CINXE.COM
Search results for: statistical estimation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: statistical estimation</title> <meta name="description" content="Search results for: statistical estimation"> <meta name="keywords" content="statistical estimation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="statistical estimation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="statistical estimation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5719</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: statistical estimation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5719</span> Characteristic Function in Estimation of Probability Distribution Moments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20S.%20Timofeev">Vladimir S. Timofeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20function" title="characteristic function">characteristic function</a>, <a href="https://publications.waset.org/abstracts/search?q=distributional%20moments" title=" distributional moments"> distributional moments</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20estimation%20problem" title=" statistical estimation problem"> statistical estimation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20simulation" title=" statistical simulation"> statistical simulation</a> </p> <a href="https://publications.waset.org/abstracts/11779/characteristic-function-in-estimation-of-probability-distribution-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5718</span> Monte Carlo Methods and Statistical Inference of Multitype Branching Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Staneva">Ana Staneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vessela%20Stoimenova"> Vessela Stoimenova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=branching%20processes" title=" branching processes"> branching processes</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20sampler" title=" Gibbs sampler"> Gibbs sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20methods" title=" Monte Carlo methods"> Monte Carlo methods</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20estimation" title=" statistical estimation"> statistical estimation</a> </p> <a href="https://publications.waset.org/abstracts/63592/monte-carlo-methods-and-statistical-inference-of-multitype-branching-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5717</span> Introduction of Robust Multivariate Process Capability Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Khalilloo">Behrooz Khalilloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Shahriari"> Hamid Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Roghanian"> Emad Roghanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multivariate%20process%20capability%20indices" title="multivariate process capability indices">multivariate process capability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20M-estimator" title=" robust M-estimator"> robust M-estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20quality%20control" title=" multivariate quality control"> multivariate quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control" title=" statistical quality control"> statistical quality control</a> </p> <a href="https://publications.waset.org/abstracts/81586/introduction-of-robust-multivariate-process-capability-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5716</span> GPS Refinement in Cities Using Statistical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20positioning%20system" title="global positioning system">global positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20approach" title=" statistical approach"> statistical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20systems" title=" intelligent transport systems"> intelligent transport systems</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20squares%20estimation" title=" least squares estimation"> least squares estimation</a> </p> <a href="https://publications.waset.org/abstracts/33278/gps-refinement-in-cities-using-statistical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5715</span> Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Ca%C3%B1on">Miguel Cañon</a>, <a href="https://publications.waset.org/abstracts/search?q=Darwin%20Mena"> Darwin Mena</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Cabeza"> Ivan Cabeza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20comparison" title="statistical comparison">statistical comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20data" title=" precipitation data"> precipitation data</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20subbasin" title=" river subbasin"> river subbasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bland%20and%20Altmant" title=" Bland and Altmant "> Bland and Altmant </a> </p> <a href="https://publications.waset.org/abstracts/21617/comparison-of-statistical-methods-for-estimating-missing-precipitation-data-in-the-river-subbasin-lenguazaque-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5714</span> Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Saeedinezhad">Mojtaba Saeedinezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Yousefi"> Sarah Yousefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay%20estimation" title=" time delay estimation"> time delay estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=ARX" title=" ARX"> ARX</a>, <a href="https://publications.waset.org/abstracts/search?q=OE" title=" OE"> OE</a>, <a href="https://publications.waset.org/abstracts/search?q=merit%20ratio" title=" merit ratio"> merit ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20variable%20decision%20making" title=" multi variable decision making"> multi variable decision making</a> </p> <a href="https://publications.waset.org/abstracts/48722/hybrid-subspace-approach-for-time-delay-estimation-in-mimo-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5713</span> Regression Model Evaluation on Depth Camera Data for Gaze Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Purnama">James Purnama</a>, <a href="https://publications.waset.org/abstracts/search?q=Riri%20Fitri%20Sari"> Riri Fitri Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaze%20estimation" title="gaze estimation">gaze estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=gaze%20tracking" title=" gaze tracking"> gaze tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20tracking" title=" eye tracking"> eye tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=kinect" title=" kinect"> kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20python" title=" orange python"> orange python</a> </p> <a href="https://publications.waset.org/abstracts/17938/regression-model-evaluation-on-depth-camera-data-for-gaze-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5712</span> Parameter Estimation via Metamodeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Haram%20Sarmiento">Sergio Haram Sarmiento</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title="principal component analysis">principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20law%20of%20mass%20action" title=" generalized law of mass action"> generalized law of mass action</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodels" title=" metamodels"> metamodels</a> </p> <a href="https://publications.waset.org/abstracts/23814/parameter-estimation-via-metamodeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5711</span> Comparative Study to Evaluate Chronological Age and Dental Age in North Indian Population Using Cameriere Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjitkumar%20Patil">Ranjitkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age estimation has its importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seems to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’smethodand to compare the chronological age and dental age for validation of the Cameriere’smethod in the north Indian population. A comparative study of 02 year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with age ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from the institutional ethical committee. The data was obtained based on inclusion and exclusion criteria was analyzed by a software for dental age estimation. Statistical analysis: Student’s t test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. Regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between male and female, with their dental age assessed by using Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that cameriere’s method can be effectively applied in north Indianpopulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Forensic" title="Forensic">Forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=Chronological%20Age" title=" Chronological Age"> Chronological Age</a>, <a href="https://publications.waset.org/abstracts/search?q=Dental%20Age" title=" Dental Age"> Dental Age</a>, <a href="https://publications.waset.org/abstracts/search?q=Skeletal%20Age" title=" Skeletal Age"> Skeletal Age</a> </p> <a href="https://publications.waset.org/abstracts/157891/comparative-study-to-evaluate-chronological-age-and-dental-age-in-north-indian-population-using-cameriere-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5710</span> A Comparative Study to Evaluate Chronological Age and Dental Age in the North Indian Population Using Cameriere's Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjitkumar%20Patil">Ranjitkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age estimation has importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seem to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in the north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’s method and to compare the chronological age and dental age for validation of the Cameriere’s method in the north Indian population. A comparative study of 02-year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with ages ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from institutional ethical committee. The data was obtained based on inclusion and exclusion criteria and was analyzed by software for dental age estimation. Statistical analysis: The student’s t-test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. The regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between males and females, with their dental age assessed by using a Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that Cameriere’s method can be effectively applied to the north Indian population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic" title="forensic">forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20age" title=" dental age"> dental age</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20age" title=" skeletal age"> skeletal age</a>, <a href="https://publications.waset.org/abstracts/search?q=chronological%20age" title=" chronological age"> chronological age</a>, <a href="https://publications.waset.org/abstracts/search?q=Cameriere%E2%80%99s%20method" title=" Cameriere’s method"> Cameriere’s method</a> </p> <a href="https://publications.waset.org/abstracts/157885/a-comparative-study-to-evaluate-chronological-age-and-dental-age-in-the-north-indian-population-using-camerieres-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5709</span> Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duckyong%20Kim">Duckyong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kang%20Park"> Jong Kang Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DOA%20estimation" title="DOA estimation">DOA estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=MUSIC%20algorithm" title=" MUSIC algorithm"> MUSIC algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20spectrum" title=" spatial spectrum"> spatial spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=array%20signal%20processing" title=" array signal processing"> array signal processing</a> </p> <a href="https://publications.waset.org/abstracts/88658/simulation-of-3-d-direction-of-arrival-estimation-using-music-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5708</span> Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Obloukov%C3%A1">Aneta Oblouková</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20V%C3%ADtkov%C3%A1"> Eva Vítková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Czech%20Republic" title="Czech Republic">Czech Republic</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20trend%20estimation" title=" linear trend estimation"> linear trend estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20prediction" title=" price prediction"> price prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sewerage%20charge%20rate" title=" water and sewerage charge rate"> water and sewerage charge rate</a> </p> <a href="https://publications.waset.org/abstracts/157359/validation-of-the-linear-trend-estimation-technique-for-prediction-of-average-water-and-sewerage-charge-rate-prices-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5707</span> Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Farag">Mohammed Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Attari"> Mina Attari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Andrew%20Gadsden"> S. Andrew Gadsden</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20R.%20Habibi"> Saeid R. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%20of%20charge%20estimation" title="state of charge estimation">state of charge estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20modeling" title=" battery modeling"> battery modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=one-state%20hysteresis" title=" one-state hysteresis"> one-state hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20and%20estimation" title=" filtering and estimation"> filtering and estimation</a> </p> <a href="https://publications.waset.org/abstracts/68017/lithium-ion-battery-state-of-charge-estimation-using-one-state-hysteresis-model-with-nonlinear-estimation-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5706</span> Applications of Analytical Probabilistic Approach in Urban Stormwater Modeling in New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asaad%20Y.%20Shamseldin">Asaad Y. Shamseldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analytical probabilistic approach is an innovative approach for urban stormwater modeling. It can provide information about the long-term performance of a stormwater management facility without being computationally very demanding. This paper explores the application of the analytical probabilistic approach in New Zealand. The paper presents the results of a case study aimed at development of an objective way of identifying what constitutes a rainfall storm event and the estimation of the corresponding statistical properties of storms using two selected automatic rainfall stations located in the Auckland region in New Zealand. The storm identification and the estimation of the storm statistical properties are regarded as the first step in the development of the analytical probabilistic models. The paper provides a recommendation about the definition of the storm inter-event time to be used in conjunction with the analytical probabilistic approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrology" title="hydrology">hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20storm" title=" rainfall storm"> rainfall storm</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20inter-event%20time" title=" storm inter-event time"> storm inter-event time</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Zealand" title=" New Zealand"> New Zealand</a>, <a href="https://publications.waset.org/abstracts/search?q=stormwater%20management" title=" stormwater management "> stormwater management </a> </p> <a href="https://publications.waset.org/abstracts/29942/applications-of-analytical-probabilistic-approach-in-urban-stormwater-modeling-in-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5705</span> Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20offset%20estimation" title="frequency offset estimation">frequency offset estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20noise%0D%0Aenvironment" title=" non-Gaussian noise environment"> non-Gaussian noise environment</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20symbol" title=" training symbol"> training symbol</a> </p> <a href="https://publications.waset.org/abstracts/9430/frequency-offset-estimation-schemes-based-on-ml-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5704</span> Parameters Estimation of Multidimensional Possibility Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Sorokin">Sergey Sorokin</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Sorokina"> Irina Sorokina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Yazenin"> Alexander Yazenin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=possibility%20distribution" title="possibility distribution">possibility distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20estimation" title=" parameters estimation"> parameters estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxmin%20u%5CE%20estimator" title=" Maxmin u\E estimator"> Maxmin u\E estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20model%20identification" title=" fuzzy model identification"> fuzzy model identification</a> </p> <a href="https://publications.waset.org/abstracts/16751/parameters-estimation-of-multidimensional-possibility-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5703</span> A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packet%20loss%20probability%20estimation" title="packet loss probability estimation">packet loss probability estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20filter" title=" finite memory filter"> finite memory filter</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20memory%20filter" title=" infinite memory filter"> infinite memory filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/9519/a-packet-loss-probability-estimation-filter-using-most-recent-finite-traffic-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5702</span> Statistical Analysis of Extreme Flow (Regions of Chlef)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouthiba%20Amina">Bouthiba Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=return%20period" title="return period">return period</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20flow" title=" extreme flow"> extreme flow</a>, <a href="https://publications.waset.org/abstracts/search?q=statistics%20laws" title=" statistics laws"> statistics laws</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel" title=" Gumbel"> Gumbel</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a> </p> <a href="https://publications.waset.org/abstracts/168612/statistical-analysis-of-extreme-flow-regions-of-chlef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5701</span> Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Aleinik">Sergei Aleinik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Stolbov"> Mikhail Stolbov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-correlation" title="cross-correlation">cross-correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20estimation" title=" delay estimation"> delay estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20envelope" title=" signal envelope"> signal envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/2280/time-delay-estimation-using-signal-envelopes-for-synchronisation-of-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5700</span> Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Berna%20Benli">F. Berna Benli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Keskin"> Özgür Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20number" title="fuzzy number">fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20cluster%20points" title=" λ-levelwise statistical cluster points"> λ-levelwise statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20convergence" title=" λ-levelwise statistical convergence"> λ-levelwise statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20limit%20points" title=" λ-levelwise statistical limit points"> λ-levelwise statistical limit points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20cluster%20points" title=" λ-statistical cluster points"> λ-statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20convergence" title=" λ-statistical convergence"> λ-statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20limit%20%20points" title=" λ-statistical limit points"> λ-statistical limit points</a> </p> <a href="https://publications.waset.org/abstracts/20755/lambda-levelwise-statistical-convergence-of-a-sequence-of-fuzzy-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5699</span> VaR Estimation Using the Informational Content of Futures Traded Volume</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Oueslati">Amel Oueslati</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfa%20Benouda"> Olfa Benouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New Value at Risk (VaR) estimation is proposed and investigated. The well-known two stages Garch-EVT approach uses conditional volatility to generate one step ahead forecasts of VaR. With daily data for twelve stocks that decompose the Dow Jones Industrial Average (DJIA) index, this paper incorporates the volume in the first stage volatility estimation. Afterwards, the forecasting ability of this conditional volatility concerning the VaR estimation is compared to that of a basic volatility model without considering any trading component. The results are significant and bring out the importance of the trading volume in the VaR measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Garch-EVT" title="Garch-EVT">Garch-EVT</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20at%20risk" title=" value at risk"> value at risk</a>, <a href="https://publications.waset.org/abstracts/search?q=volume" title=" volume"> volume</a>, <a href="https://publications.waset.org/abstracts/search?q=volatility" title=" volatility"> volatility</a> </p> <a href="https://publications.waset.org/abstracts/56021/var-estimation-using-the-informational-content-of-futures-traded-volume" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5698</span> Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Matlan">S. J. Matlan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mukhlisin"> M. Mukhlisin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Taha"> M. R. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-water%20characteristic%20curve%20%28SWCC%29" title="soil-water characteristic curve (SWCC)">soil-water characteristic curve (SWCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20engineering" title=" geotechnical engineering"> geotechnical engineering</a> </p> <a href="https://publications.waset.org/abstracts/16494/statistical-assessment-of-models-for-determination-of-soil-water-characteristic-curves-of-sand-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5697</span> Depth Estimation in DNN Using Stereo Thermal Image Pairs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Faruk%20Akyuz">Ahmet Faruk Akyuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Sakir%20Bilge">Hasan Sakir Bilge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20stereo%20matching" title="thermal stereo matching">thermal stereo matching</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title="deep neural networks">deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title="CNN">CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=Depth%20estimation" title="Depth estimation">Depth estimation</a> </p> <a href="https://publications.waset.org/abstracts/140133/depth-estimation-in-dnn-using-stereo-thermal-image-pairs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5696</span> Parameter Estimation of Induction Motors by PSO Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadi">A. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Asghari"> S. Asghari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aien"> M. Aien</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rashidinejad"> M. Rashidinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20parameter%20estimation" title=" motor parameter estimation"> motor parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a> </p> <a href="https://publications.waset.org/abstracts/15433/parameter-estimation-of-induction-motors-by-pso-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5695</span> Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Fang">Cheng Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwei%20Quan"> Lingwei Quan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunyue%20Lu"> Cunyue Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title=" pose estimation"> pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20tracking" title=" pose tracking"> pose tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a> </p> <a href="https://publications.waset.org/abstracts/112839/online-pose-estimation-and-tracking-approach-with-siamese-region-proposal-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5694</span> Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Zhang">Jia Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengmei%20Yao"> Fengmei Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjing%20Tan"> Yanjing Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process-based%20model" title="process-based model">process-based model</a>, <a href="https://publications.waset.org/abstracts/search?q=C4%20crop" title=" C4 crop"> C4 crop</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20yield" title=" maize yield"> maize yield</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Northeast%20China%20Plain" title=" Northeast China Plain"> Northeast China Plain</a> </p> <a href="https://publications.waset.org/abstracts/28997/estimation-of-maize-yield-by-using-a-process-based-model-and-remote-sensing-data-in-the-northeast-china-plain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5693</span> A Targeted Maximum Likelihood Estimation for a Non-Binary Causal Variable: An Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Raouf%20Benmakrelouf">Mohamed Raouf Benmakrelouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Rynkiewicz"> Joseph Rynkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Targeted maximum likelihood estimation (TMLE) is well-established method for causal effect estimation with desirable statistical properties. TMLE is a doubly robust maximum likelihood based approach that includes a secondary targeting step that optimizes the target statistical parameter. A causal interpretation of the statistical parameter requires assumptions of the Rubin causal framework. The causal effect of binary variable, E, on outcomes, Y, is defined in terms of comparisons between two potential outcomes as E[YE=1 − YE=0]. Our aim in this paper is to present an adaptation of TMLE methodology to estimate the causal effect of a non-binary categorical variable, providing a large application. We propose coding on the initial data in order to operate a binarization of the interest variable. For each category, we get a transformation of the non-binary interest variable into a binary variable, taking value 1 to indicate the presence of category (or group of categories) for an individual, 0 otherwise. Such a dummy variable makes it possible to have a pair of potential outcomes and oppose a category (or a group of categories) to another category (or a group of categories). Let E be a non-binary interest variable. We propose a complete disjunctive coding of our variable E. We transform the initial variable to obtain a set of binary vectors (dummy variables), E = (Ee : e ∈ {1, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when its category is not present, and the value of 1 when its category is present, which allows to compute a pairwise-TMLE comparing difference in the outcome between one category and all remaining categories. In order to illustrate the application of our strategy, first, we present the implementation of TMLE to estimate the causal effect of non-binary variable on outcome using simulated data. Secondly, we apply our TMLE adaptation to survey data from the French Political Barometer (CEVIPOF), to estimate the causal effect of education level (A five-level variable) on a potential vote in favor of the French extreme right candidate Jean-Marie Le Pen. Counterfactual reasoning requires us to consider some causal questions (additional causal assumptions). Leading to different coding of E, as a set of binary vectors, E = (Ee : e ∈ {2, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when the first category (reference category) is present, and the value of 1 when its category is present, which allows to apply a pairwise-TMLE comparing difference in the outcome between the first level (fixed) and each remaining level. We confirmed that the increase in the level of education decreases the voting rate for the extreme right party. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20inference" title="statistical inference">statistical inference</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title=" causal inference"> causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20learning" title=" super learning"> super learning</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20maximum%20likelihood%20estimation" title=" targeted maximum likelihood estimation"> targeted maximum likelihood estimation</a> </p> <a href="https://publications.waset.org/abstracts/147591/a-targeted-maximum-likelihood-estimation-for-a-non-binary-causal-variable-an-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5692</span> Lead-Time Estimation Approach Using the Process Capability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel-Aziz%20M.%20Mohamed">Abdel-Aziz M. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a methodology to estimate the customer order lead time in the supply chain based on the process capability index. The cases when the process output is normally distributed and when it is not are considered. The relationships between the system capability indices in both service and manufacturing applications, delivery system reliability and the percentages of orders delivered after their promised due dates are presented. The proposed method can be used to examine the current process capability to deliver the orders before the promised lead-time. If the system was found to be incapable, the method can be used to help revise the current lead-time to a proper value according to the service reliability level selected by the management. Numerical examples and a case study describing the lead time estimation methodology and testing the system capability of delivering the orders before their promised due date are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead-time%20estimation" title="lead-time estimation">lead-time estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability%20index" title=" process capability index"> process capability index</a>, <a href="https://publications.waset.org/abstracts/search?q=delivery%20system%20reliability" title=" delivery system reliability"> delivery system reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20achievement%20index" title=" service achievement index"> service achievement index</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20quality" title=" service quality"> service quality</a> </p> <a href="https://publications.waset.org/abstracts/33874/lead-time-estimation-approach-using-the-process-capability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5691</span> Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoja%20Rajalakshmi%20Aravindakshana">Manoja Rajalakshmi Aravindakshana</a>, <a href="https://publications.waset.org/abstracts/search?q=Devleena%20Ghosha"> Devleena Ghosha</a>, <a href="https://publications.waset.org/abstracts/search?q=Chittaranjan%20Mandala"> Chittaranjan Mandala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Venkateshb"> K. V. Venkateshb</a>, <a href="https://publications.waset.org/abstracts/search?q=Jit%20Sarkarc"> Jit Sarkarc</a>, <a href="https://publications.waset.org/abstracts/search?q=Partha%20Chakrabartic"> Partha Chakrabartic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujay%20K.%20Maity"> Sujay K. Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20minimal%20model" title="oral minimal model">oral minimal model</a>, <a href="https://publications.waset.org/abstracts/search?q=OGTT" title=" OGTT"> OGTT</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20and%20non-obese%20T2DM" title=" obese and non-obese T2DM"> obese and non-obese T2DM</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a> </p> <a href="https://publications.waset.org/abstracts/158794/parameter-estimation-for-the-oral-minimal-model-and-parameter-distinctions-between-obese-and-non-obese-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5690</span> An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Altaf%20H.%20Khan">Altaf H. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Stenger"> Frank Stenger</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Hussein"> Mohammed A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reaz%20A.%20Chaudhuri"> Reaz A. Chaudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameera%20Asif"> Sameera Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20mixed%20model" title="generalized linear mixed model">generalized linear mixed model</a>, <a href="https://publications.waset.org/abstracts/search?q=likelihood%20parameters" title=" likelihood parameters"> likelihood parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=qudarature" title=" qudarature"> qudarature</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinc%20function" title=" Sinc function"> Sinc function</a> </p> <a href="https://publications.waset.org/abstracts/39637/an-application-of-sinc-function-to-approximate-quadrature-integrals-in-generalized-linear-mixed-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=190">190</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20estimation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>