CINXE.COM
Liouville field theory - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Liouville field theory - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"03b92133-1403-4be8-980c-8f148afbe963","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Liouville_field_theory","wgTitle":"Liouville field theory","wgCurRevisionId":1256830796,"wgRevisionId":1256830796,"wgArticleId":31224296,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Conformal field theory","String theory","Differential geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Liouville_field_theory","wgRelevantArticleId":31224296,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Liouville_gravity", "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgInternalRedirectTargetUrl":"/wiki/Liouville_field_theory#Applications","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q6556124","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Liouville field theory - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Liouville_field_theory#Applications"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Liouville_field_theory&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Liouville_field_theory#Applications"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Liouville_field_theory rootpage-Liouville_field_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Liouville+field+theory" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Liouville+field+theory" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Liouville+field+theory" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Liouville+field+theory" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spectrum_and_correlation_functions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spectrum_and_correlation_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Spectrum and correlation functions</span> </div> </a> <button aria-controls="toc-Spectrum_and_correlation_functions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Spectrum and correlation functions subsection</span> </button> <ul id="toc-Spectrum_and_correlation_functions-sublist" class="vector-toc-list"> <li id="toc-Spectrum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spectrum"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Spectrum</span> </div> </a> <ul id="toc-Spectrum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fields_and_reflection_relation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fields_and_reflection_relation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Fields and reflection relation</span> </div> </a> <ul id="toc-Fields_and_reflection_relation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Correlation_functions_and_DOZZ_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Correlation_functions_and_DOZZ_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Correlation functions and DOZZ formula</span> </div> </a> <ul id="toc-Correlation_functions_and_DOZZ_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniqueness_of_Liouville_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniqueness_of_Liouville_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Uniqueness of Liouville theory</span> </div> </a> <ul id="toc-Uniqueness_of_Liouville_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lagrangian_formulation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lagrangian_formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Lagrangian formulation</span> </div> </a> <button aria-controls="toc-Lagrangian_formulation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lagrangian formulation subsection</span> </button> <ul id="toc-Lagrangian_formulation-sublist" class="vector-toc-list"> <li id="toc-Action_and_equation_of_motion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Action_and_equation_of_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Action and equation of motion</span> </div> </a> <ul id="toc-Action_and_equation_of_motion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conformal_symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conformal_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Conformal symmetry</span> </div> </a> <ul id="toc-Conformal_symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Path_integral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Path_integral"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Path integral</span> </div> </a> <ul id="toc-Path_integral-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relations_with_other_conformal_field_theories" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relations_with_other_conformal_field_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relations with other conformal field theories</span> </div> </a> <button aria-controls="toc-Relations_with_other_conformal_field_theories-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relations with other conformal field theories subsection</span> </button> <ul id="toc-Relations_with_other_conformal_field_theories-sublist" class="vector-toc-list"> <li id="toc-Some_limits_of_Liouville_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Some_limits_of_Liouville_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Some limits of Liouville theory</span> </div> </a> <ul id="toc-Some_limits_of_Liouville_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-WZW_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#WZW_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>WZW models</span> </div> </a> <ul id="toc-WZW_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conformal_Toda_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conformal_Toda_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Conformal Toda theory</span> </div> </a> <ul id="toc-Conformal_Toda_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Supersymmetric_Liouville_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Supersymmetric_Liouville_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Supersymmetric Liouville theory</span> </div> </a> <ul id="toc-Supersymmetric_Liouville_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relations_with_integrable_models" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relations_with_integrable_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Relations with integrable models</span> </div> </a> <button aria-controls="toc-Relations_with_integrable_models-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relations with integrable models subsection</span> </button> <ul id="toc-Relations_with_integrable_models-sublist" class="vector-toc-list"> <li id="toc-Sinh-Gordon_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sinh-Gordon_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Sinh-Gordon model</span> </div> </a> <ul id="toc-Sinh-Gordon_model-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Liouville_gravity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Liouville_gravity"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Liouville gravity</span> </div> </a> <ul id="toc-Liouville_gravity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-String_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#String_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>String theory</span> </div> </a> <ul id="toc-String_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_energy_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Random_energy_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Random energy models</span> </div> </a> <ul id="toc-Random_energy_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Other applications</span> </div> </a> <ul id="toc-Other_applications-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Naming_confusion_for_c_≤_1" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Naming_confusion_for_c_≤_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Naming confusion for <span><i>c</i> ≤ 1</span></span> </div> </a> <ul id="toc-Naming_confusion_for_c_≤_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Liouville field theory</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 4 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-4" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">4 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_Liouville" title="Théorie de Liouville – French" lang="fr" hreflang="fr" data-title="Théorie de Liouville" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC%EC%9A%B0%EB%B9%8C_%EC%9E%A5%EB%A1%A0" title="리우빌 장론 – Korean" lang="ko" hreflang="ko" data-title="리우빌 장론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%82%A6%E3%83%B4%E3%82%A3%E3%83%AB%E5%A0%B4%E7%90%86%E8%AB%96" title="リウヴィル場理論 – Japanese" lang="ja" hreflang="ja" data-title="リウヴィル場理論" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teoria_de_campo_de_Liouville" title="Teoria de campo de Liouville – Portuguese" lang="pt" hreflang="pt" data-title="Teoria de campo de Liouville" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6556124#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Liouville_field_theory" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Liouville_field_theory" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Liouville_field_theory"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Liouville_field_theory"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Liouville_field_theory" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Liouville_field_theory" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&oldid=1256830796" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Liouville_field_theory&id=1256830796&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLiouville_field_theory%23Applications"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLiouville_field_theory%23Applications"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Liouville_field_theory&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Liouville_field_theory&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6556124" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Liouville_gravity&redirect=no" class="mw-redirect" title="Liouville gravity">Liouville gravity</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Two-dimensional conformal field theory</div> <p>In <a href="/wiki/Physics" title="Physics">physics</a>, <b>Liouville field theory</b> (or simply <b>Liouville theory</b>) is a <a href="/wiki/Two-dimensional_conformal_field_theory" title="Two-dimensional conformal field theory">two-dimensional conformal field theory</a> whose classical <a href="/wiki/Equation_of_motion" class="mw-redirect" title="Equation of motion">equation of motion</a> is a generalization of <a href="/wiki/Liouville%27s_equation" title="Liouville's equation">Liouville's equation</a>. </p><p>Liouville theory is defined for all <a href="/wiki/Complex_number" title="Complex number">complex values</a> of the <a href="/wiki/Central_charge" title="Central charge">central charge</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> of its <a href="/wiki/Virasoro_algebra" title="Virasoro algebra">Virasoro symmetry algebra</a>, but it is <a href="/wiki/Conformal_field_theory#Unitarity" title="Conformal field theory">unitary</a> only if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in (1,+\infty ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in (1,+\infty ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/268c5e9a3d9ebbe8882f434cfaca7512bb374d7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.632ex; height:2.843ex;" alt="{\displaystyle c\in (1,+\infty ),}"></span></dd></dl> <p>and its <a href="/wiki/Classical_limit" title="Classical limit">classical limit</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\to +\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\to +\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6420d8919fc094add08e42476dff8656efcec0b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.4ex; height:2.176ex;" alt="{\displaystyle c\to +\infty .}"></span></dd></dl> <p>Although it is an interacting theory with a <a href="/wiki/Continuous_spectrum" class="mw-redirect" title="Continuous spectrum">continuous spectrum</a>, Liouville theory has been solved. In particular, its three-point function on the <a href="/wiki/Sphere" title="Sphere">sphere</a> has been determined analytically. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory describes the dynamics of a field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> called the Liouville field, which is defined on a two-dimensional space. This field is not a <a href="/wiki/Free_field" title="Free field">free field</a> due to the presence of an exponential potential </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(\varphi )=e^{2b\varphi }\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(\varphi )=e^{2b\varphi }\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/882434413c173885d0868a27b6b1a46a3e9e574b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.361ex; height:3.176ex;" alt="{\displaystyle V(\varphi )=e^{2b\varphi }\ ,}"></span></dd></dl> <p>where the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> is called the <a href="/wiki/Coupling_constant" title="Coupling constant">coupling constant</a>. In a free field theory, the energy eigenvectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{2\alpha \varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>α<!-- α --></mi> <mi>φ<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{2\alpha \varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acad366b1f6f79e1a52f7d1339481af52410ed40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.265ex; height:2.676ex;" alt="{\displaystyle e^{2\alpha \varphi }}"></span> are linearly independent, and the momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> is conserved in interactions. In Liouville theory, momentum is not conserved. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Liouville_reflection.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Liouville_reflection.svg/220px-Liouville_reflection.svg.png" decoding="async" width="220" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Liouville_reflection.svg/330px-Liouville_reflection.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Liouville_reflection.svg/440px-Liouville_reflection.svg.png 2x" data-file-width="324" data-file-height="204" /></a><figcaption>Reflection of an energy eigenvector with momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> off Liouville theory's exponential potential</figcaption></figure> <p>Moreover, the potential reflects the energy eigenvectors before they reach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =+\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo>=</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =+\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4092d9746230e16eacd70aab06799fd3221944" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.75ex; height:2.509ex;" alt="{\displaystyle \varphi =+\infty }"></span>, and two eigenvectors are linearly dependent if their momenta are related by the <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflection</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \to Q-\alpha \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo stretchy="false">→<!-- → --></mo> <mi>Q</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \to Q-\alpha \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7c5bf495e854f6989d86ec9b80e5ab88a15bb7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.496ex; height:2.509ex;" alt="{\displaystyle \alpha \to Q-\alpha \ ,}"></span></dd></dl> <p>where the background charge is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=b+{\frac {1}{b}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=b+{\frac {1}{b}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/487f9a0869a8be865101db04213881202e596440" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.001ex; height:5.343ex;" alt="{\displaystyle Q=b+{\frac {1}{b}}\ .}"></span></dd></dl> <p>While the exponential potential breaks momentum conservation, it does not break conformal symmetry, and Liouville theory is a conformal field theory with the central charge </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1+6Q^{2}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>6</mn> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1+6Q^{2}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a9c225261dad145dba4163d49e05aeb02d10b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.391ex; height:3.009ex;" alt="{\displaystyle c=1+6Q^{2}\ .}"></span></dd></dl> <p>Under conformal transformations, an energy eigenvector with momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> transforms as a <a href="/wiki/Primary_field" title="Primary field">primary field</a> with the <a href="/wiki/Conformal_dimension" title="Conformal dimension">conformal dimension</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =\alpha (Q-\alpha )\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =\alpha (Q-\alpha )\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc5c4f01d902335eb128e43a4486d864e02f5da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.725ex; height:2.843ex;" alt="{\displaystyle \Delta =\alpha (Q-\alpha )\ .}"></span></dd></dl> <p>The central charge and conformal dimensions are invariant under the <a href="/wiki/Duality_(mathematics)" title="Duality (mathematics)">duality</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\to {\frac {1}{b}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\to {\frac {1}{b}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/515abb21d85865719421196ae6c4a8feeb239ff2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.838ex; height:5.343ex;" alt="{\displaystyle b\to {\frac {1}{b}}\ ,}"></span></dd></dl> <p>The <a href="/wiki/Correlation_function" title="Correlation function">correlation functions</a> of Liouville theory are covariant under this duality, and under reflections of the momenta. These quantum symmetries of Liouville theory are however not manifest in the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> formulation, in particular the exponential potential is not invariant under the duality. </p> <div class="mw-heading mw-heading2"><h2 id="Spectrum_and_correlation_functions">Spectrum and correlation functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=2" title="Edit section: Spectrum and correlation functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Spectrum">Spectrum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=3" title="Edit section: Spectrum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Spectrum_(functional_analysis)" title="Spectrum (functional analysis)">spectrum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2302a18e269dbecc43c57c0c2aced3bfae15278d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.492ex; height:2.176ex;" alt="{\displaystyle {\mathcal {S}}}"></span> of Liouville theory is a diagonal combination of <a href="/wiki/Verma_module" title="Verma module">Verma modules</a> of the <a href="/wiki/Virasoro_algebra" title="Virasoro algebra">Virasoro algebra</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {S}}=\int _{{\frac {c-1}{24}}+\mathbb {R} _{+}}d\Delta \ {\mathcal {V}}_{\Delta }\otimes {\bar {\mathcal {V}}}_{\Delta }\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">S</mi> </mrow> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>24</mn> </mfrac> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mrow> </msub> <mi>d</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> </msub> <mo>⊗<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> </msub> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {S}}=\int _{{\frac {c-1}{24}}+\mathbb {R} _{+}}d\Delta \ {\mathcal {V}}_{\Delta }\otimes {\bar {\mathcal {V}}}_{\Delta }\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4987048306e6c2a4c4a7f6b1debd66d40076f896" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:27.246ex; height:6.676ex;" alt="{\displaystyle {\mathcal {S}}=\int _{{\frac {c-1}{24}}+\mathbb {R} _{+}}d\Delta \ {\mathcal {V}}_{\Delta }\otimes {\bar {\mathcal {V}}}_{\Delta }\ ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {V}}_{\Delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {V}}_{\Delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34803c130222f2f675b3f324545494cc91944b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.026ex; height:2.509ex;" alt="{\displaystyle {\mathcal {V}}_{\Delta }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\mathcal {V}}}_{\Delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\mathcal {V}}}_{\Delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a7734f1266acd41ce66115b203eb9d5a04a4f77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.131ex; height:2.843ex;" alt="{\displaystyle {\bar {\mathcal {V}}}_{\Delta }}"></span> denote the same Verma module, viewed as a representation of the left- and right-moving Virasoro algebra respectively. In terms of <a href="/wiki/Momentum" title="Momentum">momenta</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \in {\frac {c-1}{24}}+\mathbb {R} _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>24</mn> </mfrac> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \in {\frac {c-1}{24}}+\mathbb {R} _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4677b39642a6493ffd29907bf46ce72f76a7fd90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.652ex; height:5.176ex;" alt="{\displaystyle \Delta \in {\frac {c-1}{24}}+\mathbb {R} _{+}}"></span></dd></dl> <p>corresponds to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in {\frac {Q}{2}}+i\mathbb {R} _{+}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>Q</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in {\frac {Q}{2}}+i\mathbb {R} _{+}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4158c429f75e5489ac8ab70081340d0897c2c9c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.481ex; height:5.343ex;" alt="{\displaystyle \alpha \in {\frac {Q}{2}}+i\mathbb {R} _{+}.}"></span></dd></dl> <p>The reflection relation is responsible for the momentum taking values on a half-line, instead of a full line for a free theory. </p><p>Liouville theory is unitary if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in (1,+\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in (1,+\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0094b7a415b7ec2233396713edaf9a0245e3134" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.985ex; height:2.843ex;" alt="{\displaystyle c\in (1,+\infty )}"></span>. The spectrum of Liouville theory does not include a <a href="/wiki/Vacuum_state" class="mw-redirect" title="Vacuum state">vacuum state</a>. A vacuum state can be defined, but it does not contribute to <a href="/wiki/Operator_product_expansion" title="Operator product expansion">operator product expansions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Fields_and_reflection_relation">Fields and reflection relation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=4" title="Edit section: Fields and reflection relation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Liouville theory, primary fields are usually <a href="/wiki/Parameter" title="Parameter">parametrized</a> by their momentum rather than their <a href="/wiki/Conformal_dimension" title="Conformal dimension">conformal dimension</a>, and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\alpha }(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\alpha }(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a04659c1d7598946290f87ee737615de02fe7d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.537ex; height:2.843ex;" alt="{\displaystyle V_{\alpha }(z)}"></span>. Both fields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\alpha }(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\alpha }(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a04659c1d7598946290f87ee737615de02fe7d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.537ex; height:2.843ex;" alt="{\displaystyle V_{\alpha }(z)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{Q-\alpha }(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{Q-\alpha }(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db4f7534fd20d76e5002c204acd0655becc4e1a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.115ex; height:3.009ex;" alt="{\displaystyle V_{Q-\alpha }(z)}"></span> correspond to the primary state of the <a href="/wiki/Representation_(mathematics)" title="Representation (mathematics)">representation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {V}}_{\Delta }\otimes {\bar {\mathcal {V}}}_{\Delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> </msub> <mo>⊗<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {V}}_{\Delta }\otimes {\bar {\mathcal {V}}}_{\Delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6350f5b3355c345a144f8f36be8c5be9567d6c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.997ex; height:2.843ex;" alt="{\displaystyle {\mathcal {V}}_{\Delta }\otimes {\bar {\mathcal {V}}}_{\Delta }}"></span>, and are related by the reflection relation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\alpha }(z)=R(\alpha )V_{Q-\alpha }(z)\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\alpha }(z)=R(\alpha )V_{Q-\alpha }(z)\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95cd97782f98161b11579387cf4693d1a06ef68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.039ex; height:3.009ex;" alt="{\displaystyle V_{\alpha }(z)=R(\alpha )V_{Q-\alpha }(z)\ ,}"></span></dd></dl> <p>where the reflection coefficient is<sup id="cite_ref-rib14_1-0" class="reference"><a href="#cite_note-rib14-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(\alpha )=\pm \lambda ^{Q-2\alpha }{\frac {\Gamma (b(2\alpha -Q))\Gamma ({\frac {1}{b}}(2\alpha -Q))}{\Gamma (b(Q-2\alpha ))\Gamma ({\frac {1}{b}}(Q-2\alpha ))}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>±<!-- ± --></mo> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>α<!-- α --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(\alpha )=\pm \lambda ^{Q-2\alpha }{\frac {\Gamma (b(2\alpha -Q))\Gamma ({\frac {1}{b}}(2\alpha -Q))}{\Gamma (b(Q-2\alpha ))\Gamma ({\frac {1}{b}}(Q-2\alpha ))}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85ebac9c900db4dcb8619699c5c6b40b3259d36e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:45.527ex; height:8.176ex;" alt="{\displaystyle R(\alpha )=\pm \lambda ^{Q-2\alpha }{\frac {\Gamma (b(2\alpha -Q))\Gamma ({\frac {1}{b}}(2\alpha -Q))}{\Gamma (b(Q-2\alpha ))\Gamma ({\frac {1}{b}}(Q-2\alpha ))}}\ .}"></span></dd></dl> <p>(The sign is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04cf05c67d41d9f39dabf6a90722ce860a76958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle +1}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in (-\infty ,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in (-\infty ,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e71efa984e719b08552dc33ff4efdcc508b6f36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.985ex; height:2.843ex;" alt="{\displaystyle c\in (-\infty ,1)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> otherwise, and the normalization parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is arbitrary.) </p> <div class="mw-heading mw-heading3"><h3 id="Correlation_functions_and_DOZZ_formula">Correlation functions and DOZZ formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=5" title="Edit section: Correlation functions and DOZZ formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\notin (-\infty ,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>∉<!-- ∉ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\notin (-\infty ,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2e5063f55aaa93f500e45ee0fec6ddc66d2ced" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.985ex; height:2.843ex;" alt="{\displaystyle c\notin (-\infty ,1)}"></span>, the three-point structure constant is given by the <b>DOZZ formula</b> (for Dorn–Otto<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and Zamolodchikov–Zamolodchikov<sup id="cite_ref-zz_3-0" class="reference"><a href="#cite_note-zz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>), </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{\alpha _{1},\alpha _{2},\alpha _{3}}={\frac {\left[b^{{\frac {2}{b}}-2b}\lambda \right]^{Q-\alpha _{1}-\alpha _{2}-\alpha _{3}}\Upsilon _{b}'(0)\Upsilon _{b}(2\alpha _{1})\Upsilon _{b}(2\alpha _{2})\Upsilon _{b}(2\alpha _{3})}{\Upsilon _{b}(\alpha _{1}+\alpha _{2}+\alpha _{3}-Q)\Upsilon _{b}(\alpha _{1}+\alpha _{2}-\alpha _{3})\Upsilon _{b}(\alpha _{2}+\alpha _{3}-\alpha _{1})\Upsilon _{b}(\alpha _{3}+\alpha _{1}-\alpha _{2})}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow> <mo>[</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>b</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi>b</mi> </mrow> </msup> <mi>λ<!-- λ --></mi> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msup> <msubsup> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{\alpha _{1},\alpha _{2},\alpha _{3}}={\frac {\left[b^{{\frac {2}{b}}-2b}\lambda \right]^{Q-\alpha _{1}-\alpha _{2}-\alpha _{3}}\Upsilon _{b}'(0)\Upsilon _{b}(2\alpha _{1})\Upsilon _{b}(2\alpha _{2})\Upsilon _{b}(2\alpha _{3})}{\Upsilon _{b}(\alpha _{1}+\alpha _{2}+\alpha _{3}-Q)\Upsilon _{b}(\alpha _{1}+\alpha _{2}-\alpha _{3})\Upsilon _{b}(\alpha _{2}+\alpha _{3}-\alpha _{1})\Upsilon _{b}(\alpha _{3}+\alpha _{1}-\alpha _{2})}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/983b01ce1618b4dca2710709b88f4680314662e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:89.746ex; height:10.176ex;" alt="{\displaystyle C_{\alpha _{1},\alpha _{2},\alpha _{3}}={\frac {\left[b^{{\frac {2}{b}}-2b}\lambda \right]^{Q-\alpha _{1}-\alpha _{2}-\alpha _{3}}\Upsilon _{b}'(0)\Upsilon _{b}(2\alpha _{1})\Upsilon _{b}(2\alpha _{2})\Upsilon _{b}(2\alpha _{3})}{\Upsilon _{b}(\alpha _{1}+\alpha _{2}+\alpha _{3}-Q)\Upsilon _{b}(\alpha _{1}+\alpha _{2}-\alpha _{3})\Upsilon _{b}(\alpha _{2}+\alpha _{3}-\alpha _{1})\Upsilon _{b}(\alpha _{3}+\alpha _{1}-\alpha _{2})}}\ ,}"></span></dd></dl> <p>where the special function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Upsilon _{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Upsilon _{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/355a1faef741f4a5f73afe5ac5762e02ef2a38d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.746ex; height:2.509ex;" alt="{\displaystyle \Upsilon _{b}}"></span> is a kind of <a href="/wiki/Multiple_gamma_function" title="Multiple gamma function">multiple gamma function</a>. </p><p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in (-\infty ,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in (-\infty ,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e71efa984e719b08552dc33ff4efdcc508b6f36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.985ex; height:2.843ex;" alt="{\displaystyle c\in (-\infty ,1)}"></span>, the three-point structure constant is<sup id="cite_ref-rib14_1-1" class="reference"><a href="#cite_note-rib14-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {C}}_{\alpha _{1},\alpha _{2},\alpha _{3}}={\frac {\left[(ib)^{{\frac {2}{b}}-2b}\lambda \right]^{Q-\alpha _{1}-\alpha _{2}-\alpha _{3}}{\hat {\Upsilon }}_{b}(0){\hat {\Upsilon }}_{b}(2\alpha _{1}){\hat {\Upsilon }}_{b}(2\alpha _{2}){\hat {\Upsilon }}_{b}(2\alpha _{3})}{{\hat {\Upsilon }}_{b}(\alpha _{1}+\alpha _{2}+\alpha _{3}-Q){\hat {\Upsilon }}_{b}(\alpha _{1}+\alpha _{2}-\alpha _{3}){\hat {\Upsilon }}_{b}(\alpha _{2}+\alpha _{3}-\alpha _{1}){\hat {\Upsilon }}_{b}(\alpha _{3}+\alpha _{1}-\alpha _{2})}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>C</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>b</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi>b</mi> </mrow> </msup> <mi>λ<!-- λ --></mi> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {C}}_{\alpha _{1},\alpha _{2},\alpha _{3}}={\frac {\left[(ib)^{{\frac {2}{b}}-2b}\lambda \right]^{Q-\alpha _{1}-\alpha _{2}-\alpha _{3}}{\hat {\Upsilon }}_{b}(0){\hat {\Upsilon }}_{b}(2\alpha _{1}){\hat {\Upsilon }}_{b}(2\alpha _{2}){\hat {\Upsilon }}_{b}(2\alpha _{3})}{{\hat {\Upsilon }}_{b}(\alpha _{1}+\alpha _{2}+\alpha _{3}-Q){\hat {\Upsilon }}_{b}(\alpha _{1}+\alpha _{2}-\alpha _{3}){\hat {\Upsilon }}_{b}(\alpha _{2}+\alpha _{3}-\alpha _{1}){\hat {\Upsilon }}_{b}(\alpha _{3}+\alpha _{1}-\alpha _{2})}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1a05a39256684764356d8884b7d45584c085175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:89.85ex; height:10.676ex;" alt="{\displaystyle {\hat {C}}_{\alpha _{1},\alpha _{2},\alpha _{3}}={\frac {\left[(ib)^{{\frac {2}{b}}-2b}\lambda \right]^{Q-\alpha _{1}-\alpha _{2}-\alpha _{3}}{\hat {\Upsilon }}_{b}(0){\hat {\Upsilon }}_{b}(2\alpha _{1}){\hat {\Upsilon }}_{b}(2\alpha _{2}){\hat {\Upsilon }}_{b}(2\alpha _{3})}{{\hat {\Upsilon }}_{b}(\alpha _{1}+\alpha _{2}+\alpha _{3}-Q){\hat {\Upsilon }}_{b}(\alpha _{1}+\alpha _{2}-\alpha _{3}){\hat {\Upsilon }}_{b}(\alpha _{2}+\alpha _{3}-\alpha _{1}){\hat {\Upsilon }}_{b}(\alpha _{3}+\alpha _{1}-\alpha _{2})}}\ ,}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\Upsilon }}_{b}(x)={\frac {1}{\Upsilon _{ib}(-ix+ib)}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi mathvariant="normal">Υ<!-- Υ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\Upsilon }}_{b}(x)={\frac {1}{\Upsilon _{ib}(-ix+ib)}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/611ac56d3a871a4277c9ef601fe70839d2e29e58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.75ex; height:6.009ex;" alt="{\displaystyle {\hat {\Upsilon }}_{b}(x)={\frac {1}{\Upsilon _{ib}(-ix+ib)}}\ .}"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>-point functions on the sphere can be expressed in terms of three-point structure constants, and <a href="/wiki/Virasoro_conformal_block" title="Virasoro conformal block">conformal blocks</a>. An <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>-point function may have several different expressions: that they agree is equivalent to <a href="/wiki/Crossing_symmetry" class="mw-redirect" title="Crossing symmetry">crossing symmetry</a> of the four-point function, which has been checked numerically<sup id="cite_ref-zz_3-1" class="reference"><a href="#cite_note-zz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-rs15_4-0" class="reference"><a href="#cite_note-rs15-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and proved analytically.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Conformal_Bootstrap_in_Liouville_Th_6-0" class="reference"><a href="#cite_note-Conformal_Bootstrap_in_Liouville_Th-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>Liouville theory exists not only on the sphere, but also on any <a href="/wiki/Riemann_surface" title="Riemann surface">Riemann surface</a> of genus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/597627de4c1b6d2f54f1717c542e7de112094699" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.377ex; height:2.509ex;" alt="{\displaystyle g\geq 1}"></span>. Technically, this is equivalent to the <a href="/wiki/Modular_invariance" title="Modular invariance">modular invariance</a> of the <a href="/wiki/Torus" title="Torus">torus</a> one-point function. Due to remarkable identities of conformal blocks and structure constants, this modular invariance property can be deduced from crossing symmetry of the sphere four-point function.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-rs15_4-1" class="reference"><a href="#cite_note-rs15-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Uniqueness_of_Liouville_theory">Uniqueness of Liouville theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=6" title="Edit section: Uniqueness of Liouville theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using the <a href="/wiki/Conformal_bootstrap" title="Conformal bootstrap">conformal bootstrap</a> approach, Liouville theory can be shown to be the unique conformal field theory such that<sup id="cite_ref-rib14_1-2" class="reference"><a href="#cite_note-rib14-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <ul><li>the spectrum is a continuum, with no multiplicities higher than one,</li> <li>the correlation functions depend analytically on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> and the momenta,</li> <li>degenerate fields exist.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Lagrangian_formulation">Lagrangian formulation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=7" title="Edit section: Lagrangian formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Action_and_equation_of_motion">Action and equation of motion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=8" title="Edit section: Action and equation of motion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory is defined by the local <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S[\varphi ]={\frac {1}{4\pi }}\int d^{2}x\,{\sqrt {g}}(g^{\mu \nu }\partial _{\mu }\varphi \partial _{\nu }\varphi +QR\varphi +\lambda 'e^{2b\varphi })\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>g</mi> </msqrt> </mrow> <mo stretchy="false">(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mi>φ<!-- φ --></mi> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>Q</mi> <mi>R</mi> <mi>φ<!-- φ --></mi> <mo>+</mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S[\varphi ]={\frac {1}{4\pi }}\int d^{2}x\,{\sqrt {g}}(g^{\mu \nu }\partial _{\mu }\varphi \partial _{\nu }\varphi +QR\varphi +\lambda 'e^{2b\varphi })\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0a5e81dc3b4105360d0a979f5713ba1f31adea8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:51.598ex; height:5.676ex;" alt="{\displaystyle S[\varphi ]={\frac {1}{4\pi }}\int d^{2}x\,{\sqrt {g}}(g^{\mu \nu }\partial _{\mu }\varphi \partial _{\nu }\varphi +QR\varphi +\lambda 'e^{2b\varphi })\ ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5bf4140993a891f5782167dc8a0c236dc7667b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.204ex; height:2.343ex;" alt="{\displaystyle g_{\mu \nu }}"></span> is the <a href="/wiki/Metric_(mathematics)" class="mw-redirect" title="Metric (mathematics)">metric</a> of the <a href="/wiki/Two-dimensional_space" title="Two-dimensional space">two-dimensional space</a> on which the theory is formulated, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the <a href="/wiki/Ricci_scalar" class="mw-redirect" title="Ricci scalar">Ricci scalar</a> of that space, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is the Liouville field. The parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75ef6ce6e951363fc985487085e2474698e0a632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:2.509ex;" alt="{\displaystyle \lambda '}"></span>, which is sometimes called the cosmological constant, is related to the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> that appears in correlation functions by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda '=4{\frac {\Gamma (1-b^{2})}{\Gamma (b^{2})}}\lambda ^{b}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mo>=</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda '=4{\frac {\Gamma (1-b^{2})}{\Gamma (b^{2})}}\lambda ^{b}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ace3f31a731cda05e8fe30801ba2be5d0a3cf013" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.393ex; height:6.676ex;" alt="{\displaystyle \lambda '=4{\frac {\Gamma (1-b^{2})}{\Gamma (b^{2})}}\lambda ^{b}.}"></span></dd></dl> <p>The equation of motion associated to this action is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \varphi (x)={\frac {1}{2}}QR(x)+\lambda 'be^{2b\varphi (x)}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>Q</mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mi>b</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \varphi (x)={\frac {1}{2}}QR(x)+\lambda 'be^{2b\varphi (x)}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5516093ebac0708ae612e61781c709a553b4c2c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.676ex; height:5.176ex;" alt="{\displaystyle \Delta \varphi (x)={\frac {1}{2}}QR(x)+\lambda 'be^{2b\varphi (x)}\ ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =|g|^{-1/2}\partial _{\mu }(|g|^{1/2}g^{\mu \nu }\partial _{\nu })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =|g|^{-1/2}\partial _{\mu }(|g|^{1/2}g^{\mu \nu }\partial _{\nu })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a80b524fefe3e8689e9760d20b0296b8fedebc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.347ex; height:3.676ex;" alt="{\displaystyle \Delta =|g|^{-1/2}\partial _{\mu }(|g|^{1/2}g^{\mu \nu }\partial _{\nu })}"></span> is the <a href="/wiki/Laplace%E2%80%93Beltrami_operator" title="Laplace–Beltrami operator">Laplace–Beltrami operator</a>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5bf4140993a891f5782167dc8a0c236dc7667b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.204ex; height:2.343ex;" alt="{\displaystyle g_{\mu \nu }}"></span> is the <a href="/wiki/Euclidean_metric" class="mw-redirect" title="Euclidean metric">Euclidean metric</a>, this equation reduces to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {\partial ^{2}}{\partial x_{1}^{2}}}+{\frac {\partial ^{2}}{\partial x_{2}^{2}}}\right)\varphi (x_{1},x_{2})=\lambda 'be^{2b\varphi (x_{1},x_{2})}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mi>b</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {\partial ^{2}}{\partial x_{1}^{2}}}+{\frac {\partial ^{2}}{\partial x_{2}^{2}}}\right)\varphi (x_{1},x_{2})=\lambda 'be^{2b\varphi (x_{1},x_{2})}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/018aff2d3d0f1361157503ba54e06fa230408447" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.678ex; height:7.509ex;" alt="{\displaystyle \left({\frac {\partial ^{2}}{\partial x_{1}^{2}}}+{\frac {\partial ^{2}}{\partial x_{2}^{2}}}\right)\varphi (x_{1},x_{2})=\lambda 'be^{2b\varphi (x_{1},x_{2})}\ ,}"></span></dd></dl> <p>which is equivalent to <a href="/wiki/Liouville%27s_equation" title="Liouville's equation">Liouville's equation</a>. </p><p>Once compactified on a cylinder, Liouville field theory can be equivalently formulated as a worldline theory.<sup id="cite_ref-dog22_8-0" class="reference"><a href="#cite_note-dog22-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conformal_symmetry">Conformal symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=9" title="Edit section: Conformal symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using a <a href="/wiki/Complex_coordinate_space" title="Complex coordinate space">complex coordinate system</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> and a <a href="/wiki/Euclidean_metric" class="mw-redirect" title="Euclidean metric">Euclidean metric</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\mu \nu }dx^{\mu }dx^{\nu }=dzd{\bar {z}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mi>d</mi> <mi>z</mi> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\mu \nu }dx^{\mu }dx^{\nu }=dzd{\bar {z}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebe876d3f04ed0e8b0690074c3f9a8ce357ba0a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.183ex; height:3.009ex;" alt="{\displaystyle g_{\mu \nu }dx^{\mu }dx^{\nu }=dzd{\bar {z}},}"></span></dd></dl> <p>the <a href="/wiki/Energy%E2%80%93momentum_tensor" class="mw-redirect" title="Energy–momentum tensor">energy–momentum tensor</a>'s components obey </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{z{\bar {z}}}=T_{{\bar {z}}z}=0\;,\quad \partial _{\bar {z}}T_{zz}=0\;,\quad \partial _{z}T_{{\bar {z}}{\bar {z}}}=0\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="1em" /> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="1em" /> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{z{\bar {z}}}=T_{{\bar {z}}z}=0\;,\quad \partial _{\bar {z}}T_{zz}=0\;,\quad \partial _{z}T_{{\bar {z}}{\bar {z}}}=0\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2854bcaf1dc5e3c5fb859014f0fc683269d515b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.024ex; height:2.676ex;" alt="{\displaystyle T_{z{\bar {z}}}=T_{{\bar {z}}z}=0\;,\quad \partial _{\bar {z}}T_{zz}=0\;,\quad \partial _{z}T_{{\bar {z}}{\bar {z}}}=0\ .}"></span></dd></dl> <p>The non-vanishing components are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=T_{zz}=(\partial _{z}\varphi )^{2}+Q\partial _{z}^{2}\varphi \;,\quad {\bar {T}}=T_{{\bar {z}}{\bar {z}}}=(\partial _{\bar {z}}\varphi )^{2}+Q\partial _{\bar {z}}^{2}\varphi \ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>φ<!-- φ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>Q</mi> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>φ<!-- φ --></mi> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <mi>φ<!-- φ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>Q</mi> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>φ<!-- φ --></mi> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=T_{zz}=(\partial _{z}\varphi )^{2}+Q\partial _{z}^{2}\varphi \;,\quad {\bar {T}}=T_{{\bar {z}}{\bar {z}}}=(\partial _{\bar {z}}\varphi )^{2}+Q\partial _{\bar {z}}^{2}\varphi \ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/752f83855defbdc71e07e597dd9f47e5998ed64a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:58.301ex; height:3.509ex;" alt="{\displaystyle T=T_{zz}=(\partial _{z}\varphi )^{2}+Q\partial _{z}^{2}\varphi \;,\quad {\bar {T}}=T_{{\bar {z}}{\bar {z}}}=(\partial _{\bar {z}}\varphi )^{2}+Q\partial _{\bar {z}}^{2}\varphi \ .}"></span></dd></dl> <p>Each one of these two components generates a <a href="/wiki/Virasoro_algebra" title="Virasoro algebra">Virasoro algebra</a> with the central charge </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1+6Q^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>6</mn> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1+6Q^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/907cb140b190dc4574e4f35353760d764f11a0a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.81ex; height:3.009ex;" alt="{\displaystyle c=1+6Q^{2}.}"></span></dd></dl> <p>For both of these Virasoro algebras, a field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{2\alpha \varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>α<!-- α --></mi> <mi>φ<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{2\alpha \varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acad366b1f6f79e1a52f7d1339481af52410ed40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.265ex; height:2.676ex;" alt="{\displaystyle e^{2\alpha \varphi }}"></span> is a primary field with the conformal dimension </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =\alpha (Q-\alpha ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =\alpha (Q-\alpha ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64830d89d2c1dfd246481b8c516a222443e1204c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.144ex; height:2.843ex;" alt="{\displaystyle \Delta =\alpha (Q-\alpha ).}"></span></dd></dl> <p>For the theory to have <a href="/wiki/Conformal_symmetry" title="Conformal symmetry">conformal invariance</a>, the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{2b\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{2b\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63126ce9e66e9549e7e3bd02871c2ab6d7e182d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.918ex; height:2.676ex;" alt="{\displaystyle e^{2b\varphi }}"></span> that appears in the action must be <a href="/wiki/Marginal_operator" class="mw-redirect" title="Marginal operator">marginal</a>, i.e. have the conformal dimension </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (b)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (b)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17466df41bde6875d61e91043d79b71539fb53e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.65ex; height:2.843ex;" alt="{\displaystyle \Delta (b)=1.}"></span></dd></dl> <p>This leads to the relation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=b+{\frac {1}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=b+{\frac {1}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ce614a39a10c8ab3724b075649583d6aa553ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.773ex; height:5.343ex;" alt="{\displaystyle Q=b+{\frac {1}{b}}}"></span></dd></dl> <p>between the background charge and the coupling constant. If this relation is obeyed, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{2b\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{2b\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63126ce9e66e9549e7e3bd02871c2ab6d7e182d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.918ex; height:2.676ex;" alt="{\displaystyle e^{2b\varphi }}"></span> is actually exactly marginal, and the theory is conformally invariant. </p> <div class="mw-heading mw-heading3"><h3 id="Path_integral">Path integral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=10" title="Edit section: Path integral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The path integral representation of an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>-point correlation function of primary fields is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \prod _{i=1}^{N}V_{\alpha _{i}}(z_{i})\right\rangle =\int D\varphi \ e^{-S[\varphi ]}\prod _{i=1}^{N}e^{2\alpha _{i}\varphi (z_{i})}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mi>D</mi> <mi>φ<!-- φ --></mi> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>S</mi> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> </mrow> </msup> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \prod _{i=1}^{N}V_{\alpha _{i}}(z_{i})\right\rangle =\int D\varphi \ e^{-S[\varphi ]}\prod _{i=1}^{N}e^{2\alpha _{i}\varphi (z_{i})}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdd3be77cd79fefd6a5fdb92ab890af3b27cece3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.935ex; height:7.509ex;" alt="{\displaystyle \left\langle \prod _{i=1}^{N}V_{\alpha _{i}}(z_{i})\right\rangle =\int D\varphi \ e^{-S[\varphi ]}\prod _{i=1}^{N}e^{2\alpha _{i}\varphi (z_{i})}\ .}"></span></dd></dl> <p>It has been difficult to define and to compute this path integral. In the path integral representation, it is not obvious that Liouville theory has exact <a href="/wiki/Conformal_invariance" class="mw-redirect" title="Conformal invariance">conformal invariance</a>, and it is not manifest that correlation functions are invariant under <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\to b^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\to b^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77250c7845027fc1d603b77aa090d8c931fc4cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.942ex; height:2.676ex;" alt="{\displaystyle b\to b^{-1}}"></span> and obey the reflection relation. Nevertheless, the path integral representation can be used for computing the <a href="/wiki/Residue_(complex_analysis)" title="Residue (complex analysis)">residues</a> of correlation functions at some of their <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">poles</a> as Dotsenko–Fateev integrals in the <a href="/wiki/Massless_free_scalar_bosons_in_two_dimensions#Coulomb_gas_formalism" title="Massless free scalar bosons in two dimensions">Coulomb gas formalism</a>, and this is how the DOZZ formula was first guessed in the 1990s. It is only in the 2010s that a rigorous probabilistic construction of the path integral was found, which led to a proof of the DOZZ formula<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> and the conformal bootstrap.<sup id="cite_ref-Conformal_Bootstrap_in_Liouville_Th_6-1" class="reference"><a href="#cite_note-Conformal_Bootstrap_in_Liouville_Th-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-gkrv21_10-0" class="reference"><a href="#cite_note-gkrv21-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Relations_with_other_conformal_field_theories">Relations with other conformal field theories</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=11" title="Edit section: Relations with other conformal field theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Some_limits_of_Liouville_theory">Some limits of Liouville theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=12" title="Edit section: Some limits of Liouville theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the central charge and conformal dimensions are sent to the relevant discrete values, correlation functions of Liouville theory reduce to correlation functions of diagonal (A-series) Virasoro <a href="/wiki/Minimal_model_(physics)" title="Minimal model (physics)">minimal models</a>.<sup id="cite_ref-rib14_1-3" class="reference"><a href="#cite_note-rib14-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>On the other hand, when the central charge is sent to one while conformal dimensions stay continuous, Liouville theory tends to Runkel–Watts theory, a nontrivial conformal field theory (CFT) with a continuous spectrum whose three-point function is not analytic as a function of the momenta.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Generalizations of Runkel-Watts theory are obtained from Liouville theory by taking limits of the type <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}\notin \mathbb {R} ,b^{2}\to \mathbb {Q} _{<0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>∉<!-- ∉ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo><</mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}\notin \mathbb {R} ,b^{2}\to \mathbb {Q} _{<0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc42286932fb89744ba1afde857ab3404b645eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.411ex; height:3.176ex;" alt="{\displaystyle b^{2}\notin \mathbb {R} ,b^{2}\to \mathbb {Q} _{<0}}"></span>.<sup id="cite_ref-rs15_4-2" class="reference"><a href="#cite_note-rs15-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> So, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}\in \mathbb {Q} _{<0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>∈<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo><</mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}\in \mathbb {Q} _{<0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aebd1300178b55bba7fdf4ba5c911493d167d707" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.033ex; height:3.176ex;" alt="{\displaystyle b^{2}\in \mathbb {Q} _{<0}}"></span>, two distinct CFTs with the same spectrum are known: Liouville theory, whose three-point function is analytic, and another CFT with a non-analytic three-point function. </p> <div class="mw-heading mw-heading3"><h3 id="WZW_models">WZW models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=13" title="Edit section: WZW models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory can be obtained from the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfbfec25e0918ce74c8be2ca61ea6d65257613e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.624ex; height:2.843ex;" alt="{\displaystyle SL_{2}(\mathbb {R} )}"></span> <a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten model</a> by a quantum <a href="/wiki/Drinfeld%E2%80%93Sokolov%E2%80%93Wilson_equation" title="Drinfeld–Sokolov–Wilson equation">Drinfeld–Sokolov reduction</a>. Moreover, correlation functions of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{3}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{3}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/904324d13e3a73954ea2b3ddb4ba2b084822a40e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{3}^{+}}"></span> model (the Euclidean version of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfbfec25e0918ce74c8be2ca61ea6d65257613e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.624ex; height:2.843ex;" alt="{\displaystyle SL_{2}(\mathbb {R} )}"></span> WZW model) can be expressed in terms of correlation functions of Liouville theory.<sup id="cite_ref-rt05_12-0" class="reference"><a href="#cite_note-rt05-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> This is also true of correlation functions of the 2d black hole <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}/U_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}/U_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/351a3afe5e4b5f43c05566117573ea164c5b934b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.94ex; height:2.843ex;" alt="{\displaystyle SL_{2}/U_{1}}"></span> coset model.<sup id="cite_ref-rt05_12-1" class="reference"><a href="#cite_note-rt05-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> Moreover, there exist theories that continuously interpolate between Liouville theory and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{3}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{3}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/904324d13e3a73954ea2b3ddb4ba2b084822a40e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{3}^{+}}"></span> model.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conformal_Toda_theory">Conformal Toda theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=14" title="Edit section: Conformal Toda theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory is the simplest example of a <a href="/wiki/Toda_field_theory" title="Toda field theory">Toda field theory</a>, associated to the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bc2435b217c1a0f46f8a517ffa225c6f9440e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{1}}"></span> <a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan matrix</a>. More general conformal Toda theories can be viewed as generalizations of Liouville theory, whose Lagrangians involve several bosons rather than one boson <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>, and whose symmetry algebras are <a href="/wiki/W-algebra" title="W-algebra">W-algebras</a> rather than the Virasoro algebra. </p> <div class="mw-heading mw-heading3"><h3 id="Supersymmetric_Liouville_theory">Supersymmetric Liouville theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=15" title="Edit section: Supersymmetric Liouville theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory admits two different <a href="/wiki/Supersymmetry" title="Supersymmetry">supersymmetric</a> extensions called <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {N}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {N}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e733b2655ea8edffe0763ec9314deb788293e3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.062ex; width:6.597ex; height:2.509ex;" alt="{\displaystyle {\mathcal {N}}=1}"></span> supersymmetric Liouville theory and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {N}}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {N}}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f52d38c18106a1322d74903137ab9a0c87b4d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.062ex; width:6.597ex; height:2.509ex;" alt="{\displaystyle {\mathcal {N}}=2}"></span> supersymmetric Liouville theory.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Relations_with_integrable_models">Relations with integrable models</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=16" title="Edit section: Relations with integrable models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Sinh-Gordon_model">Sinh-Gordon model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=17" title="Edit section: Sinh-Gordon model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In flat space, the sinh-Gordon model is defined by the local action: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S[\varphi ]={\frac {1}{4\pi }}\int d^{2}x\left(\partial ^{\mu }\varphi \partial _{\mu }\varphi +\lambda \cosh(2b\varphi )\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mi>φ<!-- φ --></mi> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>b</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S[\varphi ]={\frac {1}{4\pi }}\int d^{2}x\left(\partial ^{\mu }\varphi \partial _{\mu }\varphi +\lambda \cosh(2b\varphi )\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8260cb4f82b63d0bef15a87238588414dd346cc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.083ex; height:5.676ex;" alt="{\displaystyle S[\varphi ]={\frac {1}{4\pi }}\int d^{2}x\left(\partial ^{\mu }\varphi \partial _{\mu }\varphi +\lambda \cosh(2b\varphi )\right).}"></span></dd></dl> <p>The corresponding classical equation of motion is the <a href="/wiki/Sine-Gordon_equation#Related_equations" title="Sine-Gordon equation">sinh-Gordon equation</a>. The model can be viewed as a perturbation of Liouville theory. The model's exact <a href="/wiki/S-matrix" title="S-matrix">S-matrix</a> is known in the weak coupling regime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0<b<1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo><</mo> <mi>b</mi> <mo><</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0<b<1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/294830b3b4756ac60e95f53d49920ac8e2a1a227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.519ex; height:2.176ex;" alt="{\displaystyle 0<b<1}"></span>, and it is formally invariant under <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\to b^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\to b^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77250c7845027fc1d603b77aa090d8c931fc4cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.942ex; height:2.676ex;" alt="{\displaystyle b\to b^{-1}}"></span>. However, it has been argued that the model itself is not invariant.<sup id="cite_ref-bl21_16-0" class="reference"><a href="#cite_note-bl21-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=18" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Liouville_gravity">Liouville gravity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=19" title="Edit section: Liouville gravity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In two dimensions, the <a href="/wiki/Einstein_equations" class="mw-redirect" title="Einstein equations">Einstein equations</a> reduce to <a href="/wiki/Liouville%27s_equation" title="Liouville's equation">Liouville's equation</a>, so Liouville theory provides a <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum theory of gravity</a> that is called Liouville gravity. It should not be confused<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> with the <a href="/wiki/CGHS_model" title="CGHS model">CGHS model</a> or <a href="/wiki/Jackiw%E2%80%93Teitelboim_gravity" title="Jackiw–Teitelboim gravity">Jackiw–Teitelboim gravity</a>. </p> <div class="mw-heading mw-heading3"><h3 id="String_theory">String theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=20" title="Edit section: String theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory appears in the context of <a href="/wiki/String_theory" title="String theory">string theory</a> when trying to formulate a non-critical version of the theory in the <a href="/wiki/Path_integral_formulation" title="Path integral formulation">path integral formulation</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> The theory also appears as the description of <a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">bosonic string theory</a> in two spacetime dimensions with a linear <a href="/wiki/Dilaton" title="Dilaton">dilaton</a> and a <a href="/wiki/Tachyon" title="Tachyon">tachyon</a> background. The tachyon field equation of motion in the linear dilaton background requires it to take an exponential solution. The <a href="/wiki/Polyakov_action" title="Polyakov action">Polyakov action</a> in this background is then identical to Liouville field theory, with the linear dilaton being responsible for the background charge term while the tachyon contributing the exponential potential.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Random_energy_models">Random energy models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=21" title="Edit section: Random energy models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is an exact mapping between Liouville theory with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\geq 25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>≥<!-- ≥ --></mo> <mn>25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\geq 25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aed98cce8bbea503f236b088d91e5f23216ce4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.43ex; height:2.343ex;" alt="{\displaystyle c\geq 25}"></span>, and certain log-correlated <a href="/wiki/Random_energy_model" title="Random energy model">random energy models</a>.<sup id="cite_ref-cdrs18_21-0" class="reference"><a href="#cite_note-cdrs18-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> These models describe a thermal particle in a random potential that is logarithmically correlated. In two dimensions, such potential coincides with the <a href="/wiki/Gaussian_free_field" title="Gaussian free field">Gaussian free field</a>. In that case, certain correlation functions between primary fields in the Liouville theory are mapped to correlation functions of the <a href="/wiki/Gibbs_measure" title="Gibbs measure">Gibbs measure</a> of the particle. This has applications to extreme value statistics of the two-dimensional Gaussian free field, and allows to predict certain universal properties of the log-correlated random energy models (in two dimensions and beyond). </p> <div class="mw-heading mw-heading3"><h3 id="Other_applications">Other applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=22" title="Edit section: Other applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory is related to other subjects in physics and mathematics, such as three-dimensional <a href="/wiki/General_relativity" title="General relativity">general relativity</a> in negatively <a href="/wiki/Curved_space" title="Curved space">curved spaces</a>, the <a href="/wiki/Uniformization_theorem" title="Uniformization theorem">uniformization problem</a> of <a href="/wiki/Riemann_surface" title="Riemann surface">Riemann surfaces</a>, and other problems in <a href="/wiki/Conformal_map" title="Conformal map">conformal mapping</a>. It is also related to <a href="/wiki/Instanton" title="Instanton">instanton</a> <a href="/wiki/Partition_function_(quantum_field_theory)" title="Partition function (quantum field theory)">partition functions</a> in a certain four-dimensional <a href="/wiki/Superconformal_algebra" title="Superconformal algebra">superconformal</a> <a href="/wiki/Gauge_theories" class="mw-redirect" title="Gauge theories">gauge theories</a> by the <a href="/wiki/AGT_correspondence" title="AGT correspondence">AGT correspondence</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Naming_confusion_for_c_≤_1"><span id="Naming_confusion_for_c_.E2.89.A4_1"></span>Naming confusion for <span class="texhtml"><i>c</i> ≤ 1</span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=23" title="Edit section: Naming confusion for c ≤ 1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Liouville theory with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>≤<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d778f9f3e796df8670ed8635402c12ae9d91675b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.268ex; height:2.343ex;" alt="{\displaystyle c\leq 1}"></span> first appeared as a model of time-dependent string theory under the name <b>timelike Liouville theory</b>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> It has also been called a <b>generalized minimal model</b>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> It was first called <b>Liouville theory</b> when it was found to actually exist, and to be spacelike rather than timelike.<sup id="cite_ref-rs15_4-3" class="reference"><a href="#cite_note-rs15-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> As of 2022, not one of these three names is universally accepted. </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-rib14-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-rib14_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rib14_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-rib14_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-rib14_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFRibault2014" class="citation arxiv cs1">Ribault, Sylvain (2014). "Conformal field theory on the plane". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.4290">1406.4290</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-th">hep-th</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Conformal+field+theory+on+the+plane&rft.date=2014&rft_id=info%3Aarxiv%2F1406.4290&rft.aulast=Ribault&rft.aufirst=Sylvain&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDornOtto1994" class="citation journal cs1">Dorn, H.; Otto, H.-J. (1994). "Two and three point functions in Liouville theory". <i>Nucl. Phys. B</i>. <b>429</b>: 375–388. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9403141">hep-th/9403141</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994NuPhB......375D">1994NuPhB......375D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2894%2900352-1">10.1016/0550-3213(94)00352-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15413971">15413971</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nucl.+Phys.+B&rft.atitle=Two+and+three+point+functions+in+Liouville+theory&rft.volume=429&rft.pages=375-388&rft.date=1994&rft_id=info%3Aarxiv%2Fhep-th%2F9403141&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15413971%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2F0550-3213%2894%2900352-1&rft_id=info%3Abibcode%2F1994NuPhB......375D&rft.aulast=Dorn&rft.aufirst=H.&rft.au=Otto%2C+H.-J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-zz-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-zz_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-zz_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZamolodchikovZamolodchikov1996" class="citation journal cs1">Zamolodchikov, A.; Zamolodchikov, Al. (1996). "Conformal bootstrap in Liouville field theory". <i>Nuclear Physics B</i>. <b>477</b> (2): 577–605. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9506136">hep-th/9506136</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996NuPhB.477..577Z">1996NuPhB.477..577Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2896%2900351-3">10.1016/0550-3213(96)00351-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:204929527">204929527</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics+B&rft.atitle=Conformal+bootstrap+in+Liouville+field+theory&rft.volume=477&rft.issue=2&rft.pages=577-605&rft.date=1996&rft_id=info%3Aarxiv%2Fhep-th%2F9506136&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A204929527%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2F0550-3213%2896%2900351-3&rft_id=info%3Abibcode%2F1996NuPhB.477..577Z&rft.aulast=Zamolodchikov&rft.aufirst=A.&rft.au=Zamolodchikov%2C+Al.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-rs15-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-rs15_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rs15_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-rs15_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-rs15_4-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibaultSantachiara2015" class="citation journal cs1">Ribault, Sylvain; Santachiara, Raoul (2015). "Liouville theory with a central charge less than one". <i>Journal of High Energy Physics</i>. <b>2015</b> (8): 109. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1503.02067">1503.02067</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015JHEP...08..109R">2015JHEP...08..109R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP08%282015%29109">10.1007/JHEP08(2015)109</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54193340">54193340</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Liouville+theory+with+a+central+charge+less+than+one&rft.volume=2015&rft.issue=8&rft.pages=109&rft.date=2015&rft_id=info%3Aarxiv%2F1503.02067&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54193340%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP08%282015%29109&rft_id=info%3Abibcode%2F2015JHEP...08..109R&rft.aulast=Ribault&rft.aufirst=Sylvain&rft.au=Santachiara%2C+Raoul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeschner2003" class="citation journal cs1">Teschner, J (2003). "A lecture on the Liouville vertex operators". <i>International Journal of Modern Physics A</i>. <b>19</b> (2): 436–458. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0303150">hep-th/0303150</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004IJMPA..19S.436T">2004IJMPA..19S.436T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X04020567">10.1142/S0217751X04020567</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14792780">14792780</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=A+lecture+on+the+Liouville+vertex+operators&rft.volume=19&rft.issue=2&rft.pages=436-458&rft.date=2003&rft_id=info%3Aarxiv%2Fhep-th%2F0303150&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14792780%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0217751X04020567&rft_id=info%3Abibcode%2F2004IJMPA..19S.436T&rft.aulast=Teschner&rft.aufirst=J&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-Conformal_Bootstrap_in_Liouville_Th-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Conformal_Bootstrap_in_Liouville_Th_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Conformal_Bootstrap_in_Liouville_Th_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuillarmouKupiainenRhodesV2020" class="citation arxiv cs1">Guillarmou, C; Kupiainen, A; Rhodes, R; V, Vargas (2020). "Conformal Bootstrap in Liouville Theory". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2005.11530">2005.11530</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.PR">math.PR</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Conformal+Bootstrap+in+Liouville+Theory&rft.date=2020&rft_id=info%3Aarxiv%2F2005.11530&rft.aulast=Guillarmou&rft.aufirst=C&rft.au=Kupiainen%2C+A&rft.au=Rhodes%2C+R&rft.au=V%2C+Vargas&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHadaszJaskolskiSuchanek2010" class="citation journal cs1">Hadasz, Leszek; Jaskolski, Zbigniew; Suchanek, Paulina (2010). "Modular bootstrap in Liouville field theory". <i>Physics Letters B</i>. <b>685</b> (1): 79–85. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0911.4296">0911.4296</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010PhLB..685...79H">2010PhLB..685...79H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2010.01.036">10.1016/j.physletb.2010.01.036</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118625083">118625083</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Modular+bootstrap+in+Liouville+field+theory&rft.volume=685&rft.issue=1&rft.pages=79-85&rft.date=2010&rft_id=info%3Aarxiv%2F0911.4296&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118625083%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2010.01.036&rft_id=info%3Abibcode%2F2010PhLB..685...79H&rft.aulast=Hadasz&rft.aufirst=Leszek&rft.au=Jaskolski%2C+Zbigniew&rft.au=Suchanek%2C+Paulina&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-dog22-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-dog22_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndrei_IoanCampos_Delgado2022" class="citation journal cs1">Andrei Ioan, Dogaru; Campos Delgado, Ruben (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP10%282022%29110">"Cylinder quantum field theories at small coupling"</a>. <i>J. High Energy Phys</i>. <b>2022</b> (10): 110. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2205.07363">2205.07363</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP10%282022%29110">10.1007/JHEP10(2022)110</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+High+Energy+Phys.&rft.atitle=Cylinder+quantum+field+theories+at+small+coupling&rft.volume=2022&rft.issue=10&rft.pages=110&rft.date=2022&rft_id=info%3Aarxiv%2F2205.07363&rft_id=info%3Adoi%2F10.1007%2FJHEP10%282022%29110&rft.aulast=Andrei+Ioan&rft.aufirst=Dogaru&rft.au=Campos+Delgado%2C+Ruben&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252FJHEP10%25282022%2529110&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKupiainenRhodesVargas2017" class="citation arxiv cs1">Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent (2017). "Integrability of Liouville theory: Proof of the DOZZ Formula". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1707.08785">1707.08785</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.PR">math.PR</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Integrability+of+Liouville+theory%3A+Proof+of+the+DOZZ+Formula&rft.date=2017&rft_id=info%3Aarxiv%2F1707.08785&rft.aulast=Kupiainen&rft.aufirst=Antti&rft.au=Rhodes%2C+R%C3%A9mi&rft.au=Vargas%2C+Vincent&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-gkrv21-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-gkrv21_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuillarmouKupiainenRhodesVargas2021" class="citation arxiv cs1">Guillarmou, Colin; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent (2021-12-29). "Segal's axioms and bootstrap for Liouville Theory". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2112.14859v1">2112.14859v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.PR">math.PR</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Segal%27s+axioms+and+bootstrap+for+Liouville+Theory&rft.date=2021-12-29&rft_id=info%3Aarxiv%2F2112.14859v1&rft.aulast=Guillarmou&rft.aufirst=Colin&rft.au=Kupiainen%2C+Antti&rft.au=Rhodes%2C+R%C3%A9mi&rft.au=Vargas%2C+Vincent&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchomerus2003" class="citation journal cs1">Schomerus, Volker (2003). "Rolling Tachyons from Liouville theory". <i>Journal of High Energy Physics</i>. <b>2003</b> (11): 043. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0306026">hep-th/0306026</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003JHEP...11..043S">2003JHEP...11..043S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2003%2F11%2F043">10.1088/1126-6708/2003/11/043</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15608105">15608105</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Rolling+Tachyons+from+Liouville+theory&rft.volume=2003&rft.issue=11&rft.pages=043&rft.date=2003&rft_id=info%3Aarxiv%2Fhep-th%2F0306026&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15608105%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2003%2F11%2F043&rft_id=info%3Abibcode%2F2003JHEP...11..043S&rft.aulast=Schomerus&rft.aufirst=Volker&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-rt05-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-rt05_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rt05_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibaultTeschner2005" class="citation journal cs1">Ribault, Sylvain; Teschner, Joerg (2005). "H(3)+ correlators from Liouville theory". <i>Journal of High Energy Physics</i>. <b>2005</b> (6): 014. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0502048">hep-th/0502048</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JHEP...06..014R">2005JHEP...06..014R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2005%2F06%2F014">10.1088/1126-6708/2005/06/014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119441269">119441269</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=H%283%29%2B+correlators+from+Liouville+theory&rft.volume=2005&rft.issue=6&rft.pages=014&rft.date=2005&rft_id=info%3Aarxiv%2Fhep-th%2F0502048&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119441269%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2005%2F06%2F014&rft_id=info%3Abibcode%2F2005JHEP...06..014R&rft.aulast=Ribault&rft.aufirst=Sylvain&rft.au=Teschner%2C+Joerg&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHikidaSchomerus2007" class="citation journal cs1">Hikida, Yasuaki; Schomerus, Volker (2007). "H^+_3 WZNW model from Liouville field theory". <i>Journal of High Energy Physics</i>. <b>2007</b> (10): 064. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0706.1030">0706.1030</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JHEP...10..064H">2007JHEP...10..064H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2007%2F10%2F064">10.1088/1126-6708/2007/10/064</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1807250">1807250</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=H%5E%2B_3+WZNW+model+from+Liouville+field+theory&rft.volume=2007&rft.issue=10&rft.pages=064&rft.date=2007&rft_id=info%3Aarxiv%2F0706.1030&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1807250%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2007%2F10%2F064&rft_id=info%3Abibcode%2F2007JHEP...10..064H&rft.aulast=Hikida&rft.aufirst=Yasuaki&rft.au=Schomerus%2C+Volker&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibault2008" class="citation journal cs1">Ribault, Sylvain (2008). "A family of solvable non-rational conformal field theories". <i>Journal of High Energy Physics</i>. <b>2008</b> (5): 073. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0803.2099">0803.2099</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JHEP...05..073R">2008JHEP...05..073R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2008%2F05%2F073">10.1088/1126-6708/2008/05/073</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2591498">2591498</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=A+family+of+solvable+non-rational+conformal+field+theories&rft.volume=2008&rft.issue=5&rft.pages=073&rft.date=2008&rft_id=info%3Aarxiv%2F0803.2099&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2591498%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2008%2F05%2F073&rft_id=info%3Abibcode%2F2008JHEP...05..073R&rft.aulast=Ribault&rft.aufirst=Sylvain&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNakayama2004" class="citation journal cs1">Nakayama, Yu (2004). "Liouville Field Theory: A Decade After the Revolution". <i>International Journal of Modern Physics A</i>. <b>19</b> (17n18): 2771–2930. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0402009">hep-th/0402009</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004IJMPA..19.2771N">2004IJMPA..19.2771N</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.266.6964">10.1.1.266.6964</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X04019500">10.1142/S0217751X04019500</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119519820">119519820</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=Liouville+Field+Theory%3A+A+Decade+After+the+Revolution&rft.volume=19&rft.issue=17n18&rft.pages=2771-2930&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119519820%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004IJMPA..19.2771N&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.266.6964%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1142%2FS0217751X04019500&rft_id=info%3Aarxiv%2Fhep-th%2F0402009&rft.aulast=Nakayama&rft.aufirst=Yu&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-bl21-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-bl21_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernardLeClair2021" class="citation journal cs1">Bernard, Denis; LeClair, André (2021-12-10). "The sinh-Gordon model beyond the self dual point and the freezing transition in disordered systems". <i>Journal of High Energy Physics</i>. <b>2022</b> (5): 22. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2112.05490v1">2112.05490v1</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022JHEP...05..022B">2022JHEP...05..022B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP05%282022%29022">10.1007/JHEP05(2022)022</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245117303">245117303</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=The+sinh-Gordon+model+beyond+the+self+dual+point+and+the+freezing+transition+in+disordered+systems&rft.volume=2022&rft.issue=5&rft.pages=22&rft.date=2021-12-10&rft_id=info%3Aarxiv%2F2112.05490v1&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245117303%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP05%282022%29022&rft_id=info%3Abibcode%2F2022JHEP...05..022B&rft.aulast=Bernard&rft.aufirst=Denis&rft.au=LeClair%2C+Andr%C3%A9&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrumillerKummerVassilevich2002" class="citation journal cs1"><a href="/w/index.php?title=Daniel_Grumiller&action=edit&redlink=1" class="new" title="Daniel Grumiller (page does not exist)">Grumiller, Daniel</a>; Kummer, Wolfgang; <a href="/w/index.php?title=Dmitri_Vassilevich&action=edit&redlink=1" class="new" title="Dmitri Vassilevich (page does not exist)">Vassilevich, Dmitri</a> (October 2002). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/549532">"Dilaton Gravity in Two Dimensions"</a>. <i>Physics Reports</i> (Submitted manuscript). <b>369</b> (4): 327–430. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0204253">hep-th/0204253</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhR...369..327G">2002PhR...369..327G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0370-1573%2802%2900267-3">10.1016/S0370-1573(02)00267-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119497628">119497628</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Reports&rft.atitle=Dilaton+Gravity+in+Two+Dimensions&rft.volume=369&rft.issue=4&rft.pages=327-430&rft.date=2002-10&rft_id=info%3Aarxiv%2Fhep-th%2F0204253&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119497628%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2FS0370-1573%2802%2900267-3&rft_id=info%3Abibcode%2F2002PhR...369..327G&rft.aulast=Grumiller&rft.aufirst=Daniel&rft.au=Kummer%2C+Wolfgang&rft.au=Vassilevich%2C+Dmitri&rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F549532&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrumillerMeyer2006" class="citation journal cs1"><a href="/w/index.php?title=Daniel_Grumiller&action=edit&redlink=1" class="new" title="Daniel Grumiller (page does not exist)">Grumiller, Daniel</a>; <a href="/w/index.php?title=Rene_Meyer&action=edit&redlink=1" class="new" title="Rene Meyer (page does not exist)">Meyer, Rene</a> (2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110822060534/http://mistug.tubitak.gov.tr/bdyim/abs.php?dergi=fiz&rak=0604-8">"Ramifications of Lineland"</a>. <i><a href="/wiki/Turkish_Journal_of_Physics" title="Turkish Journal of Physics">Turkish Journal of Physics</a></i>. <b>30</b> (5): 349–378. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0604049">hep-th/0604049</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006TJPh...30..349G">2006TJPh...30..349G</a>. Archived from <a rel="nofollow" class="external text" href="http://mistug.tubitak.gov.tr/bdyim/abs.php?dergi=fiz&rak=0604-8">the original</a> on 22 August 2011.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Turkish+Journal+of+Physics&rft.atitle=Ramifications+of+Lineland&rft.volume=30&rft.issue=5&rft.pages=349-378&rft.date=2006&rft_id=info%3Aarxiv%2Fhep-th%2F0604049&rft_id=info%3Abibcode%2F2006TJPh...30..349G&rft.aulast=Grumiller&rft.aufirst=Daniel&rft.au=Meyer%2C+Rene&rft_id=http%3A%2F%2Fmistug.tubitak.gov.tr%2Fbdyim%2Fabs.php%3Fdergi%3Dfiz%26rak%3D0604-8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolyakov1981" class="citation journal cs1">Polyakov, A.M. (1981). "Quantum geometry of bosonic strings". <i>Physics Letters B</i>. <b>103</b> (3): 207–210. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981PhLB..103..207P">1981PhLB..103..207P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-2693%2881%2990743-7">10.1016/0370-2693(81)90743-7</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Quantum+geometry+of+bosonic+strings&rft.volume=103&rft.issue=3&rft.pages=207-210&rft.date=1981&rft_id=info%3Adoi%2F10.1016%2F0370-2693%2881%2990743-7&rft_id=info%3Abibcode%2F1981PhLB..103..207P&rft.aulast=Polyakov&rft.aufirst=A.M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolchinski1998" class="citation book cs1"><a href="/wiki/Joseph_Polchinski" title="Joseph Polchinski">Polchinski, J.</a> (1998). "9". <i>String Theory Volume I: An Introduction to the Bosonic String</i>. Cambridge University Press. pp. 323–325. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0143113799" title="Special:BookSources/978-0143113799"><bdi>978-0143113799</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=9&rft.btitle=String+Theory+Volume+I%3A+An+Introduction+to+the+Bosonic+String&rft.pages=323-325&rft.pub=Cambridge+University+Press&rft.date=1998&rft.isbn=978-0143113799&rft.aulast=Polchinski&rft.aufirst=J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-cdrs18-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-cdrs18_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaoDoussalRossoSantachiara2018" class="citation journal cs1">Cao, Xiangyu; Doussal, Pierre Le; Rosso, Alberto; Santachiara, Raoul (2018-01-30). "Operator Product Expansion in Liouville Field Theory and Seiberg type transitions in log-correlated Random Energy Models". <i>Physical Review E</i>. <b>97</b> (4): 042111. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.09991v1">1801.09991v1</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvE..97d2111C">2018PhRvE..97d2111C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.97.042111">10.1103/PhysRevE.97.042111</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29758633">29758633</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206258354">206258354</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Operator+Product+Expansion+in+Liouville+Field+Theory+and+Seiberg+type+transitions+in+log-correlated+Random+Energy+Models&rft.volume=97&rft.issue=4&rft.pages=042111&rft.date=2018-01-30&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206258354%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018PhRvE..97d2111C&rft_id=info%3Aarxiv%2F1801.09991v1&rft_id=info%3Apmid%2F29758633&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.97.042111&rft.aulast=Cao&rft.aufirst=Xiangyu&rft.au=Doussal%2C+Pierre+Le&rft.au=Rosso%2C+Alberto&rft.au=Santachiara%2C+Raoul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStromingerTakayanagi2003" class="citation journal cs1">Strominger, Andrew; Takayanagi, Tadashi (2003). <a rel="nofollow" class="external text" href="https://projecteuclid.org/download/pdf_1/euclid.atmp/1112627637">"Correlators in Timelike Bulk Liouville Theory"</a>. <i>Adv. Theor. Math. Phys</i>. <b>7</b> (2): 369–379. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0303221">hep-th/0303221</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003hep.th....3221S">2003hep.th....3221S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2Fatmp.2003.v7.n2.a6">10.4310/atmp.2003.v7.n2.a6</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2015169">2015169</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15080926">15080926</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Adv.+Theor.+Math.+Phys.&rft.atitle=Correlators+in+Timelike+Bulk+Liouville+Theory&rft.volume=7&rft.issue=2&rft.pages=369-379&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15080926%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2003hep.th....3221S&rft_id=info%3Aarxiv%2Fhep-th%2F0303221&rft_id=info%3Adoi%2F10.4310%2Fatmp.2003.v7.n2.a6&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2015169%23id-name%3DMR&rft.aulast=Strominger&rft.aufirst=Andrew&rft.au=Takayanagi%2C+Tadashi&rft_id=https%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.atmp%2F1112627637&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZamolodchikov2005" class="citation journal cs1">Zamolodchikov, Al (2005). "On the Three-point Function in Minimal Liouville Gravity". <i>Theoretical and Mathematical Physics</i>. <b>142</b> (2): 183–196. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0505063">hep-th/0505063</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005TMP...142..183Z">2005TMP...142..183Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11232-005-0048-3">10.1007/s11232-005-0048-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55961140">55961140</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+and+Mathematical+Physics&rft.atitle=On+the+Three-point+Function+in+Minimal+Liouville+Gravity&rft.volume=142&rft.issue=2&rft.pages=183-196&rft.date=2005&rft_id=info%3Aarxiv%2Fhep-th%2F0505063&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55961140%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs11232-005-0048-3&rft_id=info%3Abibcode%2F2005TMP...142..183Z&rft.aulast=Zamolodchikov&rft.aufirst=Al&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALiouville+field+theory" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Liouville_field_theory&action=edit&section=25" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://www.quantamagazine.org/mathematicians-prove-2d-version-of-quantum-gravity-really-works-20210617/">Mathematicians Prove 2D Version of Quantum Gravity Really Works</a>, <a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a> article by Charlie Wood, June 2021.</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=dLn_50Tpdf8&t=2937s">An Introduction to Liouville Theory</a>, Talk at Institute for Advanced Study by <a href="/wiki/Antti_Kupiainen" title="Antti Kupiainen">Antti Kupiainen</a>, May 2018.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics_topics" title="Template talk:Quantum mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics_topics" title="Special:EditPage/Template:Quantum mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">Timeline</a></li></ul></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamentals</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li> <li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)"> Complementarity</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a> <ul><li><a href="/wiki/Ground_state" title="Ground state">Ground state</a></li> <li><a href="/wiki/Excited_state" title="Excited state">Excited state</a></li> <li><a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">Degenerate levels</a></li> <li><a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a></li></ul></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">Quantum state</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry in quantum mechanics</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formulations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Formulations</a></li> <li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Equations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Weyl_equation" title="Weyl equation">Weyl</a></li> <li><a href="/wiki/Majorana_equation" title="Majorana equation">Majorana</a></li> <li><a href="/wiki/Rarita%E2%80%93Schwinger_equation" title="Rarita–Schwinger equation">Rarita–Schwinger</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell test</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice quantum eraser</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder interferometer</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper's experiment">Popper</a></li> <li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler's delayed-choice experiment">Wheeler's delayed choice</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_nanoscience" class="mw-redirect" title="Quantum nanoscience">Science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Quantum_differential_calculus" title="Quantum differential calculus">Quantum differential calculus</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Measurement_problem" title="Measurement problem">Quantum measurement problem</a></li> <li><a href="/wiki/Quantum_mind" title="Quantum mind">Quantum mind</a></li> <li><a href="/wiki/Quantum_stochastic_calculus" title="Quantum stochastic calculus">Quantum stochastic calculus</a></li> <li><a href="/wiki/Quantum_spacetime" title="Quantum spacetime">Quantum spacetime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">Quantum amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automata</a> <ul><li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automata</a></li></ul></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">Timeline</a></li></ul></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">Quantum electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum error correction</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">Quantum imaging</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">Quantum image processing</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum logic gates</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">Quantum machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">Quantum metamaterial</a></li> <li><a href="/wiki/Quantum_metrology" title="Quantum metrology">Quantum metrology</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">Quantum sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Extensions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuation</a></li> <li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <ul><li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat_in_popular_culture" title="Schrödinger's cat in popular culture">in popular culture</a></li></ul></li> <li><a href="/wiki/Wigner%27s_friend" title="Wigner's friend">Wigner's friend</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Quantum_mysticism" title="Quantum mysticism">Quantum mysticism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_field_theories" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_field_theories" title="Template:Quantum field theories"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_field_theories" title="Template talk:Quantum field theories"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_field_theories" title="Special:EditPage/Template:Quantum field theories"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_field_theories" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theories</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_quantum_field_theory" title="Algebraic quantum field theory">Algebraic QFT</a></li> <li><a href="/wiki/Axiomatic_quantum_field_theory" title="Axiomatic quantum field theory">Axiomatic QFT</a></li> <li><a href="/wiki/Conformal_field_theory" title="Conformal field theory">Conformal field theory</a></li> <li><a href="/wiki/Lattice_field_theory" title="Lattice field theory">Lattice field theory</a></li> <li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative QFT</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></li> <li><a href="/wiki/Quantum_field_theory_in_curved_spacetime" title="Quantum field theory in curved spacetime">QFT in curved spacetime</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Thermal_quantum_field_theory" title="Thermal quantum field theory">Thermal QFT</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological QFT</a></li> <li><a href="/wiki/Two-dimensional_conformal_field_theory" title="Two-dimensional conformal field theory">Two-dimensional conformal field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Models</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Regular</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born%E2%80%93Infeld_model" title="Born–Infeld model">Born–Infeld</a></li> <li><a href="/wiki/Euler%E2%80%93Heisenberg_Lagrangian" title="Euler–Heisenberg Lagrangian">Euler–Heisenberg</a></li> <li><a href="/wiki/Ginzburg%E2%80%93Landau_theory" title="Ginzburg–Landau theory">Ginzburg–Landau</a></li> <li><a href="/wiki/Non-linear_sigma_model" title="Non-linear sigma model">Non-linear sigma</a></li> <li><a href="/wiki/Proca_action" title="Proca action">Proca</a></li> <li><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></li> <li><a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a></li> <li><a href="/wiki/Quartic_interaction" title="Quartic interaction">Quartic interaction</a></li> <li><a href="/wiki/Scalar_electrodynamics" title="Scalar electrodynamics">Scalar electrodynamics</a></li> <li><a href="/wiki/Scalar_chromodynamics" title="Scalar chromodynamics">Scalar chromodynamics</a></li> <li><a href="/wiki/Soler_model" title="Soler model">Soler</a></li> <li><a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills</a></li> <li><a href="/wiki/Yang%E2%80%93Mills%E2%80%93Higgs_equations" title="Yang–Mills–Higgs equations">Yang–Mills–Higgs</a></li> <li><a href="/wiki/Yukawa_interaction" title="Yukawa interaction">Yukawa</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Low dimensional</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Two-dimensional_Yang%E2%80%93Mills_theory" title="Two-dimensional Yang–Mills theory">2D Yang–Mills</a></li> <li><a href="/wiki/Bullough%E2%80%93Dodd_model" title="Bullough–Dodd model">Bullough–Dodd</a></li> <li><a href="/wiki/Gross%E2%80%93Neveu_model" title="Gross–Neveu model">Gross–Neveu</a></li> <li><a href="/wiki/Schwinger_model" title="Schwinger model">Schwinger</a></li> <li><a href="/wiki/Sine-Gordon_equation" title="Sine-Gordon equation">Sine-Gordon</a></li> <li><a href="/wiki/Thirring_model" title="Thirring model">Thirring</a></li> <li><a href="/wiki/Thirring%E2%80%93Wess_model" title="Thirring–Wess model">Thirring–Wess</a></li> <li><a href="/wiki/Toda_field_theory" title="Toda field theory">Toda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Conformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Massless_free_scalar_bosons_in_two_dimensions" title="Massless free scalar bosons in two dimensions">2D free massless scalar</a></li> <li><a class="mw-selflink selflink">Liouville</a></li> <li><a href="/wiki/Minimal_model_(physics)" title="Minimal model (physics)">Minimal</a></li> <li><a href="/wiki/Polyakov_action" title="Polyakov action">Polyakov</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supersymmetric</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/4D_N_%3D_1_global_supersymmetry" title="4D N = 1 global supersymmetry">4D N = 1</a></li> <li><a href="/wiki/N_%3D_1_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 1 supersymmetric Yang–Mills theory">N = 1 super Yang–Mills</a></li> <li><a href="/wiki/Seiberg%E2%80%93Witten_theory" title="Seiberg–Witten theory">Seiberg–Witten</a></li> <li><a href="/wiki/Super_QCD" title="Super QCD">Super QCD</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino_model" title="Wess–Zumino model">Wess–Zumino</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Superconformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/6D_(2,0)_superconformal_field_theory" title="6D (2,0) superconformal field theory">6D (2,0)</a></li> <li><a href="/wiki/ABJM_superconformal_field_theory" title="ABJM superconformal field theory">ABJM</a></li> <li><a href="/wiki/N_%3D_4_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 4 supersymmetric Yang–Mills theory">N = 4 super Yang–Mills</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supergravity</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pure_4D_N_%3D_1_supergravity" title="Pure 4D N = 1 supergravity">Pure 4D N = 1</a></li> <li><a href="/wiki/4D_N_%3D_1_supergravity" title="4D N = 1 supergravity">4D N = 1</a></li> <li><a href="/wiki/N_%3D_8_supergravity" title="N = 8 supergravity">4D N = 8</a></li> <li><a href="/wiki/Higher-dimensional_supergravity" title="Higher-dimensional supergravity">Higher dimensional</a></li> <li><a href="/wiki/Type_I_supergravity" title="Type I supergravity">Type I</a></li> <li><a href="/wiki/Type_IIA_supergravity" title="Type IIA supergravity">Type IIA</a></li> <li><a href="/wiki/Type_IIB_supergravity" title="Type IIB supergravity">Type IIB</a></li> <li><a href="/wiki/Eleven-dimensional_supergravity" title="Eleven-dimensional supergravity">11D</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Topological</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BF_model" title="BF model">BF</a></li> <li><a href="/wiki/Chern%E2%80%93Simons_theory" title="Chern–Simons theory">Chern–Simons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Particle theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chiral_model" title="Chiral model">Chiral</a></li> <li><a href="/wiki/Fermi%27s_interaction" title="Fermi's interaction">Fermi</a></li> <li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Nambu%E2%80%93Jona-Lasinio_model" title="Nambu–Jona-Lasinio model">Nambu–Jona-Lasinio</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></li> <li><a href="/wiki/Stueckelberg_action" title="Stueckelberg action">Stueckelberg</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Cosmic_string" title="Cosmic string">Cosmic string</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Loop_quantum_cosmology" title="Loop quantum cosmology">Loop quantum cosmology</a></li> <li><a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">On shell and off shell</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_foam" title="Quantum foam">Quantum foam</a></li> <li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuations</a> <ul><li><a href="/wiki/Template:Quantum_electrodynamics" title="Template:Quantum electrodynamics">links</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a> <ul><li><a href="/wiki/Template:Quantum_gravity" title="Template:Quantum gravity">links</a></li></ul></li> <li><a href="/wiki/Quantum_hadrodynamics" title="Quantum hadrodynamics">Quantum hadrodynamics</a></li> <li><a href="/wiki/Quantum_hydrodynamics" title="Quantum hydrodynamics">Quantum hydrodynamics</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a> <ul><li><a href="/wiki/Template:Quantum_information" title="Template:Quantum information">links</a></li></ul></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_thermodynamics" title="Quantum thermodynamics">Quantum thermodynamics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>See also:</i> <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Template:Quantum mechanics topics</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐df7f7 Cached time: 20241122144749 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.557 seconds Real time usage: 0.986 seconds Preprocessor visited node count: 2440/1000000 Post‐expand include size: 114284/2097152 bytes Template argument size: 921/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 113760/5000000 bytes Lua time usage: 0.285/10.000 seconds Lua memory usage: 5172945/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 499.567 1 -total 52.87% 264.117 1 Template:Reflist 24.25% 121.143 4 Template:Cite_arXiv 22.79% 113.829 3 Template:Navbox 21.82% 109.026 1 Template:Quantum_mechanics_topics 18.73% 93.565 18 Template:Cite_journal 18.19% 90.852 1 Template:Short_description 10.49% 52.411 2 Template:Pagetype 5.33% 26.643 4 Template:Main_other 4.78% 23.878 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:idhash:31224296-0!canonical and timestamp 20241122144749 and revision id 1256830796. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Liouville_field_theory&oldid=1256830796#Applications">https://en.wikipedia.org/w/index.php?title=Liouville_field_theory&oldid=1256830796#Applications</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Conformal_field_theory" title="Category:Conformal field theory">Conformal field theory</a></li><li><a href="/wiki/Category:String_theory" title="Category:String theory">String theory</a></li><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 19:53<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Liouville_field_theory&mobileaction=toggle_view_mobile#Applications" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b8d669998-8pfjz","wgBackendResponseTime":134,"wgPageParseReport":{"limitreport":{"cputime":"0.557","walltime":"0.986","ppvisitednodes":{"value":2440,"limit":1000000},"postexpandincludesize":{"value":114284,"limit":2097152},"templateargumentsize":{"value":921,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":113760,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 499.567 1 -total"," 52.87% 264.117 1 Template:Reflist"," 24.25% 121.143 4 Template:Cite_arXiv"," 22.79% 113.829 3 Template:Navbox"," 21.82% 109.026 1 Template:Quantum_mechanics_topics"," 18.73% 93.565 18 Template:Cite_journal"," 18.19% 90.852 1 Template:Short_description"," 10.49% 52.411 2 Template:Pagetype"," 5.33% 26.643 4 Template:Main_other"," 4.78% 23.878 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.285","limit":"10.000"},"limitreport-memusage":{"value":5172945,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-df7f7","timestamp":"20241122144749","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Liouville field theory","url":"https:\/\/en.wikipedia.org\/wiki\/Liouville_field_theory#Applications","sameAs":"http:\/\/www.wikidata.org\/entity\/Q6556124","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q6556124","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2011-03-18T23:51:29Z","dateModified":"2024-11-11T19:53:51Z","headline":"two-dimensional conformal field theory"}</script> </body> </html>