. In contrast to traditional planar detectors, where the electrodes are limited to the detector surface, the electrodes of 3D detectors extend into the third dimension, i.e. into the detector depth. In 3D detectors, the distance for drift of generated charge carriers and for depletion is given by the spacing between columnar electrodes of opposite doping types rather than by the detector thickness as in planar detectors. Therefore, enhanced radiation hardness is expected due to reduced trapping and a reduced depletion voltage, while the total ionised charge is determined by the substrate thickness. As a simplification of the original 3D detector design, double-sided 3D detectors have been developed. The electrodes pass through the substrate only partially, which increases the mechanical stability and simplifies the fabrication technology. In this thesis, the performance of double-sided 3D detectors is investigated in detail for the first time. The measurements were performed with strip detectors: on one side of the sensors, the columnar electrodes are connected to 4-8 mm long strips. The response of the detectors to high-energy pions, electrons emitted by a beta source and an infrared laser is studied. Special emphasis is put on signal measurements as a function of the particle's point of incidence. Also, detailed noise measurements were conducted. In order to investigate the radiation hardness of the detectors, they were irradiated with protons up to fluences that are expected for the HL-LHC inner pixel layers. The measurements were performed before any radiation-induced modification of the detector properties and after irradiation to different fluences. The dependence of the detector performance on the radiation fluence was measured separately with 3D detectors in n-in-p and in p-in-n layout. A comparison of the radiation hardness of the two designs is presented. Furthermore, the radiation hardness of planar n-in-p detectors is studied and compared to double-sided 3D detectors. A focus of this thesis is the investigation of charge multiplication effects, which can occur in the presence of high electric fields and which enhances the measured signal. While multiplication of the liberated charge carriers does not occur in conventional silicon tracking detectors before any radiation-induced modification of the detectors, it was recently observed in highly irradiated detectors. The high electric fields present in 3D detectors lead to an enhanced charge multiplication probability. Implications of charge multiplication on the detectors' signal and noise are studied. Köhler, Michael" /> <meta name="keywords" content="CERN Document Server, WebSearch, RD50 Papers" /> <script type="text/javascript" src="https://cds.cern.ch/js/jquery.min.js"></script> <!-- WebNews CSS library --> <link rel="stylesheet" href="https://cds.cern.ch/img/webnews.css" type="text/css" /> <!-- WebNews JS library --> <script type="text/javascript" src="https://cds.cern.ch/js/webnews.js?v=20131009"></script> <meta property="fb:app_id" content="137353533001720"/> <!-- GoogleScholar --> <meta content="submitter : Double-sided 3D silicon detectors for the high-luminosity LHC" name="citation_title" /> <meta content="Köhler, Michael" name="citation_author" /> <meta content="urn:nbn:de:bsz:25-opus-82734" name="citation_doi" /> <meta name="citation_online_date" content="2018/08/25"> <meta content="urn:nbn:de:bsz:25-opus-82734" name="citation_doi" /> <meta content="Freiburg U." name="citation_dissertation_institution" /> <meta name="citation_pdf_url" content="https://cds.cern.ch/record/2636106/files/fulltext.pdf" /> <!-- OpenGraph --> <meta content="submitter" property="og:title" /> <meta content="Double-sided 3D silicon detectors for the high-luminosity LHC" property="og:title" /> <meta content="website" property="og:type" /> <meta content="https://cds.cern.ch/record/2636106" property="og:url" /> <meta content="CERN Document Server" property="og:site_name" /> <meta content="submitter" property="og:description" /> <meta content="To extend the physics potential of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, a luminosity upgrade is planned. The HL-LHC (High-Luminosity LHC) is foreseen to start operation approximately in the year 2024. The peak instantaneous luminosity will be increased by a factor of five compared to the design specification of the LHC. The increased track density requires a finer segmentation of the detectors employed to investigate the particle collisions. Over the projected lifetime of the HL-LHC, the tracking detectors will have to withstand a five to ten times higher radiation dose than that at the LHC. In silicon detectors, radiation damage increases the leakage current, the effective doping concentration and the charge carrier trapping probability. These effects lead to a decrease of the signal-to-noise ratio after high radiation fluences. As the silicon detectors currently installed in the LHC experiments are not expected to be sufficiently radiation tolerant for the HL-LHC, novel detector technologies are under study. In the current ATLAS detector at the LHC, planar n-in-n silicon pixel detectors and planar p-in-n silicon strip detectors are used. For the ATLAS upgrade, planar silicon n-in-p detectors are foreseen for the region to be equipped with strip detectors. In the inner pixel layer, which is closest to the interaction point, the detectors will have to withstand an unprecedentedly high radiation fluence of 2x10^16 n_eq/cm^2 (1 MeV neutron equivalent particles per square centimetre). An option for extremely radiation hard detectors are 3D detectors with columnar electrodes etched into the substrate perpendicular to the surface. In contrast to traditional planar detectors, where the electrodes are limited to the detector surface, the electrodes of 3D detectors extend into the third dimension, i.e. into the detector depth. In 3D detectors, the distance for drift of generated charge carriers and for depletion is given by the spacing between columnar electrodes of opposite doping types rather than by the detector thickness as in planar detectors. Therefore, enhanced radiation hardness is expected due to reduced trapping and a reduced depletion voltage, while the total ionised charge is determined by the substrate thickness. As a simplification of the original 3D detector design, double-sided 3D detectors have been developed. The electrodes pass through the substrate only partially, which increases the mechanical stability and simplifies the fabrication technology. In this thesis, the performance of double-sided 3D detectors is investigated in detail for the first time. The measurements were performed with strip detectors: on one side of the sensors, the columnar electrodes are connected to 4-8 mm long strips. The response of the detectors to high-energy pions, electrons emitted by a beta source and an infrared laser is studied. Special emphasis is put on signal measurements as a function of the particle's point of incidence. Also, detailed noise measurements were conducted. In order to investigate the radiation hardness of the detectors, they were irradiated with protons up to fluences that are expected for the HL-LHC inner pixel layers. The measurements were performed before any radiation-induced modification of the detector properties and after irradiation to different fluences. The dependence of the detector performance on the radiation fluence was measured separately with 3D detectors in n-in-p and in p-in-n layout. A comparison of the radiation hardness of the two designs is presented. Furthermore, the radiation hardness of planar n-in-p detectors is studied and compared to double-sided 3D detectors. A focus of this thesis is the investigation of charge multiplication effects, which can occur in the presence of high electric fields and which enhances the measured signal. While multiplication of the liberated charge carriers does not occur in conventional silicon tracking detectors before any radiation-induced modification of the detectors, it was recently observed in highly irradiated detectors. The high electric fields present in 3D detectors lead to an enhanced charge multiplication probability. Implications of charge multiplication on the detectors' signal and noise are studied." property="og:description" /> <!-- Twitter Card --> <meta content="summary" name="twitter:card" /> <style></style> </head> <body class="RD5032Papers search" lang="zh"> <!-- toolbar starts --> <div id="cern-toolbar"> <h1><a href="http://cern.ch" title="CERN">CERN <span>Accelerating science</span></a></h1> <ul> <li class="cern-accountlinks"><a class="cern-account" href="https://cds.cern.ch/youraccount/login?ln=zh_TW&referer=https%3A//cds.cern.ch/record/2636106/export/hm%3Fln%3Dzh_TW" title="Sign in to your CERN account">Sign in</a></li> <li><a class="cern-directory" href="http://cern.ch/directory" title="Search CERN resources and browse the directory">Directory</a></li> </ul> </div> <!-- toolbar ends --> <!-- Nav header starts--> <div role="banner" class="clearfix" id="header"> <div class="header-inner inner"> <hgroup class="clearfix"> <h2 id="site-name"> <a rel="home" title="Home" href="/"><span>CERN Document Server</span></a> </h2> <h3 id="site-slogan">Access articles, reports and multimedia content in HEP</h3> </hgroup><!-- /#name-and-slogan --> <div role="navigation" id="main-navigation" class="cdsmenu"> <h2 class="element-invisible">Main menu</h2><ul class="links inline clearfix"> <li class="menu-386 first active-trail"><a class="active-trail" href="https://cds.cern.ch/?ln=zh_TW">搜尋</a></li> <li class="menu-444 "><a class="" title="" href="https://cds.cern.ch/submit?ln=zh_TW">提交</a></li> <li class="menu-426 "><a class="" href="https://cds.cern.ch/help/?ln=zh_TW">幫助</a></li> <li class="leaf hassubcdsmenu"> <a hreflang="en" class="header" href="https://cds.cern.ch/youraccount/display?ln=zh_TW">個人化</a> <ul class="subsubcdsmenu"><li><a href="https://cds.cern.ch/youralerts/list?ln=zh_TW">Your alerts</a></li><li><a href="https://cds.cern.ch/yourbaskets/display?ln=zh_TW">Your baskets</a></li><li><a href="https://cds.cern.ch/yourcomments?ln=zh_TW">Your comments</a></li><li><a href="https://cds.cern.ch/youralerts/display?ln=zh_TW">Your searches</a></li></ul></li> </ul> </div> </div> </div> <!-- Nav header ends--> <table class="navtrailbox"> <tr> <td class="navtrailboxbody"> <a href="/?ln=zh_TW" class="navtrail">主頁</a> > <a href="/collection/CERN%20R%26D%20Projects?ln=zh_TW" class="navtrail">CERN R&D Projects</a> > <a href="/collection/CERN%20Detector%20R%26D%20Projects?ln=zh_TW" class="navtrail">CERN Detector R&D Projects</a> > <a href="/collection/RD50?ln=zh_TW" class="navtrail">RD50</a> > <a href="/collection/RD50%20Papers?ln=zh_TW" class="navtrail">RD50 Papers</a> > <a class="navtrail" href="/record/2636106">Double-sided 3D silicon detectors for the high-luminosity LHC</a> > HTML MARC </td> </tr> </table> </div> <div class="pagebody"><div class="pagebodystripemiddle"> <pre style="margin: 1em 0px;">002636106 001__ 2636106 002636106 003__ SzGeCERN 002636106 005__ 20220817145943.0 002636106 0247_ $$2URN$$aurn:nbn:de:bsz:25-opus-82734 002636106 0248_ $$aoai:inspirehep.net:1657012$$pcerncds:THESES$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pINIS$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS 002636106 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1657012$$d2018-08-24T13:12:24Z$$h2018-08-25T04:00:06Z$$mmarcxml 002636106 035__ $$9Inspire$$a1657012 002636106 041__ $$aeng 002636106 100__ $$aKöhler, Michael$$uFreiburg U. 002636106 245__ $$9submitter$$aDouble-sided 3D silicon detectors for the high-luminosity LHC 002636106 300__ $$a207 p 002636106 500__ $$aPresented 12 Sep 2011 002636106 502__ $$aPhD$$bFreiburg U.$$c2011 002636106 520__ $$9submitter$$aTo extend the physics potential of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, a luminosity upgrade is planned. The HL-LHC (High-Luminosity LHC) is foreseen to start operation approximately in the year 2024. The peak instantaneous luminosity will be increased by a factor of five compared to the design specification of the LHC. The increased track density requires a finer segmentation of the detectors employed to investigate the particle collisions. Over the projected lifetime of the HL-LHC, the tracking detectors will have to withstand a five to ten times higher radiation dose than that at the LHC. In silicon detectors, radiation damage increases the leakage current, the effective doping concentration and the charge carrier trapping probability. These effects lead to a decrease of the signal-to-noise ratio after high radiation fluences. As the silicon detectors currently installed in the LHC experiments are not expected to be sufficiently radiation tolerant for the HL-LHC, novel detector technologies are under study. In the current ATLAS detector at the LHC, planar n-in-n silicon pixel detectors and planar p-in-n silicon strip detectors are used. For the ATLAS upgrade, planar silicon n-in-p detectors are foreseen for the region to be equipped with strip detectors. In the inner pixel layer, which is closest to the interaction point, the detectors will have to withstand an unprecedentedly high radiation fluence of 2x10^16 n_eq/cm^2 (1 MeV neutron equivalent particles per square centimetre). An option for extremely radiation hard detectors are 3D detectors with columnar electrodes etched into the substrate perpendicular to the surface. In contrast to traditional planar detectors, where the electrodes are limited to the detector surface, the electrodes of 3D detectors extend into the third dimension, i.e. into the detector depth. In 3D detectors, the distance for drift of generated charge carriers and for depletion is given by the spacing between columnar electrodes of opposite doping types rather than by the detector thickness as in planar detectors. Therefore, enhanced radiation hardness is expected due to reduced trapping and a reduced depletion voltage, while the total ionised charge is determined by the substrate thickness. As a simplification of the original 3D detector design, double-sided 3D detectors have been developed. The electrodes pass through the substrate only partially, which increases the mechanical stability and simplifies the fabrication technology. In this thesis, the performance of double-sided 3D detectors is investigated in detail for the first time. The measurements were performed with strip detectors: on one side of the sensors, the columnar electrodes are connected to 4-8 mm long strips. The response of the detectors to high-energy pions, electrons emitted by a beta source and an infrared laser is studied. Special emphasis is put on signal measurements as a function of the particle's point of incidence. Also, detailed noise measurements were conducted. In order to investigate the radiation hardness of the detectors, they were irradiated with protons up to fluences that are expected for the HL-LHC inner pixel layers. The measurements were performed before any radiation-induced modification of the detector properties and after irradiation to different fluences. The dependence of the detector performance on the radiation fluence was measured separately with 3D detectors in n-in-p and in p-in-n layout. A comparison of the radiation hardness of the two designs is presented. Furthermore, the radiation hardness of planar n-in-p detectors is studied and compared to double-sided 3D detectors. A focus of this thesis is the investigation of charge multiplication effects, which can occur in the presence of high electric fields and which enhances the measured signal. While multiplication of the liberated charge carriers does not occur in conventional silicon tracking detectors before any radiation-induced modification of the detectors, it was recently observed in highly irradiated detectors. The high electric fields present in 3D detectors lead to an enhanced charge multiplication probability. Implications of charge multiplication on the detectors' signal and noise are studied. 002636106 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques 002636106 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques 002636106 690C_ $$aCERN 002636106 693__ $$pCERN HL-LHC 002636106 693__ $$aNot applicable$$eRD50 002636106 693__ $$aCERN SPS$$bH2 002636106 701__ $$aJakobs, Karl$$edir.$$uFreiburg U. 002636106 8564_ $$uhttps://freidok.uni-freiburg.de/data/8273$$yFreiburg server 002636106 8564_ $$81427612$$s15795802$$uhttps://cds.cern.ch/record/2636106/files/fulltext.pdf$$yFulltext 002636106 960__ $$a14 002636106 980__ $$aTHESIS 002636106 999C6 $$a0-0-0-1-0-0-1$$t2018-02-23 15:21:15$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44$$vcontent.pdf;1 002636106 999C5 $$0809652$$hG. Aad et al.$$mATLAS pixel detector electronics and sensors$$oAad08a$$sJINST,3,P07007$$y2008 002636106 999C5 $$0810300$$hG. Aad et al.$$mExpected performance of the ATLAS experiment: detector, trigger and physics CERN, Geneva$$oAad08b$$rCERN-OPEN-2008-020$$y2008 002636106 999C5 $$0796888$$hG. Aad et al.$$mThe ATLAS experiment at the CERN Large Hadron Collider$$oAad08c$$sJINST,3,S08003$$y2008 002636106 999C5 $$0379632$$hS. Abachi et al.$$mSearch for high mass top quark production in p¯p collisions at √ s = 1.8 TeV$$oAba95$$sPhys.Rev.Lett.,74,2422-2426$$y1995 002636106 999C5 $$0780935$$hE. Abat et al.$$mThe ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance$$oAba08$$sJINST,3,P02013$$y2008 002636106 999C5 $$0393084$$hF. Abe et al.$$mObservation of top quark production in ¯pp collisions$$oAbe95$$sPhys.Rev.Lett.,74,2626-2631$$y1995 002636106 999C5 $$0727495$$hW. Adam et al.$$mRadiation hard diamond sensors for future tracking applications$$oAda06$$sNucl.Instrum.Meth.,A565,278-283$$y2006 002636106 999C5 $$0876962$$hT. Affolder, P. Allport, and G. Casse$$m[Aff10] Collected charge of planar silicon detectors after pion and proton irradiations up to 2.2×1016 neqcm-2$$oAda06$$sNucl.Instrum.Meth.,A623,177-179$$y2010 002636106 999C5 $$hA. Ahmad et al.$$mThe silicon microstrip sensors of the ATLAS Semiconductor Tracker$$oAhm07$$sNucl.Instrum.Meth.,578,98-118$$y2007 002636106 999C5 $$hP. P. Allport$$mLong term planning proposal, Presentation given at the ATLAS Upgrade Week March/April, Oxford (UK)$$oAll11a$$y2011 002636106 999C5 $$0918153$$hP. P. Allport et al.$$mProgress with the single-sided module prototypes for the ATLAS tracker upgrade stave$$oAll11b$$sNucl.Instrum.Meth.,A636,S90-S96$$y2011 002636106 999C5 $$0796248$$hA. Augusto Alves et al.$$mThe LHCb Detector at the LHC$$oAlv08$$sJINST,3,S08005$$y2008 002636106 999C5 $$0477139$$hL. Andricek et al.$$mSingle-sided p+n and double-sided silicon strip detectors exposed to fluences up to 2 × 1014 /cm2 24 GeV protons$$oAnd98$$sNucl.Instrum.Meth.,A409,184-193$$y1998 002636106 999C5 $$cATLAS Collaboration$$hM.-M. Bé et al.$$mATLAS Pixel Petector: technical design report CERN, Geneva, 1998. 197 198 BIBLIOGRAPHY [B´06] Table of radionuclides (vol. 3 - A = 3 to 244), Monographie BIPM-5$$oATL98$$rCERN-LHCC-98-013$$y2006 002636106 999C5 $$0358003$$hE. Barberis et al.$$mCapacitances in silicon microstrip detectors$$oBar94$$sNucl.Instrum.Meth.,A342,90-95$$y1994 002636106 999C5 $$0760682$$hG. Battistoni et al.$$mThe FLUKA code: description and benchmarking$$oBat07$$sAIP Conf.Proc.,896,31-49$$y2007 002636106 999C5 $$hR. Bates et al.$$mCharge collection studies and electrical measurements of heavily irradiated 3D double-sided sensors and comparison to planar strip detectors, IEEE Trans. Nucl. Sci , accepted for publication$$oBat11$$y2011 002636106 999C5 $$0765060$$hG. L. Bayatian et al.$$mCMS physics technical design deport, volume II : physics performance CERN, Geneva$$oBay06$$rCERN-LHCC-2006-021$$y2006 002636106 999C5 $$hM. Benedikt et al.$$mLHC design report, vol. 3: the LHC injector chain -V-3, CERN, Geneva$$oBen04$$rCERN-2004-003$$y2004 002636106 999C5 $$hM. Benoit, A. Lounis, and Dinu N.$$mSimulation of charge multiplication and trapassisted tunneling in irradiated planar pixel sensors Nuclear Science Symposium and Medical Imaging Conference (NSS - MIC’10), Conference Record, paper N21-6, Knoxville (USA, TN)$$oBen10$$pIEEE$$y2010 002636106 999C5 $$hM. J. Berger et al.$$mStopping-power and range tables for electrons, protons, and helium ions, NISTIR 4999,, Computer program ESTAR available at$$oBer10$$uhttp://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html$$y2010 002636106 999C5 $$0269501$$hH. Bichsel$$mStraggling in thin silicon detectors$$oBic88$$sRev.Mod.Phys.,60,663-699$$y1988 002636106 999C5 $$0335023$$hN. Bingefors et al.$$mA novel technique for fast pulse-shaping using a slow amplifier at LHC$$oBin93$$sNucl.Instrum.Meth.,A326,112-119$$y1993 002636106 999C5 $$hM. Breindl$$mErweiterung eines Lasermessstandes und Untersuchung von 3DSilizium-Detektoren [in German], Diploma thesis, University of Freiburg$$oBre10$$y2010 002636106 999C5 $$0458148$$hR. Brun and F. Rademakers$$mROOT — An object oriented data analysis framework$$oBru97$$sNucl.Instrum.Meth.,A389,81-86$$y1997 002636106 999C5 $$hO. S. Bruening et al.$$mLHC design report, vol. 1: the LHC main ring -V-1, CERN, Geneva$$oBru04$$rCERN-2004-003$$y2004 002636106 999C5 $$01609508$$hM. Capeans et al.$$mATLAS Insertable B-Layer technical design report CERN, Geneva$$oCap11$$rCERN-LHCC-2010-013$$y2011 002636106 999C5 $$hG. Casse, P. P. Allport, and M. Hanlon$$mImproving the radiation hardness properties of silicon detectors using oxygenated n-type and p-type silicon$$oCas00$$sIEEE Trans.Nucl.Sci.,47,527-532$$y2000 002636106 999C5 $$0893452$$hM. Casse$$mCharge multiplication in highly irradiated planar silicon sensors, Proceedings of the 19th International Workshop on Vertex Detectors, Loch Lomond (Scotland, UK) BIBLIOGRAPHY 199$$oCas10$$sPoS,VERTEX2010,020$$y2010 002636106 999C5 $$hG. Casse et al.$$mAccelerated and room temperature annealing of the CC(V), Presented at the 18th RD50 workshop, Liverpool (UK)$$oCas11a$$y2011 002636106 999C5 $$hG. Casse et al.$$mEvidence of enhanced signal response at high bias voltages in planar silicon detectors irradiated up to 2.2×1016 neq cm-2$$oCas11b$$sNucl.Instrum.Meth.,A636,S56-S61$$y2011 002636106 999C5 $$0796887$$hS. Chatrchyan et al.$$mThe CMS experiment at the CERN LHC$$oCha08$$sJINST,3,S08004$$y2008 002636106 999C5 $$hJ. R. Chelikowsky and M. L. Cohen$$mNonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors$$oChe76$$sPhys.Rev.,B14,556-582$$y1976 002636106 999C5 $$0458993$$hA. Chilingarov and T. Sloan$$mOperation of heavily irradiated silicon detectors under forward bias$$oChi97$$sNucl.Instrum.Meth.,A399,35-37$$y1997 002636106 999C5 $$0817729$$hV. Cindro et al.$$mRadiation damage in p-type silicon irradiated with neutrons and protons$$oCin09$$sNucl.Instrum.Meth.,A599,60-65$$y2009 002636106 999C5 $$hI. Dawson$$mRadiation Background Simulations, URL: accessed June$$oDaw11$$uhttps://twiki.cern.ch/twiki/bin/viewauth/Atlas/RadiationBackgroundSimulations$$y2011 002636106 999C5 $$0837879$$hG.-F. Dalla Betta et al.$$mPerformance evaluation of 3D-DDTC detectors on ptype substrates$$oDB10$$sNucl.Instrum.Meth.,A624,459-464$$y2010 002636106 999C5 $$hM. Demarteau et al.$$mCharacteristics of the outer layer silicon sensors for the run IIb silicon detector$$oDem03$$rDØ-Note-4308$$y2003 002636106 999C5 $$hA. Dierlamm$$mIrradiations in Karlsruhe, Presented at the 16th RD50 workshop, Barcelona (Spain)$$oDie10$$y2010 002636106 999C5 $$hS. Eckert$$mInvestigation of the applicability of 3D stc silicon strip detectors for the sLHC, Ph.D. thesis, University of Freiburg, Freiburg$$oEck08$$y2008 002636106 999C5 $$0774465$$hT. Ehrich et al.$$mLaser characterisation of a 3D single-type column p-type prototype module read out with ATLAS SCT electronics$$oEhr07$$sNucl.Instrum.Meth.,A583,153-156$$y2007 002636106 999C5 $$012291$$hF. Englert and R. Brout$$mBroken symmetry and the mass of gauge vector mesons$$oEng64$$sPhys.Rev.Lett.,13,321-323$$y1964 002636106 999C5 $$0584603$$hV. Eremin, E. Verbitskaya, and Z. Li$$mThe origin of double peak electric field distribution in heavily irradiated silicon detectors$$oEre02$$sNucl.Instrum.Meth.,A476,556-564$$y2002 002636106 999C5 $$0774459$$hV. Eremin et al.$$mCurrent injected detectors at super-LHC program$$oEre07$$sNucl.Instrum.Meth.,A583,91-98$$y2007 002636106 999C5 $$mFBK, Fondazione Bruno Kessler, Povo - Via Sommarive 18, 38123 Trento, Italy. 200 BIBLIOGRAPHY$$oFBK 002636106 999C5 $$hC. Fleta$$mPersonal Communication$$oFle10 002636106 999C5 $$0563299$$hM. J. French et al.$$mDesign and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker$$oFre01$$sNucl.Instrum.Meth.,A466,359-365$$y2001 002636106 999C5 $$hR. Garoby$$mPlans for the upgrade of the LHC injectors, Presented at the SLHC, the High-Luminosity Upgrade (public event), CERN, Geneva (Switzerland))$$oGar11$$y2011 002636106 999C5 $$0585092$$hF. Gianotti et al.$$mPhysics potential and experimental challenges of the LHC luminosity upgrade$$oGia05$$sEur.Phys.J.,C39,293-333$$y2005 002636106 999C5 $$9CURATOR$$hW. N. Grant$$oGra73$$sSolid State Electron.,16,1189-1203$$tElectron and hole ionization rates in epitaxial silicon at high electric fields$$y1973 002636106 999C5 $$hP. Grenier et al.$$mTest beam results of 3D silicon pixel sensors for the ATLAS upgrade$$oGre11$$sNucl.Instrum.Meth.,A688,33-40$$y2011 002636106 999C5 $$012292$$hG. Guralnik, C. Hagen, and T. Kibble$$mGlobal conservation laws and massless particles$$oGur64$$sPhys.Rev.Lett.,13,585-587$$y1964 002636106 999C5 $$hPhotonics K.K.$$mHamamatsu 1126-1 Ichino-cho, Hamamatsu-shi 435-8558, Japan$$oHam 002636106 999C5 $$0820646$$hF. Hartmann$$oHar09$$pSpringer$$tEvolution of Silicon Sensor Technology in Particle Physics$$y2009 002636106 999C5 $$011883$$hP. W. Higgs$$mBroken symmetries and the masses of gauge bosons$$oHig64a$$sPhys.Rev.Lett.,13,508-509$$y1964 002636106 999C5 $$040440$$hP. W. Higgs$$mBroken symmetries, massless particles and gauge fields$$oHig64b$$sPhys.Lett.,12,132-133$$y1964 002636106 999C5 $$050073$$hP. W. Higgs$$mSpontaneous symmetry breakdown without massless bosons$$oHig66$$sPhys.Rev.,145,1156-1163$$y1966 002636106 999C5 $$0602672$$hM. Huhtinen$$mSimulation of non-ionising energy loss and defect formation in silicon$$oHuh02$$sNucl.Instrum.Meth.,A491,194-215$$y2002 002636106 999C5 $$hG. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers$$mA new recombination model for device simulation including tunneling$$oHur92$$sIEEE Trans.Electron.Dev.,39,331-338$$y1992 002636106 999C5 $$mIMB-CNM, Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, 08193 Cerdanyola del Vallès (Bellaterra), Barcelona, Spain$$oIC 002636106 999C5 $$hK. Jakobs$$mPhysics at the LHC and sLHC$$oJak11$$sNucl.Instrum.Meth.,636,S1-S7$$y2011 002636106 999C5 $$hL. L. Jones et al.$$mThe APV25 deep submicron readout chip for CMS detectors, Proceedings of the 5th workshop on electronics for LHC experiments, vol pp. 162-166. BIBLIOGRAPHY 201$$oJon99$$rCERN-LHCC-99-09$$y1999 002636106 999C5 $$0163868$$hJ. Kemmer$$mFabrication of low noise silicon radiation detectors by the planar process$$oKem80$$sNucl.Instrum.Meth.,169,499-502$$y1980 002636106 999C5 $$hC. Kenney et al.$$mSilicon detectors with 3-D electrode arrays: fabrication and initial test results$$oKen99$$sIEEE Trans.Nucl.Sci.,46,1224-1236$$y1999 002636106 999C5 $$051165$$hT. Kibble$$mSymmetry breaking in non-Abelian gauge theories$$oKib67$$sPhys.Rev.,155,1554-1561$$y1967 002636106 999C5 $$0893450$$hA. Kok et al.$$mFabrication of 3D silicon sensors, Proceedings of the 19th International Workshop on Vertex Detectors, Loch Lomond (Scotland, UK)$$oKok10$$sPoS,VERTEX2010,022$$y2010 002636106 999C5 $$0819218$$hM. J. Kortelainen et al.$$mOff-line calibration and data analysis for the silicon beam telescope on the CERN H2 beam$$oKor09$$sNucl.Instrum.Meth.,A602,600-606$$y2009 002636106 999C5 $$0589111$$hG. Kramberger et al.$$mEffective trapping time of electrons and holes in different silicon materials irradiated with neutrons, protons and pions$$oKra02$$sNucl.Instrum.Meth.,A481,297-305$$y2002 002636106 999C5 $$0768337$$hG. Kramberger et al.$$mImpact of annealing of trapping times on charge collection in irradiated silicon detectors$$oKra07$$sNucl.Instrum.Meth.,A579,762-765$$y2007 002636106 999C5 $$0844873$$hG. Kramberger et al.$$mPerformance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons$$oKra09$$sNucl.Instrum.Meth.,A609,142-148$$y2009 002636106 999C5 $$0849231$$hG. Kramberger et al.$$mComparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions$$oKra10a$$sNucl.Instrum.Meth.,A612,474-477$$y2010 002636106 999C5 $$01655624$$hG. Kramberger et al.$$mInvestigation of irradiated silicon detectors by edge-TCT [Kö09] M. Köhler et al$$oKra10b$$sIEEE Trans.Nucl.Sci.,57,2294-2302$$y2010 002636106 999C5 $$0888863$$hM. Köhler et al.$$mMeasurements of 3D silicon strip sensors by two manufacturers, Proceedings of the 9th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, Florence (Italy), PoS(RD09)031, 2009. [Kö10a] Beam test measurements with 3D-DDTC silicon strip detectors on n-type substrate [Kö10b] M. Köhler et al Test beam measurements with 3D silicon strip detectors, Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications. Proceedings of the 11th Conference, Villa Olmo, Como (Italy) C. Leroy, ed$$oKra10b$$pWorld Scientific$$sIEEE Trans.Nucl.Sci.,57,2987-2994$$y2010 002636106 999C5 $$0945720$$hM. Köhler et al.$$mPublishing, 2010, pp. 864-868. [Kö11a] Beam test measurements with planar and 3D silicon strip detectors irradiated to sLHC fluences 202 BIBLIOGRAPHY [Kö11b] M. Köhler et al$$oKra10b$$sIEEE Trans.Nucl.Sci.,58,1308-1314$$y2011 002636106 999C5 $$01090296$$adoi:10.1016/j.nima.2011.08.041$$hMeth. A$$mComparative measurements of highly irradiated n-in-p and p-in-n 3D silicon strip detectors, Nucl. Instrum in press$$oKra10b$$y2011 002636106 999C5 $$0918040$$hM. Köhler et al.$$m[Kö11c] Measurements with irradiated 3D silicon strip detectors Proceedings of the 12th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD10), Siena (Italy). [Kü06] S. Kühn Untersuchung der Strahlenhärte von Siliziumsensoren mit einer Betaquelle [in German], Diploma thesis, University of Freiburg, 2006. [Kü08] S. Kühn et al Short strips for the sLHC: a p-type silicon microstrip detector in$$oKra10b$$sNucl.Phys.Proc.Suppl.,215,247-249$$y2011 002636106 999C5 $$045074$$hL. Landau$$mOn the energy loss of fast particles by ionization$$oLan44$$sJ.Phys.(USSR),8,201-205$$y1944 002636106 999C5 $$0863068$$hJ. Lange et al.$$mProperties of a radiation-induced charge multiplication region in epitaxial silicon diodes$$oLan10$$sNucl.Instrum.Meth.,A622,49-58$$y2010 002636106 999C5 $$hJ. D. G. Leaver$$mTesting and Development of the CMS Silicon Tracker Front End Readout Electronics, Ph.D. thesis, Imperial College, London$$oLea05$$y2005 002636106 999C5 $$hC. Lefevre$$mLHC: the guide (English version), CERN-Brochure--003-Eng, CERN, Geneva$$oLef09$$y2009 002636106 999C5 $$hC. Leroy and P.-G. Rancoita$$mPrinciples of radiation interaction in matter and detection Publishing$$oLer09$$pWorld Scientific$$y2009 002636106 999C5 $$hZ. Li and H. W. Kraner$$mFast neutron radiation damage effects on high resistivity silicon junction detectors$$oLi92$$sJ.Electron.Mater.,21,701-705$$y1992 002636106 999C5 $$hZ. Li$$mModeling and simulation of neutron induced changes and temperature annealing of Neff and changes in resistivity in high resistivity silicon detectors$$oLi94$$sNucl.Instrum.Meth.,A342,105-118$$y1994 002636106 999C5 $$hV. A. J. van Lint et al.$$mMechanisms of radiation effects in electronic materials, John and Sons$$oLin80$$pWiley$$y1980 002636106 999C5 $$0563294$$hG. Lindström et al.$$mRadiation hard silicon detectors-developments by the RD48 (ROSE) collaboration$$oLin01$$sNucl.Instrum.Meth.,A466,308-326$$y2001 002636106 999C5 $$0669883$$hC. Lois et al.$$mLaboratory measurements on irradiated prototype ladders for the LHCb inner tracker$$oLoi04$$rCERN-LHCB-2004-112$$y2004 002636106 999C5 $$0928871$$hG. Lutz$$mSemiconductor radiation detectors: device physics 1999. [Lö06] S. Löchner and M. Schmelling The beetle reference manual - chip version 1.3, 1.4 and 1.5$$oLut99$$pSpringer$$rCERN-LHCB-2005-105$$y2006 002636106 999C5 $$0946054$$adoi:10.1016/j.nima.2010.11.163$$hA. Macchiolo et al.$$mPerformance of thin pixel sensors irradiated up to a fluence of 1016 neqcm-2 and development of a new interconnection technology for the upgrade of the ATLAS pixel system, Nucl. Instrum. Meth. A in press BIBLIOGRAPHY 203$$oMac10$$y2010 002636106 999C5 $$9CURATOR$$hW. Maes, K. de Meyer, and R. van Oeverstraeten$$oMae90$$sSolid State Electron.,33,705-718$$tImpact ionization in silicon: a review and update$$y1990 002636106 999C5 $$0849231$$hI. Mandíc et al.$$mObservation of full charge collection efficiency in heavily irradiated n+p strip detectors irradiated up to 3 × 1015 neq/cm2$$oMan10$$sNucl.Instrum.Meth.,A612,474-477$$y2010 002636106 999C5 $$0892230$$hI. Mandíc et al.$$mAnnealing effects in n+-p strip detectors irradiated with high neutron fluences$$oMan11$$sNucl.Instrum.Meth.,A629,101-105$$y2011 002636106 999C5 $$0448462$$hS. P. Martin$$mA supersymmetry primer, arXiv:$$oMar08$$rhep-ph/9709356$$y2008 002636106 999C5 $$0788790$$hM. Mathes et al.$$mTest beam characterization of 3-D silicon pixel detectors$$oMat08$$sIEEE Trans.Nucl.Sci.,55,3731-3735$$y2008 002636106 999C5 $$mMATLAB 7.10.0, The MathWorks, Inc., URL:$$oMat10$$uhttp://www.mathworks.com/$$y2010 002636106 999C5 $$hR. J. McIntyre$$mMultiplication noise in uniform avalanche diodes$$oMcI66$$sIEEE Trans.Electron.Dev.,13,164-168$$y1966 002636106 999C5 $$hR. Marco-Hernandez$$mDesign of a readout system for microstrip silicon sensors, Master’s thesis, University of Valencia$$oMH08$$y2008 002636106 999C5 $$0831243$$hR. Marco-Hernandez et al.$$mA portable readout system for microstrip silicon sensors (ALIBAVA)$$oMH09$$sIEEE Trans.Nucl.Sci.,56,1642-1649$$y2009 002636106 999C5 $$hM. Moll$$mRadiation damage in silicon particle detectors: microscopic defects and macroscopic properties, Ph.D. thesis, University of Hamburg, Hamburg$$oMol99$$y1999 002636106 999C5 $$hM. Moll$$mRecent advances in the development of radiation tolerant silicon detectors for the Super-LHC, Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications. Proceedings of the 11th Conference, Villa Olmo, Como (Italy) C. Leroy, ed Publishing,, pp. 101-110$$oMol10$$pWorld Scientific$$y2010 002636106 999C5 $$0893437$$hD. Muenstermann$$mAtlas Upgrade, Proceedings of the 19th International Workshop on Vertex Detectors, Loch Lomond (Scotland, UK)$$oMue10$$sPoS,VERTEX2010,038$$y2010 002636106 999C5 $$0801038$$hA. Murray, A. Lampert, and P. Mark$$mCurrent injection in solids Press, 1970. [Mä08] T. Mäenpää et al Silicon beam telescope for LHC upgrade tests$$oMur70$$pAcademic$$sNucl.Instrum.Meth.,A593,523-529$$y2008 002636106 999C5 $$0875948$$hK. Nakamura et al.$$mReview of particle physics$$oNak10$$sJ.Phys.,G37,075021$$y2010 002636106 999C5 $$0359212$$hT. Ohsugi et al.$$mMicrodischarges of AC-coupled silicon strip sensors$$oOhs94$$sNucl.Instrum.Meth.,A342,22-26$$y1994 002636106 999C5 $$0432827$$hT. Ohsugi et al.$$mMicro-discharge at strip edge of silicon microstrip sensors 204 BIBLIOGRAPHY$$oOhs96a$$sNucl.Instrum.Meth.,A383,116-122$$y1996 002636106 999C5 $$0432822$$hT. Ohsugi et al.$$mMicro-discharge noise and radiation damage of silicon microstrip sensors$$oOhs96b$$sNucl.Instrum.Meth.,A383,166-173$$y1996 002636106 999C5 $$hG. Pahn$$mTeststrahlmessungen mit 3D-stc Silizium-Streifendetektoren [in German], Diploma thesis, University of Freiburg$$oPah08$$y2008 002636106 999C5 $$0857839$$hG. Pahn et al.$$mFirst beam test characterisation of a 3D-STC silicon short strip detector$$oPah09$$sIEEE Trans.Nucl.Sci.,56,3834-3839$$y2009 002636106 999C5 $$040491$$hS. I. Parker, C. J. Kenney, and J. Segal$$m3D - A proposed new architecture for solid-state radiation detectors$$oPar97$$sNucl.Instrum.Meth.,A395,328-343$$y1997 002636106 999C5 $$0570942$$hS. I. Parker and C. J. Kenney$$mPerformance of 3-D architecture silicon sensors after intense proton irradiation$$oPar01$$sIEEE Trans.Nucl.Sci.,48,1629-1638$$y2001 002636106 999C5 $$hS. Parker et al.$$mIncreased speed: 3D silicon sensors$$oPar11 002636106 999C5 $$0916464$$mfast current amplifiers$$oPar11$$sIEEE Trans.Nucl.Sci.,58,404-417$$y2011 002636106 999C5 $$0768318$$hG. Pellegrini et al.$$mTechnology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderated p-spray insulations$$oPel07$$sNucl.Instrum.Meth.,A579,599-603$$y2007 002636106 999C5 $$0794349$$hG. Pellegrini et al.$$mFirst double-sided 3-D detectors fabricated at CNM-IMB$$oPel08$$sNucl.Instrum.Meth.,A592,38-43$$y2008 002636106 999C5 $$hG. Pellegrini$$mPersonal Communication$$oPel10 002636106 999C5 $$hD. Pennicard et al.$$mSimulation results from double-sided 3-D detectors$$oPen07$$sIEEE Trans.Nucl.Sci.,54,1435-1443$$y2007 002636106 999C5 $$0812640$$hD. Pennicard et al.$$mDesign, simulation and initial characterisation of 3D silicon detectors$$oPen09$$sNucl.Instrum.Meth.,A598,67-70$$y2009 002636106 999C5 $$hD. Pennicard et al.$$mSynchrotron tests of a 3D Medipix2 X-ray detector$$oPen10$$sIEEE Trans.Nucl.Sci.,57,387-394$$y2010 002636106 999C5 $$0688079$$hC. Piemonte et al.$$mDevelopment of 3-D detectors featuring columnar electrodes of the same doping type$$oPie05$$sNucl.Instrum.Meth.,A541,441-448$$y2005 002636106 999C5 $$hC. Piemonte et al.$$mStudy of the signal formation in single-type column 3D silicon detectors$$oPie07$$sNucl.Instrum.Meth.,A579,633-637$$y2007 002636106 999C5 $$0713396$$hI. Pintilie et al.$$mStable radiation-induced donor generation and its influence on the radiation tolerance of silicon diodes$$oPin06$$sNucl.Instrum.Meth.,A556,197-208$$y2006 002636106 999C5 $$0826006$$hI. Pintilie et al.$$mRadiation-induced point- and cluster defects with strong impact on damage properties of silicon detectors$$oPin09$$sNucl.Instrum.Meth.,A611,52-68$$y2009 002636106 999C5 $$hM. Povoli$$mInvestigation of punch-through bias in 3D sensors, Presented at the 6th Workshop on Advanced Silicon Radiation Detectors (3D and PType Technologies), Trento (Italy),. BIBLIOGRAPHY 205$$oPov11$$tTrento$$y2011 002636106 999C5 $$mCERN press release, January$$opr11$$y2011 002636106 999C5 $$hJ. Preiss$$mUntersuchung von strahlenharten 3D-Siliziumstreifendetektoren mittels eines analogen Auslesesystems [in German], Diploma thesis, University of Freiburg$$oPre10$$y2010 002636106 999C5 $$9CURATOR$$hK. Rajkanan, R. Singh, and J. Shewchun$$oRaj79$$sSolid State Electron.,22,793-795$$tAbsorption coefficient of silicon for solar cell calculations$$y1979 002636106 999C5 $$040354$$hS. Ramo$$mCurrents induced by electron motion$$oRam39$$sProc.Ire.,27,584-585$$y1939 002636106 999C5 $$mThe RD50 Collaboration, URL:$$oRD$$uhttp://cern.ch/rd50/ 002636106 999C5 $$0820284$$hD. Renker and E. Lorenz$$mAdvances in solid state photon detectors$$oRen09$$sJINST,4,P04004$$y2009 002636106 999C5 $$0431470$$hR. H. Richter et al.$$mStrip detector design for ATLAS and HERA-B using twodimensional device simulation$$oRic96$$sNucl.Instrum.Meth.,A377,412-421$$y1996 002636106 999C5 $$hA Data Analysis$$mROOT - Framework, URL:$$oROO$$uhttp://root.cern.ch/ 002636106 999C5 $$hL. Rossi et al.$$oRos06$$pSpringer$$tPixel detectors: From fundamentals to applications$$y2006 002636106 999C5 $$hW. Shockley$$mCurrents to conductors induced by a moving point charge$$oSho38$$sJ.Appl.Phys.,9,635-636$$y1938 002636106 999C5 $$h(P. Siffert and E. Krimmel (eds.))$$mSilicon: evolution and future of a technology$$oSif04$$pSpringer$$y2004 002636106 999C5 $$mSINTEF, PO Box 124 Blindern, 0314 Oslo, Norway$$oSIN 002636106 999C5 $$0700866$$hH. Spieler$$mOxford University Press$$oSpi05$$tSemiconductor detector systems$$y2005 002636106 999C5 $$mStanford Nanofabrication Facility, 420 Via Palou Mall, Stanford, CA 94305 -407, USA$$oSta 002636106 999C5 $$hS. M. Sze$$mPhysics of semiconductor devices, 2nd ed., John and Sons$$oSze81$$pWiley$$y1981 002636106 999C5 $$0839270$$hE. Tuominen et al.$$mRecent progress in CERN RD39: radiation hard cryogenic silicon detectors for applications in LHC experiments and their future upgrades$$oTuo09$$sIEEE Trans.Nucl.Sci.,56,2119-2123$$y2009 002636106 999C5 $$hT. Ullrich and Z. Xu$$mTreatment of errors in efficiency calculations, arXiv:$$oUll07$$rphysics/0701199$$y2007 002636106 999C5 $$0918168$$hY. Unno et al.$$mDevelopment of n-on-p silicon sensors for very high radiation environments$$oUnn11$$sNucl.Instrum.Meth.,A636,S24-S30$$y2011 002636106 999C5 $$hA. Vasilescu and G. Lindström$$mDisplacement damage in silicon, On-line compilation, URL: accessed June. 206 BIBLIOGRAPHY$$oVas11$$uhttp://sesam.desy.de/members/gunnar/Si-dfuncs.html$$y2011 002636106 999C5 $$0774457$$hE. Verbitskaya et al.$$mConcept of double peak electric field distribution in the development of radiation hard silicon detectors$$oVer07$$sNucl.Instrum.Meth.,A583,77-86$$y2007 002636106 999C5 $$01610785$$hS. Väyrynen et al.$$m[Vä11] The effect of an electrical field on the radiation tolerance of floatzone and magnetic Czochralski silicon particle detectors$$oVer07$$sNucl.Instrum.Meth.,A637,95-99$$y2011 002636106 999C5 $$hM. Walz$$mCharakterisierung von planaren Siliziumstreifendetektoren zum Einsatz am LHC-Upgrade [in German], Diploma thesis, University of Freiburg$$oWal10$$y2010 002636106 999C5 $$hP. P. Webb, R. J. McIntyre, and J. Conradi$$mProperties of avalanche photodiodes$$oWeb74$$sRCA Rev.,35,234-278$$y1974 002636106 999C5 $$hL. Wiik$$mPh.D. thesis, University of Freiburg, Freiburg, In preparation$$oWii 002636106 999C5 $$hR. Wunstorf$$mSystematische Untersuchungen zur Strahlenresistenz von SiliziumDetektoren für die Verwendung in Hochenergiephysik-Experimenten (in German), Ph.D. thesis, University of Hamburg, Hamburg$$oWun92$$y1992 002636106 999C5 $$0901485$$hF. Zimmermann$$mHL-LHC: parameter space, constraints, and possible options, Proceedings of the ChamonixWorkshop on LHC Performance pp. 295-308$$oZim11$$rCERN-ATS-2011-005$$y2011 002636106 999C5 $$hA. Zoboli et al.$$mDouble-sided, double-type-column 3-D detectors: design, fabrication, and technology evaluation$$oZob08a$$sIEEE Trans.Nucl.Sci.,55,2775-2784$$y2008 002636106 999C5 $$hA. Zoboli et al.$$mFunctional characterization of p-on-n 3D-DDTC detectors fabricated at FBK-IRST Nuclear Science Symposium and Medical Imaging Conference (NSS - MIC’08), Conference Record, paper N34-4, Dresden (Germany)$$oZob08b$$pIEEE$$y2008</pre></div></div> <footer id="footer" class="pagefooter clearfix"> <!-- replaced page footer --> <div class="pagefooterstripeleft"> CERN Document Server :: <a class="footer" href="https://cds.cern.ch/?ln=zh_TW">搜尋</a> :: <a class="footer" href="https://cds.cern.ch/submit?ln=zh_TW">提交</a> :: <a class="footer" href="https://cds.cern.ch/youraccount/display?ln=zh_TW">個人化</a> :: <a class="footer" href="https://cds.cern.ch/help/?ln=zh_TW">幫助</a> :: <a class="footer" href="https://cern.service-now.com/service-portal?id=privacy_policy&se=CDS-Service" target="_blank">Privacy Notice</a> <br /> 伺服器系統: <a class="footer" href="http://invenio-software.org/">Invenio</a> <br /> 管理者: <a class="footer" href="https://cern.service-now.com/service-portal?id=service_element&name=CDS-Service">CDS Service</a> - Need help? Contact <a href="https://cern.service-now.com/service-portal?id=service_element&name=CDS-Service">CDS Support</a>. <br /> </div> <div class="pagefooterstriperight"> <div class="cern-logo"> <a id="logo" href="http://cern.ch" title="CERN" rel="CERN" ><img src="https://cds.cern.ch/img/cern_theme/img/cern-logo-large.png" alt="CERN" /></a> </div> <div class="cern-languagebox"> 本網站提供以下語言選擇:<br /><a href="/record/2636106/export/hm?ln=bg" class="langinfo">Български</a> <a href="/record/2636106/export/hm?ln=ca" class="langinfo">Català</a> <a href="/record/2636106/export/hm?ln=de" class="langinfo">Deutsch</a> <a href="/record/2636106/export/hm?ln=el" class="langinfo">Ελληνικά</a> <a href="/record/2636106/export/hm?ln=en" class="langinfo">English</a> <a href="/record/2636106/export/hm?ln=es" class="langinfo">Español</a> <a href="/record/2636106/export/hm?ln=fr" class="langinfo">Français</a> <a href="/record/2636106/export/hm?ln=hr" class="langinfo">Hrvatski</a> <a href="/record/2636106/export/hm?ln=it" class="langinfo">Italiano</a> <a href="/record/2636106/export/hm?ln=ja" class="langinfo">日本語</a> <a href="/record/2636106/export/hm?ln=ka" class="langinfo">ქართული</a> <a href="/record/2636106/export/hm?ln=no" class="langinfo">Norsk/Bokmål</a> <a href="/record/2636106/export/hm?ln=pl" class="langinfo">Polski</a> <a href="/record/2636106/export/hm?ln=pt" class="langinfo">Português</a> <a href="/record/2636106/export/hm?ln=ru" class="langinfo">Русский</a> <a href="/record/2636106/export/hm?ln=sk" class="langinfo">Slovensky</a> <a href="/record/2636106/export/hm?ln=sv" class="langinfo">Svenska</a> <a href="/record/2636106/export/hm?ln=zh_CN" class="langinfo">中文(简)</a> <span class="langinfo">中文(繁)</span> </div> </div> <!-- replaced page footer --> </footer> <script type="text/javascript"> var SyndeticsBookCovers = (function() { var SMALL_SIZE = "sc.gif", MEDIUM_SIZE = "mc.gif", RAW_URL = "https://secure.syndetics.com/index.aspx?isbn=THEISBN/THESIZE&client=cernlibrary"; replaceCover = function(imgElement, isbns, hdFormat) { var img = new Image(), size = hdFormat ? MEDIUM_SIZE : SMALL_SIZE; var _isbns = isbns.sort(function(a, b) { // sort from shortest to longest ISBN (more modern) return a.length > b.length ? 1 : -1; }); function next() { var isbn = _isbns.pop(); if (isbn) { var url = RAW_URL.replace("THEISBN", isbn).replace("THESIZE", size); img.src = url; } } function done() { imgElement.src = img.src; } img.onload = function() { if (this.width > 1) { done(); } else { next(); } }; next(); }; return { replaceCover: replaceCover }; })(); $(document).ready(function() { // get book covers $("img.book-cover").each(function() { var $this = $(this), strIsbns = $this.data("isbns") || "", isbnsArray = String(strIsbns).split(","), hdFormat = $this.hasClass("hd"); SyndeticsBookCovers.replaceCover(this, isbnsArray, hdFormat); }); // WebNews tooltips $.ajax({ url: "/news/tooltips", success: function(data) { create_tooltips(data); }, dataType: "json", cache: false }); }); </script> <!-- Feedback script --> <script src="//cds.cern.ch/js/feedback.js"></script> <!-- Feedback script --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="https://webanalytics.web.cern.ch/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '756']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </body> </html>