CINXE.COM

Search results for: B. bassiana

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: B. bassiana</title> <meta name="description" content="Search results for: B. bassiana"> <meta name="keywords" content="B. bassiana"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="B. bassiana" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="B. bassiana"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: B. bassiana</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Existence of Beauveria bassiana in the Third Generation of Corn Seedling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Itji%20Diana%20Daud">Itji Diana Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuniek%20Widiayani"> Nuniek Widiayani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fungus Beauveria bassiana can be endophytic in maize. The fungus was recovered in culture from stems, leaves and roots after a month planting. This phenomenon was shown until the third generation of the corn. The result from laboratory shows that B. bassiana appear in F1, F2 and F3 in order 70, 80 and 90% in the roots, 80% in the stems in all generation, 90, 80 and 70% in leaves. In CFU’s ml-1 of B. bassiana in corn seed, show F1 was 8.9 x 106, F2 was 8.1 x 106 and F3 was 7.8 x 106. The research showed that B. Bassiana as endophyte still remain to the third generation. Innovation to the corn seed which is endophyte seed is essential to protect from the attack of corn borer and to avoid the usage of insecticide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endophytic" title="endophytic">endophytic</a>, <a href="https://publications.waset.org/abstracts/search?q=recovered" title=" recovered"> recovered</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20generation" title=" third generation"> third generation</a>, <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title=" Beauveria bassiana"> Beauveria bassiana</a> </p> <a href="https://publications.waset.org/abstracts/41128/the-existence-of-beauveria-bassiana-in-the-third-generation-of-corn-seedling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effect of Two Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae var. acridum on the Haemolymph of the Desert Locust Schistocerca gregaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Bissaad">Fatima Zohra Bissaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Bounaceur"> Farid Bounaceur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Behidj"> Nassima Behidj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Chebouti"> Nadjiba Chebouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Halouane"> Fatma Halouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Doumandji-Mitiche"> Bahia Doumandji-Mitiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of <em>Beauveria bassiana</em> and <em>Metarhizium anisopliae</em> var. <em>acridum</em> on the 5<sup>th </sup>instar nymphs of <em>Schistocerca gregaria</em> was studied in the laboratory. Infection by these both entomopathogenic fungi caused reduction in the hemolymph total protein. The average amounts of total proteins were 2.3, 2.07, 2.09 &micro;g/100 ml of haemolymph in the control and <em>M. anisopliae </em>var. <em>acridum</em>, and <em>B. bassiana</em> based-treatments, respectively. Three types of haemocytes were recognized and identified as prohaemocytes, plasmatocytes and granulocytes. The treatment caused significant reduction in the total haemocyte count and in each haemocyte type on the 9<sup>th</sup> day after its application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=haemolymph%20picture" title=" haemolymph picture"> haemolymph picture</a>, <a href="https://publications.waset.org/abstracts/search?q=haemolymph%20protein" title=" haemolymph protein"> haemolymph protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Metarhizium%20anisopliae%20var.%20acridum" title=" Metarhizium anisopliae var. acridum"> Metarhizium anisopliae var. acridum</a>, <a href="https://publications.waset.org/abstracts/search?q=Schistocerca%20gregaria" title=" Schistocerca gregaria"> Schistocerca gregaria</a> </p> <a href="https://publications.waset.org/abstracts/16594/effect-of-two-entomopathogenic-fungi-beauveria-bassiana-and-metarhizium-anisopliae-var-acridum-on-the-haemolymph-of-the-desert-locust-schistocerca-gregaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Histological Changes in the Culex pipiens Mosquito Larvae Treated by the Entomopathogenic Fungus Beauveria bassiana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Sahir-%20Halouane">Fatma Sahir- Halouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Hamid"> Sonia Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Farida%20Tihar-Benzina"> Farida Tihar-Benzina</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Bouhlali"> Fatiha Bouhlali</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20Lourchane"> Souad Lourchane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Culicidae are biting insects, the most harmful to people, they are almost all bloodsuckers, and they are responsible of the spread of many important diseases such as malaria, yellow fever, and elephantiasis. Entomopathogenic microorganisms occupy an important place among the alternative methods of fighting against pests insect. The fungus Beauveria bassiana is an entomopathogenic agent naturally present in the ecosystems. It offers a very interesting potential for controlling populations of mosquitoes. This study aimed to show the histological changes that occured in Culex pipiens larvae infected with Beauveria bassiana. The 4th instar larvae were infected with B. bassiana in 10-7 spore/ml dilution, the histological section was studied showing that the fungi infected all the body parts specially Cuticle, Epiderms, fat bodies and midgut. After then the insect have a white appearance and covered with a thick coat of hyphea. The obtained results show that the application of Beauveria bassiana on cuticle of the fourth stage larvae of Culex pipiens was dependent of an apparent disturbance on the structure of the cuticle or there has been the degeneration of its different parts, infection of the fungus does not stop at the body walls. Therefore, it affects even the Adipose tissue, epidermal cells and intestine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Culex%20pipiens" title="Culex pipiens">Culex pipiens</a>, <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title=" Beauveria bassiana"> Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=histological%20changes" title=" histological changes"> histological changes</a>, <a href="https://publications.waset.org/abstracts/search?q=cuticle" title=" cuticle"> cuticle</a>, <a href="https://publications.waset.org/abstracts/search?q=intestine%20and%20adipose%20tissue" title=" intestine and adipose tissue "> intestine and adipose tissue </a> </p> <a href="https://publications.waset.org/abstracts/12650/histological-changes-in-the-culex-pipiens-mosquito-larvae-treated-by-the-entomopathogenic-fungus-beauveria-bassiana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Study of the Toxic Activity of the Entomopathogenic Fungus Beauveria bassiana on the Wistar Rat Rattus norvegicus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Haddadj">F. Haddadj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamdi"> S. Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Milla"> A. Milla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenia"> S. Zenia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smai"> A. Smai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saadi"> H. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Marniche"> F. Marniche</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Doumandji-Mitiche"> B. Doumandji-Mitiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of a biopesticide based on a microorganism scale requires particular care including safety against the useful auxiliary fauna and mammals among other human beings. Due to its persistence in soil and its apparent human and animal safety, Beauveria bassiana is a cryptogram used for controlling pests organizations, particularly in the locust where its effectiveness has been proven. This fungus is also called for greater respect for biotic communities and the environment. Indeed, biopesticides have several environmental benefits: biodegradability, their activity and selectivity decrease unintended non-target species effects, decreased resistance to some of them. It is in this sense that we contribute by presenting our work on the safety of B. bassiana against mammals. For this we conducted a toxicological study of this fungus strain on Wistar rats Rattus norvegicus, first its effect on weight gain. In a second time were performed histological target organ is the liver. After 20 days of treatment, the results of the toxicological studies have shown that B. bassiana caused no change in the physiological state of rats or weight gain, behavior and diet. On cuts in liver histology revealed no disturbance on the organ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20bassiana" title="B. bassiana">B. bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20fungus" title=" entomopathogenic fungus"> entomopathogenic fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=Rattus%20norvegicus" title=" Rattus norvegicus"> Rattus norvegicus</a> </p> <a href="https://publications.waset.org/abstracts/42602/study-of-the-toxic-activity-of-the-entomopathogenic-fungus-beauveria-bassiana-on-the-wistar-rat-rattus-norvegicus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Toxic Activity of the Entomopathogenic Fungus Beauveria bassiana on the Wistar Rat Rattus norvegicus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Haddadj">F. Haddadj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamdi"> S. Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khames"> M. Khames</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kadi"> A. Kadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenia"> S. Zenia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smai"> A. Smai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saadi"> H. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Doumandji-Mitiche"> B. Doumandji-Mitiche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of a biopesticide based on a microorganism scale requires particular care including safety against the useful auxiliary fauna and mammals among other human beings. Due to its persistence in soil and its apparent human and animal safety, Beauveria bassiana is a cryptogram used for controlling pests organizations, particularly in the locust where its effectiveness has been proven by several highly studies. This fungus is also called for greater respect for biotic communities and the environment. Indeed, biopesticides have several environmental benefits: biodegradability, their activity and selectivity decrease unintended non-target species effects, decreased resistance to some of them. It is in this sense that we contribute by presenting our work on the safety of B. bassiana against mammals. For this we conducted a toxicological study of this fungus strain on Wistar rats Rattus norvegicus, first its effect on weight gain. In a second time were performed histological target organ is the liver. After 20 days of treatment, the results of the toxicological studies have shown that B. bassiana caused no change in the physiological state of rats or weight gain, behavior and diet. On cuts in liver histology revealed no disturbance on the organ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20fungus" title="entomopathogenic fungus">entomopathogenic fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20bassiana" title=" B. bassiana"> B. bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Rattus%20norvegicus" title=" Rattus norvegicus"> Rattus norvegicus</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicological%20study" title=" toxicological study"> toxicological study</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/30997/toxic-activity-of-the-entomopathogenic-fungus-beauveria-bassiana-on-the-wistar-rat-rattus-norvegicus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Controlling Cocoa Pod Borer, Conopomorpha cramerella (Snell.) and Cost Analysis Production at Cacao Plantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Anshary">Alam Anshary</a>, <a href="https://publications.waset.org/abstracts/search?q=Flora%20Pasaru"> Flora Pasaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahabuddin"> Shahabuddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cocoa Pod Borer (CPB), Conopomorpha cramerella (Snell.) is present on most of the larger cocoa producing islands in Indonesia. Various control measures CPB has been carried out by the farmers, but the results have not been effective. This study aims to determine the effect of application of Beauveria bassiana treatments and pruning technique to the control of CPB in the cocoa plantation people. Research using completely randomized design with 4 treatments and 3 replications, treatment consists of B.bassiana, Pruning, B. bassiana+pruning (Bb + Pr), as well as the control. The results showed that the percentage of PBK attack on cocoa pods in treatment (Bb + Pr) 3.50% the lowest compared to other treatments. CPB attack percentage in treatment B.bassiana 6.15%; pruning 8.75%, and 15.20% control. Results of the analysis of production estimates, the known treatments (Bb + Pr) have the highest production (1.95 tonnes / ha). The model results estimated production is Y= 0,20999 + 0,53968X1 + 0,34298X2+ 0,31410X3 + 0,35629X4 + 0,08345X5 + 0,29732X6. Farm production costs consist of fixed costs and variable costs, fixed costs are costs incurred by the farmer that the size does not affect the results, such as taxes and depreciation of production equipment. Variable costs are costs incurred by farmers who used up in one year cocoa farming activities. The cost of production in farming cocoa without integrated techniques control of CPB is Rp. 9.205.550 million/ha, while the cost of production with integrated techniques control is Rp. 6.666.050 million/ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cacao" title="cacao">cacao</a>, <a href="https://publications.waset.org/abstracts/search?q=cocoa%20pod%20borer" title=" cocoa pod borer"> cocoa pod borer</a>, <a href="https://publications.waset.org/abstracts/search?q=pruning" title=" pruning"> pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title=" Beauveria bassiana"> Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20costs" title=" production costs"> production costs</a> </p> <a href="https://publications.waset.org/abstracts/36233/controlling-cocoa-pod-borer-conopomorpha-cramerella-snell-and-cost-analysis-production-at-cacao-plantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Sublethal Effects of Entomopathogenic Nematodes and Fungus against the Red Palm Weevil, Rhynchophorus Ferrugineus (Olivier) (Curculionidae: Coleoptera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Manzoor">M. Manzoor</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20N.%20%20Ahmad"> J. N. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Giblin%20Davis"> R. M. Giblin Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Javed"> N. Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Haider"> M. S. Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The invasive Red Palm Weevil (RPW) (Rhynchophorus ferrugineus [Olivier] (Coleoptera: Curculionidae) is one of the most destructive palm pests in the world. Synthetic pesticides are environmentally hazardous pest control strategies being used in the past with emerging need of eco-friendly biological approaches including microbial entomopathogens for RPW management. The sublethal effects of a single entomopathogenic fungus (EPF) Beauveria bassiana (WG-11) (Ascomycota: Hypocreales) and two entomopathogenic nematode (EPN) species Heterorhabditis bacteriophora (Poinar) and Steinernema carpocapsae (Weiser) (Nematoda: Rhabditida) were evaluated in various combinations against laboratory-reared 3rd, 5th and 8th instar larvae of RPW in laboratory assays. Individual and combined effects of both entomopathogens (EP) were observed after the pre-application of B. bassiana fungus at 1-2-week intervals. A number of parameters were measured after the application of sub-lethal doses of EPF such as diet consumption, development, frass production, mortality, and weight gain. Combined treatments were tested for additive and synergistic effects. Synergism was more frequently observed in B. bassiana and S. carpocapsae combined treatments than in B. bassiana and H. bacteriophora combinations. Early instar larvae of RPW were more susceptible than older instars. Synergistic effects were observed in the 3rd and 5th instars exposed to B. bassiana and S. carpocapsae at 0, 7 and 14-day intervals. Whereas, in 8th instar larvae, the synergistic effect was observed only in B. bassiana and S. carpocapsae treatments after 0 and 7 days intervals. EPN treatments decreased pupation, egg hatching and emergence of adults. Lethal effects of nematodes were also observed in all growth stages of R. ferrugineus. Reduced larval weight, increased larval, pre-pupal and pupal duration, reduced adult weight and life span were observed. Sub-lethal concentrations of both entomopathogens induced variations in the different developmental stages and reduced food consumption, frass production, growth, and weight gain. So, on the basis of results, it is concluded that synthetic pesticides should be replaced with environmentally friendly sustainable biopesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20bacteriophora" title="H. bacteriophora">H. bacteriophora</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20carpocapsae" title=" S. carpocapsae"> S. carpocapsae</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20bassiana" title=" B. bassiana"> B. bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/108739/sublethal-effects-of-entomopathogenic-nematodes-and-fungus-against-the-red-palm-weevil-rhynchophorus-ferrugineus-olivier-curculionidae-coleoptera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Control of the Pest Bemisia tabaci With the Entomopathogenic Fungus Beauveria bassiana in a Geothermal Greenhouse in Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Besma%20Hamrouni%20Assadi">Besma Hamrouni Assadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sadok%20Belkadhi"> Mohamed Sadok Belkadhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whitefly Bemisia tabaci is a cosmopolitan insect that causes serious damage to greenhouse crops. It is increasingly recognized that the use of biological control means such as entomopathogenic fungi presents a sustainable solution to integrated pest management programs. In order to reduce the use of chemical pesticides, Beauveria bassiana strain R444 was tested against eggs and second, third and fourth instar larvae of B. tabaci in a geothermal tomato greenhouse in southern Tunisia. This entomopathogenic fungus was compared to a chemical pesticide Imidacloprid and an untreated control. We found significant mortality of individuals caused by B. bassiana comparable to that caused by the chemical pesticide. After four weeks of follow-up, this fungus causes a mortality of eggs and larvae of B. tabaci that exceeds 60%. It shows that the use of entomopathogenic fungi can help reduce the use of pesticides to control B. tabaci on geothermal crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20fungi" title="entomopathogenic fungi">entomopathogenic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bemisia%20tabaci" title=" Bemisia tabaci"> Bemisia tabaci</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20greenhouse" title=" geothermal greenhouse"> geothermal greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20pest%20management%20programs" title=" integrated pest management programs"> integrated pest management programs</a> </p> <a href="https://publications.waset.org/abstracts/157560/control-of-the-pest-bemisia-tabaci-with-the-entomopathogenic-fungus-beauveria-bassiana-in-a-geothermal-greenhouse-in-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> A Comparative Laboratory Evaluation of Efficacy of Two Fungi: Beauveria bassiana and Acremonium perscinum, on Dichomeris eridantis Meyrick (Lepidoptera: Gelechiidae) Larvae, an Important Pest of Dalbergia sissoo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gunjan%20Srivastava">Gunjan Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamila%20Kalia"> Shamila Kalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dalbergia sissoo Roxb., (Family- Leguminosae; Subfamily- Papilionoideae), is an economically and ecologically important tree species having medicinal value. Of the rich complex of insect fauna, ten have been recognized as potential pests of nurseries and plantations. Present study was conducted to explore an effective ecofriendly control of Dichomeris eridantis Meyrick, an important defoliator pest of D. sissoo. Health and environmental concerns demanded devising a bio-intensive pest management strategy and employing ecofriendly measures. In the present laboratory bioassay two entomopathogenic fungi Acremonium perscinum and Beauveria bassiana were tested and compared for evaluating the efficacy of their seven different concentrations (besides control) against the 3rd, 4th and 5th instar larvae of D. eridantis, on the basis of mean percent mortality data recorded and tabulated for seven days after treatment application. Analysis showed that both treatments vary significantly among themselves. Also, variations amongst instars and duration with respect to their mortality were highly significant (p < .001). All their interactions were found to vary significantly. B. bassiana at 0.25x107 spores / ml spore concentration caused maximum mean percent mortality (62.38%) followed by mean percent mortality at its 0.25x106 spores / ml concentration (56.67%). Mean percent mortality at maximum spore concentration (0.054x107 spores / ml) and next highest spore concentration (0.054 x106 spores / ml) due to A. perscinum treatment were far less effective (mean percent mortality of 45.40% and 31.29%, respectively). At 168 hours mean percent mortality of larval instars due to both fungal treatment applications reached its maximum (52.99%) whereas, at 24 hours mean percent mortality remained least (5.70%). In both cases, treatments were most effective against 3rd instar larvae and least effective against 5th instar larvae. A comparative acccount of efficacy of B. bassiana and A. perscinum on the 3rd, 4th and 5th instar larvae of D. eridantis on 5th, 6th and 7th post treatment observation days after their application, on the basis of their median lethal concentrations (LC50) proved B. bassiana to be more potential microbial pathogen of the two fungal microbes, for all the three instars (3rd, 4th and 5th) of D. eridantis, on all the three days (5th, 6th and 7th post observation days after application of both treatments). Percent mortality of D. eridantis increased in a dose dependent manner. Koch’s Postulates tested positive, thus confirming the pathogenicity of B. bassiana against the larval instars of D. eridantis. LC90 values of 0.280x1011 spores/ml, 0.301x108 spores/ml and 0.262x108 spores/ml concentrations of B. bassiana were standardized which can effectively cause mortality of all the larval instars of D. eridantis in the field after 5th, 6th and 7th day of their application, respectively. Therefore, these concentrations can be safely used in nurseries as well as plantations of D. sissoo for effective control of D. eridantis larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acremonium%20perscinum" title="Acremonium perscinum">Acremonium perscinum</a>, <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title=" Beauveria bassiana"> Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalbergia%20sissoo" title=" Dalbergia sissoo"> Dalbergia sissoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dichomeris%20eridantis" title=" Dichomeris eridantis"> Dichomeris eridantis</a> </p> <a href="https://publications.waset.org/abstracts/67578/a-comparative-laboratory-evaluation-of-efficacy-of-two-fungi-beauveria-bassiana-and-acremonium-perscinum-on-dichomeris-eridantis-meyrick-lepidoptera-gelechiidae-larvae-an-important-pest-of-dalbergia-sissoo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20B.%20Bitencourt">R. O. B. Bitencourt</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Farias"> F. S. Farias</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Freitas"> M. C. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20R.%20Balduino"> C. J. R. Balduino</a>, <a href="https://publications.waset.org/abstracts/search?q=E.S.%20Mesquita"> E.S. Mesquita</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20C.%20Corval"> A. R. C. Corval</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20G%C3%B4lo"> P. S. Gôlo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Pontes"> E. G. Pontes</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20E.%20P.%20Bittencourt"> V. R. E. P. Bittencourt</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Angelo"> I. C. Angelo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Aedes aegypti </em>larval survival rate was assessed after exposure to blastopores or conidia (mineral oil-in-water formulation or aqueous suspension) of <em>Beauveria bassiana </em>CG 479 propagules (blastospores or conidia). Here, mineral oil was used in the fungal formulation to control <em>Aedes aegypti</em> larvae. 1%, 0.5% or 0.1% mineral oil-in-water solutions were used to evaluate mineral oil toxicity for mosquito larvae. In the oil toxicity test, 0.1% mineral oil solution reduced only 4.5% larval survival; accordingly, this concentration was chosen for fungal oil-in-water formulations. Aqueous suspensions were prepared using 0.01% Tween 80<sup>&reg;</sup> in sterile dechlorinated water. <em>A. aegypti</em> larvae (L<sub>2</sub>) were exposed in aqueous suspensions or mineral oil-in-water fungal formulations at 1&times;107 propagules mL<sup>-1</sup>; the survival rate (assessed daily, for 7 days) and the median survival time (S<sub>50</sub>) were calculated. Seven days after the treatment, mosquito larvae survival rates were 8.56%, 16.22%, 58%, and 42.56% after exposure to oil-in-water blastospores, oil-in-water conidia, blastospores aqueous suspension and conidia aqueous suspension (respectively). Larvae exposed to 0.01% Tween 80<sup>&reg;</sup> had 100% survival rate and the ones treated with 0.1% mineral oil-in-water had 95.11% survival rate. Larvae treated with conidia (regardless the presence of oil) or treated with blastospores formulation had survival median time (S<sub>50</sub>) ranging from one to two days. S<sub>50</sub> was not determined (ND) when larvae were exposed to blastospores aqueous suspension, 0.01% Tween 80<sup>&reg;</sup> (aqueous control) or 0.1% mineral oil-in-water formulation (oil control). <em>B. bassiana</em> conidia and blastospores (mineral oil-in-water formulated or suspended in water) had potential to control <em>A. aegypti</em> mosquito larvae, despite mineral oil-in-water formulation yielded better results in comparison to aqueous suspensions. Here, <em>B. bassiana</em> CG 479 isolate is suggested as a potential biocontrol agent of <em>A. aegypti</em> mosquito larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blastospores" title="blastospores">blastospores</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquitoes" title=" mosquitoes"> mosquitoes</a>, <a href="https://publications.waset.org/abstracts/search?q=conidia" title=" conidia"> conidia</a> </p> <a href="https://publications.waset.org/abstracts/87360/in-vitro-control-of-aedes-aegypti-larvae-using-beauveria-bassiana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Quiroga-Cubides">G. Quiroga-Cubides</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cruz"> M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Grijalba"> E. Grijalba</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sanabria"> J. Sanabria</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ceballos"> A. Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Garc%C3%ADa"> L. García</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%B3mez"> M. Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title=" biopesticide"> biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid%20medium%20culture" title=" semisolid medium culture"> semisolid medium culture</a> </p> <a href="https://publications.waset.org/abstracts/57293/biomass-production-improvement-of-beauveria-bassiana-at-laboratory-scale-for-a-biopesticide-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Pathogenicity of Entomopathogenic Fungi, Beauveria bassiana Against Red Palm Weevil, (Rhynchophorus ferrugineus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mamoon-Ur-Rashid">Muhammad Mamoon-Ur-Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Gul%20Rehman"> Gul Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entomopathogenic fungi are considered effective bio-control agents for the management of a range of insect pests including red palm weevil. The research studies were conducted under laboratory and field conditions against 5th and 6th instars larvae and adults of [Rhynchophorus ferrugineus (Olivier)] at the faculty of Agriculture, Gomal University Dera Ismail Khan (KPK) Pakistan. The 5th instar larvae were used under field conditions whereas, the 6th instar larvae and newly emerged adults were used under lab conditions. Conidial suspensions were used at five different concentrations of 1×10⁴, 1×10⁵, 1×10⁶, 1×10⁷ and 1×10⁸, conidia per ml. The data were recorded on the mortality, total larval duration, weight of larvae, pre-pupal and pupal durations, percent pupal formation, pupal weight, percent adult emergence, and adult longevity (♂ and ♀) of red palm weevil. The B. bassiana had varying degrees of pathogenicity against different developmental stages of red palm weevil. The maximum larval duration (113.40 days) was noted when 5th instar larvae were treated with the maximum concentration (1 × 10⁸) of B. bassiana, whereas; the minimum total larval duration of 87.20 days was recorded on the lowest concentration (1 × 10⁴) of B. bassiana. The maximum pre-pual and pupal durations were noted at the maximum concentration. The maximum life span of adult male and females were noted at the lowest concentration, whereas; the minimum values were noted at the maximum concentration. The earliest mortality of red palm weevil was observed 1-day after treatment at higher concentrations of 1 × 10⁷ and 1 × 10⁸, whereas; it was recorded 3 and 4 days after treatment at lower concentrations of 1 × 10⁵ and 1 × 10⁴. At 10 days after treatment, the entomopathogenic fungus caused > 80% cumulative mortality of 5th and 6th instar larvae and adult weevils at the maximum concentrations which were more than double than those recorded at the lowest concentration. Overall, the 5th instar larvae of red palm weevils were most susceptible to the fungus compared to the 6th instar larvae and adult weevils. Based on current findings, it is suggested that entomopathogenic fungi could be used for the safer management of red palm weevil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20nematodes" title="entomopathogenic nematodes">entomopathogenic nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20palm%20weevil" title=" red palm weevil"> red palm weevil</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-lethal%20effects" title=" sub-lethal effects"> sub-lethal effects</a> </p> <a href="https://publications.waset.org/abstracts/161016/pathogenicity-of-entomopathogenic-fungi-beauveria-bassiana-against-red-palm-weevil-rhynchophorus-ferrugineus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Test of Biological Control against Brachytrupes Megacephalus Lefèbre, 1827 (Orthoptera, Gryllinae) by Using Entomopathogenic Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Lakhdari">W. Lakhdari</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Doumendji-Mitich"> B. Doumendji-Mitich</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dahliz"> A. Dahliz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Doumendji"> S. Doumendji</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bouchikh"> Y. Bouchikh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M%27lik"> R. M&#039;lik</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammi"> H. Hammi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Soud"> A. Soud </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was done in order to fight against Brachytrupes megacephalus, a major pest in the Algerian oasis and promote one aspect of biological control against it. He wears a hand on the isolation and identification of indigenous fungi on imagos of this insect harvested in the station of INRAA Touggourt and secondly, the study of the pathogenicity of these strains fungal on this orthoptère adults. The results obtained showed the presence of six different species of entomopathogenic fungi, it is: Aspergillus flavus, Fusarium sp, Beauveria bassiana, Penicillium sp, Metharizium anisopliae and Aspergillus Niger. The pathogenicity test using fungi Beauveria bassiana strains and Metharizium anisopliae. On adult of B. megacephalus highlights the effectiveness of these strains of predatory adults, with a mortality rate approaching 100% after 11 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title="biological control">biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=brachytrupes%20megacephalus" title=" brachytrupes megacephalus"> brachytrupes megacephalus</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20fungi" title=" entomopathogenic fungi"> entomopathogenic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Southeastern%20Algeria" title=" Southeastern Algeria"> Southeastern Algeria</a> </p> <a href="https://publications.waset.org/abstracts/14245/test-of-biological-control-against-brachytrupes-megacephalus-lefebre-1827-orthoptera-gryllinae-by-using-entomopathogenic-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Evaluation of Different Inoculation Methods of Entomopathogenic Fungi on Their Endophytism and Pathogenicity against Chilo partellus (Swinhoe)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubashar%20Iqbal">Mubashar Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Anjum"> Iqra Anjum</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi"> Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jalal%20Arif"> Muhammad Jalal Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried to screen out the effective entomopathogenic fungi (EPF) inoculation method in maize and to evaluate pathogenicity and oviposition-choice in C. partellus. Three entomopathogenic fungi (EPF) formulations Pacer® (Metarhizium anisopliae), Racer® (Beauveria bassiana) and Meailkil® (Verticillium lecanii) were evaluated at three concentrations (5000, 10000 and 20000 ppm) for their endophytism in maize and pathogenicity in C. partellus. The stock solution of the highest concentration (20,000 ppm) was prepared and next lower from stock solution. In the first experiment, three EPF was inoculated in maize plant by four methods, i.e., leaf-inoculation (LI), whorl-inoculation (WI), shoot-inoculation (SI) and root-inoculation (RI). Leaf-discs and stem-cutting were sampled in all four inoculation methods and placed on fungus growth media in Petri dishes. In the second experiment, pathogenicity, pupal formation, adult emergence, sex ratio, oviposition-choice, and growth index of C. partellus were calculated. The leaves and stem of the inoculated plants were given to the counted number of larvae of C. Partellus. The mortality of larvae was recorded on daily basis till the pupation. The result shows that maximum percent mortality (86.67%) was recorded at high concentration (20000ppm) of Beauveria bassiana by leaf inoculation method. For oviposition choice bioassay, the newly emerged adults were fed on diet (water, honey and yeast in 9:1:1) for 48 hours. One pair of C. Partellus were aspirated from the rearing cages and were detained in large test tube plugged with diet soaked cotton. A set of four plants for each treatment were prepared and randomized inside the large oviposition chamber. The test tubes were opened and fitted in the hole made in the wall of oviposition chamber in front of each treatment. The oviposition chamber was placed in a completely dark laboratory to eliminate the effect of light on moth’s behavior. The plants were removed from the oviposition chamber after the death of adults. The number of eggs deposited on the plant was counted. The results of 2nd experiment revealed that in all EPF and inoculation methods, the fecundity, egg fertility and growth index of C. partellus decreased with the increase in concentration being significantly higher at low concentration (5000ppm) and lower at higher concentration (20000ppm). Application of B. bassiana demonstrated that minimum fecundity (126.83), egg fertility (119.52) and growth index (15%) in C. partellus followed by M. anisopliae with fecundity (135.93), egg fertility (132.29) and growth index (17.50%) while V. lecanii show higher values of fecundity (137.37), egg fertility (1135.42) and growth index (20%). Overall leaf inoculation method showed least fecundity (123.89) with egg fertility (115.36) and growth index (14%) followed by whorl, shoot inoculation method and root inoculation method show higher values of fecundity, egg fertility and growth index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Chilo%20partellus" title=" Chilo partellus"> Chilo partellus</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathoganic" title=" entomopathoganic"> entomopathoganic</a>, <a href="https://publications.waset.org/abstracts/search?q=Metarhizium%20anisopliae" title=" Metarhizium anisopliae"> Metarhizium anisopliae</a>, <a href="https://publications.waset.org/abstracts/search?q=Verticillium%20lecanii" title=" Verticillium lecanii "> Verticillium lecanii </a> </p> <a href="https://publications.waset.org/abstracts/111683/evaluation-of-different-inoculation-methods-of-entomopathogenic-fungi-on-their-endophytism-and-pathogenicity-against-chilo-partellus-swinhoe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Prevalence and Fungicidal Activity of Endophytic Micromycetes of Plants in Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyudmila%20V.%20Ignatova">Lyudmila V. Ignatova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelena%20V.%20Brazhnikova"> Yelena V. Brazhnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Togzhan%20D.%20Mukasheva"> Togzhan D. Mukasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramza%20Zh.%20Berzhanova"> Ramza Zh. Berzhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anel%20A.%20Omirbekova"> Anel A. Omirbekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endophytic microorganisms are presented in plants of different families growing in the foothills and piedmont plains of Trans-Ili Alatau. It was found that the maximum number of endophytic micromycetes is typical to the Fabaceae family. The number of microscopic fungi in the roots reached (145.9±5.9)×103 CFU/g of plant tissue; yeasts - (79.8±3.5)×102 CFU/g of plant tissue. Basically, endophytic microscopic fungi are typical for underground parts of plants. In contrast, yeasts more infected aboveground parts of plants. Small amount of micromycetes is typical to inflorescence and fruits. Antagonistic activity of selected micromycetes against Fusarium graminearum, Cladosporium sp., Phytophtora infestans and Botrytis cinerea phytopathogens was detected. Strains with a broad, narrow and limited range of action were identified. For further investigations Rh2 and T7 strains were selected, they are characterized by a broad spectrum of fungicidal activity and they formed the large inhibition zones against phytopathogens. Active antagonists are attributed to the Rhodotorula mucilaginosa and Beauveria bassiana species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endophytic%20micromycetes" title="endophytic micromycetes">endophytic micromycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicidal%20activity" title=" fungicidal activity"> fungicidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a> </p> <a href="https://publications.waset.org/abstracts/10202/prevalence-and-fungicidal-activity-of-endophytic-micromycetes-of-plants-in-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Evaluation of the Pathogenicity Test of Some Entomopathogenic Fungus Isolates against Tomato Leaf Miner Tuta Absoluta (Meyrick) Larvae [Lepidoptera: Gelechiidae])</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadesse%20Kebede">Tadesse Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Orkun%20Baris%20Kovanci"> Orkun Baris Kovanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomatoes leaf minor (Tutaabasoluta) is one of the most economically important insect pest in tomatoes production. The use of biological control such as entomopathogen fungi isolates would be a long-term and cost-effective solution to control insects pest. Therefore, identifying the most virulent and pathogenic entomopathogen fungi is one of the basic requirements for effective management options to combat Tomatoes leaf minor (Tutaabasoluta). Furthermore, the pathogenicity and virulence difference among entomopathogenfungus strains is not widely well investıgated. The current study was therefore initiated to test the pathogenicity of some entomopathogenic fungus isolates against Tutaabsoluta. The experiment was conducted at Bursa Uludag University, Agiculutre faculty, horticulture department glasshouse in 2020/2021. Tutabasoluta adult were collected, and masslarvae were reared in a growth chamber. Then, ten third instar larvae were inoculated with four entomopathogen fungi isolates (Beuaveriabassania Ak-10, Beuaveriabassania Ak-14, Metarhziumanisoplai Ak-11, and Metarhziumanisoplai Ak-12) with different inoculum suspension (0, 1x10⁶, 1x10⁷,,4 × 10⁸, 4× 10⁹ and 1×10¹⁰ conidia /ml) in a factorial experiment arranged in randomized complete block design with three replication. Mortality data assessment was done on the 3rd, 5thand 7th days after treatment and analyzed. The analysis of variance for mortality rate revealed significant variations (p<0.05) among entomoptahogen fungi isolates and conidia concentrations. The results revealed thatMetarhziumanisoplai Ak-12was found to show the lowest mortality percentage80.77%, highest LC50 2.3x108, and the longest incubation period, LT50, 4.9 and LT90, 9.9daysand considered to be less pathogenic fungi. On the other hand, Beuaveriabassania Ak-10 isolate showed the highest mortality percentage, 91%, and the lowest LT50, 4, and LT90, 7.6 values at 1×10¹⁰ conidia /ml, followed by Beuaveriabassania Ak-14 and being considered as the most aggressive bio-agent. Metarhziumanisoplai Ak-11 was determined as moderately virulent, having a mortality rate 27-81%. Results also revealed that among conidia concentrations, 1x10⁹ and 1x10¹⁰ suspensions is the most effective, while 1x10⁶ conidia/ml concentration is the least effective. Hence, results indicated that EPF tested were effective against T. absoluta larvae. As the current work revealed the potential variation among entomopathogen fungi isolates and concentration against third instar larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuta%20absoluta" title="tuta absoluta">tuta absoluta</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=metarhizium%20anisopliae" title=" metarhizium anisopliae"> metarhizium anisopliae</a>, <a href="https://publications.waset.org/abstracts/search?q=beauveria%20bassiana" title=" beauveria bassiana"> beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a> </p> <a href="https://publications.waset.org/abstracts/150011/evaluation-of-the-pathogenicity-test-of-some-entomopathogenic-fungus-isolates-against-tomato-leaf-miner-tuta-absoluta-meyrick-larvae-lepidoptera-gelechiidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Pandey">Ajay Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lepidiota" title="Lepidiota">Lepidiota</a>, <a href="https://publications.waset.org/abstracts/search?q=profiling" title=" profiling"> profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttarakhand" title=" Uttarakhand"> Uttarakhand</a>, <a href="https://publications.waset.org/abstracts/search?q=whitegrub" title=" whitegrub"> whitegrub</a> </p> <a href="https://publications.waset.org/abstracts/77013/species-profiling-of-scarab-beetles-with-the-help-of-light-trap-in-western-himalayan-region-of-uttarakhand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> A Review on Biological Control of Mosquito Vectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Abbasi">Asim Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufyan"> Muhammad Sufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra"> Iqra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiza%20Javaria%20Ashraf"> Hafiza Javaria Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The share of vector-borne diseases (VBDs) in the global burden of infectious diseases is almost 17%. The advent of new drugs and latest research in medical science helped mankind to compete with these lethal diseases but still diseases transmitted by different mosquito species, including filariasis, malaria, viral encephalitis and dengue are serious threats for people living in disease endemic areas. Injudicious and repeated use of pesticides posed selection pressure on mosquitoes leading to development of resistance. Hence biological control agents are under serious consideration of scientific community to be used in vector control programmes. Fish have a history of predating immature stages of different aquatic insects including mosquitoes. The noteworthy examples in Africa and Asia includes, Aphanius discolour and a fish in the Panchax group. Moreover, common mosquito fish, Gambusia affinis predates mostly on temporary water mosquitoes like anopheline as compared to permanent water breeders like culicines. Mosquitoes belonging to genus Toxorhynchites have a worldwide distribution and are mostly associated with the predation of other mosquito larvae habituating with them in natural and artificial water containers. These species are harmless to humans as their adults do not suck human blood but feeds on floral nectar. However, their activity is mostly temperature dependent as Toxorhynchites brevipalpis consume 359 Aedes aegypti larvae at 30-32 ºC in contrast to 154 larvae at 20-26 ºC. Although many bacterial species were isolated from mosquito cadavers but those belonging to genus Bacillus are found highly pathogenic against them. The successful species of this genus include Bacillus thuringiensis and Bacillus sphaericus. The prime targets of B. thuringiensis are mostly the immatures of genus Aedes, Culex, Anopheles and Psorophora while B. sphaericus is specifically toxic against species of Culex, Psorophora and Culiseta. The entomopathogenic nematodes belonging to family, mermithidae are also pathogenic to different mosquito species. Eighty different species of mosquitoes including Anopheles, Aedes and Culex proved to be highly vulnerable to the attack of two mermithid species, Romanomermis culicivorax and R. iyengari. Cytoplasmic polyhedrosis virus was the first described pathogenic virus, isolated from the cadavers of mosquito specie, Culex tarsalis. Other viruses which are pathogenic to culicine includes, iridoviruses, cytopolyhedrosis viruses, entomopoxviruses and parvoviruses. Protozoa species belonging to division microsporidia are the common pathogenic protozoans in mosquito populations which kill their host by the chronic effects of parasitism. Moreover, due to their wide prevalence in anopheline mosquitoes and transversal and horizontal transmission from infected to healthy host, microsporidia of the genera Nosema and Amblyospora have received much attention in various mosquito control programmes. Fungal based mycopesticides are used in biological control of insect pests with 47 species reported virulent against different stages of mosquitoes. These include both aquatic fungi i.e. species of Coelomomyces, Lagenidium giganteum and Culicinomyces clavosporus, and the terrestrial fungi Metarhizium anisopliae and Beauveria bassiana. Hence, it was concluded that the integrated use of all these biological control agents can be a healthy contribution in mosquito control programmes and become a dire need of the time to avoid repeated use of pesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20nematodes" title="entomopathogenic nematodes">entomopathogenic nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoa" title=" protozoa"> protozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toxorhynchites" title=" Toxorhynchites"> Toxorhynchites</a>, <a href="https://publications.waset.org/abstracts/search?q=vector-borne" title=" vector-borne"> vector-borne</a> </p> <a href="https://publications.waset.org/abstracts/80088/a-review-on-biological-control-of-mosquito-vectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10