CINXE.COM

Search results for: inflammatory cytokines

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inflammatory cytokines</title> <meta name="description" content="Search results for: inflammatory cytokines"> <meta name="keywords" content="inflammatory cytokines"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inflammatory cytokines" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inflammatory cytokines"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1010</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inflammatory cytokines</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> Level of Reactive Oxygen Species and Inflammatory Cytokines in Rheumatoid Arthritis Patients: Correlation with Disease Severity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaiya%20Mateen">Somaiya Mateen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Moin"> Shagufta Moin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Owais"> Mohammad Owais</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Khan"> Abdul Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20Zafar"> Atif Zafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In rheumatoid arthritis (RA), impaired oxidative metabolism and imbalance between pro-and anti-inflammatory cytokines are responsible for causing inflammation and the degradation of cartilage and bone. The present study was done to evaluate the level and hence the role of reactive oxygen species (ROS) and inflammatory cytokines in the pathogenesis of RA. The present study was performed in the blood of 80 RA patients and 55 age and sex-matched healthy controls. The level of ROS (in 5% hematocrit) and the plasma level of pro-inflammatory cytokines [TNF-α, interleukin-6 (IL-6), IL-22] and anti-inflammatory cytokines (IL-4 and IL-5) were monitored in healthy subjects and RA patients. For evaluating the role of rheumatoid factor (RF) in the pathogenesis of RA, patients were sub-divided on the basis of presence or absence of RF. Reactive species and inflammatory cytokines were correlated with disease activity measure-Disease Activity Score for 28 joints (DAS28). The level of ROS, TNF-α, IL-6 and IL-22 were found to be significantly higher in RA patients as compared to the healthy controls, with the increase being more significant in patients positive for rheumatoid factor and those having high disease severity. On the other hand, a significant decrease in the level of IL-4 and IL-10 were observed in RA patients compared with healthy controls, with the decrease being more prominent in severe cases of RA. Higher ROS (indicative of impaired anti-oxidant defence system) and pro-inflammatory cytokines level in RA patients may lead to the damage of biomolecules which in turn contributes to tissue damage and hence to the development of more severe RA. The imbalance between pro-and anti-inflammatory cytokines may lead to the development of multi-system immune complications. ROS and inflammatory cytokines may also serve as a potential biomarker for assessing the disease severity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-inflammatory%20cytokines" title=" pro-inflammatory cytokines"> pro-inflammatory cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20cytokines" title=" anti-inflammatory cytokines"> anti-inflammatory cytokines</a> </p> <a href="https://publications.waset.org/abstracts/58729/level-of-reactive-oxygen-species-and-inflammatory-cytokines-in-rheumatoid-arthritis-patients-correlation-with-disease-severity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Role of Moderate Intensity Exercises in the Amelioration of Oxidant-Antioxidant Status and the Levels of Inflammatory Cytokines in Rheumatoid Arthritis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaiya%20Mateen">Somaiya Mateen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Moin"> Shagufta Moin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qayyum"> Abdul Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20Zafar"> Atif Zafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytokines and reactive species play an important role in the pathophysiology of rheumatoid arthritis (RA). This study was done to determine the levels of reactive oxygen and nitrogen species (ROS and RNS), inflammatory cytokines and the markers of protein, DNA and lipid oxidation in the blood of RA patients, with the aim to study the antioxidant and anti-inflammatory role of moderate intensity exercises in the management of RA. RA patients were subdivided into two groups- first group (n=30) received treatment with conventional RA drugs while the second group (n=30) received moderate exercise therapy along with the conventional drugs for a period of 12 weeks. The levels of ROS, RNS, inflammatory cytokines and markers of biomolecule oxidation were monitored before and after 12 weeks of treatment. RA patients showed a marked increase in the levels of ROS, RNS, inflammatory cytokines, lipid, protein and DNA oxidation as compared to the healthy controls. These parameters were ameliorated after treatment with drugs alone and exercise combined with drugs, with the amelioration being more significant in patients given drugs along with the moderate intensity exercise treatment. In conclusion, the role of ROS, RNS and inflammatory cytokines in the pathogenesis of RA has been confirmed by this study. These may also serve as potential biomarker for assessing the disease severity. Finally, the addition of moderate intensity exercises in the management of RA may be of great value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines" title=" inflammatory cytokines"> inflammatory cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20intensity%20exercises" title=" moderate intensity exercises"> moderate intensity exercises</a> </p> <a href="https://publications.waset.org/abstracts/60246/role-of-moderate-intensity-exercises-in-the-amelioration-of-oxidant-antioxidant-status-and-the-levels-of-inflammatory-cytokines-in-rheumatoid-arthritis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Redirection of Cytokine Production Patterns by Dydrogesterone, an Orally-Administered Progestogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Raghupathy">Raj Raghupathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurrent Spontaneous Miscarriage (RSM) is a common form of pregnancy loss, 50% of which are due to ‘unexplained’ causes. Evidence exists to suggest that RSM may be caused by immunologic factors such as cytokines which are critical molecules of the immune system, with an impressive array of capabilities. An association appears to exist between Th2-type reactivity (mediated by Th2 or anti-inflammatory cytokines) and normal, successful pregnancy, and between unexplained RSM and Th1 cytokine dominance. If pro-inflammatory cytokines are indeed associated with pregnancy loss, the suppression of these cytokines, and thus the ‘redirection’ of maternal reactivity, may help prevent cytokine-mediated pregnancy loss. The objective of this study was to explore the possibility of modulating cytokine production using Dydrogesterone (Duphaston®), an orally-administered progestogen. Peripheral blood mononuclear cells from 34 women with a history of at least 3 unexplained recurrent miscarriages were stimulated in vitro with a mitogen (to elicit cytokine production) in the presence and absence of dydrogesterone. Levels of selected pro- and anti-inflammatory cytokines produced by peripheral blood mononuclear cells were measured after exposure to these progestogens. Dydrogesterone down-regulates the production of pro-inflammatory cytokines and up-regulates the production of anti-inflammatory cytokines. The ratios of Th2 to Th1 cytokines are markedly elevated in the presence of dydrogesterone, indicating a shift from potentially harmful maternal Th1 reactivity to a more pregnancy-conducive Th2 profile. We used a progesterone receptor antagonist to show that this cytokine-modulating effect of dydrogesterone is mediated via the progesterone receptor. Dydrogesterone also induces the production of the Progesterone-Induced Blocking Factor (PIBF); lymphocytes exposed to PIBF produce higher levels of Th2 cytokines, affecting a Th1 → Th2 cytokine shift which could be favourable to the success of pregnancy. We conclude that modulation of maternal cytokine production profiles is possible with dydrogesterone which has the merits that it can be administered orally and that it is safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokines" title="cytokines">cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=dydrogesterone" title=" dydrogesterone"> dydrogesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=progesterone" title=" progesterone"> progesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20spontaneous%20miscarriage" title=" recurrent spontaneous miscarriage"> recurrent spontaneous miscarriage</a> </p> <a href="https://publications.waset.org/abstracts/34106/redirection-of-cytokine-production-patterns-by-dydrogesterone-an-orally-administered-progestogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Stem Cell Augmentation Therapy for Cardiovascular Risk in Ankylosing Spondylitis: STATIN-as Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashit%20Syngle">Ashit Syngle</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Garg"> Nidhi Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Krishan"> Pawan Krishan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Bone marrow derived stem cells, endothelial progenitor cells (EPCs), protect against atherosclerotic vascular damage. However, EPCs are depleted in AS and contribute to the enhanced cardiovascular risk. Statins have a protective effect in CAD and diabetes by enhancing the proliferation, migration and survival of EPCs. Therapeutic potential of augmenting EPCs to treat the heightened cardiovascular risk of AS has not yet been exploited. We aimed to investigate the effect of rosuvastatin on EPCs population and inflammation in AS. Methods: 30 AS patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=15) and placebo (n=15) as an adjunct to existing stable anti-rheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures (BASDAI, BASFI, CRP and ESR), pro-inflammatory cytokines (TNF-α, IL-6 and IL-1) and lipids were measured at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin. At 6 months, BASDAI, BASFI, ESR, CRP, TNF-α, and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and BASDAI, CRP and IL-6 after rosuvastatin treatment. Conclusion: First study to show that rosuvastatin augments EPCs population in AS. This defines a novel mechanism of rosuvastatin treatment in AS: the augmentation of EPCs with improvement in proinflammatory cytokines and inflammatory disease activity. The augmentation of EPCs by rosuvastatin may provide a novel strategy to prevent cardiovascular events in AS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankylosing%20spondylitis" title="ankylosing spondylitis">ankylosing spondylitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Endothelial%20Progenitor%20Cells" title=" Endothelial Progenitor Cells"> Endothelial Progenitor Cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-inflammatory%20cytokines" title=" pro-inflammatory cytokines"> pro-inflammatory cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=rosuvastatin" title=" rosuvastatin "> rosuvastatin </a> </p> <a href="https://publications.waset.org/abstracts/17363/stem-cell-augmentation-therapy-for-cardiovascular-risk-in-ankylosing-spondylitis-statin-as-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Sulforaphane Attenuates Muscle Inflammation in Dystrophin-Deficient Mdx Mice via Nrf2/HO-1 Signaling Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengcao%20Sun">Chengcao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuili%20Yang"> Cuili Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shujun%20Li"> Shujun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruilin%20Xue"> Ruilin Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongyong%20Xi"> Yongyong Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wang"> Liang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejia%20Li"> Dejia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Backgrounds: Inflammation is widely distributed in patients with Duchenne muscular dystrophy (DMD), and ultimately leads to progressive deterioration of muscle function with the co-effects of chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzymes, heme oxygenase-1 (HO-1). However, whether Nrf2/HO-1 pathway can attenuate muscle inflammation on DMD remains unknown. The purpose of this study was to determine the anti-inflammatory effects of Sulforaphane (SFN) on DMD. Methods: 4-week-old male mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 4 weeks. Gastrocnemius, tibial anterior and triceps brachii muscles were collected for related analysis. Immune cell infiltration in skeletal muscles was analyzed by H&E staining and immuno-histochemistry. Moreover, the expressions of inflammatory cytokines,pro-inflammatory cytokines and Nrf2/HO-1 pathway were detected by western blot, qRT-PCR, immunohistochemistry and immunofluorescence assays. Results: Our results demonstrated that SFN treatment increased the expression of muscle phase II enzymes HO-1 in Nrf2 dependent manner. Inflammation in mdx skeletal muscles was reduced by SFN treatment as indicated by decreased immune cell infiltration and lower expressions of the inflammatory cytokines CD45, pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the skeletal muscles of mdx mice. Conclusions: Collectively, these results show that SFN can ameliorate muscle inflammation in mdx mice by Nrf2/HO-1 pathway, which indicates Nrf2/HO-1 pathway may represent a new therapeutic target for DMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulforaphane" title="sulforaphane">sulforaphane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nrf2" title=" Nrf2"> Nrf2</a>, <a href="https://publications.waset.org/abstracts/search?q=HO-1" title=" HO-1"> HO-1</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/19664/sulforaphane-attenuates-muscle-inflammation-in-dystrophin-deficient-mdx-mice-via-nrf2ho-1-signaling-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Low Term Aerobic Training Is Not Associated with Anti-Inflammatory in Obese Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Afsharmand">Zohreh Afsharmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokhanguei%20Yahya"> Sokhanguei Yahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing body of literature suggests that that low-grade systemic inflammation associated to obesity plays a key role in the pathogenic mechanism of several disorders. In this study, the effect of 6 weeks aerobic training on IL-6 and IL-1B as inflammatory cytokine were investigated in adult obese women. For this purpose, 26 sedentary adult obese women were divided into exercise and control groups (n=12). Pre and post training of mentioned cytokines were measured in two groups. Student’s t-tests for paired samples were performed to determine whether there were significant within-group changes in the outcomes. A p value less than 0.05 was considered statistically significant. There were no statistically significant differences between the exercise and control groups with regard to anthropometrical markers or inflammatory cytokines. Despite the significant decrease in all anthropometrical markers, no significant differences were found in serum IL-6 and IL-1B by aerobic training with compared to baseline. Our findings indicate that aerobic training intervention for a short time is not associated with the anti-inflammatory property in obese women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20training" title="aerobic training">aerobic training</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/38134/low-term-aerobic-training-is-not-associated-with-anti-inflammatory-in-obese-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Angiogenic and Immunomodulatory Properties and Phenotype of Mesenchymal Stromal Cells Can Be Regulated by Cytokine Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Zubkova">Ekaterina Zubkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Beloglazova"> Irina Beloglazova</a>, <a href="https://publications.waset.org/abstracts/search?q=Iurii%20Stafeev"> Iurii Stafeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Konsyantin%20Dergilev"> Konsyantin Dergilev</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelena%20Parfyonova"> Yelena Parfyonova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Menshikov"> Mikhail Menshikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesenchymal stromal cells from adipose tissue (MSC) currently are widely used in regenerative medicine to restore the function of damaged tissues, but that is significantly hampered by their heterogeneity. One of the modern approaches to overcoming this obstacle is the polarization of cell subpopulations into a specific phenotype under the influence of cytokines and other factors that activate receptors and signal transmission to cells. We polarized MSC with factors affecting the inflammatory signaling and functional properties of cells, followed by verification of their expression profile and ability to affect the polarization of macrophages. RT-PCR evaluation showed that cells treated with LPS, interleukin-17, tumor necrosis factor α (TNF α), primarily express pro-inflammatory factors and cytokines, and after treatment with polyninosin polycytidic acid and interleukin-4 (IL4) anti-inflammatory factors and some proinflammatory factors. MSC polarized with pro-inflammatory cytokines showed a more robust pro-angiogenic effect in fibrin gel bead 3D angiogenesis assay. Further, we evaluated the possibility of paracrine effects of MSCs on the polarization of intact macrophages. Polarization efficiency was assesed by expression of M1/M2 phenotype markers CD80 and CD206. We showed that conditioned media from MSC preincubated in the presence of IL-4 cause an increase in CD206 expression similar to that observed in M2 macrophages. Conditioned media from MSC polarized in the presence of LPS or TNF-α increased the expression of CD80 antigen in macrophages, similar to that observed in M1 macrophages. In other cases, a pronounced paracrine effect of MSC on the polarization of macrophages was not detected. Thus, our study showed that the polarization of MSC along the pro-inflammatory or anti-inflammatory pathway allows us to obtain cell subpopulations that have a multidirectional modulating effect on the polarization of macrophages. (RFBR grants 20-015-00405 and 18-015-00398.) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal" title=" mesenchymal"> mesenchymal</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/130981/angiogenic-and-immunomodulatory-properties-and-phenotype-of-mesenchymal-stromal-cells-can-be-regulated-by-cytokine-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Host Responses in Peri-Implant Tissue in Comparison to Periodontal Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raviporn%20Madarasmi">Raviporn Madarasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjalee%20Vacharaksa"> Anjalee Vacharaksa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravej%20Serichetaphongse"> Pravej Serichetaphongse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The host response in peri-implant tissue may differ from that in periodontal tissue in a healthy individual. The purpose of this study is to investigate the expression of inflammatory cytokines in peri-implant crevicular fluid (PICF) from single implant with different abutment types in comparison to healthy periodontal tissue. 19 participants with healthy implants and teeth were recruited according to inclusion and exclusion criteria. PICF and gingival crevicular fluid (GCF) was collected using sterile paper points. The expression level of inflammatory cytokines including IL-1&alpha;, IL-1&beta;, TNF-&alpha;, IFN-&gamma;, IL-6, and IL-8 was assessed using enzyme-linked immunosorbent assay (ELISA). Paired t test was used to compare the expression levels of inflammatory cytokines around natural teeth and peri-implant in PICF and GCF of the same individual. The Independent t-test was used to compare the expression levels of inflammatory cytokines in PICF from titanium and UCLA abutment. Expression of IL-6, TNF-&alpha;, and IFN-&gamma; in PICF was not statistically different from GCF among titanium and UCLA abutment group. However, the level of IL-1&alpha; in the PICF from the implants with UCLA abutment was significantly higher than GCF (P=0.030). In addition, the level of IL-1&beta; in PICF from the implants with titanium abutment was significantly higher than GCF (P=0.032). When different abutment types was compared, IL-8 expression in PICF from implants with UCLA abutment was significantly higher than titanium abutment (P=0.003). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abutment" title="abutment">abutment</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title=" dental implant"> dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=gingival%20crevicular%20fluid%20and%20peri-implant%20crevicular%20fluid" title=" gingival crevicular fluid and peri-implant crevicular fluid"> gingival crevicular fluid and peri-implant crevicular fluid</a> </p> <a href="https://publications.waset.org/abstracts/75686/host-responses-in-peri-implant-tissue-in-comparison-to-periodontal-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Kao">Yi-Feng Kao</a>, <a href="https://publications.waset.org/abstracts/search?q=Huey-Jine%20Chai"> Huey-Jine Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-I%20Chang"> Chin-I Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Chen%20Chen"> Yi-Chen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=June-Ru%20Chen"> June-Ru Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptotic%20mimicry" title="apoptotic mimicry">apoptotic mimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=squid%20processing%20by-products" title=" squid processing by-products"> squid processing by-products</a> </p> <a href="https://publications.waset.org/abstracts/78159/inflammatory-alleviation-on-microglia-cells-by-an-apoptotic-mimicry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Rosuvastatin Improves Endothelial Progenitor Cells in Rheumatoid Arthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashit%20Syngle">Ashit Syngle</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Garg"> Nidhi Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Krishan"> Pawan Krishan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Endothelial Progenitor Cells (EPCs) are depleted and contribute to increased cardiovascular (CV) risk in rheumatoid arthritis (RA). Statins exert a protective effect in CAD partly by promoting EPC mobilization. This vasculoprotective effect of statin has not yet been investigated in RA. We aimed to investigate the effect of rosuvastatin on EPCs in RA. Methods: 50 RA patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=25) and placebo (n=25) as an adjunct to existing stable antirheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures included DAS28, CRP and ESR were measured at baseline and after treatment. Lipids and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) were estimated at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. At baseline, EPCs inversely correlated with DAS28 and TNF-α in both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin but did not show significant change with placebo. Rosuvastatin exerted positive effect on lipid spectrum: lowering total cholesterol, LDL, non HDL and elevation of HDL as compared with placebo. At 6 months, DAS28, ESR, CRP, TNF-α and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and DAS28, CRP, TNF-α, and IL-6 after treatment with rosuvastatin. Conclusion: First study to show that rosuvastatin improves inflammation and EPC biology in RA possibly through its anti-inflammatory and lipid lowering effect. This beneficial effect of rosuvastatin may provide a novel strategy to prevent cardiovascular events in RA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RA" title="RA">RA</a>, <a href="https://publications.waset.org/abstracts/search?q=Endothelial%20Progenitor%20Cells" title=" Endothelial Progenitor Cells"> Endothelial Progenitor Cells</a>, <a href="https://publications.waset.org/abstracts/search?q=rosuvastatin" title=" rosuvastatin"> rosuvastatin</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines "> cytokines </a> </p> <a href="https://publications.waset.org/abstracts/17374/rosuvastatin-improves-endothelial-progenitor-cells-in-rheumatoid-arthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Lipoic Acid Accelerates Wound Healing by Diminishing Pro-Inflammatory Markers and Chemokine Expression in Rheumatoid Arthritis Mouse Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairy%20M.%20A.%20Zoheir">Khairy M. A. Zoheir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid was investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells, and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid treated mice showed a significant decrease in the Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also down regulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs also found to be significantly upregulated in lipoic acid treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for therapy Rheumatoid arthritis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipoic%20acid" title="lipoic acid">lipoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=chemokines" title=" chemokines"> chemokines</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory" title=" inflammatory"> inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a> </p> <a href="https://publications.waset.org/abstracts/143060/lipoic-acid-accelerates-wound-healing-by-diminishing-pro-inflammatory-markers-and-chemokine-expression-in-rheumatoid-arthritis-mouse-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> TNF-Kinoid® in Autoimmune Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Massinissa">Yahia Massinissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Melakhessou%20Med%20Akram"> Melakhessou Med Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Mezahdia%20Mehdi"> Mezahdia Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marref%20Salah%20Eddine"> Marref Salah Eddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytokines are natural proteins which act as true intercellular communication signals in immune and inflammatory responses. Reverse signaling pathways that activate cytokines help to regulate different functions at the target cell, causing its activation, its proliferation, the differentiation, its survival or death. It was shown that malfunctioning of the cytokine regulation, particularly over-expression, contributes to the onset and development of certain serious diseases such as chronic rheumatoid arthritis, Crohn's disease, psoriasis, lupus. The action mode of Kinoid® technology is based on the principle vaccine: The patient's immune system is activated so that it neutralizes itself and the factor responsible for the disease. When applied specifically to autoimmune diseases, therapeutic vaccination allows the body to neutralize cytokines (proteins) overproduced through a highly targeted stimulation of the immune system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokines" title="cytokines">cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinoid%20tech" title=" Kinoid tech"> Kinoid tech</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-immune%20diseases" title=" auto-immune diseases"> auto-immune diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a> </p> <a href="https://publications.waset.org/abstracts/7515/tnf-kinoid-in-autoimmune-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Study the Effect of Lipoid Acid as a Protective Against Rheumatoid Arthritis Through Diminishing Pro-inflammatory Markers and Chemokine Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairy%20Mohamed%20Abdalla%20Zoheir">Khairy Mohamed Abdalla Zoheir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid were investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid-treated mice showed a significant decrease in Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also downregulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs was also found to be significantly upregulated in lipoic acid-treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for the therapy of Rheumatoid arthritis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipoic%20acid" title="lipoic acid">lipoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20markers" title=" inflammatory markers"> inflammatory markers</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a> </p> <a href="https://publications.waset.org/abstracts/158873/study-the-effect-of-lipoid-acid-as-a-protective-against-rheumatoid-arthritis-through-diminishing-pro-inflammatory-markers-and-chemokine-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Kanagushiku%20Pereira">Eduardo Kanagushiku Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Gregory%20Cavalcante%20da%20Silva"> Frank Gregory Cavalcante da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Soares%20Gon%C3%A7alves"> Barbara Soares Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20L%C3%BAcia%20Bergamasco%20Galastri"> Ana Lúcia Bergamasco Galastri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronei%20Luciano%20Mamoni"> Ronei Luciano Mamoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammation" title="inflammation">inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-1beta" title=" IL-1beta"> IL-1beta</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-18" title=" IL-18"> IL-18</a>, <a href="https://publications.waset.org/abstracts/search?q=NLRP3" title=" NLRP3"> NLRP3</a>, <a href="https://publications.waset.org/abstracts/search?q=Paracoccidioidomycosis" title=" Paracoccidioidomycosis"> Paracoccidioidomycosis</a> </p> <a href="https://publications.waset.org/abstracts/57374/nlrp3-inflammassome-participates-in-the-inflammatory-response-induced-by-paracoccidioides-brasiliensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agustyas%20Tjiptaningrum">Agustyas Tjiptaningrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Intanri%20Kurniati"> Intanri Kurniati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadilah%20Fadilah"> Fadilah Fadilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Erlina"> Linda Erlina</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiwuk%20Susantiningsih"> Tiwuk Susantiningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiinflammation" title="antiinflammation">antiinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine%20storm" title=" cytokine storm"> cytokine storm</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-%CE%BA%CE%B2" title=" NF-κβ"> NF-κβ</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20cajuputi" title=" M. cajuputi"> M. cajuputi</a> </p> <a href="https://publications.waset.org/abstracts/165831/the-prediction-mechanism-of-m-cajuputi-extract-from-lampung-indonesia-as-an-anti-inflammatory-agent-for-covid-19-by-nfkv-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Development of a Diagnostic Device to Predict Clinically Significant Inflammation Associated with Cardiac Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Majrashi">Mohamed Majrashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Connolly"> Patricia Connolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Gourlay"> Terry Gourlay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiopulmonary bypass is known to cause inflammatory response during open heart surgery. It includes the initiation of different cascades such as coagulation, complement system and cytokines. Although the immune system is body’s key defense mechanism against external assault, when overexpressed, it can be injurious to the patient, particularly in a cohort of patients in which there is a heightened and uncontrolled response. The inflammatory response develops in these patients to an exaggerated level resulting in an autoimmune injury and may lead to poor postoperative outcomes (systemic inflammatory response syndrome and multi-organs failure). Previous studies by this group have suggested a correlation between the level of IL6 measured in patient’s blood before surgery and after polymeric activation and the observed inflammatory response during surgery. Based upon these findings, the present work is aimed at using this response to develop a test which can be used prior to the open heart surgery to identify the high-risk patients before their operation. The work will be accomplished via three main clinical phases including some pilot in-vitro studies, device development and clinical investigation. Current findings from studies using animal blood, employing DEHP and DEHP plasticized PVC materials as the activator, support the earlier results in patient samples. Having established this relationship, ongoing work will focus on developing an activated lateral flow strip technology as a screening device for heightened inflammatory propensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiopulmonary%20bypass" title="cardiopulmonary bypass">cardiopulmonary bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20response" title=" inflammatory response"> inflammatory response</a>, <a href="https://publications.waset.org/abstracts/search?q=overexpression" title=" overexpression"> overexpression</a> </p> <a href="https://publications.waset.org/abstracts/42373/development-of-a-diagnostic-device-to-predict-clinically-significant-inflammation-associated-with-cardiac-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Spironolactone in Psoriatic Arthritis: Safety, Efficacy and Effect on Disease Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashit%20Syngle">Ashit Syngle</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderjit%20Verma"> Inderjit Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Krishan"> Pawan Krishan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Therapeutic approaches used previously relied on disease-modifying antirheumatic drugs (DMARDs) that had only partial clinical benefit and were associated with significant toxicity. Spironolactone, an oral aldosterone antagonist, suppresses inflammatory mediators. Clinical efficacy of spironolactone compared with placebo in patients with active psoriatic arthritis despite treatment with prior traditional DMARDs. In the 24-week, placebo-controlled study patients (n=31) were randomized to placebo and spironolactone (2 m/kg/day). Patients on background concurrent DMARDs continued stable doses (methotrexate, leflunomide, and/or sulfasalazine). Primary outcome measures were the assessment of disease activity measures i.e. 28-joint disease activity score (DAS28) and diseases activity in psoriatic arthritis (DAPSA) at week 24. The key secondary endpoint was change from baseline in Health Assessment Questionnaire–Disability Index (HAQ-DI) at week 24. Additional efficacy outcome measures at week 24 included improvements in the markers of inflammation (ESR and CRP) and pro-inflammatory cytokines TNF-α, IL-6 and IL-1. At week 24, spironolactone significantly reduced disease activity measure DAS-28 (p<0.001) and DAPSA (p=0.001) compared with placebo. Significant improvements in key secondary measures HAQ-DI (disability index) were evident with spironolactone (p=0.02) versus placebo. After week 24, there was significant reduction in pro-inflammatory cytokines level TNF-α, IL-6 (p<0.01) as compared with placebo group. However, there was no significant improvement in IL-1 in both treatment and placebo groups. There were minor side effects which did not mandate stopping of spironolactone. No change in any biochemical profile was noted after spironolactone treatment. Spironolactone was effective in the treatment of PsA, improving disease activity, physical function and suppressing the level of pro-inflammatory cytokines. Spironolactone demonstrated an acceptable safety profile and was well tolerated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spironolactone" title="spironolactone">spironolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokine" title=" inflammatory cytokine"> inflammatory cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=psoriatic%20arthritis" title=" psoriatic arthritis "> psoriatic arthritis </a> </p> <a href="https://publications.waset.org/abstracts/17389/spironolactone-in-psoriatic-arthritis-safety-efficacy-and-effect-on-disease-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhawna%20Chandravanshi">Bhawna Chandravanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Bhonde"> Ramesh Bhonde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title="hypoxia">hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=islet-like%20cell%20aggregates" title=" islet-like cell aggregates"> islet-like cell aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines" title=" inflammatory cytokines"> inflammatory cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/65044/shielding-engineered-islets-with-mesenchymal-stem-cells-enhance-survival-under-hypoxia-by-inhibiting-p38-mapk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Neuroprotective Effects of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, a Peptide Isolated from Lupinus angustifolius L. Protein Hydrolysate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Del%20Carmen%20Millan-Linares">Maria Del Carmen Millan-Linares</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lemus%20Conejo"> Ana Lemus Conejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rocio%20Toscano"> Rocio Toscano</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Villanueva"> Alvaro Villanueva</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Millan"> Francisco Millan</a>, <a href="https://publications.waset.org/abstracts/search?q=Justo%20Pedroche"> Justo Pedroche</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Montserrat-De%20La%20Paz"> Sergio Montserrat-De La Paz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPETAFLR (Glycine-Proline-Glutamine-Threonine-Alanine-Phenylalanine-Leucine-Arginine) is a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH). Herein, the effect of this peptide was investigated in two different models of neuroinflammation: in the immortalized murine microglia cell line BV-2 and in a high-fat-diet-induced obesity mouse model. Methods and Results: Effects of GPETAFLR on neuroinflammation were evaluated by RT-qPCR, flow cytometry, and ELISA techniques. In BV-2 microglial cells, Lipopolysaccharides (LPS) enhanced the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) whereas GPETAFLR decreased pro-inflammatory cytokine levels and increased the release of the anti-inflammatory cytokine IL-10 in BV2 microglial cells. M1 (CCR7 and iNOS) and M2 (Arg-1 and Ym-1) polarization markers results showed how the GPETAFLR octapeptide was able to decrease M1 polarization marker expression and increase the M2 polarization marker expression compared to LPS. Animal model results indicate that GPETAFLR has an immunomodulatory capacity, both decreasing pro-inflammatory cytokine IL-6 and increasing the anti-inflammatory cytokine IL-10 in brain tissue. Polarization markers in the brain tissue were also modulated by GPETAFLR that decreased the pro-inflammatory expression (M1) and increased the anti-inflammatory expression (M2). Conclusion: Our results suggest that GPETAFLR isolated from LPH has significant potential for management of neuroinflammatory conditions and offer benefits derived from the consumption of Lupinus angustifolius L. in the prevention of neuroinflammatory-related diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPETAFLR%20peptide" title="GPETAFLR peptide">GPETAFLR peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=BV-2%20cell%20line" title=" BV-2 cell line"> BV-2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=high-fat-diet" title=" high-fat-diet"> high-fat-diet</a> </p> <a href="https://publications.waset.org/abstracts/107665/neuroprotective-effects-of-gly-pro-glu-thr-ala-phe-leu-arg-a-peptide-isolated-from-lupinus-angustifolius-l-protein-hydrolysate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Let-7 Mirnas Regulate Inflammatory Cytokine Production in Bovine Endometrial Cells after Lipopolysaccharide Challenge by Targeting TNFα</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ibrahim">S. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Salilew-Wondim"> D. Salilew-Wondim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoelker"> M. Hoelker</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Looft"> C. Looft</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tholen"> E. Tholen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Grosse-Brinkhaus"> C. Grosse-Brinkhaus</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Schellander"> K. Schellander</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Neuhoff"> C. Neuhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tesfaye"> D. Tesfaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bovine endometrial cells appear to have a key role in innate immune defense of the female genital tract. A better understanding of molecular changes in microRNAs (miRNAs) and their target genes expression may identify reliable prognostic indicators for cows that will resolve inflammation and resume cyclicity. In the current study, we hypothesized that let-7 miRNAs family has a primary role in the innate immune defence of the endometrium tissue against bacterial infection, which is partly achieved via regulating mRNA stability of pro-inflammatory cytokines at the post-transcriptional level. Therefore, we conducted two experiments. In the first experiment, primary bovine endometrial cells were challenged with clinical (3.0 μg/ml) and sub-clinical (0.5 μg/ml) doses of lipopolysaccharide (LPS) for 24h. In the 2nd experiment, we have investigated the potential role of let-7 miRNAs (let-7a and let-7f) using gain and loss of function approaches. Additionally, tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 induced transcript 1 (TGFB1I1) and serum deprivation response (SDPR) genes were validated using reporter assay. Here we addressed for the first time that let-7 miRNAs have a precise role in bovine endometrium, where LPS dysregulated let-7 miRNAs family expression was associated with an increased pro-inflammatory cytokine level by directly/indirectly targeting the TNFα, interleukin 6 (IL6), nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), TGFβ1I1 and SDPR genes. To our knowledge, this is the first study showing that TNFα, TGFβ1I1 and SDPR were identified and validated as novel let-7 miRNAs targets and could have a distinct role in inflammatory immune response of LPS challenged bovine endometrial cells. Our data represent a new finding by which uterine homeostasis is maintained through functional regulation of let-7a by down-regulation of pro-inflammatory cytokines expression (TNFα and IL6) at the mRNA and protein levels. These findings suggest that LPS serves as a negative regulator of let-7 miRNAs expression and provides a mechanism for the persistent pro-inflammatory phenotype, which is a hallmark of bovine subclinical endometritis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20endometrial%20cells" title="bovine endometrial cells">bovine endometrial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=let-7" title=" let-7"> let-7</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharide" title=" lipopolysaccharide"> lipopolysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-inflammatory%20cytokines" title=" pro-inflammatory cytokines"> pro-inflammatory cytokines</a> </p> <a href="https://publications.waset.org/abstracts/38494/let-7-mirnas-regulate-inflammatory-cytokine-production-in-bovine-endometrial-cells-after-lipopolysaccharide-challenge-by-targeting-tnfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> The Regulation of the Pro-inflammatory Cytokine Interleukin 6 (IL6) by Epstein-Barr Virus (EBV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xiaohan">Liu Xiaohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epstein–Barr virus (EBV) is a human herpesvirus and is closely related to many malignancies of lymphocyte and epithelial origins, such as gastric cancer, Burkitt’s lymphoma, and nasopharyngeal carcinoma (NPC). NPC is a malignant epithelial tumor which is 100% associated with EBV latent infection. Most of the NPC cases are densely populated in southern China, especially in Guangdong and Hong Kong. To our knowledge, overexpression of pro-inflammatory cytokines may result in a loss of balance of the immune system and cause damage to human bodies. Interleukin-6 (IL6) is a pro-inflammatory cytokine which plays an important role in tumor progression. In addition, gene expression is regulated by both transcriptional and post-transcriptional pathways, while post-transcriptional regulation is an important mechanism to modulate the mature mRNA level in mammalian cells. AU-rich element binding factor 1 (AUF1)/heterogeneous nuclear RNP D (hnRNP D) is known for its function in destabilizing mRNAs, including cytokines and cell cycle regulators. Previous studies have found that overexpression of hnRNP D would lead to tumorigenesis. In this project, our aim is to determine the role played by hnRNP D in EBV-infected cells and how our anti-EBV agents can affect the function of hnRNP D. The results of this study will provide a new insight into how the pro-inflammatory cytokine expression can be regulated by EBV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interleukin%206%20%28IL6%29" title="interleukin 6 (IL6)">interleukin 6 (IL6)</a>, <a href="https://publications.waset.org/abstracts/search?q=epstein-barr%20virus%20%28EBV%29" title=" epstein-barr virus (EBV)"> epstein-barr virus (EBV)</a>, <a href="https://publications.waset.org/abstracts/search?q=nasopharyngeal%20carcinoma%20%28NPC" title=" nasopharyngeal carcinoma (NPC"> nasopharyngeal carcinoma (NPC</a>, <a href="https://publications.waset.org/abstracts/search?q=epstein-barr%20nuclear%20antigen-1%20%28EBNA1%29" title=" epstein-barr nuclear antigen-1 (EBNA1)"> epstein-barr nuclear antigen-1 (EBNA1)</a> </p> <a href="https://publications.waset.org/abstracts/173829/the-regulation-of-the-pro-inflammatory-cytokine-interleukin-6-il6-by-epstein-barr-virus-ebv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulistiani%20Yulistiani">Yulistiani Yulistiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zamrotul%20Izzah"> Zamrotul Izzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lintang%20Bismantara"> Lintang Bismantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenny%20Putri%20Nilamsari"> Wenny Putri Nilamsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Bachtiar"> Arif Bachtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Suprapti"> Budi Suprapti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interferon-gamma" title="interferon-gamma">interferon-gamma</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin-6" title=" interleukin-6"> interleukin-6</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/62781/effect-of-probiotics-and-vitamin-b-on-plasma-interferon-gamma-and-interleukin-6-levels-in-active-pulmonary-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Role of Pro-Inflammatory and Regulatory Cytokines in Pathogenesis of Graves’ Disease in Association with Autoantibody Thyroid and Regulatory FoxP3 T-Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwitya%20Elvira">Dwitya Elvira</a>, <a href="https://publications.waset.org/abstracts/search?q=Eryati%20Darwin"> Eryati Darwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Graves&rsquo; disease (GD) is an autoimmune thyroid disease. Imbalance of Th1/Th2 cells and T-regulatory (Treg)/Th17 cells was thought to play pivotal role in the pathogenesis of GD. Treg FoxP3 produced TGF-&beta; to maintain regulatory function, and Th17 cells produced IL-17 as cytokines that were thought in mediating several autoimmune diseases. The aim of this study is to assess the role of IL-17 and TGF-&beta; in the pathogenesis of GD and to investigate its correlation with Thyroid Stimulating Hormone Receptor Antibody (TRAb) and Treg FoxP3 expression. Method: 30 GD patients and 27 age and sex-matched controls were enrolled in this study. Diagnosis of GD was based on clinical and biochemical of GD. Serum IL-17, TGF-&beta;, TRAb, and FoxP3 were measured by enzyme-linked immunosorbent assay (ELISA). Data were analyzed by using SPSS 21.0 (SPSS Inc.). Spearman rank correlation test was used for assessment of correlation. The statistical significance was accepted as P&lt;0.05. Result: There was no significant correlation between IL-17 and TGF-&beta; serum with expression of FoxP3 level in GD, but there was significant correlation between TGF-&beta; and TRAb serum level (P&lt;0.05). Serum levels of IL-17 and TGF-&beta; were found to be elevated in patient group compared to control, where mean values of IL-17 were 14.43&plusmn;2.15 pg/mL and TGF-&beta; were 10.44&plusmn;3.19 pg/mL in patients group; and in control group, level of IL-17 were 7.1&plusmn;1.45 pg/mL and TGF-&beta; were 4.95&plusmn;1.35 pg/mL. Conclusion: Serum Il-17 and TGF-&beta; were elevated in GD patients that reflect the role of inflammatory and regulatory cytokines activation in pathogenesis of GD. There was significant correlation between TGF-&beta; and TRAb, revealing that Treg cytokines may play a role in pathogenesis of GD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IL-17" title="IL-17">IL-17</a>, <a href="https://publications.waset.org/abstracts/search?q=TGF-B" title=" TGF-B"> TGF-B</a>, <a href="https://publications.waset.org/abstracts/search?q=FoxP3" title=" FoxP3"> FoxP3</a>, <a href="https://publications.waset.org/abstracts/search?q=TRAb" title=" TRAb"> TRAb</a>, <a href="https://publications.waset.org/abstracts/search?q=Graves%E2%80%99%20disease" title=" Graves’ disease"> Graves’ disease</a> </p> <a href="https://publications.waset.org/abstracts/56187/role-of-pro-inflammatory-and-regulatory-cytokines-in-pathogenesis-of-graves-disease-in-association-with-autoantibody-thyroid-and-regulatory-foxp3-t-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Evaluation of Antimicrobial and Anti-Inflammatory Activity of Doani Sidr Honey and Madecassoside against Propionibacterium Acnes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Al-Baghaoi">Hana Al-Baghaoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Shiva%20Gubbiyappa"> Kumar Shiva Gubbiyappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuren%20Candasamy"> Mayuren Candasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiruthiga%20Perumal%20Vijayaraman"> Kiruthiga Perumal Vijayaraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acne is a chronic inflammatory disease of the sebaceous glands characterized by areas of skin with seborrhea, comedones, papules, pustules, nodules, and possibly scarring. Propionibacterium acnes (P. acnes), plays a key role in the pathogenesis of acne. Their colonization and proliferation trigger the host’s inflammatory response leading to the production of pro-inflammatory cytokines such as interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The usage of honey and natural compounds to treat skin ailments has strong support in the current trend of drug discovery. The present study was carried out evaluate antimicrobial and anti-inflammatory potential of Doani Sidr honey and its fractions against P. acnes and to screen madecassoside alone and in combination with fractions of honey. The broth dilution method was used to assess the antibacterial activity. Also, ultra structural changes in cell morphology were studied before and after exposure to Sidr honey using transmission electron microscopy (TEM). The three non-toxic concentrations of the samples were investigated for suppression of cytokines IL 8 and TNF α by testing the cell supernatants in the co-culture of the human peripheral blood mononuclear cells (hPBMCs) heat killed P. acnes using enzyme immunoassay kits (ELISA). Results obtained was evaluated by statistical analysis using Graph Pad Prism 5 software. The Doani Sidr honey and polysaccharide fractions were able to inhibit the growth of P. acnes with a noteworthy minimum inhibitory concentration (MIC) value of 18% (w/v) and 29% (w/v), respectively. The proximity of MIC and MBC values indicates that Doani Sidr honey had bactericidal effect against P. acnes which is confirmed by TEM analysis. TEM images of P. acnes after treatment with Doani Sidr honey showed completely physical membrane damage and lysis of cells; whereas non honey treated cells (control) did not show any damage. In addition, Doani Sidr honey and its fractions significantly inhibited (> 90%) of secretion of pro-inflammatory cytokines like TNF α and IL 8 by hPBMCs pretreated with heat-killed P. acnes. However, no significant inhibition was detected for madecassoside at its highest concentration tested. Our results suggested that Doani Sidr honey possesses both antimicrobial and anti-inflammatory effects against P. acnes and can possibly be used as therapeutic agents for acne. Furthermore, polysaccharide fraction derived from Doani Sidr honey showed potent inhibitory effect toward P. acnes. Hence, we hypothesize that fraction prepared from Sidr honey might be contributing to the antimicrobial and anti-inflammatory activity. Therefore, this polysaccharide fraction of Doani Sidr honey needs to be further explored and characterized for various phytochemicals which are contributing to antimicrobial and anti-inflammatory properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doani%20sidr%20honey" title="Doani sidr honey">Doani sidr honey</a>, <a href="https://publications.waset.org/abstracts/search?q=Propionibacterium%20acnes" title=" Propionibacterium acnes"> Propionibacterium acnes</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-8" title=" IL-8"> IL-8</a>, <a href="https://publications.waset.org/abstracts/search?q=TNF%20alpha" title=" TNF alpha"> TNF alpha</a> </p> <a href="https://publications.waset.org/abstracts/52365/evaluation-of-antimicrobial-and-anti-inflammatory-activity-of-doani-sidr-honey-and-madecassoside-against-propionibacterium-acnes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Immune Disregulation in Inflammatory Skin Diseases with Comorbid Metabolic Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Khanferyan">Roman Khanferyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Levon%20Gevorkyan"> Levon Gevorkyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Radysh"> Ivan Radysh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin barrier dysfunction induces multiple inflammatory skin diseases. Epidemiological studies clearly support the link between most dermatological pathologies, immune disorders and metabolic disorders. Among them most common are psoriasis (PS) and Atopic dermatitis (AD). Psoriasis is a chronic immune-mediated inflammatory skin disease that affects 1.5 to 3.0% of the world's population. Comorbid metabolic disorders play an important role in the progression of PS and AD, as well. It is well known that PS, AD and overweight/obesity are associated with common pathophysiological mechanisms of mild chronic inflammation. The goal of the study was to study the immune disturbances in patients with PS, AD and comorbid metabolic disorders. To study the prevalence of comorbidity of PS and AD (data from 1406 patient’s histories of diseases) were analyzed. The severity of the disease is assessed using the PASI index (Psoriasis Area and Severity Index). 59 patients with psoriasis of different localizations of lesions and severity, as well as with different body mass index (BMI), were examined. The determination of the concentration of pro-inflammatory cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNFa) and chemokines (RANTES, IP-10, MCP-1 and Eotaxin) in sera and supernatants of 48h-cultivated peripheral blood mononuclear cell (PBMC) of psoriasis patients and healthy volunteers (36 adults) have been carried out by multiplex assay (Luminex Corporation, USA). It has been demonstrated that 42% of PS patients had comorbidity with different types of atopies. The most common was bronchial asthma and allergic rhinitis. At the same time, the prevalence of AD in PS patients was determined in 8.7% of patients. It has been shown that serum levels of all studied cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNF) in most of the studied patients were higher in PS patients than in those with AD and healthy controls (p<0.05). An in vitro synthesis of the IL-6 and IFNγ by PBMC demonstrated similar results to those determined in blood sera. There was a high correlation between BMI, immune mediators and the concentrations of adipokines and chemokines (p<0.05). The concentrations of Leptin and Resistin in obese psoriatic patients were greater by 28.6% and 17%, respectively, compared to non-obese psoriatic patients. In obese patients with psoriasis the serum levels of adiponectin were decreased up to 1.3-fold. The mean serum RANTES, IP-10, MCP-1, EOTAXIN levels in obese psoriatic patients were decreased by up to 13.1%, 21.9%, 40.4% and 28.2%, respectively. Similar results have been demonstrated in AD patients with comorbid overweight and obesity. Thus, the study demonstrated the important role of cytokines and chemokines dysregulation in inflammatory skin diseases, especially in patients with comorbid obesity and overweight. Metabolic disorders promote the severity of PS and AD, highly increase immune dysregulation, and synthesis of adipokines, which correlates with the production of proinflammatory immune mediators in comorbid obesity and overweight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psoriasis" title="psoriasis">psoriasis</a>, <a href="https://publications.waset.org/abstracts/search?q=atopic%20dermatitis" title=" atopic dermatitis"> atopic dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-inflammatory%20cytokines" title=" pro-inflammatory cytokines"> pro-inflammatory cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=chemokines" title=" chemokines"> chemokines</a>, <a href="https://publications.waset.org/abstracts/search?q=comorbid%20obesity" title=" comorbid obesity"> comorbid obesity</a> </p> <a href="https://publications.waset.org/abstracts/186477/immune-disregulation-in-inflammatory-skin-diseases-with-comorbid-metabolic-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grace%20McCambridge">Grace McCambridge</a>, <a href="https://publications.waset.org/abstracts/search?q=Alanna%20Keady"> Alanna Keady</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhur%20Agrawal"> Madhur Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dequina%20Nicholas%20Alvarado"> Dequina Nicholas Alvarado</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Nikolajczyk"> Barbara Nikolajczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Leena%20Panneerseelan-Bharath"> Leena Panneerseelan-Bharath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy" title="autophagy">autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20turnover" title=" mitochondrial turnover"> mitochondrial turnover</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=glycolysis" title=" glycolysis"> glycolysis</a> </p> <a href="https://publications.waset.org/abstracts/103942/autophagy-defects-that-modify-human-immune-cell-metabolism-and-promote-aging-associated-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Traumatic Osteoarthritis Induces Mechanical Hyperalgesia through IL-1β/TNF-α-Mediated Upregulation of the Sema4D Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Chien%20Tsai">Hsiao-Chien Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Pin%20Chen"> Yu-Pin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruei-Ming%20Chen"> Ruei-Ming Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Osteoarthritis (OA) is characterized by joint destruction and causes chronic disability. One of the prominent symptoms is pain. Alleviating the pain is necessary and urgent for the therapy of OA patients. However, currently, understanding the mechanisms that drive OA-induced pain remains challenging, which hampers the optimistic management of pain in OA patients. Semaphorin 4D (Sema4D) participates in axon guidance pathway and bone remodeling, thus, may play a role in the regulation of pain in OA. In this study, we have established a rat model of OA to find out the mechanisms of OA-induced pain and to deliberate the roles of Sema4D. Methods: Behavioral changes and the pro-inflammatory cytokines (IL-1β, TNF-α, and IL-17) associated with pain were measured during the development of OA. Sema4D expression in cartilage and synovial membrane at 1, 4, and 12 weeks after inducing OA was analyzed. To assess if Sema4D is related to the neurogenesis in OA as an axon repellant, we analyzed the expression of PGP9.5 as well. Results: Synovitis and cartilage degradation were evident histologically during the development of OA. Mechanical hyperalgesia was most severe at week 1, then persisted thereafter. It was associated with stress coping strategies. Similar to the pain behavioral results, levels of IL-1β and TNF-α in synovial lavage fluid were significantly elevated in the OA group at weeks 1 and 4, respectively. Sema4D expression in cartilage and the synovial membrane was also enhanced in the OA group and was correlated with pain and pro-inflammatory cytokines. The marker of neurogenesis, PGP9.5, was also enhanced during the development of OA. Discussion: OA induced mechanical hyperalgesia, which might be through upregulating IL-1β/TNF-α-mediated Sema4D expressions. If anti-Sema4D treatment could reduce OA-induced mechanical hyperalgesia and prevent the subsequent progression of OA needs to be further investigated. Significance: OA can induce mechanical hyperalgesia through upregulation of IL-1β/TNF-α-mediated Sema4D and PGP9.5 expressions. And the upregulation of Sema4D may indicate the severity or active status of OA and OA-induced pain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traumatic%20osteoarthritis" title="traumatic osteoarthritis">traumatic osteoarthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20hyperalgesia" title=" mechanical hyperalgesia"> mechanical hyperalgesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema4D" title=" Sema4D"> Sema4D</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines" title=" inflammatory cytokines"> inflammatory cytokines</a> </p> <a href="https://publications.waset.org/abstracts/161254/traumatic-osteoarthritis-induces-mechanical-hyperalgesia-through-il-1vtnf-a-mediated-upregulation-of-the-sema4d-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Fucoidan: A Potent Seaweed-Derived Polysaccharide with Immunomodulatory and Anti-inflammatory Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauseef%20Ahmad">Tauseef Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ishaq"> Muhammad Ishaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Eapen"> Mathew Eapen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahyoung%20Park"> Ahyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Karpiniec"> Sam Karpiniec</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanni%20Caruso"> Vanni Caruso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajaraman%20Eri"> Rajaraman Eri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fucoidans are complex, fucose-rich sulfated polymers discovered in brown seaweeds. Fucoidans are popular around the world, particularly in the nutraceutical and pharmaceutical industries, due to their promising medicinal properties. Fucoidans have been shown to have a variety of biological activities, including anti-inflammatory effects. They are known to inhibit inflammatory processes through a variety of mechanisms, including enzyme inhibition and selectin blockade. Inflammation is a part of the complicated biological response of living systems to damaging stimuli, and it plays a role in the pathogenesis of a variety of disorders, including arthritis, inflammatory bowel disease, cancer, and allergies. In the current investigation, various fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for inhibition of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) in LPS induced human macrophage cell line (THP-1) and human peripheral blood mononuclear cells (PBMCs). Furthermore, we also sought to catalogue these extracts based on their anti-inflammatory effects in the current in-vitro cell model. Materials and Methods: To assess the cytotoxicity of fucoidan extracts, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5, -diphenyltetrazolium bromide) cell viability assay was performed. Furthermore, a dose-response for fucoidan extracts was performed in LPS induced THP-1 cells and PBMCs after pre-treatment for 24 hours, and levels of TNF-α, IL-1β, and IL-6 cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Results: The MTT cell viability assay demonstrated that fucoidan extracts exhibited no evidence of cytotoxicity in THP-1 cells or PBMCs after 48 hours of incubation. The results of the sandwich ELISA revealed that all fucoidan extracts suppressed cytokine production in LPS-stimulated PBMCs and human THP-1 cells in a dose-dependent manner. Notably, at lower concentrations, the lower molecular fucoidan (5-30 kDa) extract from Macrocystis pyrifera was a highly efficient inhibitor of pro-inflammatory cytokines. Fucoidan extracts from all species including Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica exhibited significant anti-inflammatory effects. These findings on several fucoidan extracts provide insight into strategies for improving their efficacy against inflammation-related diseases. Conclusion: In the current research, we have successfully catalogued several fucoidan extracts based on their efficiency in LPS-induced macrophages and PBMCs in downregulating the key pro-inflammatory cytokines (TNF-, IL-1 and IL-6), which are prospective targets in human inflammatory illnesses. Further research would provide more information on the mechanism of action, allowing it to be tested for therapeutic purposes as an anti-inflammatory medication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fucoidan" title="fucoidan">fucoidan</a>, <a href="https://publications.waset.org/abstracts/search?q=PBMCs" title=" PBMCs"> PBMCs</a>, <a href="https://publications.waset.org/abstracts/search?q=THP-1" title=" THP-1"> THP-1</a>, <a href="https://publications.waset.org/abstracts/search?q=TNF-%CE%B1" title=" TNF-α"> TNF-α</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-1%CE%B2" title=" IL-1β"> IL-1β</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-6" title=" IL-6"> IL-6</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/148372/fucoidan-a-potent-seaweed-derived-polysaccharide-with-immunomodulatory-and-anti-inflammatory-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Immunoregulatory Cytokines and Chemokines Synthesis in Endurance Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Khanferyan">Roman Khanferyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endurance exercises and strenuous muscle activity are accompanied by multiple immune dysfunctions due to the activation of cytokines and chemokines synthesis. This study assesses changes in the synthesis of immune regulatory mediators in elite athletes during endurance sports activity. The concentrations of cytokines/chemokines (IL-2, IL-6, IL-8, IL-10, IL-18, MIP-1 beta, GRO-alpha, RANTES, SDF-1a, VEGF) in sera of hockey athletes (n=33) and in supernatants of 24-h cultivated peripheral blood mononuclear cells (PBMC) of boxers (n=6) assayed by ELISA and Luminex xMAP multiplex assays. Estimation of body composition studied by using bioimpedance technology. The dietary energy consumption per person has been estimated using an album of different sizes of portions of the most frequently consumed foods. It has been demonstrated that endurance sports activity enhances the secretions of most pro- and anti-inflammatory cytokines and chemokines in more than 2-6 fold. The study demonstrated that the high increase of more than 3-4 times in the concentration of IL-18 in sera of athletes (327.86 + 45.67 pg/ml) didn’t correlate with BMI (p=0.040) but demonstrated a low correlation with MMI (p=0.234) and BMR (p=0,231). The opposite impact on the concentration of IL-10 has been demonstrated in athletes. It has been shown a negative correlation between its concentration and BMI (p= - 0.251), MMI (p= - 0.327), and BMR (p= - 0.301). In vitro studies in boxers showed greater amounts of chemokines in the PBMC supernatants, including MIP-1β, GRO-α, RANTES, SDF-1α, and IL-8 (P<0.05). At the same time, healthy controls had greater supernatant levels of MCP-1, Eotaxin, and MIP-1α. The study demonstrated a high correlation between physical activity, usual athletes' diet, and consumption of specialized sports nutrition products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sport%20nutrition" title="sport nutrition">sport nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=chemokines" title=" chemokines"> chemokines</a>, <a href="https://publications.waset.org/abstracts/search?q=endurace%20exercises" title=" endurace exercises"> endurace exercises</a> </p> <a href="https://publications.waset.org/abstracts/186119/immunoregulatory-cytokines-and-chemokines-synthesis-in-endurance-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Anti-Inflammatory Studies on Chungpye-Tang in Asthmatic Human Lung Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Bang">J. H. Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Baek"> H. J. Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Kim"> K. I. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Lee"> B. J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Jung"> H. J. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Jang"> H. J. Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Jung"> S. K. Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asthma is a chronic inflammatory lung disease characterized by airway hyper responsiveness (AHR), airway obstruction and airway wall remodeling responsible for significant morbidity and mortality worldwide. Genetic and environment factors may result in asthma, but there are no the exact causes of asthma. Chungpye-tang (CPT) has been prescribed as a representative aerosol agent for patients with dyspnea, cough and phlegm in the respiratory clinic at Kyung Hee Korean Medicine Hospital. This Korean herbal medicines have the effect of dispelling external pathogen and dampness pattern. CPT is composed of 4 species of herbal medicines. The 4 species of herbal medicines are Ephedrae herba, Pogostemonis(Agatachis) herba, Caryophylli flos and Zingiberis rhizoma crudus. CPT suppresses neutrophil infiltration and the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Moreover, the anti-inflammatory effects of CPT on a mouse model of Chronic Obstructive Pulmonary Disease (COPD) was proved. Activation of the NF-κB has been proven that it plays an important role in inflammation via inducing transcription of pro-inflammatory genes. Over-expression of NF-κB has been believed be related to many inflammatory diseases such as arthritis, gastritis, asthma and COPD. So we firstly hypothesize whether CPT has an anti-inflammatory effect on asthmatic human airway epithelial tissue via inhibiting NF-κB pathway. In this study, CPT was extracted with distilled water for 3 hours at 100°C. After process of filtration and evaporation, it was freeze dried. And asthmatic human lung tissues were provided by MatTek Corp. We investigated the precise mechanism of the anti-inflammatory effect of CPT by western blotting analysis. We observed whether the decoction extracts could reduce NF-κB activation, COX-2 protein expression and NF-κB-mediated pro-inflammatory cytokines such as TNF-α, eotaxin, IL-4, IL-9 and IL-13 in asthmatic human lung tissue. As results of this study, there was a trend toward decreased NF-κB expression in asthmatic human airway epithelial tissue. We found that the inhibition effects of CPT on COX-2 expression was not determined. IL-9 and IL-13 secretion was significantly reduced in the asthmatic human lung tissue treated with CPT. Overall, our results indicate that CPT has an anti-inflammatory effect through blocking the signaling pathway of NF-κB, thereby CPT may be a potential remedial agent for allergic asthma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chungpye-tang" title="Chungpye-tang">Chungpye-tang</a>, <a href="https://publications.waset.org/abstracts/search?q=allergic%20asthma" title=" allergic asthma"> allergic asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=asthmatic%20human%20airway%20epithelial%20tissue" title=" asthmatic human airway epithelial tissue"> asthmatic human airway epithelial tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20factor%20kappa%20B%20%28NF-%CE%BAB%29%20pathway" title=" nuclear factor kappa B (NF-κB) pathway"> nuclear factor kappa B (NF-κB) pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=COX-2" title=" COX-2"> COX-2</a> </p> <a href="https://publications.waset.org/abstracts/42524/anti-inflammatory-studies-on-chungpye-tang-in-asthmatic-human-lung-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10