CINXE.COM
Search results for: ruminant milk
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ruminant milk</title> <meta name="description" content="Search results for: ruminant milk"> <meta name="keywords" content="ruminant milk"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ruminant milk" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ruminant milk"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 527</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ruminant milk</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Virulence Genes of Salmonella typhimurium and Salmonella enteritidis Isolated from Milk and Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Rahimi">E. Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shaigannia"> S. Shaigannia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salmonella typhimurium and Salmonella enteritidis are important infectious agents causing food poisoning and food-borne gastrointestinal diseases. This study was carried out in order to investigate the distribution of virulence genes and antimicrobial resistance properties of S. typhimurium and S. enteritidis isolated from ruminant milk and dairy products in Iran. Overall 360 raw and pasteurized milk and traditional and commercial dairy products were purchased from random selected supermarkets and retail stories of Isfahan province, Iran. Samples were cultured immediately and those found positive for Salmonella were analyzed for the presence of S. typhimurium, S. enteritidis and several putative genes using PCR. Totally, 13 (3.61%), 8 (2.22%), 1 (0.27%) and 4 (1.11%) samples were found to be contaminated with Salmonella spp., S. typhimurium, S. enteritidis and other species of Salmonella, respectively. PCR results showed that invA, rfbJ, fliC and spv were the detected virulence genes in S. typhimurium and S. enteritidis positive samples. To the authors’ knowledge, the present study is the first prevalence report of virulence genes of S. typhimurium and S. enteritidis isolated from ruminant milk and traditional and commercial dairy products in Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20typhimurium" title="Salmonella typhimurium">Salmonella typhimurium</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enteritidis" title=" Salmonella enteritidis"> Salmonella enteritidis</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence%20genes" title=" virulence genes"> virulence genes</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant%20milk" title=" ruminant milk"> ruminant milk</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a> </p> <a href="https://publications.waset.org/abstracts/21591/virulence-genes-of-salmonella-typhimurium-and-salmonella-enteritidis-isolated-from-milk-and-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">645</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> The First Step to Standardization of Iranian Buffalo Milk: Physicochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnoosh%20Attar">Farnoosh Attar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, buffalo’s milk due to has highly nutritional properties, has a special place among consumers and its application for the production of dairy products due to the high technological properties is increasing day by day. In the present study, the physicochemical characteristics of Iranian buffalo’s milk were compared with cow's milk. According to chemical analysis, the amount of fat, protein, and total solid was higher in buffalo milk than cow's milk (respectively, 8.2%, 4.73%, and 15.92% compared with 3.5%, 3.25%, and 12.5%). Also, the percentage of cholesterol buffalo’s milk was less than in cow's milk. In contrast, no significant difference between the pH, acidity, and specific gravity was observed. The size of buffalo milk fat globules was larger than cow's milk. In addition, the profile of buffalo free fatty acids milk showed the relatively high distribution of long chain saturated fatty acids. The presence of four major bands related to αs casein, β casein, β-lactoglobulin, and α-lactalbumin with quite higher intensity than cow’s milk was also observed. The results obtained will provide a reference investigation to improve the developing of buffalo milk standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffalo%20milk" title="buffalo milk">buffalo milk</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20characterization" title=" physicochemical characterization"> physicochemical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a> </p> <a href="https://publications.waset.org/abstracts/23975/the-first-step-to-standardization-of-iranian-buffalo-milk-physicochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Partitioning of Non-Metallic Nutrients in Lactating Crossbred Cattle Fed Buffers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awadhesh%20Kishore">Awadhesh Kishore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the study was to determine how different non-metallic nutrients are partitioned from feed in various physiological contexts and how buffer addition in ruminant nutrition affects these processes. Six lactating crossbred dairy cows were selected and divided into three groups on the basis of their phenotypic and productive features (374±14 kg LW). Two treatments, T1 and T2, were randomly assigned to one animal from each group. Animals under T1 and T2 were moved to T2 and T1, respectively, after 30 days. T2 was the only group to receive buffers containing magnesium oxide and sodium bicarbonate at 0.0 and 0.01% of LW (the real amounts are equivalent to 75.3±4.0 and 30 7.7±2.0 g/d, respectively). T1 was used as the control. Wheat straw and berseem were part of the base diet, whereas wheat grain and mustard cake were part of the concentrate mixture. Following a 21-day feeding period, metabolic and milk production trials were carried out for seven consecutive days. The Kearl equation used the urine's calorific value to determine its volume. Chemical analyses were performed to determine the levels of nitrogen, carbohydrates, calories, and phosphorus in samples of feed, waste, buffer, mineral mixture, water, feces, urine, and milk that were collected. The information was analyzed statistically. Notable results included decreased nitrogen and carbohydrate partitioning to feces from feed, while increased calorie partitioning to milk and body storage, and increased carbohydrate partitioning to body storage. Phosphorus balance was significantly better in T2. The application of buffers in ruminant diets was found to increase the output of calories in milk, as well as the number of calories and carbohydrates stored in the body, while decreasing the amount of nitrogen in faeces. As a result, it may be advised to introduce buffers to feed crossbred dairy cattle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle" title="cattle">cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnesium%20oxide" title=" Magnesium oxide"> Magnesium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=non-metallic%20nutrients" title=" non-metallic nutrients"> non-metallic nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=partitioning" title=" partitioning"> partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=Sodium%20bicarbonate" title=" Sodium bicarbonate"> Sodium bicarbonate</a> </p> <a href="https://publications.waset.org/abstracts/182038/partitioning-of-non-metallic-nutrients-in-lactating-crossbred-cattle-fed-buffers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> The Effect of Substitution Concentrate with Leguminose Indigofera Zollingeriana in Lactation Goat Ration of Dry Matter, Organic Matter Intake, Milk Production, PUFA and CLA Content of Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiati%20Zain">Mardiati Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elihasridas"> Elihasridas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolani%20Utami"> Yolani Utami</a>, <a href="https://publications.waset.org/abstracts/search?q=Bima%20Bagaskara"> Bima Bagaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Taufic"> Muhammad Taufic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to formulated a ration that can increased concentration of bioactive compounds in the form of conjugated linoleic acid (CLA) and polyunsaturated fatty acids acid (PUFA) in milk to produce functional milk that is beneficial for health. It has been proven that forage-based feeds (grass and legumes) are able to increased the presence of polyunsaturated fatty acids and in particular conjugated linoleic acid CLA in milk. Presence of bioactive compounds in product fat of ruminant origin these have generated great interest because they are associated with their potential as anti carcinogenic, anti diabetogenic and stimulant of the immune response. PUFA and CLA and especially n-3 fatty acids, only 4% of the fatty acids present in milk. For that, efforts need to be made to change the fatty acid composition of milk to increase the nutritional value for consumers through increasing the concentration of PUFA and CLA This is very important in the midst of the covid pandemic 19 which is increasing, it is necessary to drink and food that can improve the system body immunity. . The study was conducted in vivo using a randomized block design with 4 treatments and 4 replications. This experiment used 16 heads of 40-55 kg lactating goats. Goat were fed a basal diet containing (dry matter basis) 60% native grass and 40% concentrate. The treatment was A. 60% native grass + 40% concentrate, B. 60% native grass + 30% concentrate + 10% I. zollengeriana C. 60% native grass + 20% concentrate + 20% I. zollengeriana, D, 60% native grass + 10% concentrate + 30% I. zollengeriana.The results showed that the using of I. zollengeriana until 30% in ration gave the same result with using concentrate of nutrien intake, and milk production but increased the CLA dan PUFA content in milk. The results of this study concluded that I. zollengeriana can increased the content of CLA and PUFA at the use of 75% substitute concentrate in the diet of lactating goats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indigofera%20zollengeriana" title="Indigofera zollengeriana">Indigofera zollengeriana</a>, <a href="https://publications.waset.org/abstracts/search?q=lactation%20goat" title=" lactation goat"> lactation goat</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=CLA" title=" CLA"> CLA</a>, <a href="https://publications.waset.org/abstracts/search?q=PUFA" title=" PUFA"> PUFA</a> </p> <a href="https://publications.waset.org/abstracts/141155/the-effect-of-substitution-concentrate-with-leguminose-indigofera-zollingeriana-in-lactation-goat-ration-of-dry-matter-organic-matter-intake-milk-production-pufa-and-cla-content-of-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Vishwakarma">Siddharth Vishwakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Danie%20Shajie%20A."> Danie Shajie A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mishra%20H.%20N."> Mishra H. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowability" title="flowability">flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20powder" title=" milk powder"> milk powder</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20making%20machine" title=" tablet making machine"> tablet making machine</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/101034/optimization-of-moisture-content-for-highest-tensile-strength-of-instant-soluble-milk-tablet-and-flowability-of-milk-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Antioxidant Activity of the Algerian Traditional Kefir Supernatant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Amellal-Chibane">H. Amellal-Chibane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dehdouh"> N. Dehdouh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ait-Kaki"> S. Ait-Kaki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%20Halladj"> F. Halladj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kefir is fermented milk that is produced by adding Kefir grains, consisting of bacteria and yeasts, to milk. The aim of this study was to investigate the antioxidant activity of the kefir supernatant and the raw milk. The Antioxidant activity assays of kefir supernatant and raw milk were evaluated by assessing the DPPH radical-scavenging activity. Kefir supernatant demonstrated high antioxidant activity (87.75%) compared to the raw milk (70.59 %). These results suggest that the Algerian kefir has interesting antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant" title=" kefir supernatant"> kefir supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title=" raw milk "> raw milk </a> </p> <a href="https://publications.waset.org/abstracts/24330/antioxidant-activity-of-the-algerian-traditional-kefir-supernatant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> The Impact of Milk Transport on Its Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Malaga-Tobo%C5%82a">Urszula Malaga-Toboła</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Guga%C5%82a"> Marek Gugała</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kornas"> Rafał Kornas</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz"> Marek Gancarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work focused on presenting the elements that determine the quality of fresh milk in the context of the quality of its transport. The quality of the raw material depends on the quality of transport. Milk transport involves many activities in which, apart from the temperature and sterility of the means of transport, it is important not to expose the raw material to shocks. Recently, there have been changes in the milk supply chain, thus affecting the logistics processes between its links. Based on the conducted research and analyses, it was found that the condition of the road surface on which milk is transported affects its quality. For the T1 milk transport route- gravel roads of very poor and poor quality, the lowest number of bacteria and the highest number of somatic cells, fat content, and temperature of the transported milk were obtained. A well-organized integrated transport system is a real need for most companies today. The analysis showed significant differences in the quality of milk delivered to the dairy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20milk" title="fresh milk">fresh milk</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20quality" title=" milk quality"> milk quality</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy" title=" dairy"> dairy</a> </p> <a href="https://publications.waset.org/abstracts/181444/the-impact-of-milk-transport-on-its-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Improving Physicochemical Properties of Milk Powder and Lactose-Free Milk Powder with the Prebiotic Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanunya%20Fahwan">Chanunya Fahwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Supat%20Chaiyakul"> Supat Chaiyakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lactose-free diet is imperative for those with lactose intolerance and experiencing milk intolerance. This entails eliminating milk-based products, which may result in dietary and nutritional challenges and the main problems of Lactose hydrolyzed milk powder during production were the adhesion in the drying chamber and low-yield and low-quality powder. The use of lactose-free milk to produce lactose-free milk powder was studied here. Development of two milk powder formulas from cow's milk and lactose-free cow's milk by using a substitute for maltodextrin, Polydextrose (PDX), Resistant Starch (RS), Cellobiose (CB), and Resistant Maltodextrin (RMD) to improve quality and reduce the glycemic index from maltodextrin, which are carriers that were used in industry at three experimental levels 10%, 15% and 20% the properties of milk powder were studied such as color, moisture content, percentage yield (%yield) and solubility index. The experiment revealed that prebiotic carriers could replace maltodextrin and improve quality, such as solubility and percentage yield, and enriched nutrients, such as dietary fiber. CB, RMD, and PDX are three possible carriers, which are applied to both regular cow's milk formula and lactose-free cow milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactose-free%20milk%20powder" title="lactose-free milk powder">lactose-free milk powder</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic%20carrier" title=" prebiotic carrier"> prebiotic carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=co-particle" title=" co-particle"> co-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20index" title=" glycemic index"> glycemic index</a> </p> <a href="https://publications.waset.org/abstracts/181574/improving-physicochemical-properties-of-milk-powder-and-lactose-free-milk-powder-with-the-prebiotic-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Static Light Scattering Method for the Analysis of Raw Cow's Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Villa-Cruz">V. Villa-Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20P%C3%A9rez-Ladron%20de%20Guevara"> H. Pérez-Ladron de Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Diaz-D%C3%ADaz"> J. E. Diaz-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static Light Scattering (SLS) was used as a method to analyse cow's milk raw, coming from the town of Lagos de Moreno, Jalisco, Mexico. This method is based on the analysis of the dispersion of light laser produced by a set of particles in solution. Based on the above, raw milk, which contains particles of fat globules, with a diameter of 2000 nm and particles of micelles of protein with 300 nm in diameter were analyzed. For this, dilutions of commercial milk were made (1.0%, 2.0% and 3.3%) to obtain a pattern of laser light scattering and also made measurements of raw cow's milk. Readings were taken in a sweep initial angle 10° to 170°, results were analyzed with the program OriginPro 7. The SLS method gives us an estimate of the percentage of fat content in milk samples. It can be concluded that the SLS method, is a quick method of analysis to detect adulteration in raw cow's milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title="light scattering">light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20analysis" title=" milk analysis"> milk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=adulteration%20in%20milk" title=" adulteration in milk"> adulteration in milk</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=OriginPro" title=" OriginPro "> OriginPro </a> </p> <a href="https://publications.waset.org/abstracts/28216/static-light-scattering-method-for-the-analysis-of-raw-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Possibilities of Using Chia Seeds in Fermented Beverages Made from Mare’s and Cow’s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mahmoud">Nancy Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Teichert"> Joanna Teichert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, fermented milk containing probiotic microorganisms is fundamental to human health. The changes in the properties of fermented milk during storage influence the quality and consumer acceptability. This study aimed to evaluate the effect of 1.5 % of chia seeds on the chemical, physical and sensory properties of fermented cow’s and mare’s milk for two weeks at 4°C. The results showed that the pH of cow’s milk drops significantly at the 2nd hour, but mare's milk drops significantly at the 6th hour. The acidity of both types of milk increased as the storage time progressed. Adding chia seeds increased firmness significantly and improved color and consistency. A decrease in brightness (L*), an increase in redness (a*), and yellowness (b*) during storage were observed. Our study showed that the chia seeds have more effect on reducing the brightness of fermented mare milk than fermented cow milk. Analysis of taste and smell parameters showed that after adding chia seeds, the scores changed and became much higher. The sour taste of fermented milk had reduced this positively affected the acceptance of the product. Chia seeds induced beneficial effects on sensory outcomes and enhanced physiochemical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mare%20milk" title="mare milk">mare milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20milk" title=" cow milk"> cow milk</a>, <a href="https://publications.waset.org/abstracts/search?q=feremnted%20milk" title=" feremnted milk"> feremnted milk</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=koumiss" title=" koumiss"> koumiss</a> </p> <a href="https://publications.waset.org/abstracts/163677/possibilities-of-using-chia-seeds-in-fermented-beverages-made-from-mares-and-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Contact Address Levels and Human Health Risk of Metals In Milk and Milk Products Bought from Abeokuta, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olukayode%20Bamgbose">Olukayode Bamgbose</a>, <a href="https://publications.waset.org/abstracts/search?q=Feyisola%20Agboola"> Feyisola Agboola</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewale%20M.%20Taiwo"> Adewale M. Taiwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Olanrewaju%20Olujimi%20Oluwole%20Terebo"> Olanrewaju Olujimi Oluwole Terebo</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20Soyingbe"> Azeez Soyingbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Akeem%20Bamgbade"> Akeem Bamgbade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study evaluated the contents and health risk assessment of metals determined in milk and milk product samples collected from the Abeokuta market. Forty-five milk and milk product (yoghurt) samples were digested and analysed for selected metals using Atomic Absorption Spectrophotometric method. Health risk assessment was evaluated for hazard quotient (HQ), hazard index (HI), and cancer risk (CR). Data were subjected to descriptive and inferential statistics. The concentrations of Zn, which ranged from 3.24±0.59 to 4.35±0.59 mg/kg, were the highest in the samples. Cr and Cd were measured below the detection limit of the analytical instrument, while the Pb level was higher than the Codex Alimentarius Commission value of 0.02 mg/kg, indicating unsafe for consumption. However, the HQ of Pb and other metals in milk and milk product samples was less than 1.0, thereby establishing no adverse health effects for Pb and other metals. The distribution pattern of metals in milk and milk product samples followed the decreasing order of Zn > Fe > Ni > Co > Cu > Mn > Pb > Cd/Cr. The CR levels of meals were also less than the permissible limit of 1.0 x 10-4, establishing no possible development of cancer. Keywords: adverse effects, cancer, metals, milk, milk product, the permissible limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20effects" title="adverse effects">adverse effects</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20product" title=" milk product"> milk product</a>, <a href="https://publications.waset.org/abstracts/search?q=permissible%20limit" title=" permissible limit"> permissible limit</a> </p> <a href="https://publications.waset.org/abstracts/164446/contact-address-levels-and-human-health-risk-of-metals-in-milk-and-milk-products-bought-from-abeokuta-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Analysis of Commercial Cow and Camel Milk by Nuclear Magnetic Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Pappalardo">Lucia Pappalardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Abdul%20Majid%20Azzam"> Sara Abdul Majid Azzam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Camel milk is widely consumed by people living in arid areas of the world, where it is also known for its potential therapeutic and medical properties. Indeed it has been used as a treatment for several diseases such as tuberculosis, dropsy, asthma, jaundice and leishmaniasis in India, Sudan and some parts of Russia. A wealth of references is available in literature for the composition of milk from different diary animals such as cows, goats and sheep. Camel milk instead has not been extensively studied, despite its nutritional value. In this study commercial cow and camel milk samples, bought from the local market, were analyzed by 1D 1H-NMR and multivariate statistics in order to identify the different composition of the low-molecular-weight compounds in the milk mixtures. The samples were analyzed in their native conditions without any pre-treatment. Our preliminary study shows that the two different types of milk samples differ in the content of metabolites such as orotate, fats and more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel" title="camel">camel</a>, <a href="https://publications.waset.org/abstracts/search?q=cow" title=" cow"> cow</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuclear%20Magnetic%20Resonance%20%28NMR%29" title=" Nuclear Magnetic Resonance (NMR)"> Nuclear Magnetic Resonance (NMR)</a> </p> <a href="https://publications.waset.org/abstracts/22711/analysis-of-commercial-cow-and-camel-milk-by-nuclear-magnetic-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Assessment of Procurement-Demand of Milk Plant Using Quality Control Tools: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagdeep%20Singh">Jagdeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20Singh"> Prem Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk is considered as an essential and complete food. The present study was conducted at Milk Plant Mohali especially in reference to the procurement section where the cash inflow was maximum, with the objective to achieve higher productivity and reduce wastage of milk. In milk plant it was observed that during the month of Jan-2014 to March-2014 the average procurement of milk was Rs. 4, 19, 361 liter per month and cost of procurement of milk is Rs 35/- per liter. The total cost of procurement thereby equal to Rs. 1crore 46 lakh per month, but there was mismatch in procurement-production of milk, which leads to an average loss of Rs. 12, 94, 405 per month. To solve the procurement-production problem Quality Control Tools like brainstorming, Flow Chart, Cause effect diagram and Pareto analysis are applied wherever applicable. With the successful implementation of Quality Control tools an average saving of Rs. 4, 59, 445 per month is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk" title="milk">milk</a>, <a href="https://publications.waset.org/abstracts/search?q=procurement-demand" title=" procurement-demand"> procurement-demand</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control%20tools" title=" quality control tools"> quality control tools</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/28242/assessment-of-procurement-demand-of-milk-plant-using-quality-control-tools-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Effect of Goat Milk Kefir and Soy Milk Kefir on IL-6 in Diabetes Mellitus Wistar Mice Models Induced by Streptozotocin and Nicotinamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agatha%20Swasti%20Ayuning%20Tyas">Agatha Swasti Ayuning Tyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperglycemia in Diabetes Mellitus (DM) is an important factor in cellular and vascular damage, which is caused by activation of C Protein Kinase, polyol and hexosamine track, and production of Advanced Glycation End-Products (AGE). Those mentioned before causes the accumulation of Reactive Oxygen Species (ROS). Oxidative stress increases the expression of proinflammatory factors IL-6 as one of many signs of endothelial disfunction. Genistein in soy milk has a high immunomodulator potential. Goat milk contains amino acids which have antioxidative potential. Fermented kefir has an anti-inflammatory activity which believed will also contribute in potentiating goat milk and soy milk. This study is a quasi-experimental posttest-only research to 30 Wistar mice. This study compared the levels of IL-6 between healthy Wistar mice group (G1) and 4 DM Wistar mice with intervention and grouped as follows: mice without treatment (G2), mice treated with 100% goat milk kefir (G3), mice treated with combination of 50% goat milk kefir and 50% soy milk kefir (G4), and mice treated with 100% soy milk kefir (G5). DM animal models were induced with Streptozotocin & Nicotinamide to achieve hyperglycemic condition. Goat milk kefir and soy milk kefir are given at a dose of 2 mL/kg body weight/day for four weeks to intervention groups. Blood glucose was analyzed by the GOD-POD principle. IL-6 was analyzed by enzyme-linked sandwich ELISA. The level of IL-6 in DM untreated control group (G2) showed a significant difference from the group treated with the combination of 50% goat milk kefir and 50% soy milk kefir (G3) (p=0,006) and the group treated with 100% soy milk kefir (G5) (p=0,009). Whereas the difference of IL-6 in group treated with 100% goat milk kefir (G3) was not significant (p=0,131). There is also synergism between glucose level and IL-6 in intervention groups treated with combination of 50% goat milk kefir and 50% soy milk kefir (G3) and the group treated with 100% soy milk kefir (G5). Combination of 50 % goat milk kefir and 50% soy milk kefir and administration of 100% soy milk kefir alone can control the level of IL-6 remained low in DM Wistar mice induced with streptozocin and nicotinamide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk%20kefir" title=" goat milk kefir"> goat milk kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk%20kefir" title=" soy milk kefir"> soy milk kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin%206" title=" interleukin 6"> interleukin 6</a> </p> <a href="https://publications.waset.org/abstracts/65540/effect-of-goat-milk-kefir-and-soy-milk-kefir-on-il-6-in-diabetes-mellitus-wistar-mice-models-induced-by-streptozotocin-and-nicotinamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Addition of Phosphates on Stability of Sterilized Goat Milk in Different Seasons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Jen%20Lin">Mei-Jen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Yuan%20Yu"> Yuan-Yuan Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low heat stability of goat milk limited the application of ultra-high temperature (UHT) sterilization on producing sterilized goat milk in order to keep excess goat milk in summer for producing goat dairy products in winter in Taiwan. Therefore, this study aimed to add stabilizers in goat milk to increase the heat stability for producing UHT sterilized goat milk preserved for making goat dairy products in winter. The amounts of 0.05-0.11% blend of sodium phosphates (Na) and blend of sodium/potassium phosphates (Sp) were added in raw goat milk at different seasons a night before autoclaved sterilization at 135°C 4 sec. The coagulation, ion calcium concentration and ethanol stability of sterilized goat milk were analyzed. Results showed that there were seasonal differences on choosing the optimal stabilizers and the addition levels. Addition of 0.05% and 0.22% of both Na and Sp salts in Spring goat milk, 0.10-0.11% of both Na and Sp salts in Summer goat milk, and 0.05%Na Sp group in Autumn goat milk were coagulated after autoclaved, respectively. There was no coagulation found with the addition of 0.08-0.09% both Na and Sp salts in goat milk; furthermore, the ionic calcium concentration were lower than 2.00 mM and ethanol stability higher than 70% in both 0.08-0.09% Na and Sp salts added goat milk. Therefore, the optimal addition level of blend of sodium phosphates and blend of sodium/potassium phosphates were 0.08-0.09% for producing sterilized goat milk at different seasons in Taiwan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphates" title=" phosphates"> phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/63070/addition-of-phosphates-on-stability-of-sterilized-goat-milk-in-different-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Utilization of Soymilk Residue for Wheat Flour Substitution in Gyoza skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Prapasuwannakul">Naruemon Prapasuwannakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soy milk residue is obtained as a byproduct from soy milk and tofu production with little economic value. It contains high protein and fiber as well as various minerals and phyto-chemical compounds. The objective of this research was to substitute soy milk residue for wheat flour in gyoza skin in order to enhance value of soy milk residue and increase protein and fiber content of gyoza skin. Wheat flour was replaced with soy milk residue from 0 to 40%. The soy milk residue prepared in this research contains 26.92% protein, 3.58% fiber, 2.88% lipid, 6.29% ash and 60.33% carbohydrate. The results showed that increasing soy milk residue decreased lightness (L*value), tensile strength and sensory attributes but increased redness (a*), yellowness (b*), protein and fiber contents of product. The result also showed that the gyoza skin substituted with 30% soy milk residue was the most acceptable (p≤0.05) and its protein and fiber content increased up to 45 % and 867 % respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyoza%20skin" title="Gyoza skin">Gyoza skin</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a>, <a href="https://publications.waset.org/abstracts/search?q=soymilk%20residue" title=" soymilk residue"> soymilk residue</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20flour" title=" wheat flour"> wheat flour</a> </p> <a href="https://publications.waset.org/abstracts/1611/utilization-of-soymilk-residue-for-wheat-flour-substitution-in-gyoza-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> The microbial evaluation of cow raw milk used in private dairy factories in of Zawia city, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obied%20A.%20Alwan">Obied A. Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elgerbi"> Elgerbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ali"> M. Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted on the cow milk which is used in the local milk factories of Zawia. This was completely random sampling the unscheduled samples. The microbiologic result have approved that the count of bacteria and the count of E.Coli are very high and all the manufacturing places which were included in the study have lacked the health conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20factories" title=" dairy factories"> dairy factories</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiologic" title=" microbiologic "> microbiologic </a> </p> <a href="https://publications.waset.org/abstracts/19815/the-microbial-evaluation-of-cow-raw-milk-used-in-private-dairy-factories-in-of-zawia-city-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> The Possibility of Increase UFA in Milk by Adding of Canola Seed in Holstein Dairy Cow Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansoori%20Yarahmadi">H. Mansoori Yarahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aghazadeh"> A. Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nazeradl"> K. Nazeradl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was done to evaluate the effects of feeding canola seed for enrichment of UFA and milk performance of early lactation dairy cows. Twelve multi parous Holstein cows (635.3±18 kg BW and 36±9 DIM) were assigned to 1 of 3 treatments: 1- Control (CON) without canola seed, 2- 7.5% raw canola seed (CUT), and 3- 7.5% Heat-treated canola seed (CHT) of the total ration. Diets contained same crude protein, but varied in net energy. Diets were composed by basis of corn silage and alfalfa. Cows were milked twice daily for 4 wk. The inclusion of canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from CHT cows had greater proportions of UFA and MUFA (P < 0.05). Feeding CUT increased PUFA without significant difference. Milk fat from CHT had a greater proportion of C18 UFA and tended to have a higher proportion of other UFA. FCM milk yields, milk fat and protein percentages and total yield of these components were similar between treatments. Milk urea nitrogen was lower in cows fed CON and CHT. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without adverse affecting milk yield or milk composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canola%20seed" title="canola seed">canola seed</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title=" dairy cow"> dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a> </p> <a href="https://publications.waset.org/abstracts/28716/the-possibility-of-increase-ufa-in-milk-by-adding-of-canola-seed-in-holstein-dairy-cow-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">598</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> Evaluation of Hazelnut Hulls as an Alternative Forage Resource for Ruminant Animals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Cetinkaya">N. Cetinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Kuleyin"> Y. S. Kuleyin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to estimate the digestibility of the fruit internal skin of different varieties of hazelnuts to propose hazelnut fruit skin as an alternative feed source as roughage in ruminant nutrition. In 2015, the fruit internal skins of three different varieties of round hazelnuts (RH), pointed hazelnuts (PH) and almond hazelnuts (AH) were obtained from hazelnut processing factory then their crude nutrients analysis were carried out. Organic matter digestibility (OMD) and metabolisable energy (ME) values of hazelnut fruit skins were estimated from gas measured by <em>in vitro </em>gas production method. Their antioxidant activities were determined by spectrophotometric method. Crude nutrient values of three different varieties were; organic matter (OM): 87.83, 87.81 and 87.78%), crude protein (CP): 5.97, 5.93 and 5.89%, neutral detergent fiber (NDF): 30.30, 30.29 and 30.29%, acid detergent fiber (ADF): 48.68, 48.67 and 48.66% and acid detergent lignin (ADL): 25.43, 25.43 and 25.39% respectively. OMD from 24 h incubation time of RH, PH and AH were 22.04, 22.46 and 22.74%; ME<sub>GP </sub>values were 3.69, 3.75 and 3.79 MJ/kg DM; and antioxidant activity values were 94.60, 94.54 and 94.52 IC 50 mg/mL respectively. The fruit internal skin of different varieties of hazelnuts may be considered as an alternative roughage for ruminant nutrition regarding to their crude and digestible nutritive values. Moreover, hazelnut fruit skin has a rich antioxidant content so it may be used as a feed additive for both ruminant and non-ruminant animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=hazelnut%20fruit%20skin" title=" hazelnut fruit skin"> hazelnut fruit skin</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolizable%20energy" title=" metabolizable energy"> metabolizable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter%20digestibility" title=" organic matter digestibility"> organic matter digestibility</a> </p> <a href="https://publications.waset.org/abstracts/47876/evaluation-of-hazelnut-hulls-as-an-alternative-forage-resource-for-ruminant-animals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> New Challenge: Reduction of Aflatoxin M1 Residues in Cow’s Milk by MilBond Dietary Hydrated Sodium Calcium Aluminosilicate (HSCAS) and Its Effect on Milk Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aly%20Salwa">A. Aly Salwa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Diekmann"> H. Diekmann</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hafiz%20Ragaa"> S. Hafiz Ragaa</a>, <a href="https://publications.waset.org/abstracts/search?q=DG%20Abo%20Elhassan"> DG Abo Elhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to evaluate the effect of Milbond (HSCAS) on aflatoxin M1 in artificially contaminated cows milk. Chemisorption compounds used in this experiment were MIlBond, hydrated sodium calcium aluminosilicate (HSCAS). Raw cow milk were artificially exposed to aflatoxin M1 in a concentration of 100 ppb) with addition of Nilbond at 0.5, 1, 2 and 3 % at room temperature for 30 minutes. Aflatoxin M1 was decreased more than 95% by HSCAS at 2%. Milk composition consist of protein, fat, lactose, solid non fat and total solid were affected by addition of some adsorbents were not significantly affected (p 0.05). Tthis method did not involve degrading the toxin, milk may be free from toxin degradation products and is safe for consumption. In addition, the added material may be easily separated from milk after the substance adsorbs the toxin. Thus, this method should be developed by further researches for determining effects of these compounds on functional properties of milk. The ability of hydrated sodium calcium aluminosilicate to prevent or reduce the level of aflatoxin MI residues in milk is critically needed. This finding has important implications, because milk is ultimately consumed by humans and animals, and the reduction of aflatoxin contamination in the milk could have an important impact on their health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrated%20sodium%20calcium%20aluminium%20silicate" title=" Hydrated sodium calcium aluminium silicate"> Hydrated sodium calcium aluminium silicate</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20cow%20milk" title=" raw cow milk"> raw cow milk</a> </p> <a href="https://publications.waset.org/abstracts/24505/new-challenge-reduction-of-aflatoxin-m1-residues-in-cows-milk-by-milbond-dietary-hydrated-sodium-calcium-aluminosilicate-hscas-and-its-effect-on-milk-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> Exploring the Feasibility of Introducing Particular Polyphenols into Cow Milk Naturally through Animal Feeding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steve%20H.%20Y.%20Lee">Steve H. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20P.%20E.%20Spencer"> Jeremy P. E. Spencer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to explore the feasibility of enriching polyphenols in cow milk via addition of flavanone-rich citrus pulp to existing animal feed. 8 Holstein lactating cows were enrolled onto the 4 week feeding study. 4 cows were fed the standard farm diet (control group), with another 4 (treatment group) which are fed a standard farm diet mixed with citrus pulp diet. Milk was collected twice a day, 3 times a week. The resulting milk yield and its macronutrient composition as well as lactose content were measured. The milk phenolic compounds were analysed using electrochemical detection (ECD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk" title="milk">milk</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol" title=" polyphenol"> polyphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20feeding" title=" animal feeding"> animal feeding</a>, <a href="https://publications.waset.org/abstracts/search?q=lactating%20cows" title=" lactating cows"> lactating cows</a> </p> <a href="https://publications.waset.org/abstracts/11683/exploring-the-feasibility-of-introducing-particular-polyphenols-into-cow-milk-naturally-through-animal-feeding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Foodborne Pathogens in Different Types of Milk: From the Microbiome to Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pasquali%20Frederique">Pasquali Frederique</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfreda%20Chiara"> Manfreda Chiara</a>, <a href="https://publications.waset.org/abstracts/search?q=Crippa%20Cecilia"> Crippa Cecilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Indio%20Valentina"> Indio Valentina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ianieri%20Adriana"> Ianieri Adriana</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Cesare%20Alessandra"> De Cesare Alessandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbiological hazards can be transmitted to humans through milk. In this study, we compared the microbiome composition and presence of foodborne pathogens in organic milk (n=6), organic hay milk (n=6), standard milk (n=6) and high-quality milk (n=6). The milk samples were collected during six samplings between December 2022 to January 2023 and between April and May 2024 to take into account seasonal variations. The 24 milk samples were submitted to DNA extraction and library preparation before shotgun sequencing on the Illumina HiScan™ SQ System platform. The total sequencing output was 600 GB. In all the milk samples, the phyla with the highest relative abundances were Pseudomonadota, Bacillota, Ascomycota, Actinomycetota and Apicomplexa, while the most represented genera were Pseudomonas, Streptococcus, Geotrichum, Acinetobacter and Babesia. The alpha and beta diversity indexes showed a clear separation between the microbiome of high-quality milk and those of the other milk types. Moreover, in the high-quality milk, the relative abundance of Staphylococcus (4.4%), Campylobacter (4.5%), Bacillus (2.5%), Enterococcus (2.4%), Klebsiella (1.3%) and Escherichia (0 .7%) was significantly higher in comparison to other types of milk. On the contrary, the relative abundance of Geotrichum (0.5%) was significantly lower. The microbiome results collected in this study showed significant differences in terms of the relative abundance of bacteria genera, including foodborne pathogen species. These results should be incorporated into risk assessment models tailored to different types of milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20pathogens" title=" foodborne pathogens"> foodborne pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/188934/foodborne-pathogens-in-different-types-of-milk-from-the-microbiome-to-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Milk Production and Milk Composition of Dairy Cows in Response to Calcium Salt of Palm Oil Fatty Acids Supplementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisitiporn%20Suksombat">Wisitiporn Suksombat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanawat%20Phonkert"> Tanawat Phonkert</a>, <a href="https://publications.waset.org/abstracts/search?q=Chayapol%20Meeprom"> Chayapol Meeprom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to investigate the effect of calcium salt of palm oil fatty acids (Ca-POFA) supplementation on milk production and milk composition of dairy cows. Twenty-four early lactating crossbred Holstein Friesian 87.5% cows (15.4 ± 3.75 kg of milk/d; 93 ± 27 DIM; 369 ± 6 kg of BW), were assigned into 3 treatments in an RCBD. All dairy cows were fed 15.4% CP total mixed ration (TMR). The first group (control) received a basal diet and no supplement. The second group was fed the basal diet supplemented with 150 g/d calcium salt of palm oil fatty acids (Ca-POFA), and the last group was fed the basal diet supplemented with 300 g/d Ca-POFA. The experiment lasted 40 days with the first 10 days is an adaptation period, and measurements were made during the last 30 days in 6 periods with 5-days in each period for milk sample collection. The results found that supplemented calcium salt of palm oil fatty acid had no effect on milk yield, milk composition, milk composition yield, live weight and live weight change. However, Ca-POFA decreased milk protein percentage (P < 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20salt%20of%20palm%20oil%20fatty%20acid" title="calcium salt of palm oil fatty acid">calcium salt of palm oil fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title=" dairy cow"> dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20composition" title=" milk composition"> milk composition</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a> </p> <a href="https://publications.waset.org/abstracts/72476/milk-production-and-milk-composition-of-dairy-cows-in-response-to-calcium-salt-of-palm-oil-fatty-acids-supplementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> Influence of Probiotics on Dairy Cows Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Vieira">V. A. Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Sforcini"> M. P. Sforcini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Endo"> V. Endo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Magioni"> G. C. Magioni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20S.%20Oliveira"> M. D. S. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper was evaluate the effect of diets containing different levels of probiotic on performance and milk composition of lactating cows. Eight Holstein cows were distributed in two 4x4 Latin square. The diets were based on corn silage, concentrate and the treatment (0, 3, 6 or 9 grams of probiotic/animal/day). It was evaluated the dry matter intake of nutrients, milk yield and composition. The use of probiotics did not affect the nutrient intake (p>0.05) neither the daily milk production or corrected to 4% fat (p>0.05). However, it was observed that there was a significant fall in milk composition with higher levels of probiotics supplementation. These results emphasize the need of further studies with different experimental designs or improve the number of Latin square with longer periods of adaptation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title="dairy cow">dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20composition" title=" milk composition"> milk composition</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20milk%20production" title=" daily milk production"> daily milk production</a> </p> <a href="https://publications.waset.org/abstracts/11939/influence-of-probiotics-on-dairy-cows-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> The Occurrence of Sporeformers in Processed Milk from Household Refrigerators and The Effect of Heat Treatment on Bacillus Spores Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarisha%20Devnath">Sarisha Devnath</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20A.%20Ijabadeniyi"> Oluwatosin A. Ijabadeniyi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years milk contamination has become a major problem in households; due to the likely occurrence of bacteria, even after the milk has been processed. One such genus of bacteria causing unwanted growth is Bacillus. This research project looks at the presence of spore formers in processed milk from household refrigerators and the effect of pasteurization and high temperature on Bacillus spores activation. 24 samples each of UHT milk and pasteurised milk from 24 households were sampled for the presence of spore formers. While anaerobic spore formers were not found in any of the samples, the average aerobic spore formers in UHT milk and pasteurized milk however were 5.77 cfu/ml and 5.88 cfu/ml respectively. After sequencing, it was detected that the mixed culture contained Bacillus cereus, for both pasteurised and UHT milk samples. For the activation study, raw milk samples were collected and subjected to four different temperatures; 65˚C, 72˚C, 80˚C, 100˚C respectively. Samples were stored for 7 days at 5˚C and 10˚C and analysed daily. The average aerobic spore formers in raw milk for samples stored at 5˚C range between 4.67-6.00 cfu/ml while it ranges between 4.84-6.00 cfu/ml at 10˚C, signifying that the high temperatures could have resulted in germination of dominant spores. Statistical analysis conducted on these results indicated a significant difference between the numbers of colonies present at the different treatment temperatures the bacterium was exposed to. This work showed that household milk may constitute public health risk furthermore; pasteurization and higher temperatures may not be effective to remove aerobic spore formers because of Bacillus spores activation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sporeformers" title="sporeformers">sporeformers</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus" title=" bacillus"> bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=spores" title=" spores"> spores</a>, <a href="https://publications.waset.org/abstracts/search?q=activation" title=" activation"> activation</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk "> milk </a> </p> <a href="https://publications.waset.org/abstracts/29000/the-occurrence-of-sporeformers-in-processed-milk-from-household-refrigerators-and-the-effect-of-heat-treatment-on-bacillus-spores-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Evaluation of Milk Production of an Algerian Rabbit Population Raised in Aures Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moumen%20Souad">Moumen Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Melizi%20Mohamed"> Melizi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to characterize rabbits does of an Aures local population raised in Algeria, a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10–15 min between the two weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21 g of milk/kit/day. The milk yield increased from 526, 1035, 1240 and 2801 g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation, respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title="milk production">milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20size" title=" litter size"> litter size</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=Aures%20area" title=" Aures area"> Aures area</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/4924/evaluation-of-milk-production-of-an-algerian-rabbit-population-raised-in-aures-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Antibiotic Resistance of Enterococci Isolated from Raw Cow Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margita%20%C4%8Canigov%C3%A1">Margita Čanigová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Ra%C4%8Dkov%C3%A1"> Jana Račková</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Kro%C4%8Dko"> Miroslav Kročko</a>, <a href="https://publications.waset.org/abstracts/search?q=Viera%20Duckov%C3%A1"> Viera Ducková</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADra%20K%C5%88azovick%C3%A1"> Vladimíra Kňazovická</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to test the milk samples in terms of enterococci presence and their counts. Tested samples were as follows: raw cow milk, raw cow milk stored at 10°C for 16 hours and milk pasteurised at 72°C for 15 seconds. The typical colonies were isolated randomly and identified by classical biochemical test - EN-COCCUS test (Lachema, CR) and by PCR. Isolated strains were tested in terms of antibiotic resistance by well diffusion method. Examined antibiotics were: vancomycin (30 μg/disc), gentamicin (120 μg/disc), erythromycin (15 μg/disc), teicoplanine (30 μg/disc), ampicillin (10 μg/disc) and tetracycline (30 μg/disc). Average value of enterococci counts in raw milk cistern samples (n=30) was 8.25 ± 1.37 ×103 CFU/cm3. Storage tank milk samples (n=30) showed an increase (P > 0.05) and average value was 9.16 ± 1.49 × 103 CFU/cm3. Occurrence of enterococci in pasteurized milk (n=30) was sporadic and their counts were mostly below 10 CFU/cm3. Overall, 96 enterococci strains were isolated. In samples of raw cow milk and stored raw cow milk, Enterococcus faecalis was a dominant species (58.1% and 71.7%, respectively), followed by E. faecium (16.3% and 0%, respectively). Enterococcus mundtii, E. casseliflavus, E. durans and E. gallinarum were isolated, too. Resistances to ampicillin, erythromycin, gentamicin, tetracycline and vancomycin were found in 7.29%, 3.13%, 4.00%, 13.54% and 10.42% of isolated enterococci strains, respectively. Resistance to teicoplanine was not found in any isolated strain. All Vancomycin-Resistant Enterococci (VRE) belonged to E. faecalis. Obtained results confirmed that raw milk is a potential risk of enterococci resistant to antibiotics transmission into the food chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococci" title=" enterococci"> enterococci</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/5156/antibiotic-resistance-of-enterococci-isolated-from-raw-cow-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Effect of the Average Kits Birth Weight and of the Number of Born Alive per Liter on the Milk Production of Algerian Rabbit Raised in Aures Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Moumen">S. Moumen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Melizi"> M. Melizi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to characterize rabbits does of an Aures local population raised in Algeria; a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10-15 min between the 2 weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21g of milk/kit/day. The milk yield increased from 526, 1035, 1240, and 2801g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title="milk production">milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20size" title=" litter size"> litter size</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=Aures%20area" title=" Aures area"> Aures area</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/4926/effect-of-the-average-kits-birth-weight-and-of-the-number-of-born-alive-per-liter-on-the-milk-production-of-algerian-rabbit-raised-in-aures-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Genetic and Environmental Variation in Reproductive and Lactational Performance of Holstein Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Ward">Ashraf Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of calving interval on 305 day milk yield for first three lactations was studied in order to increase efficiency of selection schemes and to more efficiently manage Holstein cows that have been raised on small farms in Libya. Results obtained by processing data of 1476 cows, managed in 935 small scale farms, pointed out that current calving interval significantly affects on milk production for first three lactations (p<0.05). Preceding calving interval affected 305 day milk yield (p<0.05) in second lactation only. Linear regression model accounted for 20-25 % of the total variance of 305 day milk yield. Extension of calving interval over 420, 430, 450 days for first, second and third lactations respectively, did not increase milk production when converted to 305 day lactation. Stochastic relations between calving interval and calving age and month are moderated. Values of Pierson’s correlation coefficients ranged 0.38 to 0.69. Adjustment of milk production in order to reduce effect of calving interval on total phenotypic variance of milk yield is valid for first lactation only. Adjustment of 305 day milk yield for second and third lactations in order to reduce effects of factors “calving age and month” brings about, at the same time, elimination of calving interval effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title="milk yield">milk yield</a>, <a href="https://publications.waset.org/abstracts/search?q=Holstien" title=" Holstien"> Holstien</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20genetic" title=" non genetic"> non genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=calving" title=" calving"> calving</a> </p> <a href="https://publications.waset.org/abstracts/18095/genetic-and-environmental-variation-in-reproductive-and-lactational-performance-of-holstein-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Detection of Adulterants in Milk Using IoT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Mohammad%20Samiullah%20Shariff">Shaik Mohammad Samiullah Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Sreenath"> Siva Sreenath</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Haripriya"> Sai Haripriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathyusha"> Prathyusha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Padma%20Lalitha"> M. Padma Lalitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things%20%28IoT%29" title="internet of things (IoT)">internet of things (IoT)</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20sensor" title=" pH sensor"> pH sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS%20sensor" title=" TDS sensor"> TDS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=EC%20sensor" title=" EC sensor"> EC sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a> </p> <a href="https://publications.waset.org/abstracts/162780/detection-of-adulterants-in-milk-using-iot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ruminant%20milk&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>