CINXE.COM
HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations | Arabian Journal for Science and Engineering
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="No"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations | Arabian Journal for Science and Engineering</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations"/> <meta name="twitter:description" content="Arabian Journal for Science and Engineering - The widespread integration of interconnected network elements within the Internet of Things (IoT) has increased its vulnerability to security breaches...."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig1_HTML.png"/> <meta name="journal_id" content="13369"/> <meta name="dc.title" content="HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations"/> <meta name="dc.source" content="Arabian Journal for Science and Engineering 2024"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2024-11-22"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply"/> <meta name="dc.rights" content="2024 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="The widespread integration of interconnected network elements within the Internet of Things (IoT) has increased its vulnerability to security breaches. This is due to the various software and networks involved in IoT. Numerous elements within these networks lack built-in cyber defenses. Traditional methods like access control, password security, data authentication, malware scanners, and firewalls often fail against sophisticated cyber-attacks due to their reactive nature and limited adaptability. Additionally, intrusion detection systems and security audits can be prone to attacks and may struggle with evolving threats. To address these limitations, We propose a novel hybrid residual layer deep neural network (HRL-DeepNet) for detecting cyber-attacks and anomalies in organizational assets. The HRL-DeepNet employs gated recurrent unit (GRU), bidirectional long short-term memory (BiLSTM), and long short-term memory (LSTM) sequences in hybrid and residual setups. Utilization of hybrid and residual setups not only boosts the distinctiveness of the features but also improves the accuracy of intrusion detection. The proposed HRL-DeepNet, when evaluated on ToN-IoT and CICIDS2017, resulted in high accuracy, with a significantly low false positive rate (FPR) outperforming other state-of-the-art frameworks. Furthermore, the proposed HRL-DeepNet achieves accuracies of 0.999 and 0.986 on the ToN-IoT and CICIDS2017 datasets, respectively, while also achieving F1 scores of 0.977 and 0.966 on the same datasets. This demonstrates its superiority over recently reported works."/> <meta name="prism.issn" content="2191-4281"/> <meta name="prism.publicationName" content="Arabian Journal for Science and Engineering"/> <meta name="prism.publicationDate" content="2024-11-22"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="15"/> <meta name="prism.copyright" content="2024 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s13369-024-09680-5"/> <meta name="prism.doi" content="doi:10.1007/s13369-024-09680-5"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s13369-024-09680-5.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s13369-024-09680-5"/> <meta name="citation_journal_title" content="Arabian Journal for Science and Engineering"/> <meta name="citation_journal_abbrev" content="Arab J Sci Eng"/> <meta name="citation_publisher" content="Springer Berlin Heidelberg"/> <meta name="citation_issn" content="2191-4281"/> <meta name="citation_title" content="HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations"/> <meta name="citation_online_date" content="2024/11/22"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="15"/> <meta name="citation_article_type" content="Research Article-Computer Engineering and Computer Science"/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s13369-024-09680-5"/> <meta name="DOI" content="10.1007/s13369-024-09680-5"/> <meta name="size" content="297670"/> <meta name="citation_doi" content="10.1007/s13369-024-09680-5"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s13369-024-09680-5&api_key="/> <meta name="description" content="The widespread integration of interconnected network elements within the Internet of Things (IoT) has increased its vulnerability to security breaches. Thi"/> <meta name="dc.creator" content="Alotaibi, Fahad M."/> <meta name="dc.creator" content="Fawad"/> <meta name="dc.subject" content="Engineering, general"/> <meta name="dc.subject" content="Science, Humanities and Social Sciences, multidisciplinary"/> <meta name="citation_reference" content="citation_journal_title=IEEE Internet Things J.; citation_title=Internet of things: device capabilities, architectures, protocols, and smart applications in healthcare domain; citation_author=MM Islam, S Nooruddin, F Karray, G Muhammad; citation_volume=10; citation_issue=4; citation_publication_date=2022; citation_pages=3611-3641; citation_doi=10.1109/JIOT.2022.3228795; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Network; citation_title=Cybersecurity challenges in the maritime sector; citation_author=F Akpan, G Bendiab, S Shiaeles, S Karamperidis, M Michaloliakos; citation_volume=2; citation_issue=1; citation_publication_date=2022; citation_pages=123-138; citation_doi=10.3390/network2010009; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Technol. Soc.; citation_title=Cybersecurity through the lens of digital identity and data protection: issues and trends; citation_author=M-J Sule, M Zennaro, G Thomas; citation_volume=67; citation_publication_date=2021; citation_doi=10.1016/j.techsoc.2021.101734; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=SN Comput. Sci.; citation_title=Ai-driven cybersecurity: an overview, security intelligence modeling and research directions; citation_author=IH Sarker, MH Furhad, R Nowrozy; citation_volume=2; citation_publication_date=2021; citation_pages=1-18; citation_doi=10.1007/s42979-021-00557-0; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Electronics; citation_title=Learning-based methods for cyber attacks detection in IotT systems: a survey on methods, analysis, and future prospects; citation_author=U Inayat, MF Zia, S Mahmood, HM Khalid, M Benbouzid; citation_volume=11; citation_issue=9; citation_publication_date=2022; citation_pages=1502; citation_doi=10.3390/electronics11091502; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=IEEE Netw.; citation_title=Ai-driven zero touch network and service management in 5g and beyond: challenges and research directions; citation_author=C Benzaid, T Taleb; citation_volume=34; citation_issue=2; citation_publication_date=2020; citation_pages=186-194; citation_doi=10.1109/MNET.001.1900252; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Symmetry; citation_title=Intrudtree: a machine learning based cyber security intrusion detection model; citation_author=IH Sarker, YB Abushark, F Alsolami, AI Khan; citation_volume=12; citation_issue=5; citation_publication_date=2020; citation_pages=754; citation_doi=10.3390/sym12050754; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Inf. Forensics Secur.; citation_title=Secure full duplex integrated sensing and communications; citation_author=A Bazzi, M Chafii; citation_publication_date=2023; citation_doi=10.1109/TIFS.2023.3346696; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=IEEE Transactions on Wireless Communications.; citation_title=Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security; citation_author=N Su, F Liu, C Masouros; citation_volume=23; citation_issue=4; citation_publication_date=2023; citation_pages=3162-3174; citation_doi=10.1109/TWC.2023.3306029; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Bus. Intell. Big Data Anal.; citation_title=Enterprise data security measures: a comparative review of effectiveness and risks across different industries and organization types; citation_author=V Bandari; citation_volume=6; citation_issue=1; citation_publication_date=2023; citation_pages=1-11; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=JMIR Formative Res.; citation_title=Digitalizing a brief intervention to reduce intrusive memories of psychological trauma for health care staff working during covid-19: exploratory pilot study with nurses; citation_author=L Singh, M Kanstrup, K Depa, A-C Falk, V Lindström, O Dahl, KE Göransson, A Rudman, EA Holmes; citation_volume=5; citation_issue=5; citation_publication_date=2021; citation_pages=27473; citation_doi=10.2196/27473; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Comput. Secur.; citation_title=Latest trends of security and privacy in recommender systems: a comprehensive review and future perspectives; citation_author=Y Himeur, SS Sohail, F Bensaali, A Amira, M Alazab; citation_volume=118; citation_publication_date=2022; citation_doi=10.1016/j.cose.2022.102746; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=IEEE Internet Things J.; citation_title=Privacy-preserving traffic flow prediction: a federated learning approach; citation_author=Y Liu, J James, J Kang, D Niyato, S Zhang; citation_volume=7; citation_issue=8; citation_publication_date=2020; citation_pages=7751-7763; citation_doi=10.1109/JIOT.2020.2991401; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Federated Learning Systems: Towards Next-Generation AI, Springer.; citation_title=An overview of federated deep learning privacy attacks and defensive strategies; citation_author=D Enthoven, Z Al-Ars; citation_volume=1; citation_issue=965; citation_publication_date=2021; citation_pages=173-196; citation_doi=10.1007/978-3-030-70604-3_8; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Comput. Secur.; citation_title=Privacy preservation in federated learning: an insightful survey from the GDPR perspective; citation_author=N Truong, K Sun, S Wang, F Guitton, Y Guo; citation_volume=110; citation_publication_date=2021; citation_doi=10.1016/j.cose.2021.102402; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Bus. Manag. Rev.; citation_title=Challenges for organizational structure and design as a result of digitalization and cybersecurity; citation_author=NR Moşteanu; citation_volume=11; citation_issue=1; citation_publication_date=2020; citation_pages=278-286; citation_doi=10.24052/BMR/V11NU01/ART-29; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Proced. Comput. Sci.; citation_title=Intrusion detection systems using supervised machine learning techniques: a survey; citation_author=EE Abdallah, AF Otoom; citation_volume=201; citation_publication_date=2022; citation_pages=205-212; citation_doi=10.1016/j.procs.2022.03.029; citation_id=CR17"/> <meta name="citation_reference" content="Chang, C.; Wenming, S.; Wei, Z.; Changki, P.; Kontovas, C.: Evaluating cybersecurity risks in the maritime industry: a literature review. In: Proceedings of the International Association of Maritime Universities (IAMU) Conference (2019)"/> <meta name="citation_reference" content="Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R.B.: Deep learning for coral classification. In: Handbook of Neural Computation, Elsevier, pp. 383–401 (2017)"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Comput. Vision; citation_title=Image matching from handcrafted to deep features: a survey; citation_author=J Ma, X Jiang, A Fan, J Jiang, J Yan; citation_volume=129; citation_publication_date=2021; citation_pages=23-79; citation_doi=10.1007/s11263-020-01359-2; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=IEEE Access; citation_title=Texture representation through overlapped multi-oriented tri-scale local binary pattern; citation_author=MJ Khan, MA Riaz, H Shahid, MS Khan, Y Amin, J Loo, H Tenhunen; citation_volume=7; citation_publication_date=2019; citation_pages=66668-66679; citation_doi=10.1109/ACCESS.2019.2918004; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=J. Vis. Commun. Image Represent.; citation_title=Coral reef image classification employing improved LDP for feature extraction; citation_author=NAB Mary, D Dharma; citation_volume=49; citation_publication_date=2017; citation_pages=225-242; citation_doi=10.1016/j.jvcir.2017.09.008; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Wirel. Pers. Commun.; citation_title=Classification of coral reef submarine images and videos using a novel z with tilted z local binary pattern (z tzlbp); citation_author=AB Mary, D Dejey; citation_volume=98; citation_issue=3; citation_publication_date=2018; citation_pages=2427-2459; citation_doi=10.1007/s11277-017-4981-x; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Multimed. Tools Appl.; citation_title=A novel advanced local binary pattern for image-based coral reef classification; citation_author=MH Shakoor, R Boostani; citation_volume=77; citation_issue=2; citation_publication_date=2018; citation_pages=2561-2591; citation_doi=10.1007/s11042-017-4394-6; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Remote Sens.; citation_title=Image-based coral reef classification and thematic mapping; citation_author=A Shihavuddin, N Gracias, R Garcia, AC Gleason, B Gintert; citation_volume=5; citation_issue=4; citation_publication_date=2013; citation_pages=1809-1841; citation_doi=10.3390/rs5041809; citation_id=CR25"/> <meta name="citation_reference" content="Qin, H.; Li, X.; Yang, Z.; Shang, M.: When underwater imagery analysis meets deep learning: a solution at the age of big visual data. In: OCEANS 2015-MTS/IEEE Washington, pp. 1–5 (2015). IEEE"/> <meta name="citation_reference" content="Vedaldi, A.; Lenc, K.: Matconvnet: Convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692 (2015)"/> <meta name="citation_reference" content="citation_journal_title=IEEE J. Oceanic Eng.; citation_title=Deep image representations for coral image classification; citation_author=A Mahmood, M Bennamoun, S An, FA Sohel, F Boussaid, R Hovey, GA Kendrick, RB Fisher; citation_volume=44; citation_issue=1; citation_publication_date=2018; citation_pages=121-131; citation_doi=10.1109/JOE.2017.2786878; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst. Appl.; citation_title=Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation; citation_author=A Gómez-Ríos, S Tabik, J Luengo, A Shihavuddin, B Krawczyk, F Herrera; citation_volume=118; citation_publication_date=2019; citation_pages=315-328; citation_doi=10.1016/j.eswa.2018.10.010; citation_id=CR29"/> <meta name="citation_reference" content="King, A.; Bhandarkar, S.M.; Hopkinson, B.M.: A comparison of deep learning methods for semantic segmentation of coral reef survey images. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1394–1402 (2018)"/> <meta name="citation_reference" content="King, A., M Bhandarkar, S., Hopkinson, B.M.: Deep learning for semantic segmentation of coral reef images using multi-view information. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition workshops, pp. 1–10 (2019)"/> <meta name="citation_reference" content="Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R.B.: Coral classification with hybrid feature representations. In: 2016 IEEE International conference on image processing (ICIP), pp. 519–523 (2016). IEEE"/> <meta name="citation_reference" content="citation_journal_title=Opt. Express; citation_title=Classification of coral reef images from underwater video using neural networks; citation_author=MSAC Marcos, MN Soriano, CA Saloma; citation_volume=13; citation_issue=22; citation_publication_date=2005; citation_pages=8766-8771; citation_doi=10.1364/OPEX.13.008766; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Turk. J. Comput. Math. Educ. (TURCOMAT); citation_title=Coral reef image classification employing deep features and a novel local inter cross weber magnitude (licwm) pattern; citation_author=CP Priya; citation_volume=12; citation_issue=6; citation_publication_date=2021; citation_pages=345-357; citation_doi=10.17762/turcomat.v12i6.1397; citation_id=CR34"/> <meta name="citation_reference" content="Jia, Y.; Zhong, F.; Alrawais, A.; Gong, B.; Cheng, X.: Flowguard: an intelligent edge defense mechanism against IOT DDOS attacks. IEEE Internet Things J. 7(10), 9552–9562 (2020)"/> <meta name="citation_reference" content="citation_journal_title=Comput. Electr. Eng.; citation_title=Near real-time security system applied to SDN environments in IOT networks using convolutional neural network; citation_author=MV Assis, LF Carvalho, JJ Rodrigues, J Lloret, ML Proença; citation_volume=86; citation_publication_date=2020; citation_doi=10.1016/j.compeleceng.2020.106738; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=J. Netw. Comput. Appl.; citation_title=A GRU deep learning system against attacks in software defined networks; citation_author=MV Assis, LF Carvalho, J Lloret, ML Proença; citation_volume=177; citation_publication_date=2021; citation_doi=10.1016/j.jnca.2020.102942; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Comput. Commun.; citation_title=An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IOMT networks; citation_author=P Kumar, GP Gupta, R Tripathi; citation_volume=166; citation_publication_date=2021; citation_pages=110-124; citation_doi=10.1016/j.comcom.2020.12.003; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Electronics; citation_title=SDN-enabled hybrid dl-driven framework for the detection of emerging cyber threats in IOT; citation_author=D Javeed, T Gao, MT Khan; citation_volume=10; citation_issue=8; citation_publication_date=2021; citation_pages=918; citation_doi=10.3390/electronics10080918; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=Comput. Netw.; citation_title=Sp2f: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles; citation_author=R Kumar, P Kumar, R Tripathi, GP Gupta, TR Gadekallu, G Srivastava; citation_volume=187; citation_publication_date=2021; citation_doi=10.1016/j.comnet.2021.107819; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Comput. Sci. Rev.; citation_title=Deep learning algorithms for cybersecurity applications: a technological and status review; citation_author=P Dixit, S Silakari; citation_volume=39; citation_publication_date=2021; citation_doi=10.1016/j.cosrev.2020.100317; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Ieee Access; citation_title=Deep learning approach for intelligent intrusion detection system; citation_author=R Vinayakumar, M Alazab, K Soman, P Poornachandran, A Al-Nemrat, S Venkatraman; citation_volume=7; citation_publication_date=2019; citation_pages=41525-41550; citation_doi=10.1109/ACCESS.2019.2895334; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=Math. Probl. Eng.; citation_title=A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis; citation_author=G Liu, H Bao, B Han; citation_volume=2018; citation_publication_date=2018; citation_pages=1-10; citation_id=CR43"/> <meta name="citation_reference" content="Alrawashdeh, K.; Purdy, C.: Fast hardware assisted online learning using unsupervised deep learning structure for anomaly detection. In: 2018 International conference on information and computer technologies (ICICT), pp. 128–134 (2018). IEEE"/> <meta name="citation_reference" content="citation_journal_title=IEEE Comput. Intell. Mag.; citation_title=Recent trends in deep learning based natural language processing; citation_author=T Young, D Hazarika, S Poria, E Cambria; citation_volume=13; citation_issue=3; citation_publication_date=2018; citation_pages=55-75; citation_doi=10.1109/MCI.2018.2840738; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Neural Netw. Learn. Syst.; citation_title=Deep reinforcement learning for cyber security; citation_author=TT Nguyen, VJ Reddi; citation_volume=34; citation_issue=8; citation_publication_date=2021; citation_pages=3779-3795; citation_doi=10.1109/TNNLS.2021.3121870; citation_id=CR46"/> <meta name="citation_reference" content="Lin, Z.; Shi, Y.; Xue, Z.: Idsgan: Generative adversarial networks for attack generation against intrusion detection. In: Pacific-Asia conference on knowledge discovery and data mining, pp. 79–91 (2022). Springer"/> <meta name="citation_reference" content="Teoh, T.; Chiew, G.; Franco, E.J.; Ng, P.; Benjamin, M.; Goh, Y.: Anomaly detection in cyber security attacks on networks using MLP deep learning. In: 2018 international conference on smart computing and electronic enterprise (ICSCEE), pp. 1–5 (2018). IEEE"/> <meta name="citation_reference" content="HB, B.G.; Poornachandran, P.; KP, S.; et al.: Deep-net: Deep neural network for cyber security use cases. arXiv preprint arXiv:1812.03519 (2018)"/> <meta name="citation_reference" content="citation_journal_title=Appl. Sci.; citation_title=A survey of CNN-based network intrusion detection; citation_author=L Mohammadpour, TC Ling, CS Liew, A Aryanfar; citation_volume=12; citation_issue=16; citation_publication_date=2022; citation_pages=8162; citation_doi=10.3390/app12168162; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Knowl.-Based Syst.; citation_title=A stacking ensemble of deep learning models for IOT intrusion detection; citation_author=R Lazzarini, H Tianfield, V Charissis; citation_volume=279; citation_publication_date=2023; citation_doi=10.1016/j.knosys.2023.110941; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Comput. Netw.; citation_title=Machine learning methods for cyber security intrusion detection: Datasets and comparative study; citation_author=IF Kilincer, F Ertam, A Sengur; citation_volume=188; citation_publication_date=2021; citation_doi=10.1016/j.comnet.2021.107840; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=IEEE Transactions on Dependable and Secure Computing.; citation_title=Trusted operations of a military ground robot in the face of man-in-the-middle cyber-attacks using deep learning convolutional neural networks: Real-time experimental outcomes; citation_author=F Santoso, A Finn; citation_volume=21; citation_issue=4; citation_publication_date=2023; citation_pages=2273-2284; citation_doi=10.1109/TDSC.2023.3302807; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=Glob Trans. Proc.; citation_title=Evaluating neural networks using bi-directional LSTM for network ids (intrusion detection systems) in cyber security; citation_author=T Pooja, P Shrinivasacharya; citation_volume=2; citation_issue=2; citation_publication_date=2021; citation_pages=448-454; citation_doi=10.1016/j.gltp.2021.08.017; citation_id=CR54"/> <meta name="citation_reference" content="citation_journal_title=Futur. Gener. Comput. Syst.; citation_title=GRU-based deep learning approach for network intrusion alert prediction; citation_author=MS Ansari, V Bartoš, B Lee; citation_volume=128; citation_publication_date=2022; citation_pages=235-247; citation_doi=10.1016/j.future.2021.09.040; citation_id=CR55"/> <meta name="citation_reference" content="Latif, S.; Huma, Z.; Jamal, S.S.; Ahmed, F.; Ahmad, J.; Zahid, A.; Dashtipour, K.; Aftab, M.U.; Ahmad, M.; Abbasi, Q.H.: Intrusion detection framework for the internet of things using a dense random neural network. IEEE Trans. Ind. Inf. 18(9), 6435–6444 (2021)"/> <meta name="citation_reference" content="Leevy, J.L.; Hancock, J.; Zuech, R.; Khoshgoftaar, T.M.: Detecting cybersecurity attacks using different network features with lightgbm and xgboost learners. In: 2020 IEEE second international conference on cognitive machine intelligence (CogMI), pp. 190–197 (2020). IEEE"/> <meta name="citation_author" content="Alotaibi, Fahad M."/> <meta name="citation_author_email" content="Fmmalotaibi@kau.edu.sa"/> <meta name="citation_author_institution" content="Department of Information Systems, Faculty of Computing and Information Technology (FCIT), King Abdulaziz University, Jeddah, Saudi Arabia"/> <meta name="citation_author" content="Fawad"/> <meta name="citation_author_email" content="fawad7528@gist.ac.kr"/> <meta name="citation_author_institution" content="Power Systems Laboratory Department of Energy Convergence, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea"/> <meta name="format-detection" content="telephone=no"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s13369-024-09680-5"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations - Arabian Journal for Science and Engineering"/> <meta property="og:description" content="The widespread integration of interconnected network elements within the Internet of Things (IoT) has increased its vulnerability to security breaches. This is due to the various software and networks involved in IoT. Numerous elements within these networks lack built-in cyber defenses. Traditional methods like access control, password security, data authentication, malware scanners, and firewalls often fail against sophisticated cyber-attacks due to their reactive nature and limited adaptability. Additionally, intrusion detection systems and security audits can be prone to attacks and may struggle with evolving threats. To address these limitations, We propose a novel hybrid residual layer deep neural network (HRL-DeepNet) for detecting cyber-attacks and anomalies in organizational assets. The HRL-DeepNet employs gated recurrent unit (GRU), bidirectional long short-term memory (BiLSTM), and long short-term memory (LSTM) sequences in hybrid and residual setups. Utilization of hybrid and residual setups not only boosts the distinctiveness of the features but also improves the accuracy of intrusion detection. The proposed HRL-DeepNet, when evaluated on ToN-IoT and CICIDS2017, resulted in high accuracy, with a significantly low false positive rate (FPR) outperforming other state-of-the-art frameworks. Furthermore, the proposed HRL-DeepNet achieves accuracies of 0.999 and 0.986 on the ToN-IoT and CICIDS2017 datasets, respectively, while also achieving F1 scores of 0.977 and 0.966 on the same datasets. This demonstrates its superiority over recently reported works."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-5272567b64.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '13369.springer.com', siteWithPath: '13369.springer.com' + window.location.pathname, twitterHashtag: '13369', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s13369-024-09680-5","Page":"article","springerJournal":true,"Publishing Model":"Hybrid Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-s13369-024-09680-5","Journal Id":13369,"Journal Title":"Arabian Journal for Science and Engineering","imprint":"Springer","Keywords":"Cyber security, Internet of things, Deep neural network, Emerging trends, Classification","kwrd":["Cyber_security","Internet_of_things","Deep_neural_network","Emerging_trends","Classification"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"N","hasAccess":"N","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"no-access","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"pw-vgzm.415900-10.1007-s13369-024-09680-5","Full HTML":"N","Subject Codes":["SCT","SCT00004","SCA11007"],"pmc":["T","T00004","A11007"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"2191-4281","pissn":"2193-567X"},"type":"Article","category":{"pmc":{"primarySubject":"Engineering","primarySubjectCode":"T","secondarySubjects":{"1":"Engineering, general","2":"Science, Humanities and Social Sciences, multidisciplinary"},"secondarySubjectCodes":{"1":"T00004","2":"A11007"}},"sucode":"SC8","articleType":"Research Article-Computer Engineering and Computer Science"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s13369-024-09680-5"/> <script type="application/ld+json">{"mainEntity":{"headline":"HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations","description":"The widespread integration of interconnected network elements within the Internet of Things (IoT) has increased its vulnerability to security breaches. This is due to the various software and networks involved in IoT. Numerous elements within these networks lack built-in cyber defenses. Traditional methods like access control, password security, data authentication, malware scanners, and firewalls often fail against sophisticated cyber-attacks due to their reactive nature and limited adaptability. Additionally, intrusion detection systems and security audits can be prone to attacks and may struggle with evolving threats. To address these limitations, We propose a novel hybrid residual layer deep neural network (HRL-DeepNet) for detecting cyber-attacks and anomalies in organizational assets. The HRL-DeepNet employs gated recurrent unit (GRU), bidirectional long short-term memory (BiLSTM), and long short-term memory (LSTM) sequences in hybrid and residual setups. Utilization of hybrid and residual setups not only boosts the distinctiveness of the features but also improves the accuracy of intrusion detection. The proposed HRL-DeepNet, when evaluated on ToN-IoT and CICIDS2017, resulted in high accuracy, with a significantly low false positive rate (FPR) outperforming other state-of-the-art frameworks. Furthermore, the proposed HRL-DeepNet achieves accuracies of 0.999 and 0.986 on the ToN-IoT and CICIDS2017 datasets, respectively, while also achieving F1 scores of 0.977 and 0.966 on the same datasets. This demonstrates its superiority over recently reported works.","datePublished":"2024-11-22T00:00:00Z","dateModified":"2024-11-22T00:00:00Z","pageStart":"1","pageEnd":"15","sameAs":"https://doi.org/10.1007/s13369-024-09680-5","keywords":["Cyber security","Internet of things","Deep neural network","Emerging trends","Classification","Engineering","general","Science","Humanities and Social Sciences","multidisciplinary"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig11_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig12_HTML.png"],"isPartOf":{"name":"Arabian Journal for Science and Engineering","issn":["2191-4281","2193-567X"],"@type":["Periodical"]},"publisher":{"name":"Springer Berlin Heidelberg","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Fahad M. Alotaibi","affiliation":[{"name":"King Abdulaziz University","address":{"name":"Department of Information Systems, Faculty of Computing and Information Technology (FCIT), King Abdulaziz University, Jeddah, Saudi Arabia","@type":"PostalAddress"},"@type":"Organization"}],"email":"Fmmalotaibi@kau.edu.sa","@type":"Person"},{"name":"Fawad","url":"http://orcid.org/0000-0002-3860-2635","affiliation":[{"name":"Gwangju Institute of Science and Technology","address":{"name":"Power Systems Laboratory Department of Energy Convergence, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":false,"hasPart":{"isAccessibleForFree":false,"cssSelector":".main-content","@type":"WebPageElement"},"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <div class="u-lazy-ad-wrapper u-mbs-0"> <div class="c-ad c-ad--728x90 c-ad--conditional" data-test="springer-doubleclick-ad"> <div class="c-ad c-ad__inner" > <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" class="div-gpt-ad grade-c-hide" data-gpt data-gpt-unitpath="/270604982/springerlink/13369/article" data-gpt-sizes="728x90" data-gpt-targeting="pos=top;articleid=s13369-024-09680-5;" data-ad-type="top" style="min-width:728px;min-height:90px"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/270604982/springerlink/13369/article&sz=728x90&pos=top&articleid=s13369-024-09680-5"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/270604982/springerlink/13369/article&sz=728x90&pos=top&articleid=s13369-024-09680-5" alt="Advertisement" width="728" height="90"> </a> </noscript> </div> </div> </div> </div> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s13369-024-09680-5?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-31"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/13369" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Arabian Journal for Science and Engineering</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Research Article-Computer Engineering and Computer Science</li> <li class="c-article-identifiers__item"> Published: <time datetime="2024-11-22">22 November 2024</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> (<span data-test="article-publication-year">2024</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/13369" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/13369?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/13369?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/13369?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/13369?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Arabian Journal for Science and Engineering</span> </a> <a href="https://link.springer.com/journal/13369/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://www.editorialmanager.com/ajse" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Fahad_M_-Alotaibi-Aff1" data-author-popup="auth-Fahad_M_-Alotaibi-Aff1" data-author-search="Alotaibi, Fahad M." data-corresp-id="c1">Fahad M. Alotaibi<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff1">1</a></sup> & </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth--Fawad-Aff2" data-author-popup="auth--Fawad-Aff2" data-author-search="Fawad, "> Fawad</a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-3860-2635"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-3860-2635</a></span><sup class="u-js-hide"><a href="#Aff2">2</a></sup> </li></ul> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>32 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s13369-024-09680-5/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>The widespread integration of interconnected network elements within the Internet of Things (IoT) has increased its vulnerability to security breaches. This is due to the various software and networks involved in IoT. Numerous elements within these networks lack built-in cyber defenses. Traditional methods like access control, password security, data authentication, malware scanners, and firewalls often fail against sophisticated cyber-attacks due to their reactive nature and limited adaptability. Additionally, intrusion detection systems and security audits can be prone to attacks and may struggle with evolving threats. To address these limitations, We propose a novel hybrid residual layer deep neural network (HRL-DeepNet) for detecting cyber-attacks and anomalies in organizational assets. The HRL-DeepNet employs gated recurrent unit (GRU), bidirectional long short-term memory (BiLSTM), and long short-term memory (LSTM) sequences in hybrid and residual setups. Utilization of hybrid and residual setups not only boosts the distinctiveness of the features but also improves the accuracy of intrusion detection. The proposed HRL-DeepNet, when evaluated on ToN-IoT and CICIDS2017, resulted in high accuracy, with a significantly low false positive rate (FPR) outperforming other state-of-the-art frameworks. Furthermore, the proposed HRL-DeepNet achieves accuracies of 0.999 and 0.986 on the ToN-IoT and CICIDS2017 datasets, respectively, while also achieving F1 scores of 0.977 and 0.966 on the same datasets. This demonstrates its superiority over recently reported works.</p></div></div></section> <div class="c-notes"> <p class="c-notes__text c-status-message--info"> <svg width="24" height="24" focusable="false" role="img" aria-hidden="true" class="c-status-message__icon"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-info-filled-medium"></use> </svg> This is a preview of subscription content, <a id="test-login-banner-link" href="//wayf.springernature.com?redirect_uri=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs13369-024-09680-5%3Ferror%3Dcookies_not_supported%26code%3Dd55eb9e7-d0f6-43ae-ab8c-1e45953c7499" data-track="click" data-track-action="login" data-track-label="link" class="c-preview-message__link">log in via an institution</a> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon c-external-link__icon"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use> </svg> to check access. </p> </div> <div data-test="access-article" class="app-article-access"> <h2 class="app-article-access__heading">Access this article</h2> <div class="u-ma-16 u-clear-both"> <a href="//wayf.springernature.com?redirect_uri=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs13369-024-09680-5%3Ferror%3Dcookies_not_supported%26code%3Dd55eb9e7-d0f6-43ae-ab8c-1e45953c7499" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-track="click" data-track-action="institution access" data-track-label="button"> <span data-test="access-via-institution">Log in via an institution</span> <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg> </a> </div> <div data-test="buy-box-mobile" class="c-article-buy-box"> <div class="sprcom-buybox-articleDarwin" id="sprcom-buybox-articleDarwin"> <!-- rendered: 2024-11-27T02:53:14.023156 --><!-- Darwin version --> <div class="buying-option" data-test-id="buy-article-darwin"> <div> <div class="c-springer-plus"> <h2 class="springer-plus-heading">Subscribe and save</h2> <div class="springer-plus"> <div class="springer-plus-headline"> <div class="springer-plus-title"> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-check-filled-medium"></use> </svg><span>Springer+ Basic</span> </div> <div class="dd price-amount-springer-plus"> €32.70 /Month </div> </div> <ul class="buying-option-usps"> <li>Get 10 units per month</li> <li>Download Article/Chapter or eBook</li> <li>1 Unit = 1 Article or 1 Chapter</li> <li>Cancel anytime</li> </ul><a href="https://link.springer.com/product/springer-plus" id="btn-subscribe-springerPlus" class="u-button u-button--full-width u-button--secondary" data-track="click||click_springer_subscribe" data-track-context="buy box"><span>Subscribe now </span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a> </div> <h2 class="springer-plus-heading">Buy Now</h2> </div> <div class="buybox__buy"> <form action="https://order.springer.com/public/cart" method="post"> <input type="hidden" name="type" value="article"><input type="hidden" name="doi" value="10.1007/s13369-024-09680-5"><input type="hidden" name="isxn" value="2191-4281"><input type="hidden" name="contenttitle" value="HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations"><input type="hidden" name="copyrightyear" value="2024"><input type="hidden" name="year" value="2024"><input type="hidden" name="authors" value="Fahad M. Alotaibi, Fawad"><input type="hidden" name="title" value="Arabian Journal for Science and Engineering"><input type="hidden" name="mac" value="c2140d6a62ffb7c0d98c27701c39056e"> <div class="u-ma-16"> <button type="submit" class="u-button--small u-button u-button--secondary u-button--full-width" onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"EUR","add":{"products":[{"name":"HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations","id":"2191-4281","price":39.95,"brand":"Springer Berlin Heidelberg","category":"Technology and Engineering","variant":"ppv-article","quantity":1}]}}});"><span>Buy article PDF 39,95 €</span></button> </div> </form> <p class="c-notes__text c-notes__vat">Price includes VAT (Hong Kong/P.R.China)<br></p> <p class="c-notes__text c-notes__usp">Instant access to the full article PDF.</p> </div> </div> <script>dataLayer.push({"ecommerce":{"currency":"EUR","impressions":[{"name":"HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations","id":"2191-4281","price":39.95,"brand":"Springer Berlin Heidelberg","category":"Technology and Engineering","variant":"ppv-article","quantity":1}]}});</script> <script style="display: none"> ;(function () { if (document.cookie.indexOf("feature-monetise-subscriptions-display-springer-plus") > -1) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.9 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { var article = document.getElementById("sprcom-buybox-articleDarwin"); if(article) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here })() </script> <style> .springer-plus .buying-option-usps > li::before { background-image: url("data:image/svg+xml,%3Csvg viewBox='0 0 100 100' xmlns='http://www.w3.org/2000/svg' fill='%230070A8'%3E%3Ccircle cx='50' cy='50' r='50'/%3E%3C/svg%3E"); } </style> </div> <article class="buybox__rent-article buybox__access-option u-sans-serif" id="deepdyve" style="display: none" data-test-id="journal-subscription"> <div class="c-box__body"> <div class="buybox__info"> <p>Rent this article via <a class="deepdyve-link" target="deepdyve" rel="nofollow" data-track="click" data-track-action="rent article" data-track-label="rent action, new buybox">DeepDyve</a> <svg focusable="false" role="img" aria-hidden="true" class="u-icon" style="vertical-align: middle"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use> </svg></p> </div> </div> <script> function deepDyveResponse(data) { if (data.status === 'ok') { [].slice.call(document.querySelectorAll('.buybox__rent-article')).forEach(function (article) { article.style.display = 'flex' var link = article.querySelector('.deepdyve-link') if (link) { link.setAttribute('href', data.url) } }) } } var script = document.createElement('script') script.src = '//www.deepdyve.com/rental-link?docId=10.1007/s13369-024-09680-5&journal=2191-4281&fieldName=journal_doi&affiliateId=springer&format=jsonp&callback=deepDyveResponse' document.body.appendChild(script) </script> </article> <div class="buybox__access-option buybox__institutional-subs-link u-sans-serif"> <p><a href="https://www.springernature.com/gp/librarians/licensing/agc/journals">Institutional subscriptions <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon" style="vertical-align: middle"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </div> <style>.sprcom-buybox-articleDarwin .buybox__access-option{ border-top: 1px solid #cedbe0; font-size: 1rem; padding: 16px; } .sprcom-buybox-articleDarwin .c-springer-plus{ display: none; } .sprcom-buybox-articleDarwin .springer-plus{ background-color: #EBF6FF; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; padding: 16px; } .sprcom-buybox-articleDarwin .springer-plus-headline{ display: flex; justify-content: space-between; } .sprcom-buybox-articleDarwin .springer-plus-heading{ border-bottom: 1px solid #c5e0f4; border-top: 1px solid #c5e0f4; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 1.125rem; font-weight: 700; margin: 0; padding: 16px; text-align: center; } .sprcom-buybox-articleDarwin .springer-plus-title{ align-items: center; display: flex; } .sprcom-buybox-articleDarwin .springer-plus-title span{ margin-left: 8px; } .sprcom-buybox-articleDarwin .springer-plus a{ background-color: #fff; border: 1px solid #025e8d; color: #025e8d; font-size: 16px; font-weight: 700; max-height: 44px; } .sprcom-buybox-articleDarwin .springer-plus a span{ margin-right: 8px; } .sprcom-buybox-articleDarwin .springer-plus a:hover{ background-color: #025e8d; border: 4px solid #025e8d; box-shadow: none; color: #fff; font-weight: 700; } .sprcom-buybox-articleDarwin .springer-plus a:visited{ color: #025e8d; } .sprcom-buybox-articleDarwin .springer-plus a:visited:hover{ color: #fff; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps{ color: #555; font-size: 1rem; line-height: 1.6; list-style: none; margin: 0; padding: 16px 0 24px 0; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li{ padding-left: 26px; position: relative; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li::before{ content: ''; height: 10px; left: 0; position: absolute; top: calc(0.8em - 5px); width: 10px; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li:not(:first-child){ margin-top: 4px; } </style> </div> </div> </div> <div class="u-display-none"> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig1_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig1_HTML.png" alt="" loading="lazy" width="312" height="128"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig2_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig2_HTML.png" alt="" loading="lazy" width="312" height="168"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig3_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig3_HTML.png" alt="" loading="lazy" width="312" height="168"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig4_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig4_HTML.png" alt="" loading="lazy" width="312" height="169"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig5_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig5_HTML.png" alt="" loading="lazy" width="312" height="169"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig6_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig6_HTML.png" alt="" loading="lazy" width="312" height="230"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig7_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig7_HTML.png" alt="" loading="lazy" width="312" height="169"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig8_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig8_HTML.png" alt="" loading="lazy" width="312" height="169"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig9_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig9_HTML.png" alt="" loading="lazy" width="312" height="171"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig10_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig10_HTML.png" alt="" loading="lazy" width="312" height="171"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig11_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig11_HTML.png" alt="" loading="lazy" width="312" height="172"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig12_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs13369-024-09680-5/MediaObjects/13369_2024_9680_Fig12_HTML.png" alt="" loading="lazy" width="312" height="172"></picture></div></div></figure></div> </div> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs11036-020-01656-7/MediaObjects/11036_2020_1656_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s11036-020-01656-7?fromPaywallRec=true" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/s11036-020-01656-7">Deep Learning and Dempster-Shafer Theory Based Insider Threat Detection </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">09 October 2020</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-981-97-2550-2?as=webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-981-97-2550-2_58?fromPaywallRec=true" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/978-981-97-2550-2_58">Fortifying Cyber Defenses: A Deep Dive into the Development of an AI-Powered Network Intrusion Detection System </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-981-13-8300-7?as=webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-981-13-8300-7_5?fromPaywallRec=true" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/978-981-13-8300-7_5">Advance Persistent Threat Detection Using Long Short Term Memory (LSTM) Neural Networks </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2019</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732627332, embedded_user: 'null' } }); </script> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>Dataset is used which is publicly available online</p> <p>Datasets utilized in the paper are already open and publicly available</p> </div></div></section><section data-title="Code Availability"><div class="c-article-section" id="code-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="code-availability">Code Availability</h2><div class="c-article-section__content" id="code-availability-content"> <p>Code available upon requests.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Islam, M.M.; Nooruddin, S.; Karray, F.; Muhammad, G.: Internet of things: device capabilities, architectures, protocols, and smart applications in healthcare domain. IEEE Internet Things J. <b>10</b>(4), 3611–3641 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/JIOT.2022.3228795" data-track-item_id="10.1109/JIOT.2022.3228795" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FJIOT.2022.3228795" aria-label="Article reference 1" data-doi="10.1109/JIOT.2022.3228795">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=Internet%20of%20things%3A%20device%20capabilities%2C%20architectures%2C%20protocols%2C%20and%20smart%20applications%20in%20healthcare%20domain&journal=IEEE%20Internet%20Things%20J.&doi=10.1109%2FJIOT.2022.3228795&volume=10&issue=4&pages=3611-3641&publication_year=2022&author=Islam%2CMM&author=Nooruddin%2CS&author=Karray%2CF&author=Muhammad%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Akpan, F.; Bendiab, G.; Shiaeles, S.; Karamperidis, S.; Michaloliakos, M.: Cybersecurity challenges in the maritime sector. Network <b>2</b>(1), 123–138 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/network2010009" data-track-item_id="10.3390/network2010009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fnetwork2010009" aria-label="Article reference 2" data-doi="10.3390/network2010009">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Cybersecurity%20challenges%20in%20the%20maritime%20sector&journal=Network&doi=10.3390%2Fnetwork2010009&volume=2&issue=1&pages=123-138&publication_year=2022&author=Akpan%2CF&author=Bendiab%2CG&author=Shiaeles%2CS&author=Karamperidis%2CS&author=Michaloliakos%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Sule, M.-J.; Zennaro, M.; Thomas, G.: Cybersecurity through the lens of digital identity and data protection: issues and trends. Technol. Soc. <b>67</b>, 101734 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.techsoc.2021.101734" data-track-item_id="10.1016/j.techsoc.2021.101734" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.techsoc.2021.101734" aria-label="Article reference 3" data-doi="10.1016/j.techsoc.2021.101734">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Cybersecurity%20through%20the%20lens%20of%20digital%20identity%20and%20data%20protection%3A%20issues%20and%20trends&journal=Technol.%20Soc.&doi=10.1016%2Fj.techsoc.2021.101734&volume=67&publication_year=2021&author=Sule%2CM-J&author=Zennaro%2CM&author=Thomas%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Sarker, I.H.; Furhad, M.H.; Nowrozy, R.: Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput. Sci. <b>2</b>, 1–18 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s42979-021-00557-0" data-track-item_id="10.1007/s42979-021-00557-0" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s42979-021-00557-0" aria-label="Article reference 4" data-doi="10.1007/s42979-021-00557-0">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=Ai-driven%20cybersecurity%3A%20an%20overview%2C%20security%20intelligence%20modeling%20and%20research%20directions&journal=SN%20Comput.%20Sci.&doi=10.1007%2Fs42979-021-00557-0&volume=2&pages=1-18&publication_year=2021&author=Sarker%2CIH&author=Furhad%2CMH&author=Nowrozy%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Inayat, U.; Zia, M.F.; Mahmood, S.; Khalid, H.M.; Benbouzid, M.: Learning-based methods for cyber attacks detection in IotT systems: a survey on methods, analysis, and future prospects. Electronics <b>11</b>(9), 1502 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/electronics11091502" data-track-item_id="10.3390/electronics11091502" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Felectronics11091502" aria-label="Article reference 5" data-doi="10.3390/electronics11091502">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=Learning-based%20methods%20for%20cyber%20attacks%20detection%20in%20IotT%20systems%3A%20a%20survey%20on%20methods%2C%20analysis%2C%20and%20future%20prospects&journal=Electronics&doi=10.3390%2Felectronics11091502&volume=11&issue=9&publication_year=2022&author=Inayat%2CU&author=Zia%2CMF&author=Mahmood%2CS&author=Khalid%2CHM&author=Benbouzid%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Benzaid, C.; Taleb, T.: Ai-driven zero touch network and service management in 5g and beyond: challenges and research directions. IEEE Netw. <b>34</b>(2), 186–194 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/MNET.001.1900252" data-track-item_id="10.1109/MNET.001.1900252" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FMNET.001.1900252" aria-label="Article reference 6" data-doi="10.1109/MNET.001.1900252">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Ai-driven%20zero%20touch%20network%20and%20service%20management%20in%205g%20and%20beyond%3A%20challenges%20and%20research%20directions&journal=IEEE%20Netw.&doi=10.1109%2FMNET.001.1900252&volume=34&issue=2&pages=186-194&publication_year=2020&author=Benzaid%2CC&author=Taleb%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Sarker, I.H.; Abushark, Y.B.; Alsolami, F.; Khan, A.I.: Intrudtree: a machine learning based cyber security intrusion detection model. Symmetry <b>12</b>(5), 754 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/sym12050754" data-track-item_id="10.3390/sym12050754" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fsym12050754" aria-label="Article reference 7" data-doi="10.3390/sym12050754">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Intrudtree%3A%20a%20machine%20learning%20based%20cyber%20security%20intrusion%20detection%20model&journal=Symmetry&doi=10.3390%2Fsym12050754&volume=12&issue=5&publication_year=2020&author=Sarker%2CIH&author=Abushark%2CYB&author=Alsolami%2CF&author=Khan%2CAI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Bazzi, A.; Chafii, M.: Secure full duplex integrated sensing and communications. IEEE Trans. Inf. Forensics Secur. (2023). <a href="https://doi.org/10.1109/TIFS.2023.3346696" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/TIFS.2023.3346696">https://doi.org/10.1109/TIFS.2023.3346696</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TIFS.2023.3346696" data-track-item_id="10.1109/TIFS.2023.3346696" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTIFS.2023.3346696" aria-label="Article reference 8" data-doi="10.1109/TIFS.2023.3346696">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Secure%20full%20duplex%20integrated%20sensing%20and%20communications&journal=IEEE%20Trans.%20Inf.%20Forensics%20Secur.&doi=10.1109%2FTIFS.2023.3346696&publication_year=2023&author=Bazzi%2CA&author=Chafii%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Su, N.; Liu, F.; Masouros, C.: Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security. IEEE Transactions on Wireless Communications. <b>23</b>(4), 3162–3174 (2023)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TWC.2023.3306029" data-track-item_id="10.1109/TWC.2023.3306029" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTWC.2023.3306029" aria-label="Article reference 9" data-doi="10.1109/TWC.2023.3306029">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=Sensing-assisted%20eavesdropper%20estimation%3A%20An%20ISAC%20breakthrough%20in%20physical%20layer%20security&journal=IEEE%20Transactions%20on%20Wireless%20Communications.&doi=10.1109%2FTWC.2023.3306029&volume=23&issue=4&pages=3162-3174&publication_year=2023&author=Su%2CN&author=Liu%2CF&author=Masouros%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Bandari, V.: Enterprise data security measures: a comparative review of effectiveness and risks across different industries and organization types. Int. J. Bus. Intell. Big Data Anal. <b>6</b>(1), 1–11 (2023)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=Enterprise%20data%20security%20measures%3A%20a%20comparative%20review%20of%20effectiveness%20and%20risks%20across%20different%20industries%20and%20organization%20types&journal=Int.%20J.%20Bus.%20Intell.%20Big%20Data%20Anal.&volume=6&issue=1&pages=1-11&publication_year=2023&author=Bandari%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Singh, L.; Kanstrup, M.; Depa, K.; Falk, A.-C.; Lindström, V.; Dahl, O.; Göransson, K.E.; Rudman, A.; Holmes, E.A.; et al.: Digitalizing a brief intervention to reduce intrusive memories of psychological trauma for health care staff working during covid-19: exploratory pilot study with nurses. JMIR Formative Res. <b>5</b>(5), 27473 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2196/27473" data-track-item_id="10.2196/27473" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2196%2F27473" aria-label="Article reference 11" data-doi="10.2196/27473">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Digitalizing%20a%20brief%20intervention%20to%20reduce%20intrusive%20memories%20of%20psychological%20trauma%20for%20health%20care%20staff%20working%20during%20covid-19%3A%20exploratory%20pilot%20study%20with%20nurses&journal=JMIR%20Formative%20Res.&doi=10.2196%2F27473&volume=5&issue=5&publication_year=2021&author=Singh%2CL&author=Kanstrup%2CM&author=Depa%2CK&author=Falk%2CA-C&author=Lindstr%C3%B6m%2CV&author=Dahl%2CO&author=G%C3%B6ransson%2CKE&author=Rudman%2CA&author=Holmes%2CEA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Himeur, Y.; Sohail, S.S.; Bensaali, F.; Amira, A.; Alazab, M.: Latest trends of security and privacy in recommender systems: a comprehensive review and future perspectives. Comput. Secur. <b>118</b>, 102746 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cose.2022.102746" data-track-item_id="10.1016/j.cose.2022.102746" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cose.2022.102746" aria-label="Article reference 12" data-doi="10.1016/j.cose.2022.102746">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Latest%20trends%20of%20security%20and%20privacy%20in%20recommender%20systems%3A%20a%20comprehensive%20review%20and%20future%20perspectives&journal=Comput.%20Secur.&doi=10.1016%2Fj.cose.2022.102746&volume=118&publication_year=2022&author=Himeur%2CY&author=Sohail%2CSS&author=Bensaali%2CF&author=Amira%2CA&author=Alazab%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Liu, Y.; James, J.; Kang, J.; Niyato, D.; Zhang, S.: Privacy-preserving traffic flow prediction: a federated learning approach. IEEE Internet Things J. <b>7</b>(8), 7751–7763 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/JIOT.2020.2991401" data-track-item_id="10.1109/JIOT.2020.2991401" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FJIOT.2020.2991401" aria-label="Article reference 13" data-doi="10.1109/JIOT.2020.2991401">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Privacy-preserving%20traffic%20flow%20prediction%3A%20a%20federated%20learning%20approach&journal=IEEE%20Internet%20Things%20J.&doi=10.1109%2FJIOT.2020.2991401&volume=7&issue=8&pages=7751-7763&publication_year=2020&author=Liu%2CY&author=James%2CJ&author=Kang%2CJ&author=Niyato%2CD&author=Zhang%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Enthoven, D.; Al-Ars, Z.: An overview of federated deep learning privacy attacks and defensive strategies. Federated Learning Systems: Towards Next-Generation AI, Springer. <b>1</b>(965), 173–196 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-030-70604-3_8" data-track-item_id="10.1007/978-3-030-70604-3_8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/978-3-030-70604-3_8" aria-label="Article reference 14" data-doi="10.1007/978-3-030-70604-3_8">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=An%20overview%20of%20federated%20deep%20learning%20privacy%20attacks%20and%20defensive%20strategies&journal=Federated%20Learning%20Systems%3A%20Towards%20Next-Generation%20AI%2C%20Springer.&doi=10.1007%2F978-3-030-70604-3_8&volume=1&issue=965&pages=173-196&publication_year=2021&author=Enthoven%2CD&author=Al-Ars%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Truong, N.; Sun, K.; Wang, S.; Guitton, F.; Guo, Y.: Privacy preservation in federated learning: an insightful survey from the GDPR perspective. Comput. Secur. <b>110</b>, 102402 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cose.2021.102402" data-track-item_id="10.1016/j.cose.2021.102402" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cose.2021.102402" aria-label="Article reference 15" data-doi="10.1016/j.cose.2021.102402">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=Privacy%20preservation%20in%20federated%20learning%3A%20an%20insightful%20survey%20from%20the%20GDPR%20perspective&journal=Comput.%20Secur.&doi=10.1016%2Fj.cose.2021.102402&volume=110&publication_year=2021&author=Truong%2CN&author=Sun%2CK&author=Wang%2CS&author=Guitton%2CF&author=Guo%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Moşteanu, N.R.: Challenges for organizational structure and design as a result of digitalization and cybersecurity. Bus. Manag. Rev. <b>11</b>(1), 278–286 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.24052/BMR/V11NU01/ART-29" data-track-item_id="10.24052/BMR/V11NU01/ART-29" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.24052%2FBMR%2FV11NU01%2FART-29" aria-label="Article reference 16" data-doi="10.24052/BMR/V11NU01/ART-29">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&title=Challenges%20for%20organizational%20structure%20and%20design%20as%20a%20result%20of%20digitalization%20and%20cybersecurity&journal=Bus.%20Manag.%20Rev.&doi=10.24052%2FBMR%2FV11NU01%2FART-29&volume=11&issue=1&pages=278-286&publication_year=2020&author=Mo%C5%9Fteanu%2CNR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Abdallah, E.E.; Otoom, A.F.; et al.: Intrusion detection systems using supervised machine learning techniques: a survey. Proced. Comput. Sci. <b>201</b>, 205–212 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.procs.2022.03.029" data-track-item_id="10.1016/j.procs.2022.03.029" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.procs.2022.03.029" aria-label="Article reference 17" data-doi="10.1016/j.procs.2022.03.029">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=Intrusion%20detection%20systems%20using%20supervised%20machine%20learning%20techniques%3A%20a%20survey&journal=Proced.%20Comput.%20Sci.&doi=10.1016%2Fj.procs.2022.03.029&volume=201&pages=205-212&publication_year=2022&author=Abdallah%2CEE&author=Otoom%2CAF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Chang, C.; Wenming, S.; Wei, Z.; Changki, P.; Kontovas, C.: Evaluating cybersecurity risks in the maritime industry: a literature review. In: Proceedings of the International Association of Maritime Universities (IAMU) Conference (2019)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R.B.: Deep learning for coral classification. In: Handbook of Neural Computation, Elsevier, pp. 383–401 (2017)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J.: Image matching from handcrafted to deep features: a survey. Int. J. Comput. Vision <b>129</b>, 23–79 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11263-020-01359-2" data-track-item_id="10.1007/s11263-020-01359-2" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11263-020-01359-2" aria-label="Article reference 20" data-doi="10.1007/s11263-020-01359-2">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4202233" aria-label="MathSciNet reference 20">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Image%20matching%20from%20handcrafted%20to%20deep%20features%3A%20a%20survey&journal=Int.%20J.%20Comput.%20Vision&doi=10.1007%2Fs11263-020-01359-2&volume=129&pages=23-79&publication_year=2021&author=Ma%2CJ&author=Jiang%2CX&author=Fan%2CA&author=Jiang%2CJ&author=Yan%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Khan, M.J.; Riaz, M.A.; Shahid, H.; Khan, M.S.; Amin, Y.; Loo, J.; Tenhunen, H.; et al.: Texture representation through overlapped multi-oriented tri-scale local binary pattern. IEEE Access <b>7</b>, 66668–66679 (2019)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/ACCESS.2019.2918004" data-track-item_id="10.1109/ACCESS.2019.2918004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FACCESS.2019.2918004" aria-label="Article reference 21" data-doi="10.1109/ACCESS.2019.2918004">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Texture%20representation%20through%20overlapped%20multi-oriented%20tri-scale%20local%20binary%20pattern&journal=IEEE%20Access&doi=10.1109%2FACCESS.2019.2918004&volume=7&pages=66668-66679&publication_year=2019&author=Khan%2CMJ&author=Riaz%2CMA&author=Shahid%2CH&author=Khan%2CMS&author=Amin%2CY&author=Loo%2CJ&author=Tenhunen%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Mary, N.A.B.; Dharma, D.: Coral reef image classification employing improved LDP for feature extraction. J. Vis. Commun. Image Represent. <b>49</b>, 225–242 (2017)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jvcir.2017.09.008" data-track-item_id="10.1016/j.jvcir.2017.09.008" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jvcir.2017.09.008" aria-label="Article reference 22" data-doi="10.1016/j.jvcir.2017.09.008">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Coral%20reef%20image%20classification%20employing%20improved%20LDP%20for%20feature%20extraction&journal=J.%20Vis.%20Commun.%20Image%20Represent.&doi=10.1016%2Fj.jvcir.2017.09.008&volume=49&pages=225-242&publication_year=2017&author=Mary%2CNAB&author=Dharma%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Mary, A.B.; Dejey, D.: Classification of coral reef submarine images and videos using a novel z with tilted z local binary pattern (z tzlbp). Wirel. Pers. Commun. <b>98</b>(3), 2427–2459 (2018)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11277-017-4981-x" data-track-item_id="10.1007/s11277-017-4981-x" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11277-017-4981-x" aria-label="Article reference 23" data-doi="10.1007/s11277-017-4981-x">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=Classification%20of%20coral%20reef%20submarine%20images%20and%20videos%20using%20a%20novel%20z%20with%20tilted%20z%20local%20binary%20pattern%20%28z%20tzlbp%29&journal=Wirel.%20Pers.%20Commun.&doi=10.1007%2Fs11277-017-4981-x&volume=98&issue=3&pages=2427-2459&publication_year=2018&author=Mary%2CAB&author=Dejey%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Shakoor, M.H.; Boostani, R.: A novel advanced local binary pattern for image-based coral reef classification. Multimed. Tools Appl. <b>77</b>(2), 2561–2591 (2018)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11042-017-4394-6" data-track-item_id="10.1007/s11042-017-4394-6" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11042-017-4394-6" aria-label="Article reference 24" data-doi="10.1007/s11042-017-4394-6">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=A%20novel%20advanced%20local%20binary%20pattern%20for%20image-based%20coral%20reef%20classification&journal=Multimed.%20Tools%20Appl.&doi=10.1007%2Fs11042-017-4394-6&volume=77&issue=2&pages=2561-2591&publication_year=2018&author=Shakoor%2CMH&author=Boostani%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Shihavuddin, A.; Gracias, N.; Garcia, R.; Gleason, A.C.; Gintert, B.: Image-based coral reef classification and thematic mapping. Remote Sens. <b>5</b>(4), 1809–1841 (2013)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/rs5041809" data-track-item_id="10.3390/rs5041809" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Frs5041809" aria-label="Article reference 25" data-doi="10.3390/rs5041809">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Image-based%20coral%20reef%20classification%20and%20thematic%20mapping&journal=Remote%20Sens.&doi=10.3390%2Frs5041809&volume=5&issue=4&pages=1809-1841&publication_year=2013&author=Shihavuddin%2CA&author=Gracias%2CN&author=Garcia%2CR&author=Gleason%2CAC&author=Gintert%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Qin, H.; Li, X.; Yang, Z.; Shang, M.: When underwater imagery analysis meets deep learning: a solution at the age of big visual data. In: OCEANS 2015-MTS/IEEE Washington, pp. 1–5 (2015). IEEE</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Vedaldi, A.; Lenc, K.: Matconvnet: Convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692 (2015)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.A.; Boussaid, F.; Hovey, R.; Kendrick, G.A.; Fisher, R.B.: Deep image representations for coral image classification. IEEE J. Oceanic Eng. <b>44</b>(1), 121–131 (2018)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/JOE.2017.2786878" data-track-item_id="10.1109/JOE.2017.2786878" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FJOE.2017.2786878" aria-label="Article reference 28" data-doi="10.1109/JOE.2017.2786878">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=Deep%20image%20representations%20for%20coral%20image%20classification&journal=IEEE%20J.%20Oceanic%20Eng.&doi=10.1109%2FJOE.2017.2786878&volume=44&issue=1&pages=121-131&publication_year=2018&author=Mahmood%2CA&author=Bennamoun%2CM&author=An%2CS&author=Sohel%2CFA&author=Boussaid%2CF&author=Hovey%2CR&author=Kendrick%2CGA&author=Fisher%2CRB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Gómez-Ríos, A.; Tabik, S.; Luengo, J.; Shihavuddin, A.; Krawczyk, B.; Herrera, F.: Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Syst. Appl. <b>118</b>, 315–328 (2019)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2018.10.010" data-track-item_id="10.1016/j.eswa.2018.10.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2018.10.010" aria-label="Article reference 29" data-doi="10.1016/j.eswa.2018.10.010">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=Towards%20highly%20accurate%20coral%20texture%20images%20classification%20using%20deep%20convolutional%20neural%20networks%20and%20data%20augmentation&journal=Expert%20Syst.%20Appl.&doi=10.1016%2Fj.eswa.2018.10.010&volume=118&pages=315-328&publication_year=2019&author=G%C3%B3mez-R%C3%ADos%2CA&author=Tabik%2CS&author=Luengo%2CJ&author=Shihavuddin%2CA&author=Krawczyk%2CB&author=Herrera%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">King, A.; Bhandarkar, S.M.; Hopkinson, B.M.: A comparison of deep learning methods for semantic segmentation of coral reef survey images. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1394–1402 (2018)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">King, A., M Bhandarkar, S., Hopkinson, B.M.: Deep learning for semantic segmentation of coral reef images using multi-view information. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition workshops, pp. 1–10 (2019)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R.B.: Coral classification with hybrid feature representations. In: 2016 IEEE International conference on image processing (ICIP), pp. 519–523 (2016). IEEE</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Marcos, M.S.A.C.; Soriano, M.N.; Saloma, C.A.: Classification of coral reef images from underwater video using neural networks. Opt. Express <b>13</b>(22), 8766–8771 (2005)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/OPEX.13.008766" data-track-item_id="10.1364/OPEX.13.008766" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FOPEX.13.008766" aria-label="Article reference 33" data-doi="10.1364/OPEX.13.008766">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=Classification%20of%20coral%20reef%20images%20from%20underwater%20video%20using%20neural%20networks&journal=Opt.%20Express&doi=10.1364%2FOPEX.13.008766&volume=13&issue=22&pages=8766-8771&publication_year=2005&author=Marcos%2CMSAC&author=Soriano%2CMN&author=Saloma%2CCA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Priya, C.P.; et al.: Coral reef image classification employing deep features and a novel local inter cross weber magnitude (licwm) pattern. Turk. J. Comput. Math. Educ. (TURCOMAT) <b>12</b>(6), 345–357 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.17762/turcomat.v12i6.1397" data-track-item_id="10.17762/turcomat.v12i6.1397" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.17762%2Fturcomat.v12i6.1397" aria-label="Article reference 34" data-doi="10.17762/turcomat.v12i6.1397">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4296823" aria-label="MathSciNet reference 34">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Coral%20reef%20image%20classification%20employing%20deep%20features%20and%20a%20novel%20local%20inter%20cross%20weber%20magnitude%20%28licwm%29%20pattern&journal=Turk.%20J.%20Comput.%20Math.%20Educ.%20%28TURCOMAT%29&doi=10.17762%2Fturcomat.v12i6.1397&volume=12&issue=6&pages=345-357&publication_year=2021&author=Priya%2CCP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Jia, Y.; Zhong, F.; Alrawais, A.; Gong, B.; Cheng, X.: Flowguard: an intelligent edge defense mechanism against IOT DDOS attacks. IEEE Internet Things J. <b>7</b>(10), 9552–9562 (2020)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Assis, M.V.; Carvalho, L.F.; Rodrigues, J.J.; Lloret, J.; Proença, M.L., Jr.: Near real-time security system applied to SDN environments in IOT networks using convolutional neural network. Comput. Electr. Eng. <b>86</b>, 106738 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.compeleceng.2020.106738" data-track-item_id="10.1016/j.compeleceng.2020.106738" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.compeleceng.2020.106738" aria-label="Article reference 36" data-doi="10.1016/j.compeleceng.2020.106738">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Near%20real-time%20security%20system%20applied%20to%20SDN%20environments%20in%20IOT%20networks%20using%20convolutional%20neural%20network&journal=Comput.%20Electr.%20Eng.&doi=10.1016%2Fj.compeleceng.2020.106738&volume=86&publication_year=2020&author=Assis%2CMV&author=Carvalho%2CLF&author=Rodrigues%2CJJ&author=Lloret%2CJ&author=Proen%C3%A7a%2CML"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Assis, M.V.; Carvalho, L.F.; Lloret, J.; Proença, M.L., Jr.: A GRU deep learning system against attacks in software defined networks. J. Netw. Comput. Appl. <b>177</b>, 102942 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jnca.2020.102942" data-track-item_id="10.1016/j.jnca.2020.102942" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jnca.2020.102942" aria-label="Article reference 37" data-doi="10.1016/j.jnca.2020.102942">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=A%20GRU%20deep%20learning%20system%20against%20attacks%20in%20software%20defined%20networks&journal=J.%20Netw.%20Comput.%20Appl.&doi=10.1016%2Fj.jnca.2020.102942&volume=177&publication_year=2021&author=Assis%2CMV&author=Carvalho%2CLF&author=Lloret%2CJ&author=Proen%C3%A7a%2CML"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Kumar, P.; Gupta, G.P.; Tripathi, R.: An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IOMT networks. Comput. Commun. <b>166</b>, 110–124 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.comcom.2020.12.003" data-track-item_id="10.1016/j.comcom.2020.12.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.comcom.2020.12.003" aria-label="Article reference 38" data-doi="10.1016/j.comcom.2020.12.003">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=An%20ensemble%20learning%20and%20fog-cloud%20architecture-driven%20cyber-attack%20detection%20framework%20for%20IOMT%20networks&journal=Comput.%20Commun.&doi=10.1016%2Fj.comcom.2020.12.003&volume=166&pages=110-124&publication_year=2021&author=Kumar%2CP&author=Gupta%2CGP&author=Tripathi%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">Javeed, D.; Gao, T.; Khan, M.T.: SDN-enabled hybrid dl-driven framework for the detection of emerging cyber threats in IOT. Electronics <b>10</b>(8), 918 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/electronics10080918" data-track-item_id="10.3390/electronics10080918" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Felectronics10080918" aria-label="Article reference 39" data-doi="10.3390/electronics10080918">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=SDN-enabled%20hybrid%20dl-driven%20framework%20for%20the%20detection%20of%20emerging%20cyber%20threats%20in%20IOT&journal=Electronics&doi=10.3390%2Felectronics10080918&volume=10&issue=8&publication_year=2021&author=Javeed%2CD&author=Gao%2CT&author=Khan%2CMT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Gadekallu, T.R.; Srivastava, G.: Sp2f: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles. Comput. Netw. <b>187</b>, 107819 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.comnet.2021.107819" data-track-item_id="10.1016/j.comnet.2021.107819" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.comnet.2021.107819" aria-label="Article reference 40" data-doi="10.1016/j.comnet.2021.107819">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Sp2f%3A%20a%20secured%20privacy-preserving%20framework%20for%20smart%20agricultural%20unmanned%20aerial%20vehicles&journal=Comput.%20Netw.&doi=10.1016%2Fj.comnet.2021.107819&volume=187&publication_year=2021&author=Kumar%2CR&author=Kumar%2CP&author=Tripathi%2CR&author=Gupta%2CGP&author=Gadekallu%2CTR&author=Srivastava%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Dixit, P.; Silakari, S.: Deep learning algorithms for cybersecurity applications: a technological and status review. Comput. Sci. Rev. <b>39</b>, 100317 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cosrev.2020.100317" data-track-item_id="10.1016/j.cosrev.2020.100317" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cosrev.2020.100317" aria-label="Article reference 41" data-doi="10.1016/j.cosrev.2020.100317">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4184640" aria-label="MathSciNet reference 41">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&title=Deep%20learning%20algorithms%20for%20cybersecurity%20applications%3A%20a%20technological%20and%20status%20review&journal=Comput.%20Sci.%20Rev.&doi=10.1016%2Fj.cosrev.2020.100317&volume=39&publication_year=2021&author=Dixit%2CP&author=Silakari%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S.: Deep learning approach for intelligent intrusion detection system. Ieee Access <b>7</b>, 41525–41550 (2019)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/ACCESS.2019.2895334" data-track-item_id="10.1109/ACCESS.2019.2895334" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FACCESS.2019.2895334" aria-label="Article reference 42" data-doi="10.1109/ACCESS.2019.2895334">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&title=Deep%20learning%20approach%20for%20intelligent%20intrusion%20detection%20system&journal=Ieee%20Access&doi=10.1109%2FACCESS.2019.2895334&volume=7&pages=41525-41550&publication_year=2019&author=Vinayakumar%2CR&author=Alazab%2CM&author=Soman%2CK&author=Poornachandran%2CP&author=Al-Nemrat%2CA&author=Venkatraman%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Liu, G.; Bao, H.; Han, B.: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis. Math. Probl. Eng. <b>2018</b>, 1–10 (2018)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&title=A%20stacked%20autoencoder-based%20deep%20neural%20network%20for%20achieving%20gearbox%20fault%20diagnosis&journal=Math.%20Probl.%20Eng.&volume=2018&pages=1-10&publication_year=2018&author=Liu%2CG&author=Bao%2CH&author=Han%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Alrawashdeh, K.; Purdy, C.: Fast hardware assisted online learning using unsupervised deep learning structure for anomaly detection. In: 2018 International conference on information and computer technologies (ICICT), pp. 128–134 (2018). IEEE</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">Young, T.; Hazarika, D.; Poria, S.; Cambria, E.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. <b>13</b>(3), 55–75 (2018)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/MCI.2018.2840738" data-track-item_id="10.1109/MCI.2018.2840738" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FMCI.2018.2840738" aria-label="Article reference 45" data-doi="10.1109/MCI.2018.2840738">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&title=Recent%20trends%20in%20deep%20learning%20based%20natural%20language%20processing&journal=IEEE%20Comput.%20Intell.%20Mag.&doi=10.1109%2FMCI.2018.2840738&volume=13&issue=3&pages=55-75&publication_year=2018&author=Young%2CT&author=Hazarika%2CD&author=Poria%2CS&author=Cambria%2CE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">Nguyen, T.T.; Reddi, V.J.: Deep reinforcement learning for cyber security. IEEE Trans. Neural Netw. Learn. Syst. <b>34</b>(8), 3779–3795 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TNNLS.2021.3121870" data-track-item_id="10.1109/TNNLS.2021.3121870" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTNNLS.2021.3121870" aria-label="Article reference 46" data-doi="10.1109/TNNLS.2021.3121870">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&title=Deep%20reinforcement%20learning%20for%20cyber%20security&journal=IEEE%20Trans.%20Neural%20Netw.%20Learn.%20Syst.&doi=10.1109%2FTNNLS.2021.3121870&volume=34&issue=8&pages=3779-3795&publication_year=2021&author=Nguyen%2CTT&author=Reddi%2CVJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">Lin, Z.; Shi, Y.; Xue, Z.: Idsgan: Generative adversarial networks for attack generation against intrusion detection. In: Pacific-Asia conference on knowledge discovery and data mining, pp. 79–91 (2022). Springer</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">Teoh, T.; Chiew, G.; Franco, E.J.; Ng, P.; Benjamin, M.; Goh, Y.: Anomaly detection in cyber security attacks on networks using MLP deep learning. In: 2018 international conference on smart computing and electronic enterprise (ICSCEE), pp. 1–5 (2018). IEEE</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">HB, B.G.; Poornachandran, P.; KP, S.; et al.: Deep-net: Deep neural network for cyber security use cases. arXiv preprint <a href="http://arxiv.org/abs/1812.03519" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1812.03519">arXiv:1812.03519</a> (2018)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">Mohammadpour, L.; Ling, T.C.; Liew, C.S.; Aryanfar, A.: A survey of CNN-based network intrusion detection. Appl. Sci. <b>12</b>(16), 8162 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/app12168162" data-track-item_id="10.3390/app12168162" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fapp12168162" aria-label="Article reference 50" data-doi="10.3390/app12168162">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&title=A%20survey%20of%20CNN-based%20network%20intrusion%20detection&journal=Appl.%20Sci.&doi=10.3390%2Fapp12168162&volume=12&issue=16&publication_year=2022&author=Mohammadpour%2CL&author=Ling%2CTC&author=Liew%2CCS&author=Aryanfar%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">Lazzarini, R.; Tianfield, H.; Charissis, V.: A stacking ensemble of deep learning models for IOT intrusion detection. Knowl.-Based Syst. <b>279</b>, 110941 (2023)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.knosys.2023.110941" data-track-item_id="10.1016/j.knosys.2023.110941" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.knosys.2023.110941" aria-label="Article reference 51" data-doi="10.1016/j.knosys.2023.110941">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&title=A%20stacking%20ensemble%20of%20deep%20learning%20models%20for%20IOT%20intrusion%20detection&journal=Knowl.-Based%20Syst.&doi=10.1016%2Fj.knosys.2023.110941&volume=279&publication_year=2023&author=Lazzarini%2CR&author=Tianfield%2CH&author=Charissis%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">Kilincer, I.F.; Ertam, F.; Sengur, A.: Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Comput. Netw. <b>188</b>, 107840 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.comnet.2021.107840" data-track-item_id="10.1016/j.comnet.2021.107840" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.comnet.2021.107840" aria-label="Article reference 52" data-doi="10.1016/j.comnet.2021.107840">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&title=Machine%20learning%20methods%20for%20cyber%20security%20intrusion%20detection%3A%20Datasets%20and%20comparative%20study&journal=Comput.%20Netw.&doi=10.1016%2Fj.comnet.2021.107840&volume=188&publication_year=2021&author=Kilincer%2CIF&author=Ertam%2CF&author=Sengur%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">Santoso, F.; Finn, A.: Trusted operations of a military ground robot in the face of man-in-the-middle cyber-attacks using deep learning convolutional neural networks: Real-time experimental outcomes. IEEE Transactions on Dependable and Secure Computing. <b>21</b>(4), 2273–2284 (2023)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TDSC.2023.3302807" data-track-item_id="10.1109/TDSC.2023.3302807" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTDSC.2023.3302807" aria-label="Article reference 53" data-doi="10.1109/TDSC.2023.3302807">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 53" href="http://scholar.google.com/scholar_lookup?&title=Trusted%20operations%20of%20a%20military%20ground%20robot%20in%20the%20face%20of%20man-in-the-middle%20cyber-attacks%20using%20deep%20learning%20convolutional%20neural%20networks%3A%20Real-time%20experimental%20outcomes&journal=IEEE%20Transactions%20on%20Dependable%20and%20Secure%20Computing.&doi=10.1109%2FTDSC.2023.3302807&volume=21&issue=4&pages=2273-2284&publication_year=2023&author=Santoso%2CF&author=Finn%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">Pooja, T.; Shrinivasacharya, P.: Evaluating neural networks using bi-directional LSTM for network ids (intrusion detection systems) in cyber security. Glob Trans. Proc. <b>2</b>(2), 448–454 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.gltp.2021.08.017" data-track-item_id="10.1016/j.gltp.2021.08.017" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.gltp.2021.08.017" aria-label="Article reference 54" data-doi="10.1016/j.gltp.2021.08.017">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&title=Evaluating%20neural%20networks%20using%20bi-directional%20LSTM%20for%20network%20ids%20%28intrusion%20detection%20systems%29%20in%20cyber%20security&journal=Glob%20Trans.%20Proc.&doi=10.1016%2Fj.gltp.2021.08.017&volume=2&issue=2&pages=448-454&publication_year=2021&author=Pooja%2CT&author=Shrinivasacharya%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">Ansari, M.S.; Bartoš, V.; Lee, B.: GRU-based deep learning approach for network intrusion alert prediction. Futur. Gener. Comput. Syst. <b>128</b>, 235–247 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.future.2021.09.040" data-track-item_id="10.1016/j.future.2021.09.040" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.future.2021.09.040" aria-label="Article reference 55" data-doi="10.1016/j.future.2021.09.040">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&title=GRU-based%20deep%20learning%20approach%20for%20network%20intrusion%20alert%20prediction&journal=Futur.%20Gener.%20Comput.%20Syst.&doi=10.1016%2Fj.future.2021.09.040&volume=128&pages=235-247&publication_year=2022&author=Ansari%2CMS&author=Barto%C5%A1%2CV&author=Lee%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">Latif, S.; Huma, Z.; Jamal, S.S.; Ahmed, F.; Ahmad, J.; Zahid, A.; Dashtipour, K.; Aftab, M.U.; Ahmad, M.; Abbasi, Q.H.: Intrusion detection framework for the internet of things using a dense random neural network. IEEE Trans. Ind. Inf. <b>18</b>(9), 6435–6444 (2021)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">Leevy, J.L.; Hancock, J.; Zuech, R.; Khoshgoftaar, T.M.: Detecting cybersecurity attacks using different network features with lightgbm and xgboost learners. In: 2020 IEEE second international conference on cognitive machine intelligence (CogMI), pp. 190–197 (2020). IEEE</p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s13369-024-09680-5?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 1056-830-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 1056-830-1443). The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Information Systems, Faculty of Computing and Information Technology (FCIT), King Abdulaziz University, Jeddah, 34025, Saudi Arabia</p><p class="c-article-author-affiliation__authors-list">Fahad M. Alotaibi</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Power Systems Laboratory Department of Energy Convergence, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 61005, South Korea</p><p class="c-article-author-affiliation__authors-list"> Fawad</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Fahad_M_-Alotaibi-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Fahad M. Alotaibi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Fahad%20M.%20Alotaibi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Fahad%20M.%20Alotaibi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Fahad%20M.%20Alotaibi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth--Fawad-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name"> Fawad</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=%20Fawad" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=%20Fawad" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22%20Fawad%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>The first author named as Fahad M. Alotaib performed the investigation project administration, and funding acquisition, while the second author Fawad performed the software, validation, writing, and editing.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:Fmmalotaibi@kau.edu.sa">Fahad M. Alotaibi</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Conflict of interest</h3> <p>The authors declare no conflict of interest between them.</p> <h3 class="c-article__sub-heading" id="FPar2">Ethical Approval</h3> <p>Ethics approval and consent to participate</p> <h3 class="c-article__sub-heading" id="FPar3">Consent for Publications</h3> <p>Both authors provide their consent for publications.</p> </div></div></section><section aria-labelledby="appendices"><div class="c-article-section" id="appendices-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="appendices">Section title of first appendix</h2><div class="c-article-section__content" id="appendices-content"><h3 class="c-article__sub-heading u-visually-hidden" id="App1">Section title of first appendix</h3><p>An appendix contains supplementary information that is not an essential part of the text itself but which may be helpful in providing a more comprehensive understanding of the research problem or it is information that is too cumbersome to be included in the body of the paper.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"><p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=HRL-DeepNet%3A%20A%20Hybrid%20Residual%20Layer%20Deep%20Neural%20Network%20for%20Cybersecurity%20Policy%20Modeling%2C%20Structuring%2C%20and%20Protecting%20Assets%20of%20Organizations&author=Fahad%20M.%20Alotaibi%20et%20al&contentID=10.1007%2Fs13369-024-09680-5&copyright=This%20is%20a%20U.S.%20Government%20work%20and%20not%20under%20copyright%20protection%20in%20the%20US%3B%20foreign%20copyright%20protection%20may%20apply&publication=2193-567X&publicationDate=2024-11-22&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s13369-024-09680-5" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s13369-024-09680-5" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Alotaibi, F.M., Fawad HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations. <i>Arab J Sci Eng</i> (2024). https://doi.org/10.1007/s13369-024-09680-5</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s13369-024-09680-5?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-03-20">20 March 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-10-02">02 October 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-11-22">22 November 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s13369-024-09680-5</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Cyber%20security&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Cyber security</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Internet%20of%20things&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Internet of things</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Deep%20neural%20network&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Deep neural network</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Emerging%20trends&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Emerging trends</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Classification&facet-discipline="Engineering"" data-track="click" data-track-action="view keyword" data-track-label="link">Classification</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div data-test="access-article" class="app-article-access"> <h2 class="app-article-access__heading">Access this article</h2> <div class="u-ma-16 u-clear-both"> <a href="//wayf.springernature.com?redirect_uri=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs13369-024-09680-5%3Ferror%3Dcookies_not_supported%26code%3Dd55eb9e7-d0f6-43ae-ab8c-1e45953c7499" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-track="click" data-track-action="institution access" data-track-label="button"> <span data-test="access-via-institution">Log in via an institution</span> <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg> </a> </div> <div data-test="buy-box-desktop" class="c-article-buy-box"> <div class="sprcom-buybox-articleDarwin" id="sprcom-buybox-articleDarwin"> <!-- rendered: 2024-11-27T02:53:14.023156 --><!-- Darwin version --> <div class="buying-option" data-test-id="buy-article-darwin"> <div> <div class="c-springer-plus"> <h2 class="springer-plus-heading">Subscribe and save</h2> <div class="springer-plus"> <div class="springer-plus-headline"> <div class="springer-plus-title"> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-check-filled-medium"></use> </svg><span>Springer+ Basic</span> </div> <div class="dd price-amount-springer-plus"> €32.70 /Month </div> </div> <ul class="buying-option-usps"> <li>Get 10 units per month</li> <li>Download Article/Chapter or eBook</li> <li>1 Unit = 1 Article or 1 Chapter</li> <li>Cancel anytime</li> </ul><a href="https://link.springer.com/product/springer-plus" id="btn-subscribe-springerPlus" class="u-button u-button--full-width u-button--secondary" data-track="click||click_springer_subscribe" data-track-context="buy box"><span>Subscribe now </span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a> </div> <h2 class="springer-plus-heading">Buy Now</h2> </div> <div class="buybox__buy"> <form action="https://order.springer.com/public/cart" method="post"> <input type="hidden" name="type" value="article"><input type="hidden" name="doi" value="10.1007/s13369-024-09680-5"><input type="hidden" name="isxn" value="2191-4281"><input type="hidden" name="contenttitle" value="HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations"><input type="hidden" name="copyrightyear" value="2024"><input type="hidden" name="year" value="2024"><input type="hidden" name="authors" value="Fahad M. Alotaibi, Fawad"><input type="hidden" name="title" value="Arabian Journal for Science and Engineering"><input type="hidden" name="mac" value="c2140d6a62ffb7c0d98c27701c39056e"> <div class="u-ma-16"> <button type="submit" class="u-button--small u-button u-button--secondary u-button--full-width" onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"EUR","add":{"products":[{"name":"HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations","id":"2191-4281","price":39.95,"brand":"Springer Berlin Heidelberg","category":"Technology and Engineering","variant":"ppv-article","quantity":1}]}}});"><span>Buy article PDF 39,95 €</span></button> </div> </form> <p class="c-notes__text c-notes__vat">Price includes VAT (Hong Kong/P.R.China)<br></p> <p class="c-notes__text c-notes__usp">Instant access to the full article PDF.</p> </div> </div> <script>dataLayer.push({"ecommerce":{"currency":"EUR","impressions":[{"name":"HRL-DeepNet: A Hybrid Residual Layer Deep Neural Network for Cybersecurity Policy Modeling, Structuring, and Protecting Assets of Organizations","id":"2191-4281","price":39.95,"brand":"Springer Berlin Heidelberg","category":"Technology and Engineering","variant":"ppv-article","quantity":1}]}});</script> <script style="display: none"> ;(function () { if (document.cookie.indexOf("feature-monetise-subscriptions-display-springer-plus") > -1) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.9 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { var article = document.getElementById("sprcom-buybox-articleDarwin"); if(article) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here })() </script> <style> .springer-plus .buying-option-usps > li::before { background-image: url("data:image/svg+xml,%3Csvg viewBox='0 0 100 100' xmlns='http://www.w3.org/2000/svg' fill='%230070A8'%3E%3Ccircle cx='50' cy='50' r='50'/%3E%3C/svg%3E"); } </style> </div> <article class="buybox__rent-article buybox__access-option u-sans-serif" id="deepdyve" style="display: none" data-test-id="journal-subscription"> <div class="c-box__body"> <div class="buybox__info"> <p>Rent this article via <a class="deepdyve-link" target="deepdyve" rel="nofollow" data-track="click" data-track-action="rent article" data-track-label="rent action, new buybox">DeepDyve</a> <svg focusable="false" role="img" aria-hidden="true" class="u-icon" style="vertical-align: middle"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use> </svg></p> </div> </div> <script> function deepDyveResponse(data) { if (data.status === 'ok') { [].slice.call(document.querySelectorAll('.buybox__rent-article')).forEach(function (article) { article.style.display = 'flex' var link = article.querySelector('.deepdyve-link') if (link) { link.setAttribute('href', data.url) } }) } } var script = document.createElement('script') script.src = '//www.deepdyve.com/rental-link?docId=10.1007/s13369-024-09680-5&journal=2191-4281&fieldName=journal_doi&affiliateId=springer&format=jsonp&callback=deepDyveResponse' document.body.appendChild(script) </script> </article> <div class="buybox__access-option buybox__institutional-subs-link u-sans-serif"> <p><a href="https://www.springernature.com/gp/librarians/licensing/agc/journals">Institutional subscriptions <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon" style="vertical-align: middle"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </div> <style>.sprcom-buybox-articleDarwin .buybox__access-option{ border-top: 1px solid #cedbe0; font-size: 1rem; padding: 16px; } .sprcom-buybox-articleDarwin .c-springer-plus{ display: none; } .sprcom-buybox-articleDarwin .springer-plus{ background-color: #EBF6FF; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; padding: 16px; } .sprcom-buybox-articleDarwin .springer-plus-headline{ display: flex; justify-content: space-between; } .sprcom-buybox-articleDarwin .springer-plus-heading{ border-bottom: 1px solid #c5e0f4; border-top: 1px solid #c5e0f4; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 1.125rem; font-weight: 700; margin: 0; padding: 16px; text-align: center; } .sprcom-buybox-articleDarwin .springer-plus-title{ align-items: center; display: flex; } .sprcom-buybox-articleDarwin .springer-plus-title span{ margin-left: 8px; } .sprcom-buybox-articleDarwin .springer-plus a{ background-color: #fff; border: 1px solid #025e8d; color: #025e8d; font-size: 16px; font-weight: 700; max-height: 44px; } .sprcom-buybox-articleDarwin .springer-plus a span{ margin-right: 8px; } .sprcom-buybox-articleDarwin .springer-plus a:hover{ background-color: #025e8d; border: 4px solid #025e8d; box-shadow: none; color: #fff; font-weight: 700; } .sprcom-buybox-articleDarwin .springer-plus a:visited{ color: #025e8d; } .sprcom-buybox-articleDarwin .springer-plus a:visited:hover{ color: #fff; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps{ color: #555; font-size: 1rem; line-height: 1.6; list-style: none; margin: 0; padding: 16px 0 24px 0; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li{ padding-left: 26px; position: relative; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li::before{ content: ''; height: 10px; left: 0; position: absolute; top: calc(0.8em - 5px); width: 10px; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li:not(:first-child){ margin-top: 4px; } </style> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/13369/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s13369-024-09680-5;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>