CINXE.COM

Konstantinos Antoniadis - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Konstantinos Antoniadis - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="3Ooh/NQPYSUyFDltQ/8Nhy4XxLCEE6oUjbvKdGFfuwkwS2VNQdyzd9xNj1sUGwigxz6BWODmSkBIzvWkaf70QQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="konstantinos antoniadis" /> <meta name="description" content="Konstantinos Antoniadis: 10 Followers, 3 Following, 65 Research papers. Research interests: Thermal Conductivity, Integrated CAD/CAM systems, and Classical…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '39314d9bcf4522f48eeb027cf31da0a13496d2ce'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15250,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":278539695,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733911104000); window.Aedu.timeDifference = new Date().getTime() - 1733911104000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-d5854328bc91ab2b28af9c6857c9f49cfdbb149be89e12296a993fabf6dcef2e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-700c857c6fb770c5546959fb228388932166f478d0a341d5e1b83fefe9642caf.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/KAntoniadis" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7440ccdb9a947f5b431b894f0a50b54810878a59feb1410ac6dba853a257ca90.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":8590,"name":"Integrated CAD/CAM systems","url":"https://www.academia.edu/Documents/in/Integrated_CAD_CAM_systems"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":59923,"name":"European Commission","url":"https://www.academia.edu/Documents/in/European_Commission"},{"id":2151,"name":"Virtual Reality (Computer Graphics)","url":"https://www.academia.edu/Documents/in/Virtual_Reality_Computer_Graphics_"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/KAntoniadis&quot;,&quot;location&quot;:&quot;/KAntoniadis&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/KAntoniadis&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c98438d7-80ff-4c44-8187-5a5574205f3b"></div> <div id="ProfileCheckPaperUpdate-react-component-c98438d7-80ff-4c44-8187-5a5574205f3b"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Konstantinos Antoniadis</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Konstantinos" data-follow-user-id="40350135" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="40350135"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">10</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="40350135" href="https://www.academia.edu/Documents/in/Thermal_Conductivity"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/KAntoniadis&quot;,&quot;location&quot;:&quot;/KAntoniadis&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/KAntoniadis&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Thermal Conductivity&quot;]}" data-trace="false" data-dom-id="Pill-react-component-54e5db36-587c-4148-9311-574949b53bfd"></div> <div id="Pill-react-component-54e5db36-587c-4148-9311-574949b53bfd"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="40350135" href="https://www.academia.edu/Documents/in/Integrated_CAD_CAM_systems"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Integrated CAD/CAM systems&quot;]}" data-trace="false" data-dom-id="Pill-react-component-42b00f89-8c0a-4a7f-94cb-8f31691ca9b9"></div> <div id="Pill-react-component-42b00f89-8c0a-4a7f-94cb-8f31691ca9b9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="40350135" href="https://www.academia.edu/Documents/in/Classical_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Classical Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b15ef5d1-a08f-4794-bbeb-83e70f0c7db3"></div> <div id="Pill-react-component-b15ef5d1-a08f-4794-bbeb-83e70f0c7db3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="40350135" href="https://www.academia.edu/Documents/in/European_Commission"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;European Commission&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e0192cad-da5e-400c-a81e-39965873fed4"></div> <div id="Pill-react-component-e0192cad-da5e-400c-a81e-39965873fed4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="40350135" href="https://www.academia.edu/Documents/in/Virtual_Reality_Computer_Graphics_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Virtual Reality (Computer Graphics)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2f77e4a5-6893-4ec9-acc3-6cc7464e0096"></div> <div id="Pill-react-component-2f77e4a5-6893-4ec9-acc3-6cc7464e0096"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Konstantinos Antoniadis</h3></div><div class="js-work-strip profile--work_container" data-work-id="110346671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346671/New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K"><img alt="Research paper thumbnail of New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K" class="work-thumbnail" src="https://attachments.academia-assets.com/108191953/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346671/New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K">New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Aug 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 77...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 7740 are presented. The technique employed is a refined transient hot-wire technique, based on a full theoretical model with equations solved by finite elements for the exact geometry. At the 95 % confidence level, the standard deviations of the thermal conductivity measurements of PMMA, BK7, and Pyrex 7740 are 0.47 %, 1.0 %, and 0.8 %, respectively. The technique is absolute and is characterized by an uncertainty of &lt;1 %. Keywords BK7 • PMMA • Pyrex 7740 • Thermal conductivity • Transient hot-wire 1 Introduction Since 2002, in a series of recent papers [1-5], a novel application of the transient hotwire technique for thermal-conductivity measurements on solids was described. The methodology makes use of a soft-solid material between the hot wires of the technique and the solid of interest. It is based on a full theoretical model with equations solved by a finite-element method applied to the exact geometry, and thus it allows an accurate, absolute determination of the thermal conductivity of the solid. With this method, the thermal conductivity of Pyroceram 9606 [2,4], AISI 304 L [3,4], Pyrex 7740 [4], polymethyl methacrylate (PMMA), and BK7 [5] was measured as a function of tempe</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="48755580dfb9af54d1bae7977f03eeb2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191953,&quot;asset_id&quot;:110346671,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191953/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346671]").text(description); $(".js-view-count[data-work-id=110346671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346671, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "48755580dfb9af54d1bae7977f03eeb2" } } $('.js-work-strip[data-work-id=110346671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346671,"title":"New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Thermal Conductivity of PMMA, BK7, and Pyrex 7740 to 450K","grobid_abstract":"New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 7740 are presented. The technique employed is a refined transient hot-wire technique, based on a full theoretical model with equations solved by finite elements for the exact geometry. At the 95 % confidence level, the standard deviations of the thermal conductivity measurements of PMMA, BK7, and Pyrex 7740 are 0.47 %, 1.0 %, and 0.8 %, respectively. The technique is absolute and is characterized by an uncertainty of \u003c1 %. Keywords BK7 • PMMA • Pyrex 7740 • Thermal conductivity • Transient hot-wire 1 Introduction Since 2002, in a series of recent papers [1-5], a novel application of the transient hotwire technique for thermal-conductivity measurements on solids was described. The methodology makes use of a soft-solid material between the hot wires of the technique and the solid of interest. It is based on a full theoretical model with equations solved by a finite-element method applied to the exact geometry, and thus it allows an accurate, absolute determination of the thermal conductivity of the solid. With this method, the thermal conductivity of Pyroceram 9606 [2,4], AISI 304 L [3,4], Pyrex 7740 [4], polymethyl methacrylate (PMMA), and BK7 [5] was measured as a function of tempe","publication_date":{"day":1,"month":8,"year":2008,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108191953},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346671/New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K","translated_internal_url":"","created_at":"2023-12-02T00:07:19.825-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191953/thumbnails/1.jpg","file_name":"s10765-008-0504-z20231202-1-jr6vta.pdf","download_url":"https://www.academia.edu/attachments/108191953/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Measurements_of_the_Thermal_Conducti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191953/s10765-008-0504-z20231202-1-jr6vta-libre.pdf?1701507883=\u0026response-content-disposition=attachment%3B+filename%3DNew_Measurements_of_the_Thermal_Conducti.pdf\u0026Expires=1733914703\u0026Signature=PRHzJFE~C39b4cRvmfRMYx5PSK6NJ9nY7InThhjGoawVtINAiAqC1PRFPVjlT54ixlWk6zRrxdNOjb1YsSAmNHgimvLsuSKtcRy0nt2VygfL0YPLvdF6nmXRcSeMmg8vSrN288g7P3y7israjkfPalqGR4ZoyNaY6PLsObhldKRkJfdhoJ7V4u8dOKJxUCVhUPlRMRyLeI7~syD2Zj7tRerI1rAvW4JLs1XOBXa0qpi3cCKsd52z~bm4YVsonzV3wQdTUZT~G4gmCixDQz~kctRCa-qhDQ7KOpOFbmjmw9Zs1pcivcbIHKS3wXFAXB6-XKHpglBzlfvBvDoGCdeJjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 7740 are presented. The technique employed is a refined transient hot-wire technique, based on a full theoretical model with equations solved by finite elements for the exact geometry. At the 95 % confidence level, the standard deviations of the thermal conductivity measurements of PMMA, BK7, and Pyrex 7740 are 0.47 %, 1.0 %, and 0.8 %, respectively. The technique is absolute and is characterized by an uncertainty of \u003c1 %. Keywords BK7 • PMMA • Pyrex 7740 • Thermal conductivity • Transient hot-wire 1 Introduction Since 2002, in a series of recent papers [1-5], a novel application of the transient hotwire technique for thermal-conductivity measurements on solids was described. The methodology makes use of a soft-solid material between the hot wires of the technique and the solid of interest. It is based on a full theoretical model with equations solved by a finite-element method applied to the exact geometry, and thus it allows an accurate, absolute determination of the thermal conductivity of the solid. With this method, the thermal conductivity of Pyroceram 9606 [2,4], AISI 304 L [3,4], Pyrex 7740 [4], polymethyl methacrylate (PMMA), and BK7 [5] was measured as a function of tempe","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191953/thumbnails/1.jpg","file_name":"s10765-008-0504-z20231202-1-jr6vta.pdf","download_url":"https://www.academia.edu/attachments/108191953/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Measurements_of_the_Thermal_Conducti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191953/s10765-008-0504-z20231202-1-jr6vta-libre.pdf?1701507883=\u0026response-content-disposition=attachment%3B+filename%3DNew_Measurements_of_the_Thermal_Conducti.pdf\u0026Expires=1733914703\u0026Signature=PRHzJFE~C39b4cRvmfRMYx5PSK6NJ9nY7InThhjGoawVtINAiAqC1PRFPVjlT54ixlWk6zRrxdNOjb1YsSAmNHgimvLsuSKtcRy0nt2VygfL0YPLvdF6nmXRcSeMmg8vSrN288g7P3y7israjkfPalqGR4ZoyNaY6PLsObhldKRkJfdhoJ7V4u8dOKJxUCVhUPlRMRyLeI7~syD2Zj7tRerI1rAvW4JLs1XOBXa0qpi3cCKsd52z~bm4YVsonzV3wQdTUZT~G4gmCixDQz~kctRCa-qhDQ7KOpOFbmjmw9Zs1pcivcbIHKS3wXFAXB6-XKHpglBzlfvBvDoGCdeJjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23042,"name":"Finite Element","url":"https://www.academia.edu/Documents/in/Finite_Element"},{"id":69841,"name":"Standard Deviation","url":"https://www.academia.edu/Documents/in/Standard_Deviation"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":1154248,"name":"Theoretical Model","url":"https://www.academia.edu/Documents/in/Theoretical_Model"},{"id":1195780,"name":"Thermal Conductivity Measurement","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity_Measurement"},{"id":3641669,"name":"Confidence Level","url":"https://www.academia.edu/Documents/in/Confidence_Level"}],"urls":[{"id":36272947,"url":"https://doi.org/10.1007/s10765-008-0504-z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346669"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346669/Historical_Evolution_of_the_Transient_Hot_Wire_Technique"><img alt="Research paper thumbnail of Historical Evolution of the Transient Hot-Wire Technique" class="work-thumbnail" src="https://attachments.academia-assets.com/108245632/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346669/Historical_Evolution_of_the_Transient_Hot_Wire_Technique">Historical Evolution of the Transient Hot-Wire Technique</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Jun 1, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper attempts to describe the historical evolution of the transient hot-wire technique, empl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper attempts to describe the historical evolution of the transient hot-wire technique, employed today for the measurement of the thermal conductivity of fluids and solids over a wide range of conditions. Starting from the first experiments with heated wires in 1780 during the discussions of whether gases could conduct heat, it guides the reader through typical designs of cells and bridges, software employed and theory developed, to the modern applications. The paper is concluded with a discussion of the areas of application where problems still exist, and a glimpse of the technique&#39;s future.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9597c1135f35a0c2b9a1717f91a1b18f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108245632,&quot;asset_id&quot;:110346669,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108245632/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346669"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346669"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346669; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346669]").text(description); $(".js-view-count[data-work-id=110346669]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346669; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346669']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346669, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9597c1135f35a0c2b9a1717f91a1b18f" } } $('.js-work-strip[data-work-id=110346669]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346669,"title":"Historical Evolution of the Transient Hot-Wire Technique","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Evolution of the Transient Hot-Wire Technique in Thermal Conductivity","grobid_abstract":"The paper attempts to describe the historical evolution of the transient hot-wire technique, employed today for the measurement of the thermal conductivity of fluids and solids over a wide range of conditions. Starting from the first experiments with heated wires in 1780 during the discussions of whether gases could conduct heat, it guides the reader through typical designs of cells and bridges, software employed and theory developed, to the modern applications. The paper is concluded with a discussion of the areas of application where problems still exist, and a glimpse of the technique's future.","publication_date":{"day":1,"month":6,"year":2010,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108245632},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346669/Historical_Evolution_of_the_Transient_Hot_Wire_Technique","translated_internal_url":"","created_at":"2023-12-02T00:07:17.714-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108245632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108245632/thumbnails/1.jpg","file_name":"s10765-010-0814-920231203-1-28rxr6.pdf","download_url":"https://www.academia.edu/attachments/108245632/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Historical_Evolution_of_the_Transient_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108245632/s10765-010-0814-920231203-1-28rxr6-libre.pdf?1701594650=\u0026response-content-disposition=attachment%3B+filename%3DHistorical_Evolution_of_the_Transient_Ho.pdf\u0026Expires=1733914703\u0026Signature=GS1PFjqZBRXtjmmJIc8XBIi1uXXaRGAc6mmJb4-mPdcWUJiSFID~adZeuN388Q7eZrr36Yes9Xd71OLNE872CiMHWAsOGFBCWfeYcxNfpPOd5F-KmrzTfhp5Dil5DCsXQRE9vvYBxlb-x7AG~GbCOj9IWu~kIfeMBCUHiaeY60zU~NAmjlfvtW9HmcWzB6Zslcp3CDqFmqOw-S2cUqV1IzDOPDqCCkLFiATYytL8d4X~3W6bm5-LqeH~j0ObmPhNI7q8~s-aMi9Vb9IZdIQ83Z9-Mm-FtfTX08TgljbRYhs6PAd5k00icJzuTtjexL-6G0Lov7Pi1JI8KrLHhzCUzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Historical_Evolution_of_the_Transient_Hot_Wire_Technique","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The paper attempts to describe the historical evolution of the transient hot-wire technique, employed today for the measurement of the thermal conductivity of fluids and solids over a wide range of conditions. Starting from the first experiments with heated wires in 1780 during the discussions of whether gases could conduct heat, it guides the reader through typical designs of cells and bridges, software employed and theory developed, to the modern applications. The paper is concluded with a discussion of the areas of application where problems still exist, and a glimpse of the technique's future.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108245632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108245632/thumbnails/1.jpg","file_name":"s10765-010-0814-920231203-1-28rxr6.pdf","download_url":"https://www.academia.edu/attachments/108245632/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Historical_Evolution_of_the_Transient_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108245632/s10765-010-0814-920231203-1-28rxr6-libre.pdf?1701594650=\u0026response-content-disposition=attachment%3B+filename%3DHistorical_Evolution_of_the_Transient_Ho.pdf\u0026Expires=1733914703\u0026Signature=GS1PFjqZBRXtjmmJIc8XBIi1uXXaRGAc6mmJb4-mPdcWUJiSFID~adZeuN388Q7eZrr36Yes9Xd71OLNE872CiMHWAsOGFBCWfeYcxNfpPOd5F-KmrzTfhp5Dil5DCsXQRE9vvYBxlb-x7AG~GbCOj9IWu~kIfeMBCUHiaeY60zU~NAmjlfvtW9HmcWzB6Zslcp3CDqFmqOw-S2cUqV1IzDOPDqCCkLFiATYytL8d4X~3W6bm5-LqeH~j0ObmPhNI7q8~s-aMi9Vb9IZdIQ83Z9-Mm-FtfTX08TgljbRYhs6PAd5k00icJzuTtjexL-6G0Lov7Pi1JI8KrLHhzCUzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":36272946,"url":"https://doi.org/10.1007/s10765-010-0814-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346668/From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique"><img alt="Research paper thumbnail of From analog timers to the era of machine learning: The case of the transient hot-wire technique" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346668/From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique">From analog timers to the era of machine learning: The case of the transient hot-wire technique</a></div><div class="wp-workCard_item"><span>INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive cha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346668]").text(description); $(".js-view-count[data-work-id=110346668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110346668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346668,"title":"From analog timers to the era of machine learning: The case of the transient hot-wire technique","translated_title":"","metadata":{"abstract":"In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016)"},"translated_abstract":"In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.","internal_url":"https://www.academia.edu/110346668/From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique","translated_internal_url":"","created_at":"2023-12-02T00:07:15.679-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"}],"urls":[{"id":36272945,"url":"https://doi.org/10.1063/1.4994476"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346667/Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin"><img alt="Research paper thumbnail of Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin" class="work-thumbnail" src="https://attachments.academia-assets.com/108191943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346667/Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin">Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin</a></div><div class="wp-workCard_item"><span>PubMed</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The available experimental data for the thermal conductivity of liquid copper, gallium, indium, i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ed9faa1f3af0a61b7fa240f1ee9a88e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191943,&quot;asset_id&quot;:110346667,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191943/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346667]").text(description); $(".js-view-count[data-work-id=110346667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ed9faa1f3af0a61b7fa240f1ee9a88e9" } } $('.js-work-strip[data-work-id=110346667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346667,"title":"Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin","translated_title":"","metadata":{"abstract":"The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"PubMed"},"translated_abstract":"The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.","internal_url":"https://www.academia.edu/110346667/Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin","translated_internal_url":"","created_at":"2023-12-02T00:07:13.339-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191943/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/108191943/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_correlations_for_the_thermal_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191943/ptpmcrender-libre.pdf?1701507899=\u0026response-content-disposition=attachment%3B+filename%3DReference_correlations_for_the_thermal_c.pdf\u0026Expires=1733914703\u0026Signature=PtoOyxiPoA-Zln0V8OVDkffhCuLWhpnTLMtZFFob2als7jIVfv2AOG7aMmuWmFuUn7IL9Tnm49kW4WD9oiq1rNKxwTozXSmdEhNUpDCzmA-iEGeSztBbGcL6jjmSfQKwBKXVF-fPU71QdOU6Ds4XNNXDciAH84740EBs5iZAM1Gj~2QRqgbUloQbwJzm92mJNeNXUd7c-O~j2vp9whPE-Gop1FWofLA8PV0okwVeaMZ6hndsMwdalCjV4iPcMgxUv7cWGc0xtzmNl1dgYlRE0R~upMZorS4zxeCpqFOFBayJ5TlKUE5A4Bsu70I1wYDenddOevfQTEGbE7vemnpMiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin","translated_slug":"","page_count":36,"language":"en","content_type":"Work","summary":"The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191943/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/108191943/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_correlations_for_the_thermal_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191943/ptpmcrender-libre.pdf?1701507899=\u0026response-content-disposition=attachment%3B+filename%3DReference_correlations_for_the_thermal_c.pdf\u0026Expires=1733914703\u0026Signature=PtoOyxiPoA-Zln0V8OVDkffhCuLWhpnTLMtZFFob2als7jIVfv2AOG7aMmuWmFuUn7IL9Tnm49kW4WD9oiq1rNKxwTozXSmdEhNUpDCzmA-iEGeSztBbGcL6jjmSfQKwBKXVF-fPU71QdOU6Ds4XNNXDciAH84740EBs5iZAM1Gj~2QRqgbUloQbwJzm92mJNeNXUd7c-O~j2vp9whPE-Gop1FWofLA8PV0okwVeaMZ6hndsMwdalCjV4iPcMgxUv7cWGc0xtzmNl1dgYlRE0R~upMZorS4zxeCpqFOFBayJ5TlKUE5A4Bsu70I1wYDenddOevfQTEGbE7vemnpMiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":6309,"name":"Metallurgy","url":"https://www.academia.edu/Documents/in/Metallurgy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":80693,"name":"Tin","url":"https://www.academia.edu/Documents/in/Tin"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":98939,"name":"Pubmed","url":"https://www.academia.edu/Documents/in/Pubmed"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":688966,"name":"Gallium","url":"https://www.academia.edu/Documents/in/Gallium"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":1282185,"name":"Indium","url":"https://www.academia.edu/Documents/in/Indium"}],"urls":[{"id":36272943,"url":"https://pubmed.ncbi.nlm.nih.gov/29353915"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346664/Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475 K and Pressures up to 100 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191942/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346664/Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa">Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475 K and Pressures up to 100 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Aug 5, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583-654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c92a6a4e29df38b90905acb1b6a8cf50" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191942,&quot;asset_id&quot;:110346664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191942/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346664]").text(description); $(".js-view-count[data-work-id=110346664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c92a6a4e29df38b90905acb1b6a8cf50" } } $('.js-work-strip[data-work-id=110346664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346664,"title":"Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475 K and Pressures up to 100 MPa","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583-654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.","publication_date":{"day":5,"month":8,"year":2021,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108191942},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346664/Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa","translated_internal_url":"","created_at":"2023-12-02T00:07:11.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191942,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191942/thumbnails/1.jpg","file_name":"1.502145920231202-1-o780vu.pdf","download_url":"https://www.academia.edu/attachments/108191942/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191942/1.502145920231202-1-o780vu-libre.pdf?1701507892=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914703\u0026Signature=RxzwEub4lFwskU2bsFgou8PqJf82zRLpwqNo6uqujG438sgcCwytiDEAqZAXnjvI6raSrYvnaHzlDLJlUGyNYkGyE~T3YBt15JZ6XMzsrVF20wHjKsp59EqvR6p91tsgi5dGo~SNmY-pb~An38mgOvKB-KQPrMW~CzvO51KQ8nsIZxS4cyZlz0PWfGj3yQgKSPI2-6NNNdHUtlD7FsQ2bdEgzoZvadx-Ny~~BER6zPmrE0XUE9LctxdWKZmrrTbbsP7DLeYRoJwyB0dBSyVyc3jYH050ZFZ4vcBWHF3a978cEkSFtA0SGxx9VRH9bRqv2q9jIiUtIv~oVeWS6QDyoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583-654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191942,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191942/thumbnails/1.jpg","file_name":"1.502145920231202-1-o780vu.pdf","download_url":"https://www.academia.edu/attachments/108191942/download_file?st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191942/1.502145920231202-1-o780vu-libre.pdf?1701507892=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914703\u0026Signature=RxzwEub4lFwskU2bsFgou8PqJf82zRLpwqNo6uqujG438sgcCwytiDEAqZAXnjvI6raSrYvnaHzlDLJlUGyNYkGyE~T3YBt15JZ6XMzsrVF20wHjKsp59EqvR6p91tsgi5dGo~SNmY-pb~An38mgOvKB-KQPrMW~CzvO51KQ8nsIZxS4cyZlz0PWfGj3yQgKSPI2-6NNNdHUtlD7FsQ2bdEgzoZvadx-Ny~~BER6zPmrE0XUE9LctxdWKZmrrTbbsP7DLeYRoJwyB0dBSyVyc3jYH050ZFZ4vcBWHF3a978cEkSFtA0SGxx9VRH9bRqv2q9jIiUtIv~oVeWS6QDyoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":197566,"name":"Ethylene","url":"https://www.academia.edu/Documents/in/Ethylene"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"}],"urls":[{"id":36272942,"url":"https://doi.org/10.1007/s10765-021-02904-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346663/Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures"><img alt="Research paper thumbnail of Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures" class="work-thumbnail" src="https://attachments.academia-assets.com/108855675/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346663/Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures">Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, May 1, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Historic structures are a part of our cultural heritage and nowadays, in the polluted environment...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Historic structures are a part of our cultural heritage and nowadays, in the polluted environment, the need of their preservation is more intense than ever. One of the anticipated problems includes new materials that have to be compatible with those existing in older structures. In the case of mortars, traditional binders such as lime, natural pozzolanas, brick dust, and white cement have been combined successfully. In the present article a series of mixtures combining lime, two types of natural pozzolanas, brick dust, and different types of cement have been produced in order to measure their thermal conductivity for the first time. The parameters tested are: the binder type, the proportion of the binders, and the water/binder ratio. For the measurement of the thermal conductivity of the samples, a commercial instrument was used. To test its operability and extend its range, a transient hot-wire instrument was employed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a3bd65eddf6084375394cee86909918" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108855675,&quot;asset_id&quot;:110346663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108855675/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346663]").text(description); $(".js-view-count[data-work-id=110346663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a3bd65eddf6084375394cee86909918" } } $('.js-work-strip[data-work-id=110346663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346663,"title":"Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"Historic structures are a part of our cultural heritage and nowadays, in the polluted environment, the need of their preservation is more intense than ever. One of the anticipated problems includes new materials that have to be compatible with those existing in older structures. In the case of mortars, traditional binders such as lime, natural pozzolanas, brick dust, and white cement have been combined successfully. In the present article a series of mixtures combining lime, two types of natural pozzolanas, brick dust, and different types of cement have been produced in order to measure their thermal conductivity for the first time. The parameters tested are: the binder type, the proportion of the binders, and the water/binder ratio. For the measurement of the thermal conductivity of the samples, a commercial instrument was used. To test its operability and extend its range, a transient hot-wire instrument was employed.","publication_date":{"day":1,"month":5,"year":2010,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108855675},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346663/Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures","translated_internal_url":"","created_at":"2023-12-02T00:07:08.757-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108855675,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855675/thumbnails/1.jpg","file_name":"20151005112137_96981.pdf","download_url":"https://www.academia.edu/attachments/108855675/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Conductivity_of_Building_Materia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855675/20151005112137_96981-libre.pdf?1702424753=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Conductivity_of_Building_Materia.pdf\u0026Expires=1733914704\u0026Signature=XF8F-8WfanOuUU9mD66YZLmoyLiQCM11aJ7gR4EwAP8JNSQslWyFVlnO8Y1K30LYjEmAQFWOcyc5i2MvIJjulHJgumlOU1TwRGK~bCbs4jiGa2VFtE9CJDqT8bCY19KQdxtP~2iR7HsW6km3sHRJ5c-XLuAOtesQUNpuzTny41pTDUO5xPicqJ9-i0PYbMtUKouRm0Op9ZVIxqybwPYbxaATtN2fgmshKlQbeV3K99jaDrNdMuh3USA~ogA2m1vna9qcfEnwJ9yZ5AocCU20o0yMS2OQ22DJkivFvyxkZDGaakGkSzsD6q1G5KtyNiHGtw8cNCM5yHkQRjlK06eRJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Historic structures are a part of our cultural heritage and nowadays, in the polluted environment, the need of their preservation is more intense than ever. One of the anticipated problems includes new materials that have to be compatible with those existing in older structures. In the case of mortars, traditional binders such as lime, natural pozzolanas, brick dust, and white cement have been combined successfully. In the present article a series of mixtures combining lime, two types of natural pozzolanas, brick dust, and different types of cement have been produced in order to measure their thermal conductivity for the first time. The parameters tested are: the binder type, the proportion of the binders, and the water/binder ratio. For the measurement of the thermal conductivity of the samples, a commercial instrument was used. To test its operability and extend its range, a transient hot-wire instrument was employed.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108855675,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855675/thumbnails/1.jpg","file_name":"20151005112137_96981.pdf","download_url":"https://www.academia.edu/attachments/108855675/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Conductivity_of_Building_Materia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855675/20151005112137_96981-libre.pdf?1702424753=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Conductivity_of_Building_Materia.pdf\u0026Expires=1733914704\u0026Signature=XF8F-8WfanOuUU9mD66YZLmoyLiQCM11aJ7gR4EwAP8JNSQslWyFVlnO8Y1K30LYjEmAQFWOcyc5i2MvIJjulHJgumlOU1TwRGK~bCbs4jiGa2VFtE9CJDqT8bCY19KQdxtP~2iR7HsW6km3sHRJ5c-XLuAOtesQUNpuzTny41pTDUO5xPicqJ9-i0PYbMtUKouRm0Op9ZVIxqybwPYbxaATtN2fgmshKlQbeV3K99jaDrNdMuh3USA~ogA2m1vna9qcfEnwJ9yZ5AocCU20o0yMS2OQ22DJkivFvyxkZDGaakGkSzsD6q1G5KtyNiHGtw8cNCM5yHkQRjlK06eRJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2132,"name":"Cultural Heritage","url":"https://www.academia.edu/Documents/in/Cultural_Heritage"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":120210,"name":"Cement","url":"https://www.academia.edu/Documents/in/Cement"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":434434,"name":"Brick","url":"https://www.academia.edu/Documents/in/Brick"},{"id":500811,"name":"Building Material","url":"https://www.academia.edu/Documents/in/Building_Material"},{"id":553594,"name":"Mortar","url":"https://www.academia.edu/Documents/in/Mortar"},{"id":841116,"name":"Lime","url":"https://www.academia.edu/Documents/in/Lime"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":36272940,"url":"https://doi.org/10.1007/s10765-010-0750-8"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346661/Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191937/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346661/Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa">Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Feb 11, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triplepoint temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K, however care should be taken when using the correlation outside of the validated range.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b1e02112e56d53a188537e55119aa553" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191937,&quot;asset_id&quot;:110346661,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191937/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346661]").text(description); $(".js-view-count[data-work-id=110346661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b1e02112e56d53a188537e55119aa553" } } $('.js-work-strip[data-work-id=110346661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346661,"title":"Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triplepoint temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K, however care should be taken when using the correlation outside of the validated range.","publication_date":{"day":11,"month":2,"year":2021,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108191937},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346661/Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa","translated_internal_url":"","created_at":"2023-12-02T00:07:06.518-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191937/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191937/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191937/get_pdf-libre.pdf?1701507906=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914704\u0026Signature=CnF2tX9XsY--odMTTH7QFe6Ac-NinV7kEQYFXDVnDksgdzafeoaChosxpm6LA0Waa7awhfpi1B0nxMGUsyz6aWlERuNthYfoLUUNUoRcUx9wv-lmHohmGJIXMA9zMDjw6asoNE93YjKqJV-Tn~D1X3H182ZHFklyslAc4mtR4s8O6yOx4ViUgw5cRu4dxQNt53dgREBuk6cZ0g7EWl~hcLYXZC2kqmOgM02v-tlsI10Aa8z4igOpYC6hxyjM3sRIjxjn35mQziW-WzsSaOiHelFZ56UQgfbN359WB~eeQwf4wu-Gsdhh3FM2i~dgBymWCnZ8lbah--u5taELFu6Jgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triplepoint temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K, however care should be taken when using the correlation outside of the validated range.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191937/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191937/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191937/get_pdf-libre.pdf?1701507906=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914704\u0026Signature=CnF2tX9XsY--odMTTH7QFe6Ac-NinV7kEQYFXDVnDksgdzafeoaChosxpm6LA0Waa7awhfpi1B0nxMGUsyz6aWlERuNthYfoLUUNUoRcUx9wv-lmHohmGJIXMA9zMDjw6asoNE93YjKqJV-Tn~D1X3H182ZHFklyslAc4mtR4s8O6yOx4ViUgw5cRu4dxQNt53dgREBuk6cZ0g7EWl~hcLYXZC2kqmOgM02v-tlsI10Aa8z4igOpYC6hxyjM3sRIjxjn35mQziW-WzsSaOiHelFZ56UQgfbN359WB~eeQwf4wu-Gsdhh3FM2i~dgBymWCnZ8lbah--u5taELFu6Jgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":161033,"name":"Xenon","url":"https://www.academia.edu/Documents/in/Xenon"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272939,"url":"https://doi.org/10.1007/s10765-021-02803-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346660/Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons"><img alt="Research paper thumbnail of Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346660/Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons">Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Dec 1, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346660]").text(description); $(".js-view-count[data-work-id=110346660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110346660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346660,"title":"Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons","translated_title":"","metadata":{"abstract":"ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.","publisher":"Springer Science+Business Media","publication_date":{"day":1,"month":12,"year":2009,"errors":{}},"publication_name":"International Journal of Thermophysics"},"translated_abstract":"ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.","internal_url":"https://www.academia.edu/110346660/Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons","translated_internal_url":"","created_at":"2023-12-02T00:07:04.439-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":36272938,"url":"https://doi.org/10.1007/s10765-009-0682-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes"><img alt="Research paper thumbnail of The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes" class="work-thumbnail" src="https://attachments.academia-assets.com/108191936/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes">The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes</a></div><div class="wp-workCard_item"><span>Composites Science and Technology</span><span>, Dec 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b160f69d8dbf2b35ee0130f9d0cd2e9d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191936,&quot;asset_id&quot;:110346659,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191936/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346659]").text(description); $(".js-view-count[data-work-id=110346659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b160f69d8dbf2b35ee0130f9d0cd2e9d" } } $('.js-work-strip[data-work-id=110346659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346659,"title":"The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.","publication_date":{"day":1,"month":12,"year":2008,"errors":{}},"publication_name":"Composites Science and Technology","grobid_abstract_attachment_id":108191936},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes","translated_internal_url":"","created_at":"2023-12-02T00:07:01.672-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191936/thumbnails/1.jpg","file_name":"j.compscitech.2008.07.01920231202-1-re7wd5.pdf","download_url":"https://www.academia.edu/attachments/108191936/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_the_transient_hot_wire_techni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191936/j.compscitech.2008.07.01920231202-1-re7wd5-libre.pdf?1701507886=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_the_transient_hot_wire_techni.pdf\u0026Expires=1733914704\u0026Signature=LJa7To18AJ56FxCTqBnW4gRjT~IfKKSgQGoh-H7VbmQXfO8T30SPjDn1vJOzWphoyZ46pDir4d6RTwo4XY-6GKe20fy7JyXKSrm1mQZvgmqoMG8TeiixCIBUikM2am8VPyi~ES7lr1Zj8DMGLVra0tFsCEA26Dhu88-uqmtyIICub03cMxp4D5lqssZpSmQ76Hf5DOuTzpX8DT9iljN1D9gk8bVWSRoNmcSWhniMJ3396nHl2DuLT6NzY0GDd-3tohrmfPKF03vHGygt~DGeITp--dH2CscEOcxuojnOpudqQ32dewcH1c1yroaqJwhXl6~4yRkG14vwoipwZUzvOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191936/thumbnails/1.jpg","file_name":"j.compscitech.2008.07.01920231202-1-re7wd5.pdf","download_url":"https://www.academia.edu/attachments/108191936/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_the_transient_hot_wire_techni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191936/j.compscitech.2008.07.01920231202-1-re7wd5-libre.pdf?1701507886=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_the_transient_hot_wire_techni.pdf\u0026Expires=1733914704\u0026Signature=LJa7To18AJ56FxCTqBnW4gRjT~IfKKSgQGoh-H7VbmQXfO8T30SPjDn1vJOzWphoyZ46pDir4d6RTwo4XY-6GKe20fy7JyXKSrm1mQZvgmqoMG8TeiixCIBUikM2am8VPyi~ES7lr1Zj8DMGLVra0tFsCEA26Dhu88-uqmtyIICub03cMxp4D5lqssZpSmQ76Hf5DOuTzpX8DT9iljN1D9gk8bVWSRoNmcSWhniMJ3396nHl2DuLT6NzY0GDd-3tohrmfPKF03vHGygt~DGeITp--dH2CscEOcxuojnOpudqQ32dewcH1c1yroaqJwhXl6~4yRkG14vwoipwZUzvOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12842,"name":"Carbon Nanotube","url":"https://www.academia.edu/Documents/in/Carbon_Nanotube"},{"id":159672,"name":"Epoxy","url":"https://www.academia.edu/Documents/in/Epoxy"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":443788,"name":"Glass Fiber","url":"https://www.academia.edu/Documents/in/Glass_Fiber"}],"urls":[{"id":36272936,"url":"https://doi.org/10.1016/j.compscitech.2008.07.019"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346657"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110346657/Measurement_of_the_thermal_conductivity_of_composite_solid_materials"><img alt="Research paper thumbnail of Measurement of the thermal conductivity of composite solid materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110346657/Measurement_of_the_thermal_conductivity_of_composite_solid_materials">Measurement of the thermal conductivity of composite solid materials</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346657"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346657"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346657; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346657]").text(description); $(".js-view-count[data-work-id=110346657]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346657; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346657']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346657, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110346657]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346657,"title":"Measurement of the thermal conductivity of composite solid materials","translated_title":"","metadata":{"publication_date":{"day":31,"month":8,"year":2021,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346657/Measurement_of_the_thermal_conductivity_of_composite_solid_materials","translated_internal_url":"","created_at":"2023-12-02T00:06:59.437-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Measurement_of_the_thermal_conductivity_of_composite_solid_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":67493,"name":"Multiphysics","url":"https://www.academia.edu/Documents/in/Multiphysics"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":1391697,"name":"Polymethyl Methacrylate (PMMA)","url":"https://www.academia.edu/Documents/in/Polymethyl_Methacrylate_PMMA_"},{"id":1412408,"name":"Borosilicate Glass","url":"https://www.academia.edu/Documents/in/Borosilicate_Glass"}],"urls":[{"id":36272935,"url":"https://doi.org/10.12681/eadd/30572"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346652/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa"><img alt="Research paper thumbnail of Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108855672/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346652/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa">Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa</a></div><div class="wp-workCard_item"><span>Journal of Physical and Chemical Reference Data</span><span>, May 7, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper contains new, representative reference equations for the thermal conductivity of SF 6....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="826d1dc52876571916d8a11f7ceda35a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108855672,&quot;asset_id&quot;:110346652,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108855672/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346652]").text(description); $(".js-view-count[data-work-id=110346652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "826d1dc52876571916d8a11f7ceda35a" } } $('.js-work-strip[data-work-id=110346652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346652,"title":"Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa","translated_title":"","metadata":{"publisher":"American Institute of Physics","ai_title_tag":"Thermal Conductivity of SF6: Correlations and Data","grobid_abstract":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","publication_date":{"day":7,"month":5,"year":2012,"errors":{}},"publication_name":"Journal of Physical and Chemical Reference Data","grobid_abstract_attachment_id":108855672},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346652/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa","translated_internal_url":"","created_at":"2023-12-02T00:06:57.023-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108855672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855672/thumbnails/1.jpg","file_name":"d80c8ab9621c8ed8b31e19bc08410af28e75.pdf","download_url":"https://www.academia.edu/attachments/108855672/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855672/d80c8ab9621c8ed8b31e19bc08410af28e75-libre.pdf?1702424763=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=RPNtPPR9xnN-WW9qWkbyVXSMuLNUfweCZy9V8qgFGQdgi3LlVGEauyppN4H78ExkEns2r2ChO-D6DRmUqoIVfX3y9Xs8Ap3qRe57UBQeBvyQpf6-v3dzjC3k~kJWfVVxKXv-FkbZdBaSV4~zZh8JmupFIalxPOCOeVLSzP0mGqkd2qwGKal34AJl6-SjVTyiblOr9Q9m8mumP674Pn0k871fwSdETNvWthjhv7djYy082glA6ofoQDpDappcCnX79EGkhA0jte3qNjQnraEejpvU~relFqamLy19aVDaexnEYC8nvrVmY7W3ll2OiCEQScfh1XSblpevxoo2kGR3bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108855672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855672/thumbnails/1.jpg","file_name":"d80c8ab9621c8ed8b31e19bc08410af28e75.pdf","download_url":"https://www.academia.edu/attachments/108855672/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855672/d80c8ab9621c8ed8b31e19bc08410af28e75-libre.pdf?1702424763=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=RPNtPPR9xnN-WW9qWkbyVXSMuLNUfweCZy9V8qgFGQdgi3LlVGEauyppN4H78ExkEns2r2ChO-D6DRmUqoIVfX3y9Xs8Ap3qRe57UBQeBvyQpf6-v3dzjC3k~kJWfVVxKXv-FkbZdBaSV4~zZh8JmupFIalxPOCOeVLSzP0mGqkd2qwGKal34AJl6-SjVTyiblOr9Q9m8mumP674Pn0k871fwSdETNvWthjhv7djYy082glA6ofoQDpDappcCnX79EGkhA0jte3qNjQnraEejpvU~relFqamLy19aVDaexnEYC8nvrVmY7W3ll2OiCEQScfh1XSblpevxoo2kGR3bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272934,"url":"https://doi.org/10.1063/1.4708620"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346651/Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface"><img alt="Research paper thumbnail of Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface" class="work-thumbnail" src="https://attachments.academia-assets.com/108191929/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346651/Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface">Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Fluid Flow</span><span>, Aug 1, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7970f94f3b050cf5d72d5740bddecc1a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191929,&quot;asset_id&quot;:110346651,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191929/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346651]").text(description); $(".js-view-count[data-work-id=110346651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346651, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7970f94f3b050cf5d72d5740bddecc1a" } } $('.js-work-strip[data-work-id=110346651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346651,"title":"Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_abstract":"The study investigates the impact of nanofluids, specifically a 4% v/v CuO nanofluid in water, on the performance of a miniature plate heat exchanger (PHE) with modulated surfaces. Through both experimental and numerical approaches using CFD simulations, findings indicate a significant enhancement in heat transfer rates—up to 60% higher than conventional fluids—though at the cost of increased friction losses, which can rise to 2.5 times that of traditional setups. The work underscores the potential of nanofluids in optimizing heat exchanger efficiency while highlighting challenges related to sedimentation and stability.","publication_date":{"day":1,"month":8,"year":2009,"errors":{}},"publication_name":"International Journal of Heat and Fluid Flow"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346651/Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface","translated_internal_url":"","created_at":"2023-12-02T00:06:55.625-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191929/thumbnails/1.jpg","file_name":"Pantzali_et_al-CHISA2008.pdf","download_url":"https://www.academia.edu/attachments/108191929/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_nanofluids_on_the_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191929/Pantzali_et_al-CHISA2008-libre.pdf?1701507891=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_nanofluids_on_the_performance.pdf\u0026Expires=1733914704\u0026Signature=JTuOOdOLErDevjHxu9INuVUok~JPsCrjjvwOdnKyiKNXFHSY53zf63aSUzScUJvsWCR44yiehIe4-kS-Fi8YJ12a30inAcj5jyJ9qHUc1VljGCAkS4AUvXJICVtHznV7gtcZLQZfMmeBPjZJFt0zMgxWHmEjY2g9qZfpKocJGSsJ~G7mvvMdoYIKPte9bdAGfnvu3iTHwGTJcPM~qdqOkE2TJcjwh8jO4heMI1Gw1AdGWK-6QnB7I8fBodO06EbL7BNd-44hx33gu4wIpPFdnmqYl7dikGuhY~HjCX2IzGPJb4hK2q0rq3ffm4kSKFNqB5ckuA0v8O-Tn~W30AiJdg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191929/thumbnails/1.jpg","file_name":"Pantzali_et_al-CHISA2008.pdf","download_url":"https://www.academia.edu/attachments/108191929/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_nanofluids_on_the_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191929/Pantzali_et_al-CHISA2008-libre.pdf?1701507891=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_nanofluids_on_the_performance.pdf\u0026Expires=1733914704\u0026Signature=JTuOOdOLErDevjHxu9INuVUok~JPsCrjjvwOdnKyiKNXFHSY53zf63aSUzScUJvsWCR44yiehIe4-kS-Fi8YJ12a30inAcj5jyJ9qHUc1VljGCAkS4AUvXJICVtHznV7gtcZLQZfMmeBPjZJFt0zMgxWHmEjY2g9qZfpKocJGSsJ~G7mvvMdoYIKPte9bdAGfnvu3iTHwGTJcPM~qdqOkE2TJcjwh8jO4heMI1Gw1AdGWK-6QnB7I8fBodO06EbL7BNd-44hx33gu4wIpPFdnmqYl7dikGuhY~HjCX2IzGPJb4hK2q0rq3ffm4kSKFNqB5ckuA0v8O-Tn~W30AiJdg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":308594,"name":"Heat Capacity","url":"https://www.academia.edu/Documents/in/Heat_Capacity"},{"id":331203,"name":"Pressure Drop","url":"https://www.academia.edu/Documents/in/Pressure_Drop"},{"id":352693,"name":"Thermophysical Properties","url":"https://www.academia.edu/Documents/in/Thermophysical_Properties"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"}],"urls":[{"id":36272933,"url":"https://doi.org/10.1016/j.ijheatfluidflow.2009.02.005"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346650/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST"><img alt="Research paper thumbnail of Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa | NIST" class="work-thumbnail" src="https://attachments.academia-assets.com/108191902/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346650/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST">Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa | NIST</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper contains new, representative reference equations for the thermal conductivity of SF 6....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d339ea12ff35a0241aeaab3ada94355" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191902,&quot;asset_id&quot;:110346650,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191902/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346650]").text(description); $(".js-view-count[data-work-id=110346650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d339ea12ff35a0241aeaab3ada94355" } } $('.js-work-strip[data-work-id=110346650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346650,"title":"Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa | NIST","translated_title":"","metadata":{"grobid_abstract":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","publication_date":{"day":9,"month":7,"year":2012,"errors":{}},"grobid_abstract_attachment_id":108191902},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346650/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST","translated_internal_url":"","created_at":"2023-12-02T00:06:52.445-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191902,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191902/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191902/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191902/get_pdf-libre.pdf?1701507896=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=Ob6pOeoWtiTW282jd8JlXjxui-ZbHPw09II0MnReC9jCqrCKyzRmH2hGV~PsxxX4B6BJYXrRO9pXSG5DOysY1ZY9KzwykzRDv6os-rm-ZYbnvf2Q1hYZf9DDJkeYH-FrKEWXEWR8WlTcXj0XVaJcPNQUebD1rovx15Mk5nIAqFbQaahsfSjL33KWxBbwG~FX7t~EWPdan344a~ydUv6Jvpgd4jSQ9jq8e75APM6PE3OHHDSUfmhO951jBhrs36ht61pYrWXQzwpAZOZQFMqSy6U4vTFAoZrGK2~8YztBkp-VFndVFbi419IT62~1CEe~WPiW8qzCykU7iHJpcXrc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191902,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191902/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191902/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191902/get_pdf-libre.pdf?1701507896=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=Ob6pOeoWtiTW282jd8JlXjxui-ZbHPw09II0MnReC9jCqrCKyzRmH2hGV~PsxxX4B6BJYXrRO9pXSG5DOysY1ZY9KzwykzRDv6os-rm-ZYbnvf2Q1hYZf9DDJkeYH-FrKEWXEWR8WlTcXj0XVaJcPNQUebD1rovx15Mk5nIAqFbQaahsfSjL33KWxBbwG~FX7t~EWPdan344a~ydUv6Jvpgd4jSQ9jq8e75APM6PE3OHHDSUfmhO951jBhrs36ht61pYrWXQzwpAZOZQFMqSy6U4vTFAoZrGK2~8YztBkp-VFndVFbi419IT62~1CEe~WPiW8qzCykU7iHJpcXrc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108191901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191901/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191901/download_file","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191901/get_pdf-libre.pdf?1701507895=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=BKTkVej5k0qgZZ1bQ-7FQqLIBmNZodQ-aDphZB5aZBZA9yA5nH-J1wemRL25oT2y0JqAQYsH2kWrji0Hxdr3r1jMd9qrO9CdHcZ1K4woCu2iijfrSl~v6vRN131nXfebMPXTfMMaSuRaI~4MomZ9BYMCgt2Fkbten6H4xLgN~N9nWa7V12U6QS2~acNodEu6BBBZXjMeC8O2GZ~w3r0DvVDWUm0GTl2Ngqru5qP7RBNsSpCdsfoB6-8dbU9LMmFOA1yNssta9ugJkooxbvwMNmFSSFO3czzQEsDHEO39O1LE444YfXFdVeThWZIwywuIlgRtG2~cmNWAHmEjnOr32w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":555289,"name":"NIST","url":"https://www.academia.edu/Documents/in/NIST"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272932,"url":"https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910829"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346649/Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa"><img alt="Research paper thumbnail of Correction to: Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191899/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346649/Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa">Correction to: Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="274b2a7176a707cf0b988bccb5178a8a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191899,&quot;asset_id&quot;:110346649,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191899/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346649]").text(description); $(".js-view-count[data-work-id=110346649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346649, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "274b2a7176a707cf0b988bccb5178a8a" } } $('.js-work-strip[data-work-id=110346649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346649,"title":"Correction to: Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346649/Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa","translated_internal_url":"","created_at":"2023-12-02T00:06:50.135-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191899/thumbnails/1.jpg","file_name":"s10765-023-03175-5.pdf","download_url":"https://www.academia.edu/attachments/108191899/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191899/s10765-023-03175-5-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=NyaZh3dTTvnA3KUzcE1tIliolc0zK3kuGUjcc4WYD6nHIqrBeigjwGHUlYUDW~O5VrWgaSI6z2Q~ID1zHDeMr7V8iR39fX76k-zkQjDcODG7FCjrsHW3nBvw2VFnqYxee2t5fb6c9rJENj5GzYLNtUZSw~Ine1lWQTPfU0oH2827GB6StedRzEK8jEdo1ILUvOzim4Zy55YDX4baxXfDyALM7U8a1a9OpHDenMZ0hfGmnEMD-fKgk85qqt~7r~yLKXWde8QQV-e6zNTTfFcGZ-RBPyOr0TcAdkWBsFSZzdrce5j0Q-Pug4cP1ZrF9eVlGzZ~irg6KWaE1WKBiQGYrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191899/thumbnails/1.jpg","file_name":"s10765-023-03175-5.pdf","download_url":"https://www.academia.edu/attachments/108191899/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191899/s10765-023-03175-5-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=NyaZh3dTTvnA3KUzcE1tIliolc0zK3kuGUjcc4WYD6nHIqrBeigjwGHUlYUDW~O5VrWgaSI6z2Q~ID1zHDeMr7V8iR39fX76k-zkQjDcODG7FCjrsHW3nBvw2VFnqYxee2t5fb6c9rJENj5GzYLNtUZSw~Ine1lWQTPfU0oH2827GB6StedRzEK8jEdo1ILUvOzim4Zy55YDX4baxXfDyALM7U8a1a9OpHDenMZ0hfGmnEMD-fKgk85qqt~7r~yLKXWde8QQV-e6zNTTfFcGZ-RBPyOr0TcAdkWBsFSZzdrce5j0Q-Pug4cP1ZrF9eVlGzZ~irg6KWaE1WKBiQGYrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108191900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191900/thumbnails/1.jpg","file_name":"s10765-023-03175-5.pdf","download_url":"https://www.academia.edu/attachments/108191900/download_file","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191900/s10765-023-03175-5-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=ZQHAx7LiXx-w4QTYnOvhlWXaOH3-tKZq-nBW8yLBpy0UvPzqH0FKnZB1Odt4OW-0v4c5AD~K5vWnJYwTLd0YjQZpCNzCd9rRhM9bRN2pLcynUEPNUtKkuIWglL2KBPaYT4r~Ixr63oEiffZ7Mzj-npB5nArs8OelL58FJX3ZD-1CdNoDGR9TcwRyWfP55ojyGpXi1mj8gxiIv60oiS4A-MZAJgZYKVXCynpkw~qFssWH4wsmG5yGHgP1QUofb9JO5zjklLxx5RgGg3HLy0G1-jLl0chRegKFdq3Z6ecgRdFMNPfTG1XhdvozcEcGRJSwvlC4WY03cytamVHIOADuEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":161033,"name":"Xenon","url":"https://www.academia.edu/Documents/in/Xenon"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272931,"url":"https://link.springer.com/content/pdf/10.1007/s10765-023-03175-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346640"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346640/Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa"><img alt="Research paper thumbnail of Correction to: Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191898/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346640/Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa">Correction to: Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e4eac5ba34e3dc1e83095cab5b287b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191898,&quot;asset_id&quot;:110346640,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191898/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346640"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346640"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346640; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346640]").text(description); $(".js-view-count[data-work-id=110346640]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346640; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346640']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346640, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e4eac5ba34e3dc1e83095cab5b287b5" } } $('.js-work-strip[data-work-id=110346640]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346640,"title":"Correction to: Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346640/Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa","translated_internal_url":"","created_at":"2023-12-02T00:06:30.244-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191898/thumbnails/1.jpg","file_name":"s10765-023-03160-y.pdf","download_url":"https://www.academia.edu/attachments/108191898/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191898/s10765-023-03160-y-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=F9OJtnNVFWj55jTF09duOFglSk8FkPhKxzpbvFp2TbjSaOQErpM5~d071FGMd9yCMu5jBBFBL7QsBO3xM79qxCDDBM47gOSiNvZQxSmT-gYNrNerXTPM6nhRZnZJJ1VcVKyo~uvbdcFy1JqhwkbYH3cf9qmYWyGHaz2ZE2ZWHoE7k4wRmtkL2vUH9gLVgstNqXV3f6zlJ03A9LsoXICsEzIWzSH8MOZQCF803FYBO9rxANaWMa2sbfsCYTBHbxRi8eox93fvUFjWtNHCzNt0OUnKnlg01GWfWLzECk0LFuvu-gqnGwclViaqqF~ErqN77uDyYX2jVE2BRVKC5XR-Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191898/thumbnails/1.jpg","file_name":"s10765-023-03160-y.pdf","download_url":"https://www.academia.edu/attachments/108191898/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191898/s10765-023-03160-y-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=F9OJtnNVFWj55jTF09duOFglSk8FkPhKxzpbvFp2TbjSaOQErpM5~d071FGMd9yCMu5jBBFBL7QsBO3xM79qxCDDBM47gOSiNvZQxSmT-gYNrNerXTPM6nhRZnZJJ1VcVKyo~uvbdcFy1JqhwkbYH3cf9qmYWyGHaz2ZE2ZWHoE7k4wRmtkL2vUH9gLVgstNqXV3f6zlJ03A9LsoXICsEzIWzSH8MOZQCF803FYBO9rxANaWMa2sbfsCYTBHbxRi8eox93fvUFjWtNHCzNt0OUnKnlg01GWfWLzECk0LFuvu-gqnGwclViaqqF~ErqN77uDyYX2jVE2BRVKC5XR-Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272930,"url":"https://link.springer.com/content/pdf/10.1007/s10765-023-03160-y.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346509"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346509/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece"><img alt="Research paper thumbnail of Applying Thermal Comfort Indices to Investigate Aspects of the Climate in Greece" class="work-thumbnail" src="https://attachments.academia-assets.com/108191851/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346509/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece">Applying Thermal Comfort Indices to Investigate Aspects of the Climate in Greece</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work two thermal comfort indices are employed to study climate variations in Greece at th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work two thermal comfort indices are employed to study climate variations in Greece at three levels. Initially, newly-calculated Predicted Mean Vote index values for 35 cities in Greece for the years 2008-2009 are compared with previous ones for the years 1980-89. The comparison shows increased values, indicating the probability of a very hot decade to come. Following this the Discomfort Index is employed to show differences in climate between the north, center and south of Greece. Finally, at a more local level, it is shown how Discomfort Index values can be employed to evaluate climate differences in urban areas as well as rural. Copyright</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d1daf6147f4542e163401a8421274bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191851,&quot;asset_id&quot;:110346509,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191851/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346509"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346509"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346509; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346509]").text(description); $(".js-view-count[data-work-id=110346509]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346509; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346509']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346509, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d1daf6147f4542e163401a8421274bb" } } $('.js-work-strip[data-work-id=110346509]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346509,"title":"Applying Thermal Comfort Indices to Investigate Aspects of the Climate in Greece","translated_title":"","metadata":{"ai_title_tag":"Thermal Comfort Indices Reveal Climate Variations in Greece","grobid_abstract":"In this work two thermal comfort indices are employed to study climate variations in Greece at three levels. Initially, newly-calculated Predicted Mean Vote index values for 35 cities in Greece for the years 2008-2009 are compared with previous ones for the years 1980-89. The comparison shows increased values, indicating the probability of a very hot decade to come. Following this the Discomfort Index is employed to show differences in climate between the north, center and south of Greece. Finally, at a more local level, it is shown how Discomfort Index values can be employed to evaluate climate differences in urban areas as well as rural. Copyright","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":108191851},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346509/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece","translated_internal_url":"","created_at":"2023-12-02T00:04:11.954-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191851/thumbnails/1.jpg","file_name":"ireche.pdf","download_url":"https://www.academia.edu/attachments/108191851/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Applying_Thermal_Comfort_Indices_to_Inve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191851/ireche-libre.pdf?1701507916=\u0026response-content-disposition=attachment%3B+filename%3DApplying_Thermal_Comfort_Indices_to_Inve.pdf\u0026Expires=1733914704\u0026Signature=UQGAfklANLHtzUoA8An5hwEetJX4PMCWLu7hSdVCJfNOFEYfrBSKrV1RX70GXPFEDMfN-ABQB6Gy4xsvb1ADucKdYOFUiDojEKSix6Vf0sTf-Oq5gtxS3xC5wr2Po3Y-Mz7FThUMO~s0fhmG9yteu57i4VN9cTgQjO2~cX22-v8oSI6klvjh1bPQeuZ2buWqZhUEow4uQy1gcrQIVLIAgVOJQJ4b~9MDHOyFRvnvlc6P21cCAKWh3JAKta8jR--EDID6fv9ou5wFyp1GICr41E5D2-3aHh9MGG0WQF2B-9CX4LgV20TGIE5vc0qncp1RUUuxuWP1XequWuwH47d0Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"In this work two thermal comfort indices are employed to study climate variations in Greece at three levels. Initially, newly-calculated Predicted Mean Vote index values for 35 cities in Greece for the years 2008-2009 are compared with previous ones for the years 1980-89. The comparison shows increased values, indicating the probability of a very hot decade to come. Following this the Discomfort Index is employed to show differences in climate between the north, center and south of Greece. Finally, at a more local level, it is shown how Discomfort Index values can be employed to evaluate climate differences in urban areas as well as rural. Copyright","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191851/thumbnails/1.jpg","file_name":"ireche.pdf","download_url":"https://www.academia.edu/attachments/108191851/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Applying_Thermal_Comfort_Indices_to_Inve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191851/ireche-libre.pdf?1701507916=\u0026response-content-disposition=attachment%3B+filename%3DApplying_Thermal_Comfort_Indices_to_Inve.pdf\u0026Expires=1733914704\u0026Signature=UQGAfklANLHtzUoA8An5hwEetJX4PMCWLu7hSdVCJfNOFEYfrBSKrV1RX70GXPFEDMfN-ABQB6Gy4xsvb1ADucKdYOFUiDojEKSix6Vf0sTf-Oq5gtxS3xC5wr2Po3Y-Mz7FThUMO~s0fhmG9yteu57i4VN9cTgQjO2~cX22-v8oSI6klvjh1bPQeuZ2buWqZhUEow4uQy1gcrQIVLIAgVOJQJ4b~9MDHOyFRvnvlc6P21cCAKWh3JAKta8jR--EDID6fv9ou5wFyp1GICr41E5D2-3aHh9MGG0WQF2B-9CX4LgV20TGIE5vc0qncp1RUUuxuWP1XequWuwH47d0Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":154596,"name":"Thermal comfort","url":"https://www.academia.edu/Documents/in/Thermal_comfort"}],"urls":[{"id":36272830,"url":"https://www.academia.edu/1015793/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="102733542"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/102733542/Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/102924663/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/102733542/Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa">Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a wide-ranging correlation expressed in terms of temperature and density for the visco...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8fb8d30025a5780fa2536f4d3e3d92a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:102924663,&quot;asset_id&quot;:102733542,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/102924663/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="102733542"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="102733542"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 102733542; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=102733542]").text(description); $(".js-view-count[data-work-id=102733542]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 102733542; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='102733542']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 102733542, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8fb8d30025a5780fa2536f4d3e3d92a7" } } $('.js-work-strip[data-work-id=102733542]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":102733542,"title":"Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa","translated_title":"","metadata":{"abstract":"We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).","publisher":"Research Square Platform LLC"},"translated_abstract":"We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).","internal_url":"https://www.academia.edu/102733542/Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa","translated_internal_url":"","created_at":"2023-06-01T23:54:50.580-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":102924663,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/102924663/thumbnails/1.jpg","file_name":"s10765-022-03149-z.pdf","download_url":"https://www.academia.edu/attachments/102924663/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/102924663/s10765-022-03149-z-libre.pdf?1685693197=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=NS7HJp-RWhTa6GLNAtBYEOoR3dEvNXTio54sysxaG9EkG4Qvg-pKkH9CYI0rRRAJhAQinib1~tHuQRKqvfqH41NKDEfV7Dp~T7~8771QMdkACZHpk~B1wNNYZX6rKg8GUYA868cG71DZsXFmC7kyEbkqBssYmxLuSwgFnfM7PX3kORN4HvprYHHprBt~ieH8larRvYZ3PGW-L42mI1fz50p8RDAdDv1hIRBPgrWKm7pUHUQf0aM7u2whepHOQgSNaal1ZnX2wgHedDFxnFxFTpaEWUMn9xkqOmjTXcvR4VIEfZQbOROWDk-97w43GmCnzTxi503R5tOpW1JfpuMfqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa","translated_slug":"","page_count":42,"language":"en","content_type":"Work","summary":"We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":102924663,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/102924663/thumbnails/1.jpg","file_name":"s10765-022-03149-z.pdf","download_url":"https://www.academia.edu/attachments/102924663/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/102924663/s10765-022-03149-z-libre.pdf?1685693197=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=NS7HJp-RWhTa6GLNAtBYEOoR3dEvNXTio54sysxaG9EkG4Qvg-pKkH9CYI0rRRAJhAQinib1~tHuQRKqvfqH41NKDEfV7Dp~T7~8771QMdkACZHpk~B1wNNYZX6rKg8GUYA868cG71DZsXFmC7kyEbkqBssYmxLuSwgFnfM7PX3kORN4HvprYHHprBt~ieH8larRvYZ3PGW-L42mI1fz50p8RDAdDv1hIRBPgrWKm7pUHUQf0aM7u2whepHOQgSNaal1ZnX2wgHedDFxnFxFTpaEWUMn9xkqOmjTXcvR4VIEfZQbOROWDk-97w43GmCnzTxi503R5tOpW1JfpuMfqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"},{"id":1181274,"name":"Supercritical Fluid","url":"https://www.academia.edu/Documents/in/Supercritical_Fluid"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"},{"id":3420758,"name":"Boiling point","url":"https://www.academia.edu/Documents/in/Boiling_point"}],"urls":[{"id":31942791,"url":"https://www.researchsquare.com/article/rs-2380822/v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94633716"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/94633716/Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases"><img alt="Research paper thumbnail of Accurate Measurements of the Thermal Conductivity of Hexadecan-1-ol and Octadecan-1-ol in the Solid and Liquid Phases" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/94633716/Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases">Accurate Measurements of the Thermal Conductivity of Hexadecan-1-ol and Octadecan-1-ol in the Solid and Liquid Phases</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94633716"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94633716"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94633716; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94633716]").text(description); $(".js-view-count[data-work-id=94633716]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94633716; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94633716']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94633716, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94633716]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94633716,"title":"Accurate Measurements of the Thermal Conductivity of Hexadecan-1-ol and Octadecan-1-ol in the Solid and Liquid Phases","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94633716/Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases","translated_internal_url":"","created_at":"2023-01-09T06:05:03.318-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":27887373,"url":"https://link.springer.com/content/pdf/10.1007/s10765-022-03049-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88953292"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88953292/Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425 K and up to 70 MPa" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88953292/Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa">Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425 K and up to 70 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88953292"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88953292"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88953292; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88953292]").text(description); $(".js-view-count[data-work-id=88953292]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88953292; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88953292']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88953292, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88953292]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88953292,"title":"Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425 K and up to 70 MPa","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88953292/Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa","translated_internal_url":"","created_at":"2022-10-21T21:39:52.868-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"},{"id":952977,"name":"Extrapolation","url":"https://www.academia.edu/Documents/in/Extrapolation"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"}],"urls":[{"id":25011464,"url":"https://link.springer.com/content/pdf/10.1007/s10765-022-03050-9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82105929"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82105929/Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts"><img alt="Research paper thumbnail of Reference Correlations for the Viscosity of 13 Inorganic Molten Salts" class="work-thumbnail" src="https://attachments.academia-assets.com/87918428/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82105929/Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts">Reference Correlations for the Viscosity of 13 Inorganic Molten Salts</a></div><div class="wp-workCard_item"><span>Journal of Physical and Chemical Reference Data</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were proposed by Janz and have been used extensively. During the last 31 years, many additional measurements have been published. In a very recent paper, new reference correlations for the thermal conductivity of 13 inorganic molten salts were proposed. In this paper, reference correlations for the viscosity of those same salts are proposed. All available experimental data for the viscosity of 13 inorganic molten salts have been critically examined with the intention of establishing improved or new reference viscosity correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. Standard reference correlations are proposed for the following molten salts (with estimated uncertainties at the 95% confidence level given in parentheses): LiNO 3 (6.7%), NaNO 3 (3.0%), KNO 3 (3.0%), NaBr (1.6%), KBr (2.0%), RbBr (2.2%), LiCl (3.7%), NaCl (2.4%), KCl (1.6%), RbCl (3.6%), CsCl (1.1%), NaI (1.5%), and RbI (1.5%).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="898f4466cacd30f3c406ee69d2cd7436" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:87918428,&quot;asset_id&quot;:82105929,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/87918428/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82105929"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82105929"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82105929; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82105929]").text(description); $(".js-view-count[data-work-id=82105929]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82105929; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82105929']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82105929, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "898f4466cacd30f3c406ee69d2cd7436" } } $('.js-work-strip[data-work-id=82105929]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82105929,"title":"Reference Correlations for the Viscosity of 13 Inorganic Molten Salts","translated_title":"","metadata":{"publisher":"AIP Publishing","ai_title_tag":"Refined Viscosity Correlations for 13 Inorganic Molten Salts","grobid_abstract":"In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were proposed by Janz and have been used extensively. During the last 31 years, many additional measurements have been published. In a very recent paper, new reference correlations for the thermal conductivity of 13 inorganic molten salts were proposed. In this paper, reference correlations for the viscosity of those same salts are proposed. All available experimental data for the viscosity of 13 inorganic molten salts have been critically examined with the intention of establishing improved or new reference viscosity correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. Standard reference correlations are proposed for the following molten salts (with estimated uncertainties at the 95% confidence level given in parentheses): LiNO 3 (6.7%), NaNO 3 (3.0%), KNO 3 (3.0%), NaBr (1.6%), KBr (2.0%), RbBr (2.2%), LiCl (3.7%), NaCl (2.4%), KCl (1.6%), RbCl (3.6%), CsCl (1.1%), NaI (1.5%), and RbI (1.5%).","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Physical and Chemical Reference Data","grobid_abstract_attachment_id":87918428},"translated_abstract":null,"internal_url":"https://www.academia.edu/82105929/Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts","translated_internal_url":"","created_at":"2022-06-23T08:29:16.623-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87918428,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87918428/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/87918428/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlations_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87918428/1-libre.pdf?1655998849=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlations_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=UcR3nqoZryQJTKddr1QI5rm3-yMofDfxD8Og5v06RcFkjztjhoNEdy1Heg9JddwGOWamLfxrXdqlwkhwRypxm70TXkZWKXPozqO3NPOh5tpNABdlEwp7xzsCgrm7OCv~5EfnixMWd-0Qv4APeRIzszWZeKXCROJsF2LDIaNZ~9B6co1Ca4hYll1Tlp4qXUnfOmnZrE457hDmd3pF-TuweLGc-tjjQsAqfcRonk~5pyd3~7CdW-BMsbuD1xXRVLDH~aXbAQwLBmOqaviNIlIr9j2EgD5uo7O5QDM5osz4OtCKlcK4VmGLRMsnumgQJke9j-Cwk2CDo~aucYDtzIabAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were proposed by Janz and have been used extensively. During the last 31 years, many additional measurements have been published. In a very recent paper, new reference correlations for the thermal conductivity of 13 inorganic molten salts were proposed. In this paper, reference correlations for the viscosity of those same salts are proposed. All available experimental data for the viscosity of 13 inorganic molten salts have been critically examined with the intention of establishing improved or new reference viscosity correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. Standard reference correlations are proposed for the following molten salts (with estimated uncertainties at the 95% confidence level given in parentheses): LiNO 3 (6.7%), NaNO 3 (3.0%), KNO 3 (3.0%), NaBr (1.6%), KBr (2.0%), RbBr (2.2%), LiCl (3.7%), NaCl (2.4%), KCl (1.6%), RbCl (3.6%), CsCl (1.1%), NaI (1.5%), and RbI (1.5%).","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":87918428,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87918428/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/87918428/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlations_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87918428/1-libre.pdf?1655998849=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlations_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=UcR3nqoZryQJTKddr1QI5rm3-yMofDfxD8Og5v06RcFkjztjhoNEdy1Heg9JddwGOWamLfxrXdqlwkhwRypxm70TXkZWKXPozqO3NPOh5tpNABdlEwp7xzsCgrm7OCv~5EfnixMWd-0Qv4APeRIzszWZeKXCROJsF2LDIaNZ~9B6co1Ca4hYll1Tlp4qXUnfOmnZrE457hDmd3pF-TuweLGc-tjjQsAqfcRonk~5pyd3~7CdW-BMsbuD1xXRVLDH~aXbAQwLBmOqaviNIlIr9j2EgD5uo7O5QDM5osz4OtCKlcK4VmGLRMsnumgQJke9j-Cwk2CDo~aucYDtzIabAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":21697823,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.5091511"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4283258" id="papers"><div class="js-work-strip profile--work_container" data-work-id="110346671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346671/New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K"><img alt="Research paper thumbnail of New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K" class="work-thumbnail" src="https://attachments.academia-assets.com/108191953/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346671/New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K">New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Aug 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 77...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 7740 are presented. The technique employed is a refined transient hot-wire technique, based on a full theoretical model with equations solved by finite elements for the exact geometry. At the 95 % confidence level, the standard deviations of the thermal conductivity measurements of PMMA, BK7, and Pyrex 7740 are 0.47 %, 1.0 %, and 0.8 %, respectively. The technique is absolute and is characterized by an uncertainty of &lt;1 %. Keywords BK7 • PMMA • Pyrex 7740 • Thermal conductivity • Transient hot-wire 1 Introduction Since 2002, in a series of recent papers [1-5], a novel application of the transient hotwire technique for thermal-conductivity measurements on solids was described. The methodology makes use of a soft-solid material between the hot wires of the technique and the solid of interest. It is based on a full theoretical model with equations solved by a finite-element method applied to the exact geometry, and thus it allows an accurate, absolute determination of the thermal conductivity of the solid. With this method, the thermal conductivity of Pyroceram 9606 [2,4], AISI 304 L [3,4], Pyrex 7740 [4], polymethyl methacrylate (PMMA), and BK7 [5] was measured as a function of tempe</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="48755580dfb9af54d1bae7977f03eeb2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191953,&quot;asset_id&quot;:110346671,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191953/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346671]").text(description); $(".js-view-count[data-work-id=110346671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346671, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "48755580dfb9af54d1bae7977f03eeb2" } } $('.js-work-strip[data-work-id=110346671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346671,"title":"New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Thermal Conductivity of PMMA, BK7, and Pyrex 7740 to 450K","grobid_abstract":"New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 7740 are presented. The technique employed is a refined transient hot-wire technique, based on a full theoretical model with equations solved by finite elements for the exact geometry. At the 95 % confidence level, the standard deviations of the thermal conductivity measurements of PMMA, BK7, and Pyrex 7740 are 0.47 %, 1.0 %, and 0.8 %, respectively. The technique is absolute and is characterized by an uncertainty of \u003c1 %. Keywords BK7 • PMMA • Pyrex 7740 • Thermal conductivity • Transient hot-wire 1 Introduction Since 2002, in a series of recent papers [1-5], a novel application of the transient hotwire technique for thermal-conductivity measurements on solids was described. The methodology makes use of a soft-solid material between the hot wires of the technique and the solid of interest. It is based on a full theoretical model with equations solved by a finite-element method applied to the exact geometry, and thus it allows an accurate, absolute determination of the thermal conductivity of the solid. With this method, the thermal conductivity of Pyroceram 9606 [2,4], AISI 304 L [3,4], Pyrex 7740 [4], polymethyl methacrylate (PMMA), and BK7 [5] was measured as a function of tempe","publication_date":{"day":1,"month":8,"year":2008,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108191953},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346671/New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K","translated_internal_url":"","created_at":"2023-12-02T00:07:19.825-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191953/thumbnails/1.jpg","file_name":"s10765-008-0504-z20231202-1-jr6vta.pdf","download_url":"https://www.academia.edu/attachments/108191953/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Measurements_of_the_Thermal_Conducti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191953/s10765-008-0504-z20231202-1-jr6vta-libre.pdf?1701507883=\u0026response-content-disposition=attachment%3B+filename%3DNew_Measurements_of_the_Thermal_Conducti.pdf\u0026Expires=1733914703\u0026Signature=PRHzJFE~C39b4cRvmfRMYx5PSK6NJ9nY7InThhjGoawVtINAiAqC1PRFPVjlT54ixlWk6zRrxdNOjb1YsSAmNHgimvLsuSKtcRy0nt2VygfL0YPLvdF6nmXRcSeMmg8vSrN288g7P3y7israjkfPalqGR4ZoyNaY6PLsObhldKRkJfdhoJ7V4u8dOKJxUCVhUPlRMRyLeI7~syD2Zj7tRerI1rAvW4JLs1XOBXa0qpi3cCKsd52z~bm4YVsonzV3wQdTUZT~G4gmCixDQz~kctRCa-qhDQ7KOpOFbmjmw9Zs1pcivcbIHKS3wXFAXB6-XKHpglBzlfvBvDoGCdeJjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_Measurements_of_the_Thermal_Conductivity_of_PMMA_BK7_and_Pyrex_7740_up_to_450K","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"New measurements of the thermal conductivity of polymethyl methacrylate (PMMA), BK7, and Pyrex 7740 are presented. The technique employed is a refined transient hot-wire technique, based on a full theoretical model with equations solved by finite elements for the exact geometry. At the 95 % confidence level, the standard deviations of the thermal conductivity measurements of PMMA, BK7, and Pyrex 7740 are 0.47 %, 1.0 %, and 0.8 %, respectively. The technique is absolute and is characterized by an uncertainty of \u003c1 %. Keywords BK7 • PMMA • Pyrex 7740 • Thermal conductivity • Transient hot-wire 1 Introduction Since 2002, in a series of recent papers [1-5], a novel application of the transient hotwire technique for thermal-conductivity measurements on solids was described. The methodology makes use of a soft-solid material between the hot wires of the technique and the solid of interest. It is based on a full theoretical model with equations solved by a finite-element method applied to the exact geometry, and thus it allows an accurate, absolute determination of the thermal conductivity of the solid. With this method, the thermal conductivity of Pyroceram 9606 [2,4], AISI 304 L [3,4], Pyrex 7740 [4], polymethyl methacrylate (PMMA), and BK7 [5] was measured as a function of tempe","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191953/thumbnails/1.jpg","file_name":"s10765-008-0504-z20231202-1-jr6vta.pdf","download_url":"https://www.academia.edu/attachments/108191953/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Measurements_of_the_Thermal_Conducti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191953/s10765-008-0504-z20231202-1-jr6vta-libre.pdf?1701507883=\u0026response-content-disposition=attachment%3B+filename%3DNew_Measurements_of_the_Thermal_Conducti.pdf\u0026Expires=1733914703\u0026Signature=PRHzJFE~C39b4cRvmfRMYx5PSK6NJ9nY7InThhjGoawVtINAiAqC1PRFPVjlT54ixlWk6zRrxdNOjb1YsSAmNHgimvLsuSKtcRy0nt2VygfL0YPLvdF6nmXRcSeMmg8vSrN288g7P3y7israjkfPalqGR4ZoyNaY6PLsObhldKRkJfdhoJ7V4u8dOKJxUCVhUPlRMRyLeI7~syD2Zj7tRerI1rAvW4JLs1XOBXa0qpi3cCKsd52z~bm4YVsonzV3wQdTUZT~G4gmCixDQz~kctRCa-qhDQ7KOpOFbmjmw9Zs1pcivcbIHKS3wXFAXB6-XKHpglBzlfvBvDoGCdeJjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":23042,"name":"Finite Element","url":"https://www.academia.edu/Documents/in/Finite_Element"},{"id":69841,"name":"Standard Deviation","url":"https://www.academia.edu/Documents/in/Standard_Deviation"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":1154248,"name":"Theoretical Model","url":"https://www.academia.edu/Documents/in/Theoretical_Model"},{"id":1195780,"name":"Thermal Conductivity Measurement","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity_Measurement"},{"id":3641669,"name":"Confidence Level","url":"https://www.academia.edu/Documents/in/Confidence_Level"}],"urls":[{"id":36272947,"url":"https://doi.org/10.1007/s10765-008-0504-z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346669"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346669/Historical_Evolution_of_the_Transient_Hot_Wire_Technique"><img alt="Research paper thumbnail of Historical Evolution of the Transient Hot-Wire Technique" class="work-thumbnail" src="https://attachments.academia-assets.com/108245632/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346669/Historical_Evolution_of_the_Transient_Hot_Wire_Technique">Historical Evolution of the Transient Hot-Wire Technique</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Jun 1, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper attempts to describe the historical evolution of the transient hot-wire technique, empl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper attempts to describe the historical evolution of the transient hot-wire technique, employed today for the measurement of the thermal conductivity of fluids and solids over a wide range of conditions. Starting from the first experiments with heated wires in 1780 during the discussions of whether gases could conduct heat, it guides the reader through typical designs of cells and bridges, software employed and theory developed, to the modern applications. The paper is concluded with a discussion of the areas of application where problems still exist, and a glimpse of the technique&#39;s future.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9597c1135f35a0c2b9a1717f91a1b18f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108245632,&quot;asset_id&quot;:110346669,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108245632/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346669"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346669"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346669; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346669]").text(description); $(".js-view-count[data-work-id=110346669]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346669; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346669']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346669, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9597c1135f35a0c2b9a1717f91a1b18f" } } $('.js-work-strip[data-work-id=110346669]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346669,"title":"Historical Evolution of the Transient Hot-Wire Technique","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","ai_title_tag":"Evolution of the Transient Hot-Wire Technique in Thermal Conductivity","grobid_abstract":"The paper attempts to describe the historical evolution of the transient hot-wire technique, employed today for the measurement of the thermal conductivity of fluids and solids over a wide range of conditions. Starting from the first experiments with heated wires in 1780 during the discussions of whether gases could conduct heat, it guides the reader through typical designs of cells and bridges, software employed and theory developed, to the modern applications. The paper is concluded with a discussion of the areas of application where problems still exist, and a glimpse of the technique's future.","publication_date":{"day":1,"month":6,"year":2010,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108245632},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346669/Historical_Evolution_of_the_Transient_Hot_Wire_Technique","translated_internal_url":"","created_at":"2023-12-02T00:07:17.714-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108245632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108245632/thumbnails/1.jpg","file_name":"s10765-010-0814-920231203-1-28rxr6.pdf","download_url":"https://www.academia.edu/attachments/108245632/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Historical_Evolution_of_the_Transient_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108245632/s10765-010-0814-920231203-1-28rxr6-libre.pdf?1701594650=\u0026response-content-disposition=attachment%3B+filename%3DHistorical_Evolution_of_the_Transient_Ho.pdf\u0026Expires=1733914703\u0026Signature=GS1PFjqZBRXtjmmJIc8XBIi1uXXaRGAc6mmJb4-mPdcWUJiSFID~adZeuN388Q7eZrr36Yes9Xd71OLNE872CiMHWAsOGFBCWfeYcxNfpPOd5F-KmrzTfhp5Dil5DCsXQRE9vvYBxlb-x7AG~GbCOj9IWu~kIfeMBCUHiaeY60zU~NAmjlfvtW9HmcWzB6Zslcp3CDqFmqOw-S2cUqV1IzDOPDqCCkLFiATYytL8d4X~3W6bm5-LqeH~j0ObmPhNI7q8~s-aMi9Vb9IZdIQ83Z9-Mm-FtfTX08TgljbRYhs6PAd5k00icJzuTtjexL-6G0Lov7Pi1JI8KrLHhzCUzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Historical_Evolution_of_the_Transient_Hot_Wire_Technique","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The paper attempts to describe the historical evolution of the transient hot-wire technique, employed today for the measurement of the thermal conductivity of fluids and solids over a wide range of conditions. Starting from the first experiments with heated wires in 1780 during the discussions of whether gases could conduct heat, it guides the reader through typical designs of cells and bridges, software employed and theory developed, to the modern applications. The paper is concluded with a discussion of the areas of application where problems still exist, and a glimpse of the technique's future.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108245632,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108245632/thumbnails/1.jpg","file_name":"s10765-010-0814-920231203-1-28rxr6.pdf","download_url":"https://www.academia.edu/attachments/108245632/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Historical_Evolution_of_the_Transient_Ho.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108245632/s10765-010-0814-920231203-1-28rxr6-libre.pdf?1701594650=\u0026response-content-disposition=attachment%3B+filename%3DHistorical_Evolution_of_the_Transient_Ho.pdf\u0026Expires=1733914703\u0026Signature=GS1PFjqZBRXtjmmJIc8XBIi1uXXaRGAc6mmJb4-mPdcWUJiSFID~adZeuN388Q7eZrr36Yes9Xd71OLNE872CiMHWAsOGFBCWfeYcxNfpPOd5F-KmrzTfhp5Dil5DCsXQRE9vvYBxlb-x7AG~GbCOj9IWu~kIfeMBCUHiaeY60zU~NAmjlfvtW9HmcWzB6Zslcp3CDqFmqOw-S2cUqV1IzDOPDqCCkLFiATYytL8d4X~3W6bm5-LqeH~j0ObmPhNI7q8~s-aMi9Vb9IZdIQ83Z9-Mm-FtfTX08TgljbRYhs6PAd5k00icJzuTtjexL-6G0Lov7Pi1JI8KrLHhzCUzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":36272946,"url":"https://doi.org/10.1007/s10765-010-0814-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346668/From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique"><img alt="Research paper thumbnail of From analog timers to the era of machine learning: The case of the transient hot-wire technique" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346668/From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique">From analog timers to the era of machine learning: The case of the transient hot-wire technique</a></div><div class="wp-workCard_item"><span>INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive cha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346668]").text(description); $(".js-view-count[data-work-id=110346668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110346668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346668,"title":"From analog timers to the era of machine learning: The case of the transient hot-wire technique","translated_title":"","metadata":{"abstract":"In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016)"},"translated_abstract":"In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.","internal_url":"https://www.academia.edu/110346668/From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique","translated_internal_url":"","created_at":"2023-12-02T00:07:15.679-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"From_analog_timers_to_the_era_of_machine_learning_The_case_of_the_transient_hot_wire_technique","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this work, we demonstrate how interdisciplinary knowledge can provide solutions to elusive challenges and advance science. As an example, we used the application of the THW in the measurement of the thermal conductivity of solids. To obtain a solution of the equations by FEM, about 10 h were required. By employing tools from the field of machine learning and computer science like a) automating the manual pipeline using a custom framework, b) using efficiently, Bayesian Optimisation to estimate the optimal thermal properties value, and c) applying further task specific optimisations, this time was reduced to 3 min, which is acceptable, and thus the technique can be easier used.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"}],"urls":[{"id":36272945,"url":"https://doi.org/10.1063/1.4994476"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346667/Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin"><img alt="Research paper thumbnail of Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin" class="work-thumbnail" src="https://attachments.academia-assets.com/108191943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346667/Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin">Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin</a></div><div class="wp-workCard_item"><span>PubMed</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The available experimental data for the thermal conductivity of liquid copper, gallium, indium, i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ed9faa1f3af0a61b7fa240f1ee9a88e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191943,&quot;asset_id&quot;:110346667,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191943/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346667]").text(description); $(".js-view-count[data-work-id=110346667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ed9faa1f3af0a61b7fa240f1ee9a88e9" } } $('.js-work-strip[data-work-id=110346667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346667,"title":"Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin","translated_title":"","metadata":{"abstract":"The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"PubMed"},"translated_abstract":"The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.","internal_url":"https://www.academia.edu/110346667/Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin","translated_internal_url":"","created_at":"2023-12-02T00:07:13.339-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191943/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/108191943/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_correlations_for_the_thermal_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191943/ptpmcrender-libre.pdf?1701507899=\u0026response-content-disposition=attachment%3B+filename%3DReference_correlations_for_the_thermal_c.pdf\u0026Expires=1733914703\u0026Signature=PtoOyxiPoA-Zln0V8OVDkffhCuLWhpnTLMtZFFob2als7jIVfv2AOG7aMmuWmFuUn7IL9Tnm49kW4WD9oiq1rNKxwTozXSmdEhNUpDCzmA-iEGeSztBbGcL6jjmSfQKwBKXVF-fPU71QdOU6Ds4XNNXDciAH84740EBs5iZAM1Gj~2QRqgbUloQbwJzm92mJNeNXUd7c-O~j2vp9whPE-Gop1FWofLA8PV0okwVeaMZ6hndsMwdalCjV4iPcMgxUv7cWGc0xtzmNl1dgYlRE0R~upMZorS4zxeCpqFOFBayJ5TlKUE5A4Bsu70I1wYDenddOevfQTEGbE7vemnpMiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_correlations_for_the_thermal_conductivity_of_liquid_copper_gallium_indium_iron_lead_nickel_and_tin","translated_slug":"","page_count":36,"language":"en","content_type":"Work","summary":"The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191943/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/108191943/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_correlations_for_the_thermal_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191943/ptpmcrender-libre.pdf?1701507899=\u0026response-content-disposition=attachment%3B+filename%3DReference_correlations_for_the_thermal_c.pdf\u0026Expires=1733914703\u0026Signature=PtoOyxiPoA-Zln0V8OVDkffhCuLWhpnTLMtZFFob2als7jIVfv2AOG7aMmuWmFuUn7IL9Tnm49kW4WD9oiq1rNKxwTozXSmdEhNUpDCzmA-iEGeSztBbGcL6jjmSfQKwBKXVF-fPU71QdOU6Ds4XNNXDciAH84740EBs5iZAM1Gj~2QRqgbUloQbwJzm92mJNeNXUd7c-O~j2vp9whPE-Gop1FWofLA8PV0okwVeaMZ6hndsMwdalCjV4iPcMgxUv7cWGc0xtzmNl1dgYlRE0R~upMZorS4zxeCpqFOFBayJ5TlKUE5A4Bsu70I1wYDenddOevfQTEGbE7vemnpMiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":6309,"name":"Metallurgy","url":"https://www.academia.edu/Documents/in/Metallurgy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":80693,"name":"Tin","url":"https://www.academia.edu/Documents/in/Tin"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":98939,"name":"Pubmed","url":"https://www.academia.edu/Documents/in/Pubmed"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":194828,"name":"Nickel","url":"https://www.academia.edu/Documents/in/Nickel"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":688966,"name":"Gallium","url":"https://www.academia.edu/Documents/in/Gallium"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":1282185,"name":"Indium","url":"https://www.academia.edu/Documents/in/Indium"}],"urls":[{"id":36272943,"url":"https://pubmed.ncbi.nlm.nih.gov/29353915"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346664/Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475 K and Pressures up to 100 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191942/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346664/Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa">Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475 K and Pressures up to 100 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Aug 5, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583-654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c92a6a4e29df38b90905acb1b6a8cf50" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191942,&quot;asset_id&quot;:110346664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191942/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346664]").text(description); $(".js-view-count[data-work-id=110346664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c92a6a4e29df38b90905acb1b6a8cf50" } } $('.js-work-strip[data-work-id=110346664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346664,"title":"Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475 K and Pressures up to 100 MPa","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583-654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.","publication_date":{"day":5,"month":8,"year":2021,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108191942},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346664/Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa","translated_internal_url":"","created_at":"2023-12-02T00:07:11.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191942,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191942/thumbnails/1.jpg","file_name":"1.502145920231202-1-o780vu.pdf","download_url":"https://www.academia.edu/attachments/108191942/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191942/1.502145920231202-1-o780vu-libre.pdf?1701507892=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914703\u0026Signature=RxzwEub4lFwskU2bsFgou8PqJf82zRLpwqNo6uqujG438sgcCwytiDEAqZAXnjvI6raSrYvnaHzlDLJlUGyNYkGyE~T3YBt15JZ6XMzsrVF20wHjKsp59EqvR6p91tsgi5dGo~SNmY-pb~An38mgOvKB-KQPrMW~CzvO51KQ8nsIZxS4cyZlz0PWfGj3yQgKSPI2-6NNNdHUtlD7FsQ2bdEgzoZvadx-Ny~~BER6zPmrE0XUE9LctxdWKZmrrTbbsP7DLeYRoJwyB0dBSyVyc3jYH050ZFZ4vcBWHF3a978cEkSFtA0SGxx9VRH9bRqv2q9jIiUtIv~oVeWS6QDyoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_for_the_Thermal_Conductivity_of_Ethane_1_2_diol_Ethylene_Glycol_from_the_Triple_Point_to_475_K_and_Pressures_up_to_100_MPa","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently developed equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583-654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191942,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191942/thumbnails/1.jpg","file_name":"1.502145920231202-1-o780vu.pdf","download_url":"https://www.academia.edu/attachments/108191942/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191942/1.502145920231202-1-o780vu-libre.pdf?1701507892=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914703\u0026Signature=RxzwEub4lFwskU2bsFgou8PqJf82zRLpwqNo6uqujG438sgcCwytiDEAqZAXnjvI6raSrYvnaHzlDLJlUGyNYkGyE~T3YBt15JZ6XMzsrVF20wHjKsp59EqvR6p91tsgi5dGo~SNmY-pb~An38mgOvKB-KQPrMW~CzvO51KQ8nsIZxS4cyZlz0PWfGj3yQgKSPI2-6NNNdHUtlD7FsQ2bdEgzoZvadx-Ny~~BER6zPmrE0XUE9LctxdWKZmrrTbbsP7DLeYRoJwyB0dBSyVyc3jYH050ZFZ4vcBWHF3a978cEkSFtA0SGxx9VRH9bRqv2q9jIiUtIv~oVeWS6QDyoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":197566,"name":"Ethylene","url":"https://www.academia.edu/Documents/in/Ethylene"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"},{"id":1650162,"name":"Ethylene Glycol","url":"https://www.academia.edu/Documents/in/Ethylene_Glycol"}],"urls":[{"id":36272942,"url":"https://doi.org/10.1007/s10765-021-02904-y"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346663/Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures"><img alt="Research paper thumbnail of Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures" class="work-thumbnail" src="https://attachments.academia-assets.com/108855675/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346663/Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures">Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, May 1, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Historic structures are a part of our cultural heritage and nowadays, in the polluted environment...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Historic structures are a part of our cultural heritage and nowadays, in the polluted environment, the need of their preservation is more intense than ever. One of the anticipated problems includes new materials that have to be compatible with those existing in older structures. In the case of mortars, traditional binders such as lime, natural pozzolanas, brick dust, and white cement have been combined successfully. In the present article a series of mixtures combining lime, two types of natural pozzolanas, brick dust, and different types of cement have been produced in order to measure their thermal conductivity for the first time. The parameters tested are: the binder type, the proportion of the binders, and the water/binder ratio. For the measurement of the thermal conductivity of the samples, a commercial instrument was used. To test its operability and extend its range, a transient hot-wire instrument was employed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a3bd65eddf6084375394cee86909918" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108855675,&quot;asset_id&quot;:110346663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108855675/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346663]").text(description); $(".js-view-count[data-work-id=110346663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a3bd65eddf6084375394cee86909918" } } $('.js-work-strip[data-work-id=110346663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346663,"title":"Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"Historic structures are a part of our cultural heritage and nowadays, in the polluted environment, the need of their preservation is more intense than ever. One of the anticipated problems includes new materials that have to be compatible with those existing in older structures. In the case of mortars, traditional binders such as lime, natural pozzolanas, brick dust, and white cement have been combined successfully. In the present article a series of mixtures combining lime, two types of natural pozzolanas, brick dust, and different types of cement have been produced in order to measure their thermal conductivity for the first time. The parameters tested are: the binder type, the proportion of the binders, and the water/binder ratio. For the measurement of the thermal conductivity of the samples, a commercial instrument was used. To test its operability and extend its range, a transient hot-wire instrument was employed.","publication_date":{"day":1,"month":5,"year":2010,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108855675},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346663/Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures","translated_internal_url":"","created_at":"2023-12-02T00:07:08.757-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108855675,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855675/thumbnails/1.jpg","file_name":"20151005112137_96981.pdf","download_url":"https://www.academia.edu/attachments/108855675/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Conductivity_of_Building_Materia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855675/20151005112137_96981-libre.pdf?1702424753=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Conductivity_of_Building_Materia.pdf\u0026Expires=1733914704\u0026Signature=XF8F-8WfanOuUU9mD66YZLmoyLiQCM11aJ7gR4EwAP8JNSQslWyFVlnO8Y1K30LYjEmAQFWOcyc5i2MvIJjulHJgumlOU1TwRGK~bCbs4jiGa2VFtE9CJDqT8bCY19KQdxtP~2iR7HsW6km3sHRJ5c-XLuAOtesQUNpuzTny41pTDUO5xPicqJ9-i0PYbMtUKouRm0Op9ZVIxqybwPYbxaATtN2fgmshKlQbeV3K99jaDrNdMuh3USA~ogA2m1vna9qcfEnwJ9yZ5AocCU20o0yMS2OQ22DJkivFvyxkZDGaakGkSzsD6q1G5KtyNiHGtw8cNCM5yHkQRjlK06eRJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_Conductivity_of_Building_Materials_Employed_in_the_Preservation_of_Traditional_Structures","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Historic structures are a part of our cultural heritage and nowadays, in the polluted environment, the need of their preservation is more intense than ever. One of the anticipated problems includes new materials that have to be compatible with those existing in older structures. In the case of mortars, traditional binders such as lime, natural pozzolanas, brick dust, and white cement have been combined successfully. In the present article a series of mixtures combining lime, two types of natural pozzolanas, brick dust, and different types of cement have been produced in order to measure their thermal conductivity for the first time. The parameters tested are: the binder type, the proportion of the binders, and the water/binder ratio. For the measurement of the thermal conductivity of the samples, a commercial instrument was used. To test its operability and extend its range, a transient hot-wire instrument was employed.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108855675,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855675/thumbnails/1.jpg","file_name":"20151005112137_96981.pdf","download_url":"https://www.academia.edu/attachments/108855675/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Conductivity_of_Building_Materia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855675/20151005112137_96981-libre.pdf?1702424753=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Conductivity_of_Building_Materia.pdf\u0026Expires=1733914704\u0026Signature=XF8F-8WfanOuUU9mD66YZLmoyLiQCM11aJ7gR4EwAP8JNSQslWyFVlnO8Y1K30LYjEmAQFWOcyc5i2MvIJjulHJgumlOU1TwRGK~bCbs4jiGa2VFtE9CJDqT8bCY19KQdxtP~2iR7HsW6km3sHRJ5c-XLuAOtesQUNpuzTny41pTDUO5xPicqJ9-i0PYbMtUKouRm0Op9ZVIxqybwPYbxaATtN2fgmshKlQbeV3K99jaDrNdMuh3USA~ogA2m1vna9qcfEnwJ9yZ5AocCU20o0yMS2OQ22DJkivFvyxkZDGaakGkSzsD6q1G5KtyNiHGtw8cNCM5yHkQRjlK06eRJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2132,"name":"Cultural Heritage","url":"https://www.academia.edu/Documents/in/Cultural_Heritage"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":120210,"name":"Cement","url":"https://www.academia.edu/Documents/in/Cement"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":434434,"name":"Brick","url":"https://www.academia.edu/Documents/in/Brick"},{"id":500811,"name":"Building Material","url":"https://www.academia.edu/Documents/in/Building_Material"},{"id":553594,"name":"Mortar","url":"https://www.academia.edu/Documents/in/Mortar"},{"id":841116,"name":"Lime","url":"https://www.academia.edu/Documents/in/Lime"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":36272940,"url":"https://doi.org/10.1007/s10765-010-0750-8"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346661/Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191937/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346661/Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa">Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Feb 11, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triplepoint temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K, however care should be taken when using the correlation outside of the validated range.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b1e02112e56d53a188537e55119aa553" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191937,&quot;asset_id&quot;:110346661,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191937/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346661]").text(description); $(".js-view-count[data-work-id=110346661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b1e02112e56d53a188537e55119aa553" } } $('.js-work-strip[data-work-id=110346661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346661,"title":"Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","grobid_abstract":"A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triplepoint temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K, however care should be taken when using the correlation outside of the validated range.","publication_date":{"day":11,"month":2,"year":2021,"errors":{}},"publication_name":"International Journal of Thermophysics","grobid_abstract_attachment_id":108191937},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346661/Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa","translated_internal_url":"","created_at":"2023-12-02T00:07:06.518-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191937/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191937/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191937/get_pdf-libre.pdf?1701507906=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914704\u0026Signature=CnF2tX9XsY--odMTTH7QFe6Ac-NinV7kEQYFXDVnDksgdzafeoaChosxpm6LA0Waa7awhfpi1B0nxMGUsyz6aWlERuNthYfoLUUNUoRcUx9wv-lmHohmGJIXMA9zMDjw6asoNE93YjKqJV-Tn~D1X3H182ZHFklyslAc4mtR4s8O6yOx4ViUgw5cRu4dxQNt53dgREBuk6cZ0g7EWl~hcLYXZC2kqmOgM02v-tlsI10Aa8z4igOpYC6hxyjM3sRIjxjn35mQziW-WzsSaOiHelFZ56UQgfbN359WB~eeQwf4wu-Gsdhh3FM2i~dgBymWCnZ8lbah--u5taELFu6Jgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_for_the_Thermal_Conductivity_of_Xenon_from_the_Triple_Point_to_606_K_and_Pressures_up_to_400_MPa","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triplepoint temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K, however care should be taken when using the correlation outside of the validated range.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191937/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191937/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Thermal_Co.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191937/get_pdf-libre.pdf?1701507906=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Thermal_Co.pdf\u0026Expires=1733914704\u0026Signature=CnF2tX9XsY--odMTTH7QFe6Ac-NinV7kEQYFXDVnDksgdzafeoaChosxpm6LA0Waa7awhfpi1B0nxMGUsyz6aWlERuNthYfoLUUNUoRcUx9wv-lmHohmGJIXMA9zMDjw6asoNE93YjKqJV-Tn~D1X3H182ZHFklyslAc4mtR4s8O6yOx4ViUgw5cRu4dxQNt53dgREBuk6cZ0g7EWl~hcLYXZC2kqmOgM02v-tlsI10Aa8z4igOpYC6hxyjM3sRIjxjn35mQziW-WzsSaOiHelFZ56UQgfbN359WB~eeQwf4wu-Gsdhh3FM2i~dgBymWCnZ8lbah--u5taELFu6Jgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":161033,"name":"Xenon","url":"https://www.academia.edu/Documents/in/Xenon"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272939,"url":"https://doi.org/10.1007/s10765-021-02803-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346660/Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons"><img alt="Research paper thumbnail of Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346660/Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons">Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span><span>, Dec 1, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346660]").text(description); $(".js-view-count[data-work-id=110346660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110346660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346660,"title":"Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons","translated_title":"","metadata":{"abstract":"ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.","publisher":"Springer Science+Business Media","publication_date":{"day":1,"month":12,"year":2009,"errors":{}},"publication_name":"International Journal of Thermophysics"},"translated_abstract":"ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.","internal_url":"https://www.academia.edu/110346660/Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons","translated_internal_url":"","created_at":"2023-12-02T00:07:04.439-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Correlation_and_Prediction_of_Dense_Fluid_Transport_Coefficients_VIII_Mixtures_of_Alkyl_Benzenes_with_Other_Hydrocarbons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT The aim of this article is to examine the application of the hard-sphere scheme to the prediction of the viscosity and thermal conductivity of hydrocarbon mixtures, other than n-alkane mixtures. According to this scheme, mixture properties are calculated from the pure components properties. Hence these are obtained first. Furthermore, in addition to the temperature, the density is the important parameter rather then the pressure. A Tait-type equation is employed to successfully correlate the density of the pure liquids. Furthermore, in the first part of this article, a modified form of the equation proposed by Sun and Teja is employed in the scheme, to correlate the viscosity and thermal conductivity of pure alkyl benzenes, some alkanes, some cycloalkanes, and one naphthalene. Following this, the article focuses on the successful prediction of the viscosity and thermal conductivity of mixtures of these compounds.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":36272938,"url":"https://doi.org/10.1007/s10765-009-0682-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346659"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes"><img alt="Research paper thumbnail of The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes" class="work-thumbnail" src="https://attachments.academia-assets.com/108191936/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes">The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes</a></div><div class="wp-workCard_item"><span>Composites Science and Technology</span><span>, Dec 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b160f69d8dbf2b35ee0130f9d0cd2e9d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191936,&quot;asset_id&quot;:110346659,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191936/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346659"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346659"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346659; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346659]").text(description); $(".js-view-count[data-work-id=110346659]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346659; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346659']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346659, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b160f69d8dbf2b35ee0130f9d0cd2e9d" } } $('.js-work-strip[data-work-id=110346659]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346659,"title":"The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.","publication_date":{"day":1,"month":12,"year":2008,"errors":{}},"publication_name":"Composites Science and Technology","grobid_abstract_attachment_id":108191936},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346659/The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes","translated_internal_url":"","created_at":"2023-12-02T00:07:01.672-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191936/thumbnails/1.jpg","file_name":"j.compscitech.2008.07.01920231202-1-re7wd5.pdf","download_url":"https://www.academia.edu/attachments/108191936/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_the_transient_hot_wire_techni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191936/j.compscitech.2008.07.01920231202-1-re7wd5-libre.pdf?1701507886=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_the_transient_hot_wire_techni.pdf\u0026Expires=1733914704\u0026Signature=LJa7To18AJ56FxCTqBnW4gRjT~IfKKSgQGoh-H7VbmQXfO8T30SPjDn1vJOzWphoyZ46pDir4d6RTwo4XY-6GKe20fy7JyXKSrm1mQZvgmqoMG8TeiixCIBUikM2am8VPyi~ES7lr1Zj8DMGLVra0tFsCEA26Dhu88-uqmtyIICub03cMxp4D5lqssZpSmQ76Hf5DOuTzpX8DT9iljN1D9gk8bVWSRoNmcSWhniMJ3396nHl2DuLT6NzY0GDd-3tohrmfPKF03vHGygt~DGeITp--dH2CscEOcxuojnOpudqQ32dewcH1c1yroaqJwhXl6~4yRkG14vwoipwZUzvOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_use_of_the_transient_hot_wire_technique_for_measurement_of_the_thermal_conductivity_of_an_epoxy_resin_reinforced_with_glass_fibres_and_or_carbon_multi_walled_nanotubes","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Carbon nanotubes are considered to be ideal candidates for matrix reinforcement in fibre-reinforced composite materials. In order these new multifunctional materials to be used at their optimum potential, precise measurements are completely essential. This article is focused in the accurate measurement of the enhancement of the thermal conductivity of an epoxy-resin, reinforced initially with plies of plain weave glass fabric then by carbon multi-walled nanotubes (C-MWNT), and finally with both these two macroscopic and nanoscopic reinforcements at hand. The technique employed was the transient hot-wire technique, as it was recently modified to be able to measure the thermal conductivity of solids in an absolute way, with an uncertainty of better than 1%. Following validation of the technique, the results revealed that in the case of reinforcing the epoxy with glass fibres, with volume fraction of 28%, the thermal conductivity increase was 27% compared to plain epoxy-resin. When reinforced with 2% by weight C-MWNT the enhancement was 9% and when reinforced with both the C-MWNT and glass fibres the enhancement was the highest value obtained, being 48%.","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191936/thumbnails/1.jpg","file_name":"j.compscitech.2008.07.01920231202-1-re7wd5.pdf","download_url":"https://www.academia.edu/attachments/108191936/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_the_transient_hot_wire_techni.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191936/j.compscitech.2008.07.01920231202-1-re7wd5-libre.pdf?1701507886=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_the_transient_hot_wire_techni.pdf\u0026Expires=1733914704\u0026Signature=LJa7To18AJ56FxCTqBnW4gRjT~IfKKSgQGoh-H7VbmQXfO8T30SPjDn1vJOzWphoyZ46pDir4d6RTwo4XY-6GKe20fy7JyXKSrm1mQZvgmqoMG8TeiixCIBUikM2am8VPyi~ES7lr1Zj8DMGLVra0tFsCEA26Dhu88-uqmtyIICub03cMxp4D5lqssZpSmQ76Hf5DOuTzpX8DT9iljN1D9gk8bVWSRoNmcSWhniMJ3396nHl2DuLT6NzY0GDd-3tohrmfPKF03vHGygt~DGeITp--dH2CscEOcxuojnOpudqQ32dewcH1c1yroaqJwhXl6~4yRkG14vwoipwZUzvOQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12842,"name":"Carbon Nanotube","url":"https://www.academia.edu/Documents/in/Carbon_Nanotube"},{"id":159672,"name":"Epoxy","url":"https://www.academia.edu/Documents/in/Epoxy"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":443788,"name":"Glass Fiber","url":"https://www.academia.edu/Documents/in/Glass_Fiber"}],"urls":[{"id":36272936,"url":"https://doi.org/10.1016/j.compscitech.2008.07.019"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346657"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110346657/Measurement_of_the_thermal_conductivity_of_composite_solid_materials"><img alt="Research paper thumbnail of Measurement of the thermal conductivity of composite solid materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110346657/Measurement_of_the_thermal_conductivity_of_composite_solid_materials">Measurement of the thermal conductivity of composite solid materials</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346657"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346657"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346657; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346657]").text(description); $(".js-view-count[data-work-id=110346657]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346657; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346657']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346657, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110346657]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346657,"title":"Measurement of the thermal conductivity of composite solid materials","translated_title":"","metadata":{"publication_date":{"day":31,"month":8,"year":2021,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346657/Measurement_of_the_thermal_conductivity_of_composite_solid_materials","translated_internal_url":"","created_at":"2023-12-02T00:06:59.437-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Measurement_of_the_thermal_conductivity_of_composite_solid_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":67493,"name":"Multiphysics","url":"https://www.academia.edu/Documents/in/Multiphysics"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":1391697,"name":"Polymethyl Methacrylate (PMMA)","url":"https://www.academia.edu/Documents/in/Polymethyl_Methacrylate_PMMA_"},{"id":1412408,"name":"Borosilicate Glass","url":"https://www.academia.edu/Documents/in/Borosilicate_Glass"}],"urls":[{"id":36272935,"url":"https://doi.org/10.12681/eadd/30572"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346652/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa"><img alt="Research paper thumbnail of Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108855672/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346652/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa">Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa</a></div><div class="wp-workCard_item"><span>Journal of Physical and Chemical Reference Data</span><span>, May 7, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper contains new, representative reference equations for the thermal conductivity of SF 6....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="826d1dc52876571916d8a11f7ceda35a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108855672,&quot;asset_id&quot;:110346652,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108855672/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346652]").text(description); $(".js-view-count[data-work-id=110346652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "826d1dc52876571916d8a11f7ceda35a" } } $('.js-work-strip[data-work-id=110346652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346652,"title":"Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa","translated_title":"","metadata":{"publisher":"American Institute of Physics","ai_title_tag":"Thermal Conductivity of SF6: Correlations and Data","grobid_abstract":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","publication_date":{"day":7,"month":5,"year":2012,"errors":{}},"publication_name":"Journal of Physical and Chemical Reference Data","grobid_abstract_attachment_id":108855672},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346652/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa","translated_internal_url":"","created_at":"2023-12-02T00:06:57.023-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108855672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855672/thumbnails/1.jpg","file_name":"d80c8ab9621c8ed8b31e19bc08410af28e75.pdf","download_url":"https://www.academia.edu/attachments/108855672/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855672/d80c8ab9621c8ed8b31e19bc08410af28e75-libre.pdf?1702424763=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=RPNtPPR9xnN-WW9qWkbyVXSMuLNUfweCZy9V8qgFGQdgi3LlVGEauyppN4H78ExkEns2r2ChO-D6DRmUqoIVfX3y9Xs8Ap3qRe57UBQeBvyQpf6-v3dzjC3k~kJWfVVxKXv-FkbZdBaSV4~zZh8JmupFIalxPOCOeVLSzP0mGqkd2qwGKal34AJl6-SjVTyiblOr9Q9m8mumP674Pn0k871fwSdETNvWthjhv7djYy082glA6ofoQDpDappcCnX79EGkhA0jte3qNjQnraEejpvU~relFqamLy19aVDaexnEYC8nvrVmY7W3ll2OiCEQScfh1XSblpevxoo2kGR3bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108855672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108855672/thumbnails/1.jpg","file_name":"d80c8ab9621c8ed8b31e19bc08410af28e75.pdf","download_url":"https://www.academia.edu/attachments/108855672/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108855672/d80c8ab9621c8ed8b31e19bc08410af28e75-libre.pdf?1702424763=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=RPNtPPR9xnN-WW9qWkbyVXSMuLNUfweCZy9V8qgFGQdgi3LlVGEauyppN4H78ExkEns2r2ChO-D6DRmUqoIVfX3y9Xs8Ap3qRe57UBQeBvyQpf6-v3dzjC3k~kJWfVVxKXv-FkbZdBaSV4~zZh8JmupFIalxPOCOeVLSzP0mGqkd2qwGKal34AJl6-SjVTyiblOr9Q9m8mumP674Pn0k871fwSdETNvWthjhv7djYy082glA6ofoQDpDappcCnX79EGkhA0jte3qNjQnraEejpvU~relFqamLy19aVDaexnEYC8nvrVmY7W3ll2OiCEQScfh1XSblpevxoo2kGR3bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272934,"url":"https://doi.org/10.1063/1.4708620"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346651/Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface"><img alt="Research paper thumbnail of Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface" class="work-thumbnail" src="https://attachments.academia-assets.com/108191929/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346651/Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface">Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Fluid Flow</span><span>, Aug 1, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7970f94f3b050cf5d72d5740bddecc1a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191929,&quot;asset_id&quot;:110346651,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191929/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346651]").text(description); $(".js-view-count[data-work-id=110346651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346651, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7970f94f3b050cf5d72d5740bddecc1a" } } $('.js-work-strip[data-work-id=110346651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346651,"title":"Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_abstract":"The study investigates the impact of nanofluids, specifically a 4% v/v CuO nanofluid in water, on the performance of a miniature plate heat exchanger (PHE) with modulated surfaces. Through both experimental and numerical approaches using CFD simulations, findings indicate a significant enhancement in heat transfer rates—up to 60% higher than conventional fluids—though at the cost of increased friction losses, which can rise to 2.5 times that of traditional setups. The work underscores the potential of nanofluids in optimizing heat exchanger efficiency while highlighting challenges related to sedimentation and stability.","publication_date":{"day":1,"month":8,"year":2009,"errors":{}},"publication_name":"International Journal of Heat and Fluid Flow"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346651/Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface","translated_internal_url":"","created_at":"2023-12-02T00:06:55.625-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191929/thumbnails/1.jpg","file_name":"Pantzali_et_al-CHISA2008.pdf","download_url":"https://www.academia.edu/attachments/108191929/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_nanofluids_on_the_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191929/Pantzali_et_al-CHISA2008-libre.pdf?1701507891=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_nanofluids_on_the_performance.pdf\u0026Expires=1733914704\u0026Signature=JTuOOdOLErDevjHxu9INuVUok~JPsCrjjvwOdnKyiKNXFHSY53zf63aSUzScUJvsWCR44yiehIe4-kS-Fi8YJ12a30inAcj5jyJ9qHUc1VljGCAkS4AUvXJICVtHznV7gtcZLQZfMmeBPjZJFt0zMgxWHmEjY2g9qZfpKocJGSsJ~G7mvvMdoYIKPte9bdAGfnvu3iTHwGTJcPM~qdqOkE2TJcjwh8jO4heMI1Gw1AdGWK-6QnB7I8fBodO06EbL7BNd-44hx33gu4wIpPFdnmqYl7dikGuhY~HjCX2IzGPJb4hK2q0rq3ffm4kSKFNqB5ckuA0v8O-Tn~W30AiJdg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Effect_of_nanofluids_on_the_performance_of_a_miniature_plate_heat_exchanger_with_modulated_surface","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191929/thumbnails/1.jpg","file_name":"Pantzali_et_al-CHISA2008.pdf","download_url":"https://www.academia.edu/attachments/108191929/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Effect_of_nanofluids_on_the_performance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191929/Pantzali_et_al-CHISA2008-libre.pdf?1701507891=\u0026response-content-disposition=attachment%3B+filename%3DEffect_of_nanofluids_on_the_performance.pdf\u0026Expires=1733914704\u0026Signature=JTuOOdOLErDevjHxu9INuVUok~JPsCrjjvwOdnKyiKNXFHSY53zf63aSUzScUJvsWCR44yiehIe4-kS-Fi8YJ12a30inAcj5jyJ9qHUc1VljGCAkS4AUvXJICVtHznV7gtcZLQZfMmeBPjZJFt0zMgxWHmEjY2g9qZfpKocJGSsJ~G7mvvMdoYIKPte9bdAGfnvu3iTHwGTJcPM~qdqOkE2TJcjwh8jO4heMI1Gw1AdGWK-6QnB7I8fBodO06EbL7BNd-44hx33gu4wIpPFdnmqYl7dikGuhY~HjCX2IzGPJb4hK2q0rq3ffm4kSKFNqB5ckuA0v8O-Tn~W30AiJdg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":308594,"name":"Heat Capacity","url":"https://www.academia.edu/Documents/in/Heat_Capacity"},{"id":331203,"name":"Pressure Drop","url":"https://www.academia.edu/Documents/in/Pressure_Drop"},{"id":352693,"name":"Thermophysical Properties","url":"https://www.academia.edu/Documents/in/Thermophysical_Properties"},{"id":394521,"name":"Surface Tension","url":"https://www.academia.edu/Documents/in/Surface_Tension"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"},{"id":898062,"name":"Flow Rate","url":"https://www.academia.edu/Documents/in/Flow_Rate"}],"urls":[{"id":36272933,"url":"https://doi.org/10.1016/j.ijheatfluidflow.2009.02.005"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346650/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST"><img alt="Research paper thumbnail of Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa | NIST" class="work-thumbnail" src="https://attachments.academia-assets.com/108191902/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346650/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST">Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa | NIST</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper contains new, representative reference equations for the thermal conductivity of SF 6....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d339ea12ff35a0241aeaab3ada94355" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191902,&quot;asset_id&quot;:110346650,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191902/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346650]").text(description); $(".js-view-count[data-work-id=110346650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d339ea12ff35a0241aeaab3ada94355" } } $('.js-work-strip[data-work-id=110346650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346650,"title":"Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa | NIST","translated_title":"","metadata":{"grobid_abstract":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","publication_date":{"day":9,"month":7,"year":2012,"errors":{}},"grobid_abstract_attachment_id":108191902},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346650/Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST","translated_internal_url":"","created_at":"2023-12-02T00:06:52.445-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191902,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191902/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191902/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191902/get_pdf-libre.pdf?1701507896=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=Ob6pOeoWtiTW282jd8JlXjxui-ZbHPw09II0MnReC9jCqrCKyzRmH2hGV~PsxxX4B6BJYXrRO9pXSG5DOysY1ZY9KzwykzRDv6os-rm-ZYbnvf2Q1hYZf9DDJkeYH-FrKEWXEWR8WlTcXj0XVaJcPNQUebD1rovx15Mk5nIAqFbQaahsfSjL33KWxBbwG~FX7t~EWPdan344a~ydUv6Jvpgd4jSQ9jq8e75APM6PE3OHHDSUfmhO951jBhrs36ht61pYrWXQzwpAZOZQFMqSy6U4vTFAoZrGK2~8YztBkp-VFndVFbi419IT62~1CEe~WPiW8qzCykU7iHJpcXrc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_of_the_Thermal_Conductivity_of_Sulfur_Hexafluoride_from_the_Triple_Point_to_1000_K_and_up_to_150_MPa_NIST","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"This paper contains new, representative reference equations for the thermal conductivity of SF 6. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. Although there are a sufficiently large number of data at intermediate temperatures, data at very low or very high temperatures as well as near the critical region are scarce. In the case of the dilute-gas thermal conductivity, a theoretically based correlation was adopted in order to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1000 K and pressures up to 150 MPa. The overall uncertainty (considered to be estimates of a combined expanded uncertainty with a coverage factor of two) of the proposed correlation is estimated, for pressures less than 150 MPa and temperatures less than 1000 K, to be less than 4%. V","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191902,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191902/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191902/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191902/get_pdf-libre.pdf?1701507896=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=Ob6pOeoWtiTW282jd8JlXjxui-ZbHPw09II0MnReC9jCqrCKyzRmH2hGV~PsxxX4B6BJYXrRO9pXSG5DOysY1ZY9KzwykzRDv6os-rm-ZYbnvf2Q1hYZf9DDJkeYH-FrKEWXEWR8WlTcXj0XVaJcPNQUebD1rovx15Mk5nIAqFbQaahsfSjL33KWxBbwG~FX7t~EWPdan344a~ydUv6Jvpgd4jSQ9jq8e75APM6PE3OHHDSUfmhO951jBhrs36ht61pYrWXQzwpAZOZQFMqSy6U4vTFAoZrGK2~8YztBkp-VFndVFbi419IT62~1CEe~WPiW8qzCykU7iHJpcXrc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108191901,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191901/thumbnails/1.jpg","file_name":"get_pdf.pdf","download_url":"https://www.academia.edu/attachments/108191901/download_file","bulk_download_file_name":"Reference_Correlation_of_the_Thermal_Con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191901/get_pdf-libre.pdf?1701507895=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_of_the_Thermal_Con.pdf\u0026Expires=1733914704\u0026Signature=BKTkVej5k0qgZZ1bQ-7FQqLIBmNZodQ-aDphZB5aZBZA9yA5nH-J1wemRL25oT2y0JqAQYsH2kWrji0Hxdr3r1jMd9qrO9CdHcZ1K4woCu2iijfrSl~v6vRN131nXfebMPXTfMMaSuRaI~4MomZ9BYMCgt2Fkbten6H4xLgN~N9nWa7V12U6QS2~acNodEu6BBBZXjMeC8O2GZ~w3r0DvVDWUm0GTl2Ngqru5qP7RBNsSpCdsfoB6-8dbU9LMmFOA1yNssta9ugJkooxbvwMNmFSSFO3czzQEsDHEO39O1LE444YfXFdVeThWZIwywuIlgRtG2~cmNWAHmEjnOr32w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":555289,"name":"NIST","url":"https://www.academia.edu/Documents/in/NIST"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272932,"url":"https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910829"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346649/Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa"><img alt="Research paper thumbnail of Correction to: Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191899/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346649/Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa">Correction to: Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="274b2a7176a707cf0b988bccb5178a8a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191899,&quot;asset_id&quot;:110346649,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191899/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346649]").text(description); $(".js-view-count[data-work-id=110346649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346649, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "274b2a7176a707cf0b988bccb5178a8a" } } $('.js-work-strip[data-work-id=110346649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346649,"title":"Correction to: Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346649/Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa","translated_internal_url":"","created_at":"2023-12-02T00:06:50.135-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191899/thumbnails/1.jpg","file_name":"s10765-023-03175-5.pdf","download_url":"https://www.academia.edu/attachments/108191899/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191899/s10765-023-03175-5-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=NyaZh3dTTvnA3KUzcE1tIliolc0zK3kuGUjcc4WYD6nHIqrBeigjwGHUlYUDW~O5VrWgaSI6z2Q~ID1zHDeMr7V8iR39fX76k-zkQjDcODG7FCjrsHW3nBvw2VFnqYxee2t5fb6c9rJENj5GzYLNtUZSw~Ine1lWQTPfU0oH2827GB6StedRzEK8jEdo1ILUvOzim4Zy55YDX4baxXfDyALM7U8a1a9OpHDenMZ0hfGmnEMD-fKgk85qqt~7r~yLKXWde8QQV-e6zNTTfFcGZ-RBPyOr0TcAdkWBsFSZzdrce5j0Q-Pug4cP1ZrF9eVlGzZ~irg6KWaE1WKBiQGYrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Correction_to_Reference_Correlation_for_the_Viscosity_of_Xenon_from_the_Triple_Point_to_750_K_and_up_to_86_MPa","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191899/thumbnails/1.jpg","file_name":"s10765-023-03175-5.pdf","download_url":"https://www.academia.edu/attachments/108191899/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191899/s10765-023-03175-5-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=NyaZh3dTTvnA3KUzcE1tIliolc0zK3kuGUjcc4WYD6nHIqrBeigjwGHUlYUDW~O5VrWgaSI6z2Q~ID1zHDeMr7V8iR39fX76k-zkQjDcODG7FCjrsHW3nBvw2VFnqYxee2t5fb6c9rJENj5GzYLNtUZSw~Ine1lWQTPfU0oH2827GB6StedRzEK8jEdo1ILUvOzim4Zy55YDX4baxXfDyALM7U8a1a9OpHDenMZ0hfGmnEMD-fKgk85qqt~7r~yLKXWde8QQV-e6zNTTfFcGZ-RBPyOr0TcAdkWBsFSZzdrce5j0Q-Pug4cP1ZrF9eVlGzZ~irg6KWaE1WKBiQGYrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108191900,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191900/thumbnails/1.jpg","file_name":"s10765-023-03175-5.pdf","download_url":"https://www.academia.edu/attachments/108191900/download_file","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191900/s10765-023-03175-5-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=ZQHAx7LiXx-w4QTYnOvhlWXaOH3-tKZq-nBW8yLBpy0UvPzqH0FKnZB1Odt4OW-0v4c5AD~K5vWnJYwTLd0YjQZpCNzCd9rRhM9bRN2pLcynUEPNUtKkuIWglL2KBPaYT4r~Ixr63oEiffZ7Mzj-npB5nArs8OelL58FJX3ZD-1CdNoDGR9TcwRyWfP55ojyGpXi1mj8gxiIv60oiS4A-MZAJgZYKVXCynpkw~qFssWH4wsmG5yGHgP1QUofb9JO5zjklLxx5RgGg3HLy0G1-jLl0chRegKFdq3Z6ecgRdFMNPfTG1XhdvozcEcGRJSwvlC4WY03cytamVHIOADuEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":161033,"name":"Xenon","url":"https://www.academia.edu/Documents/in/Xenon"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272931,"url":"https://link.springer.com/content/pdf/10.1007/s10765-023-03175-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346640"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346640/Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa"><img alt="Research paper thumbnail of Correction to: Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/108191898/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346640/Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa">Correction to: Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e4eac5ba34e3dc1e83095cab5b287b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191898,&quot;asset_id&quot;:110346640,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191898/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346640"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346640"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346640; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346640]").text(description); $(".js-view-count[data-work-id=110346640]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346640; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346640']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346640, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e4eac5ba34e3dc1e83095cab5b287b5" } } $('.js-work-strip[data-work-id=110346640]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346640,"title":"Correction to: Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures Up to 102 MPa","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346640/Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa","translated_internal_url":"","created_at":"2023-12-02T00:06:30.244-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191898/thumbnails/1.jpg","file_name":"s10765-023-03160-y.pdf","download_url":"https://www.academia.edu/attachments/108191898/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191898/s10765-023-03160-y-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=F9OJtnNVFWj55jTF09duOFglSk8FkPhKxzpbvFp2TbjSaOQErpM5~d071FGMd9yCMu5jBBFBL7QsBO3xM79qxCDDBM47gOSiNvZQxSmT-gYNrNerXTPM6nhRZnZJJ1VcVKyo~uvbdcFy1JqhwkbYH3cf9qmYWyGHaz2ZE2ZWHoE7k4wRmtkL2vUH9gLVgstNqXV3f6zlJ03A9LsoXICsEzIWzSH8MOZQCF803FYBO9rxANaWMa2sbfsCYTBHbxRi8eox93fvUFjWtNHCzNt0OUnKnlg01GWfWLzECk0LFuvu-gqnGwclViaqqF~ErqN77uDyYX2jVE2BRVKC5XR-Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Correction_to_Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_Up_to_102_MPa","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191898/thumbnails/1.jpg","file_name":"s10765-023-03160-y.pdf","download_url":"https://www.academia.edu/attachments/108191898/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correction_to_Reference_Correlation_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191898/s10765-023-03160-y-libre.pdf?1701507889=\u0026response-content-disposition=attachment%3B+filename%3DCorrection_to_Reference_Correlation_for.pdf\u0026Expires=1733914704\u0026Signature=F9OJtnNVFWj55jTF09duOFglSk8FkPhKxzpbvFp2TbjSaOQErpM5~d071FGMd9yCMu5jBBFBL7QsBO3xM79qxCDDBM47gOSiNvZQxSmT-gYNrNerXTPM6nhRZnZJJ1VcVKyo~uvbdcFy1JqhwkbYH3cf9qmYWyGHaz2ZE2ZWHoE7k4wRmtkL2vUH9gLVgstNqXV3f6zlJ03A9LsoXICsEzIWzSH8MOZQCF803FYBO9rxANaWMa2sbfsCYTBHbxRi8eox93fvUFjWtNHCzNt0OUnKnlg01GWfWLzECk0LFuvu-gqnGwclViaqqF~ErqN77uDyYX2jVE2BRVKC5XR-Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"}],"urls":[{"id":36272930,"url":"https://link.springer.com/content/pdf/10.1007/s10765-023-03160-y.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110346509"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110346509/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece"><img alt="Research paper thumbnail of Applying Thermal Comfort Indices to Investigate Aspects of the Climate in Greece" class="work-thumbnail" src="https://attachments.academia-assets.com/108191851/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110346509/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece">Applying Thermal Comfort Indices to Investigate Aspects of the Climate in Greece</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work two thermal comfort indices are employed to study climate variations in Greece at th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work two thermal comfort indices are employed to study climate variations in Greece at three levels. Initially, newly-calculated Predicted Mean Vote index values for 35 cities in Greece for the years 2008-2009 are compared with previous ones for the years 1980-89. The comparison shows increased values, indicating the probability of a very hot decade to come. Following this the Discomfort Index is employed to show differences in climate between the north, center and south of Greece. Finally, at a more local level, it is shown how Discomfort Index values can be employed to evaluate climate differences in urban areas as well as rural. Copyright</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d1daf6147f4542e163401a8421274bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108191851,&quot;asset_id&quot;:110346509,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108191851/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110346509"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110346509"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110346509; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110346509]").text(description); $(".js-view-count[data-work-id=110346509]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110346509; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110346509']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 110346509, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d1daf6147f4542e163401a8421274bb" } } $('.js-work-strip[data-work-id=110346509]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110346509,"title":"Applying Thermal Comfort Indices to Investigate Aspects of the Climate in Greece","translated_title":"","metadata":{"ai_title_tag":"Thermal Comfort Indices Reveal Climate Variations in Greece","grobid_abstract":"In this work two thermal comfort indices are employed to study climate variations in Greece at three levels. Initially, newly-calculated Predicted Mean Vote index values for 35 cities in Greece for the years 2008-2009 are compared with previous ones for the years 1980-89. The comparison shows increased values, indicating the probability of a very hot decade to come. Following this the Discomfort Index is employed to show differences in climate between the north, center and south of Greece. Finally, at a more local level, it is shown how Discomfort Index values can be employed to evaluate climate differences in urban areas as well as rural. Copyright","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":108191851},"translated_abstract":null,"internal_url":"https://www.academia.edu/110346509/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece","translated_internal_url":"","created_at":"2023-12-02T00:04:11.954-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108191851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191851/thumbnails/1.jpg","file_name":"ireche.pdf","download_url":"https://www.academia.edu/attachments/108191851/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Applying_Thermal_Comfort_Indices_to_Inve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191851/ireche-libre.pdf?1701507916=\u0026response-content-disposition=attachment%3B+filename%3DApplying_Thermal_Comfort_Indices_to_Inve.pdf\u0026Expires=1733914704\u0026Signature=UQGAfklANLHtzUoA8An5hwEetJX4PMCWLu7hSdVCJfNOFEYfrBSKrV1RX70GXPFEDMfN-ABQB6Gy4xsvb1ADucKdYOFUiDojEKSix6Vf0sTf-Oq5gtxS3xC5wr2Po3Y-Mz7FThUMO~s0fhmG9yteu57i4VN9cTgQjO2~cX22-v8oSI6klvjh1bPQeuZ2buWqZhUEow4uQy1gcrQIVLIAgVOJQJ4b~9MDHOyFRvnvlc6P21cCAKWh3JAKta8jR--EDID6fv9ou5wFyp1GICr41E5D2-3aHh9MGG0WQF2B-9CX4LgV20TGIE5vc0qncp1RUUuxuWP1XequWuwH47d0Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"In this work two thermal comfort indices are employed to study climate variations in Greece at three levels. Initially, newly-calculated Predicted Mean Vote index values for 35 cities in Greece for the years 2008-2009 are compared with previous ones for the years 1980-89. The comparison shows increased values, indicating the probability of a very hot decade to come. Following this the Discomfort Index is employed to show differences in climate between the north, center and south of Greece. Finally, at a more local level, it is shown how Discomfort Index values can be employed to evaluate climate differences in urban areas as well as rural. Copyright","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":108191851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108191851/thumbnails/1.jpg","file_name":"ireche.pdf","download_url":"https://www.academia.edu/attachments/108191851/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Applying_Thermal_Comfort_Indices_to_Inve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108191851/ireche-libre.pdf?1701507916=\u0026response-content-disposition=attachment%3B+filename%3DApplying_Thermal_Comfort_Indices_to_Inve.pdf\u0026Expires=1733914704\u0026Signature=UQGAfklANLHtzUoA8An5hwEetJX4PMCWLu7hSdVCJfNOFEYfrBSKrV1RX70GXPFEDMfN-ABQB6Gy4xsvb1ADucKdYOFUiDojEKSix6Vf0sTf-Oq5gtxS3xC5wr2Po3Y-Mz7FThUMO~s0fhmG9yteu57i4VN9cTgQjO2~cX22-v8oSI6klvjh1bPQeuZ2buWqZhUEow4uQy1gcrQIVLIAgVOJQJ4b~9MDHOyFRvnvlc6P21cCAKWh3JAKta8jR--EDID6fv9ou5wFyp1GICr41E5D2-3aHh9MGG0WQF2B-9CX4LgV20TGIE5vc0qncp1RUUuxuWP1XequWuwH47d0Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":154596,"name":"Thermal comfort","url":"https://www.academia.edu/Documents/in/Thermal_comfort"}],"urls":[{"id":36272830,"url":"https://www.academia.edu/1015793/Applying_Thermal_Comfort_Indices_to_Investigate_Aspects_of_the_Climate_in_Greece"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="102733542"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/102733542/Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa" class="work-thumbnail" src="https://attachments.academia-assets.com/102924663/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/102733542/Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa">Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a wide-ranging correlation expressed in terms of temperature and density for the visco...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8fb8d30025a5780fa2536f4d3e3d92a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:102924663,&quot;asset_id&quot;:102733542,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/102924663/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="102733542"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="102733542"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 102733542; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=102733542]").text(description); $(".js-view-count[data-work-id=102733542]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 102733542; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='102733542']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 102733542, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8fb8d30025a5780fa2536f4d3e3d92a7" } } $('.js-work-strip[data-work-id=102733542]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":102733542,"title":"Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa","translated_title":"","metadata":{"abstract":"We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).","publisher":"Research Square Platform LLC"},"translated_abstract":"We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).","internal_url":"https://www.academia.edu/102733542/Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa","translated_internal_url":"","created_at":"2023-06-01T23:54:50.580-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":102924663,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/102924663/thumbnails/1.jpg","file_name":"s10765-022-03149-z.pdf","download_url":"https://www.academia.edu/attachments/102924663/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/102924663/s10765-022-03149-z-libre.pdf?1685693197=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=NS7HJp-RWhTa6GLNAtBYEOoR3dEvNXTio54sysxaG9EkG4Qvg-pKkH9CYI0rRRAJhAQinib1~tHuQRKqvfqH41NKDEfV7Dp~T7~8771QMdkACZHpk~B1wNNYZX6rKg8GUYA868cG71DZsXFmC7kyEbkqBssYmxLuSwgFnfM7PX3kORN4HvprYHHprBt~ieH8larRvYZ3PGW-L42mI1fz50p8RDAdDv1hIRBPgrWKm7pUHUQf0aM7u2whepHOQgSNaal1ZnX2wgHedDFxnFxFTpaEWUMn9xkqOmjTXcvR4VIEfZQbOROWDk-97w43GmCnzTxi503R5tOpW1JfpuMfqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlation_for_the_Viscosity_of_Ethanol_from_the_Triple_Point_to_620_K_and_Pressures_up_to_102_MPa","translated_slug":"","page_count":42,"language":"en","content_type":"Work","summary":"We present a wide-ranging correlation expressed in terms of temperature and density for the viscosity of ethanol based on critically evaluated experimental data. The correlation is designed to be used with an existing equation of state from the triple point (159 K) to 620 K and at pressures up to 102 MPa. Comparisons with experimental data indicate the estimated uncertainty of the correlation is 4.2 % (at the 95% confidence level) for the liquid and supercritical phase at pressures up to 102 MPa, and 2% in the gas phase. Furthermore, for calculating viscosity values at 0.1 MPa, an additional correlation is proposed, valid from the triple point to the boiling point with an estimated uncertainty of 2.3 % (at the 95% confidence level).","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":102924663,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/102924663/thumbnails/1.jpg","file_name":"s10765-022-03149-z.pdf","download_url":"https://www.academia.edu/attachments/102924663/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlation_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/102924663/s10765-022-03149-z-libre.pdf?1685693197=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlation_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=NS7HJp-RWhTa6GLNAtBYEOoR3dEvNXTio54sysxaG9EkG4Qvg-pKkH9CYI0rRRAJhAQinib1~tHuQRKqvfqH41NKDEfV7Dp~T7~8771QMdkACZHpk~B1wNNYZX6rKg8GUYA868cG71DZsXFmC7kyEbkqBssYmxLuSwgFnfM7PX3kORN4HvprYHHprBt~ieH8larRvYZ3PGW-L42mI1fz50p8RDAdDv1hIRBPgrWKm7pUHUQf0aM7u2whepHOQgSNaal1ZnX2wgHedDFxnFxFTpaEWUMn9xkqOmjTXcvR4VIEfZQbOROWDk-97w43GmCnzTxi503R5tOpW1JfpuMfqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"},{"id":1181274,"name":"Supercritical Fluid","url":"https://www.academia.edu/Documents/in/Supercritical_Fluid"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"},{"id":3420758,"name":"Boiling point","url":"https://www.academia.edu/Documents/in/Boiling_point"}],"urls":[{"id":31942791,"url":"https://www.researchsquare.com/article/rs-2380822/v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94633716"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/94633716/Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases"><img alt="Research paper thumbnail of Accurate Measurements of the Thermal Conductivity of Hexadecan-1-ol and Octadecan-1-ol in the Solid and Liquid Phases" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/94633716/Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases">Accurate Measurements of the Thermal Conductivity of Hexadecan-1-ol and Octadecan-1-ol in the Solid and Liquid Phases</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94633716"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94633716"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94633716; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94633716]").text(description); $(".js-view-count[data-work-id=94633716]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94633716; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94633716']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94633716, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94633716]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94633716,"title":"Accurate Measurements of the Thermal Conductivity of Hexadecan-1-ol and Octadecan-1-ol in the Solid and Liquid Phases","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94633716/Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases","translated_internal_url":"","created_at":"2023-01-09T06:05:03.318-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Accurate_Measurements_of_the_Thermal_Conductivity_of_Hexadecan_1_ol_and_Octadecan_1_ol_in_the_Solid_and_Liquid_Phases","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"}],"urls":[{"id":27887373,"url":"https://link.springer.com/content/pdf/10.1007/s10765-022-03049-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88953292"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88953292/Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa"><img alt="Research paper thumbnail of Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425 K and up to 70 MPa" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/88953292/Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa">Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425 K and up to 70 MPa</a></div><div class="wp-workCard_item"><span>International Journal of Thermophysics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88953292"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88953292"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88953292; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88953292]").text(description); $(".js-view-count[data-work-id=88953292]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88953292; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88953292']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88953292, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88953292]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88953292,"title":"Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425 K and up to 70 MPa","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"International Journal of Thermophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/88953292/Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa","translated_internal_url":"","created_at":"2022-10-21T21:39:52.868-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reference_Correlation_for_the_Viscosity_of_Difluoromethane_R_32_from_the_Triple_Point_to_425_K_and_up_to_70_MPa","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":846269,"name":"Thermophysics","url":"https://www.academia.edu/Documents/in/Thermophysics"},{"id":926116,"name":"Triple-point","url":"https://www.academia.edu/Documents/in/Triple-point"},{"id":952977,"name":"Extrapolation","url":"https://www.academia.edu/Documents/in/Extrapolation"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"}],"urls":[{"id":25011464,"url":"https://link.springer.com/content/pdf/10.1007/s10765-022-03050-9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82105929"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82105929/Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts"><img alt="Research paper thumbnail of Reference Correlations for the Viscosity of 13 Inorganic Molten Salts" class="work-thumbnail" src="https://attachments.academia-assets.com/87918428/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82105929/Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts">Reference Correlations for the Viscosity of 13 Inorganic Molten Salts</a></div><div class="wp-workCard_item"><span>Journal of Physical and Chemical Reference Data</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were proposed by Janz and have been used extensively. During the last 31 years, many additional measurements have been published. In a very recent paper, new reference correlations for the thermal conductivity of 13 inorganic molten salts were proposed. In this paper, reference correlations for the viscosity of those same salts are proposed. All available experimental data for the viscosity of 13 inorganic molten salts have been critically examined with the intention of establishing improved or new reference viscosity correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. Standard reference correlations are proposed for the following molten salts (with estimated uncertainties at the 95% confidence level given in parentheses): LiNO 3 (6.7%), NaNO 3 (3.0%), KNO 3 (3.0%), NaBr (1.6%), KBr (2.0%), RbBr (2.2%), LiCl (3.7%), NaCl (2.4%), KCl (1.6%), RbCl (3.6%), CsCl (1.1%), NaI (1.5%), and RbI (1.5%).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="898f4466cacd30f3c406ee69d2cd7436" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:87918428,&quot;asset_id&quot;:82105929,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/87918428/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82105929"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82105929"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82105929; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82105929]").text(description); $(".js-view-count[data-work-id=82105929]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82105929; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82105929']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82105929, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "898f4466cacd30f3c406ee69d2cd7436" } } $('.js-work-strip[data-work-id=82105929]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82105929,"title":"Reference Correlations for the Viscosity of 13 Inorganic Molten Salts","translated_title":"","metadata":{"publisher":"AIP Publishing","ai_title_tag":"Refined Viscosity Correlations for 13 Inorganic Molten Salts","grobid_abstract":"In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were proposed by Janz and have been used extensively. During the last 31 years, many additional measurements have been published. In a very recent paper, new reference correlations for the thermal conductivity of 13 inorganic molten salts were proposed. In this paper, reference correlations for the viscosity of those same salts are proposed. All available experimental data for the viscosity of 13 inorganic molten salts have been critically examined with the intention of establishing improved or new reference viscosity correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. Standard reference correlations are proposed for the following molten salts (with estimated uncertainties at the 95% confidence level given in parentheses): LiNO 3 (6.7%), NaNO 3 (3.0%), KNO 3 (3.0%), NaBr (1.6%), KBr (2.0%), RbBr (2.2%), LiCl (3.7%), NaCl (2.4%), KCl (1.6%), RbCl (3.6%), CsCl (1.1%), NaI (1.5%), and RbI (1.5%).","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Physical and Chemical Reference Data","grobid_abstract_attachment_id":87918428},"translated_abstract":null,"internal_url":"https://www.academia.edu/82105929/Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts","translated_internal_url":"","created_at":"2022-06-23T08:29:16.623-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40350135,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":87918428,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87918428/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/87918428/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlations_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87918428/1-libre.pdf?1655998849=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlations_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=UcR3nqoZryQJTKddr1QI5rm3-yMofDfxD8Og5v06RcFkjztjhoNEdy1Heg9JddwGOWamLfxrXdqlwkhwRypxm70TXkZWKXPozqO3NPOh5tpNABdlEwp7xzsCgrm7OCv~5EfnixMWd-0Qv4APeRIzszWZeKXCROJsF2LDIaNZ~9B6co1Ca4hYll1Tlp4qXUnfOmnZrE457hDmd3pF-TuweLGc-tjjQsAqfcRonk~5pyd3~7CdW-BMsbuD1xXRVLDH~aXbAQwLBmOqaviNIlIr9j2EgD5uo7O5QDM5osz4OtCKlcK4VmGLRMsnumgQJke9j-Cwk2CDo~aucYDtzIabAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reference_Correlations_for_the_Viscosity_of_13_Inorganic_Molten_Salts","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In 1988, reference correlations for the viscosity of a selection of molten inorganic salts were proposed by Janz and have been used extensively. During the last 31 years, many additional measurements have been published. In a very recent paper, new reference correlations for the thermal conductivity of 13 inorganic molten salts were proposed. In this paper, reference correlations for the viscosity of those same salts are proposed. All available experimental data for the viscosity of 13 inorganic molten salts have been critically examined with the intention of establishing improved or new reference viscosity correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. Standard reference correlations are proposed for the following molten salts (with estimated uncertainties at the 95% confidence level given in parentheses): LiNO 3 (6.7%), NaNO 3 (3.0%), KNO 3 (3.0%), NaBr (1.6%), KBr (2.0%), RbBr (2.2%), LiCl (3.7%), NaCl (2.4%), KCl (1.6%), RbCl (3.6%), CsCl (1.1%), NaI (1.5%), and RbI (1.5%).","owner":{"id":40350135,"first_name":"Konstantinos","middle_initials":null,"last_name":"Antoniadis","page_name":"KAntoniadis","domain_name":"independent","created_at":"2015-12-17T23:04:34.790-08:00","display_name":"Konstantinos Antoniadis","url":"https://independent.academia.edu/KAntoniadis"},"attachments":[{"id":87918428,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/87918428/thumbnails/1.jpg","file_name":"1.pdf","download_url":"https://www.academia.edu/attachments/87918428/download_file?st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&st=MTczMzkxMTEwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reference_Correlations_for_the_Viscosity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/87918428/1-libre.pdf?1655998849=\u0026response-content-disposition=attachment%3B+filename%3DReference_Correlations_for_the_Viscosity.pdf\u0026Expires=1733914704\u0026Signature=UcR3nqoZryQJTKddr1QI5rm3-yMofDfxD8Og5v06RcFkjztjhoNEdy1Heg9JddwGOWamLfxrXdqlwkhwRypxm70TXkZWKXPozqO3NPOh5tpNABdlEwp7xzsCgrm7OCv~5EfnixMWd-0Qv4APeRIzszWZeKXCROJsF2LDIaNZ~9B6co1Ca4hYll1Tlp4qXUnfOmnZrE457hDmd3pF-TuweLGc-tjjQsAqfcRonk~5pyd3~7CdW-BMsbuD1xXRVLDH~aXbAQwLBmOqaviNIlIr9j2EgD5uo7O5QDM5osz4OtCKlcK4VmGLRMsnumgQJke9j-Cwk2CDo~aucYDtzIabAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":109384,"name":"Viscosity","url":"https://www.academia.edu/Documents/in/Viscosity"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":21697823,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.5091511"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c912fefe9f6e480884fcf9e0b030fab6004a978c4b35df4a6adc6903350ffb33", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="5wBgqvVbqYj/C4Xx53ogcoxLmdL4y20GnPL5KFbKiqILoSQbYIh72hFSM8ewniVVZWLcOpw+jVJZh8b4XmvF6g==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/KAntoniadis" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="TTZPEmUrecboDRJuH5aylnvIW5HiTHzelG7yNH7juc+hlwuj8PirlAZUpFhIcrexkuEeeYa5nIpRG83kdkL2hw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10