CINXE.COM
Search results for: tocopherol
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tocopherol</title> <meta name="description" content="Search results for: tocopherol"> <meta name="keywords" content="tocopherol"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tocopherol" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tocopherol"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 38</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tocopherol</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Effect of Resveratrol and Ascorbic Acid on the Stability of Alfa-Tocopherol in Whey Protein Isolate Stabilized O/W Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang">Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Bakry"> Amr M. Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food proteins have been widely used as carrier materials because of their multiple functional properties. In this study, alfa-tocopherol was encapsulated in the oil phase of an oil-in-water emulsion stabilized with whey protein isolate (WPI). The influence of WPI concentration and resveratrol or ascorbic acid on the decomposition of alfa-tocopherol in the emulsion during storage is discussed. Decomposition decreased as WPI concentrations increased. Decomposition was delayed at ascorbic acid/WPI molar ratios lower than 5 but was promoted at higher ratios. Resveratrol partitioned into the oil-water interface by binding to WPI and its cis-isomer is believed to have contributed most of the protective effect of this polyphenol. These results suggest the possibility of using the emulsifying and ligand-binging properties of WPI to produce carriers for simultaneous encapsulation of alfa-tocopherol and resveratrol in a single emulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=alfa-tocopherol" title=" alfa-tocopherol"> alfa-tocopherol</a>, <a href="https://publications.waset.org/abstracts/search?q=resveratrol" title=" resveratrol"> resveratrol</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20isolate" title=" whey protein isolate"> whey protein isolate</a> </p> <a href="https://publications.waset.org/abstracts/32495/effect-of-resveratrol-and-ascorbic-acid-on-the-stability-of-alfa-tocopherol-in-whey-protein-isolate-stabilized-ow-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> The Effects of Acid Rain, Smog Cars on Antioxidant Systems, Associated Enzyme and H⁺-ATPase Activity in Rice Cultivars (Oriza sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heidarali%20Malmir">Heidarali Malmir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of acid rain (AR), smog’s cars (SC), and combined AR+SC on the antioxidants enzymes, lipid-soluble antioxidants, and water-soluble antioxidants were studied in the two cultivars of rice. The results showed that simulated AR significantly increased the total glutathione (TGSH), thiobarbituric acid (TBA), and α-tocopherol, accompanied by decreases in dry weight and leaves area in the two cultivars, and this change was more obvious in Shirudi cultivar than in Aus cultivar (p≤0.05). Under SC stress cultivar shirudi had higher H+-ATPase, glutathione peroxidase (GSH-px), and catalase (CAT) activities than cultivar Aus. The results of superoxide dismutase (SOD) activity, TGSH, and α-tocopherol levels affected by AR treatments were very different to those of SOD activity, TGSH, and α-tocopherol levels, as shown in SC treatment. It seems that SOD activity coupled with the water-soluble antioxidants and α-tocopherol levels correlated with the lipid-soluble antioxidants. It is suggested that α-tocopherol increases H+-ATPase activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H%2B-ATPase" title="H+-ATPase">H+-ATPase</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20permeability" title=" membrane permeability"> membrane permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20soluble%20antioxidants" title=" lipid soluble antioxidants"> lipid soluble antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20soluble%20antioxidants" title=" water soluble antioxidants"> water soluble antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20enzyme" title=" associated enzyme"> associated enzyme</a> </p> <a href="https://publications.waset.org/abstracts/168521/the-effects-of-acid-rain-smog-cars-on-antioxidant-systems-associated-enzyme-and-h-atpase-activity-in-rice-cultivars-oriza-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriyono">Supriyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumardiyono"> Sumardiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Puti%20Pertiwi"> Puti Pertiwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20carotene" title=" beta carotene"> beta carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20oil" title=" crude palm oil"> crude palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=tocopherol" title=" tocopherol "> tocopherol </a> </p> <a href="https://publications.waset.org/abstracts/74220/antioxidant-extraction-from-indonesian-crude-palm-oil-and-its-antioxidation-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriyono">Supriyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumardiyono"> Sumardiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Rendy%20J.%20Pramono"> Rendy J. Pramono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20biodiesel" title=" palm oil biodiesel"> palm oil biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition" title=" decomposition"> decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=tocopherol" title=" tocopherol"> tocopherol</a> </p> <a href="https://publications.waset.org/abstracts/49087/application-of-tocopherol-as-antioxidant-to-reduce-decomposition-process-on-palm-oil-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriyono%20Supriyono">Supriyono Supriyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumardiyono%20Sumardiyono"> Sumardiyono Sumardiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Peni%20Pujiastuti"> Peni Pujiastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dian%20Indriana%20Hapsari"> Dian Indriana Hapsari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20carotene" title=" beta carotene"> beta carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20oil" title=" crude palm oil"> crude palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=tocopherol" title=" tocopherol"> tocopherol</a> </p> <a href="https://publications.waset.org/abstracts/91546/crude-palm-oil-antioxidant-extraction-and-the-antioxidation-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Antioxidant Efficacy of Lovi (Flacourtia inermis) Peel Extract in Edible Oils during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasini%20U.%20G.%20Nanayakkara">Sasini U. G. Nanayakkara</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishala%20E.%20Wedamulla"> Nishala E. Wedamulla</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20J.%20P.%20Wijesinghe"> W. A. J. P. Wijesinghe </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lovi (Flacourtia inermis) is an underutilized fruit crop grown in Sri Lanka with promising antioxidant properties; thus, exhibits the great potential to use as a natural antioxidant. With the concern of synthetic antioxidants, there is a growing trend towards the addition of a natural antioxidant to retard the rancidity of edible oils. Hence, in this backdrop, extract obtained from the peel of F. inermis fruit was used to retard the rancidity of selected edible oils. Free fatty acid (FFA) content and peroxide value (PV) of sunflower oil (SO) and virgin coconut oil (VCO) were measured at 3-day intervals for 21 days at 65 ± 5°C after addition of extract at 500, 1000, 2000 ppm levels and α-tocopherol at 500 ppm level was used as positive control. SO and VCO without added extract was used as the control. The extract was prepared with 70% ethanol using ultrasound-assisted extraction, and antioxidant efficacy and total phenolic content (TPC) of the extract were measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and Folin-Ciocalteu method respectively. Antioxidant activity (IC50) and TPC of the extract were 227.14 ± 4.12 µgmL⁻¹ and 4.87 ± 0.01 mg GAE per gram, respectively. During the storage period, FFA content and PV of both oils were increased with time. However, SO showed comparatively high PV than that of VCO and thereby indicate the progression of lipid oxidation as PV is a good indicator of the extent of primary oxidative products formed in oils. The most effective extract concentration was 2000 ppm. After 21 days of storage, VCO (control) sample exhibited significantly (p < 0.05) high FFA (0.36%) and PV (1.93 meq kg⁻¹) than that of VCO with 1000 ppm (FFA: 0.35%; PV: 1.72 meq kg⁻¹) and 2000 ppm (FFA: 0.28%; PV: 1.19 meq kg-1) levels of extract. Thus, demonstrates the efficacy of lovi peel extract in retardation of lipid oxidation of edible oils during storage at higher concentrations of the extract addition. Moreover, FFA and PV of SO (FFA: 0.10%; PV: 12.38 meq kg⁻¹) and VCO (FFA: 0.28%; PV: 1.19 meq kg⁻¹) at 2000 ppm level of extract were significantly (p < 0.05) lower than that of positive control: SO with α-tocopherol (FFA: 0.22%, PV: 17.94 meq kg⁻¹) and VCO with α-tocopherol (FFA: 0.29%, PV: 1.39 meq kg⁻¹) after 21 days. Accordingly, lovi peel extract at 2000 ppm level was more effective than α-tocopherol in retardation of lipid oxidation of edible oils. In conclusion, lovi peel extract has strong antioxidant properties and can be used as a natural antioxidant to inhibit deteriorative oxidation of edible oils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Flacourtia%20inermis" title=" Flacourtia inermis"> Flacourtia inermis</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20value" title=" peroxide value"> peroxide value</a>, <a href="https://publications.waset.org/abstracts/search?q=virgin%20coconut%20oil" title=" virgin coconut oil"> virgin coconut oil</a> </p> <a href="https://publications.waset.org/abstracts/109303/antioxidant-efficacy-of-lovi-flacourtia-inermis-peel-extract-in-edible-oils-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Quantitative Analysis of the High-Value Bioactive Components of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lara%20Marie%20Pangan%20Lo">Lara Marie Pangan Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Im%20Chung"> Soo Im Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Cheng%20Zhang"> Yao Cheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyue%20Jin"> Xingyue Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Young%20Kang"> Mi Young Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being the world’s most consumed grain crop, rice (Oryza sativa L.) demands’ have increase and this prompted the development of new rice cultivars with high bio-functional properties than the commonly used white rice. Ordinary rice variety is already known to be a potential source for a number of nutritional as well as bioactive compounds. To further enhance the rice’s nutritive values, germination is done in addition to making it more tasty and palatable when cooked. Pigmented rice, on the other hand, has become increasingly popular in the recent years for their greater antioxidant potential and other nutraceutical properties which can help alleviate the occurrence of the increasing incidence of metabolic diseases. Combining these two (2) parameters, this research study is sought to quantitatively determine the pre-germinated and germinated quantities of the major bioactive compounds of South Korea’s newly developed purplish pigmented rice grain cultivar Superjami (SJ) and red pigmented rice grain Superhongmi (SH) and compare them against the non-pigmented Normal Brown (NB) rice variety. Powdered rice grain cultivars were subjected to 72-hour germination period and the quantities of GABA, γ-oryzanol, ferulic acid, tocopherol and tocotrienol homologues were compared against their pre-germinated condition using γ- amino butyric acid (GABA) analysis and High Performance Liquid Chromatography (HPLC). Results revealed the effectiveness of germination in enhancing the bioactive components in all rice samples. GABA contents in germinated rice cultivars increased by more than 10-fold following the order: SJ >SH >NB. In addition, purple rice variety (SJ) has higher total γ-oryzanol and ferulic acid contents which increased by > 2-fold after germination followed by the red cultivar SH then the control, NB. Germinated varieties also possess higher total tocotrienol content than their pre-germinated state. As for the total tocopherol content, SJ has higher quantity, but the red-pigmented SH (0.16 mg/kg) is shown to have lower total tocopherol content than the control rice NB (0.86 mg/kg). However, all tocopherol and tocotrienol homologues were present only in small amounts ( < 3.0 mg/kg) in all pre-germinated and germinated samples. In general, all of the analyzed pigmented rice cultivars were found to possess higher bioactive compounds than the control NB rice variety. Also, regardless of their strain, germinated rice samples have higher bioactive compounds than their pre-germinated counterparts. This only shows the effectiveness of germinating rice in enhancing bioactive constituents. Overall, these results suggest the potential of the pigmented rice varieties as natural source of nutraceuticals in bio-functional food development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated%20rice" title=" germinated rice"> germinated rice</a>, <a href="https://publications.waset.org/abstracts/search?q=superhongmi" title=" superhongmi"> superhongmi</a>, <a href="https://publications.waset.org/abstracts/search?q=superjami" title=" superjami"> superjami</a> </p> <a href="https://publications.waset.org/abstracts/31151/quantitative-analysis-of-the-high-value-bioactive-components-of-pre-germinated-and-germinated-pigmented-rice-oryza-sativa-l-cv-superjami-and-superhongmi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Polymeric Micelles Based on Block Copolymer α-Tocopherol Succinate-g-Carboxymethyl Chitosan for Tamoxifen Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20K.%20Jena">Sunil K. Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjaya%20K.%20Samal"> Sanjaya K. Samal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chand"> Mahesh Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20T.%20Sangamwar"> Abhay T. Sangamwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tamoxifen (TMX) and its analogues are approved as a first line therapy for the treatment of estrogen receptor-positive tumors. However, clinical development of TMX has been hampered by its low bioavailability and severe hepatotoxicity. Herein, we attempt to design a new drug delivery vehicle that could enhance the pharmacokinetic performance of TMX. Initially, high-molecular weight carboxymethyl chitosan was hydrolyzed to low-molecular weight carboxymethyl chitosan (LMW CMC) with hydrogen peroxide under the catalysis of phosphotungstic acid. Amphiphilic block copolymers of LMW CMC were synthesized via amidation reaction between the carboxyl group of α-tocopherol succinate (TS) and an amine group of LMW CMC. These amphiphilic block copolymers were self-assembled to nanosize core-shell-structural micelles in the aqueous medium. The critical micelle concentration (CMC) decreased with the increasing substitution of TS on LMW CMC, which ranged from 1.58 × 10-6 to 7.94 × 10-8 g/mL. Maximum TMX loading up to 8.08 ± 0.98% was achieved with Cmc-TS4.5 (TMX/Cmc-TS4.5 with 1:8 weight ratio). Both blank and TMX-loaded polymeric micelles (TMX-PM) of Cmc-TS4.5 exhibits spherical shape with the particle size below 200 nm. TMX-PM has been found to be stable in the gastrointestinal conditions and released only 44.5% of the total drug content by the first 72 h in simulated gastric fluid (SGF), pH 1.2. However, the presence of pepsin does not significantly increased the TMX release in SGF, pH 1.2, released only about 46.2% by the first 72 h suggesting its inability to cleave the peptide bond. In contrast, the release of TMX from TMX-PM4.5 in SIF, pH 6.8 (without pancreatin) was slow and sustained, released only about 10.43% of the total drug content within the first 30 min and nearly about 12.41% by the first 72 h. The presence of pancreatin in SIF, pH 6.8 led to an improvement in drug release. About 28.09% of incorporated TMX was released in the presence of pancreatin in 72 h. A cytotoxicity study demonstrated that TMX-PM exhibited time-delayed cytotoxicity in human MCF-7 breast cancer cells. Pharmacokinetic studies on Sprague-Dawley rats revealed a remarkable increase in oral bioavailability (1.87-fold) with significant (p < 0.0001) enhancement in AUC0-72 h, t1/2 and MRT of TMX-PM4.5 than that of TMX-suspension. Thus, the results suggested that CMC-TS micelles are a promising carrier for TMX delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20chitosan" title="carboxymethyl chitosan">carboxymethyl chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=d-%CE%B1-tocopherol%20succinate" title=" d-α-tocopherol succinate"> d-α-tocopherol succinate</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetic" title=" pharmacokinetic"> pharmacokinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20micelles" title=" polymeric micelles"> polymeric micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=tamoxifen" title=" tamoxifen"> tamoxifen</a> </p> <a href="https://publications.waset.org/abstracts/40966/polymeric-micelles-based-on-block-copolymer-a-tocopherol-succinate-g-carboxymethyl-chitosan-for-tamoxifen-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Antioxidant Defense Mechanisms in Murine Epidermis and Dermis and Their Responses to Ultraviolet Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Abderrahmane%20Ayoub%20El%20Fateh">Ben Abderrahmane Ayoub El Fateh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bnina%20Rachid"> Bnina Rachid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive comparison of antioxidant defenses in the dermis and epidermis and their response to exposure to ultraviolet (UV) irradiation has not previously been attempted. In this study, enzymic and non-enzymic antioxidants in epidermis and dermis of hairless mice were compared. Enzyme activities are presented both as units/gram of skin and units/milligram of protein; arguments are presented for the superiority of skin wet weight as a reference base. Catalase, glutathione peroxidase, and glutathione reductase (units/gram of skin) were higher in the epidermis than dermis by 49%, 86%, and 74%, respectively. Superoxide dismutase did not follow this pattern. Lipophilic antioxidants ( -tocopherol, ubiquinol 9, and ubiquinone 9) and hydrophilic antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione) were 24–95% higher in the epidermis than in dermis. In contrast, oxidized glutathione was 60% lower in the epidermis than in dermis. Mice were irradiated with solar light to examine the response of these cutaneous layers to UV irradiation. After irradiation with 25 J/cm2 (UVA + UVB, from a solar simulator), 10 times the minimum erythemal dose, epidermal and dermal catalase and superoxide dismutase activities were greatly decreased. Tocopherol, ubiquinol 9, ubiquinone 9, ascorbic acid, dehydroascorbic acid, and reduced glutathione decreased in both epidermis and dermis by 26-93%. Oxidizedgiutathione showed a slight, non-significant increase. Because the reduction in total ascorbate and catalase was much more severe in the epidermis than dermis, it can be concluded that UV light is more damaging to the antioxidant defenses in the epidermis than in the dermis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20defenses" title="antioxidant defenses">antioxidant defenses</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymic" title=" enzymic"> enzymic</a>, <a href="https://publications.waset.org/abstracts/search?q=epidermis" title=" epidermis"> epidermis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidizedgiutathione" title=" oxidizedgiutathione"> oxidizedgiutathione</a> </p> <a href="https://publications.waset.org/abstracts/29067/antioxidant-defense-mechanisms-in-murine-epidermis-and-dermis-and-their-responses-to-ultraviolet-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Towards Development of Superior Brassica juncea by Pyramiding of Genes of Diverse Pathways for Value Addition, Stress Alleviation and Human Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar">Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Rajwanshi"> Ravi Rajwanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Aslam%20Yusuf"> Mohd. Aslam Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Kant%20Pandey"> Nisha Kant Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Singh"> Preeti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Saxena"> Mukesh Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Neera%20Bhalla%20Sarin"> Neera Bhalla Sarin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global issues are leading to concerns over food security. These include climate change, urbanization, increase in population subsequently leading to greater energy and water demand. Futuristic approach for crop improvement involves gene pyramiding for agronomic traits that empower the plants to withstand multiple stresses. In an earlier study from the laboratory, the efficacy of overexpressing γ-tocopherol methyl transferase (γ-TMT) gene from the vitamin E biosynthetic pathway has been shown to result in six-fold increase of the most biologically active form, the α-tocopherol in Brassica juncea which resulted in alleviation of salt, heavy metal and osmoticum induced stress by the transgenic plants. The glyoxalase I (gly I) gene from the glyoxalase pathway has also been earlier shown by us to impart tolerance against multiple abioitc stresses by detoxification of the cytotoxic compound methylglyoxal in Brassica juncea. Recently, both the transgenes were pyramided in Brassica juncea lines through sexual crosses involving two stable Brassica juncea lines overexpressing γ-TMT and gly I genes respectively. The transgene integration was confirmed by PCR analysis and their mRNA expression was evident by RT-PCR analysis. Preliminary physiological investigations showed ~55% increased seed germination under 200 mM NaCl stress in the pyramided line and 81% higher seed germination under 200 mM mannitol stress as compared to the WT control plants. The pyramided lines also retained more chlorophyll content when the leaf discs were floated on NaCl (200, 400 and 600 mM) or mannitol (200, 400 and 600 mM) compared to the WT control plants. These plants had higher Relative Water Content and greater solute accumulation under stress compared to the parental plants having γ-TMT or the glyI gene respectively. The studies revealed the synergy of two components from different metabolic pathways in enhancing stress hardiness of the transgenic B. juncea plants. It was concluded that pyramiding of genes (γ-TMT and glyI) from diverse pathways can lead to enhanced tolerance to salt and mannitol stress (simulating drought conditions). This strategy can prove useful in enhancing the crop yields under various abiotic stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stress" title="abiotic stress">abiotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=brassica%20juncea" title=" brassica juncea"> brassica juncea</a>, <a href="https://publications.waset.org/abstracts/search?q=glyoxalase%20I" title=" glyoxalase I"> glyoxalase I</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-tocopherol" title=" α-tocopherol"> α-tocopherol</a> </p> <a href="https://publications.waset.org/abstracts/34712/towards-development-of-superior-brassica-juncea-by-pyramiding-of-genes-of-diverse-pathways-for-value-addition-stress-alleviation-and-human-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> European Food Safety Authority (EFSA) Safety Assessment of Food Additives: Data and Methodology Used for the Assessment of Dietary Exposure for Different European Countries and Population Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gergelova">Petra Gergelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Ioannidou"> Sofia Ioannidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Arcella"> Davide Arcella</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Tard"> Alexandra Tard</a>, <a href="https://publications.waset.org/abstracts/search?q=Polly%20E.%20Boon"> Polly E. Boon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Lindtner"> Oliver Lindtner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Tlustos"> Christina Tlustos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Charles%20Leblanc"> Jean-Charles Leblanc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To assess chronic dietary exposure to food additives in different European countries and population groups. Method and Design: The European Food Safety Authority’s (EFSA) Panel on Food Additives and Nutrient Sources added to Food (ANS) estimates chronic dietary exposure to food additives with the purpose of re-evaluating food additives that were previously authorized in Europe. For this, EFSA uses concentration values (usage and/or analytical occurrence data) reported through regular public calls for data by food industry and European countries. These are combined, at individual level, with national food consumption data from the EFSA Comprehensive European Food Consumption Database including data from 33 dietary surveys from 19 European countries and considering six different population groups (infants, toddlers, children, adolescents, adults and the elderly). EFSA ANS Panel estimates dietary exposure for each individual in the EFSA Comprehensive Database by combining the occurrence levels per food group with their corresponding consumption amount per kg body weight. An individual average exposure per day is calculated, resulting in distributions of individual exposures per survey and population group. Based on these distributions, the average and 95th percentile of exposure is calculated per survey and per population group. Dietary exposure is assessed based on two different sets of data: (a) Maximum permitted levels (MPLs) of use set down in the EU legislation (defined as regulatory maximum level exposure assessment scenario) and (b) usage levels and/or analytical occurrence data (defined as refined exposure assessment scenario). The refined exposure assessment scenario is sub-divided into the brand-loyal consumer scenario and the non-brand-loyal consumer scenario. For the brand-loyal consumer scenario, the consumer is considered to be exposed on long-term basis to the highest reported usage/analytical level for one food group, and at the mean level for the remaining food groups. For the non-brand-loyal consumer scenario, the consumer is considered to be exposed on long-term basis to the mean reported usage/analytical level for all food groups. An additional exposure from sources other than direct addition of food additives (i.e. natural presence, contaminants, and carriers of food additives) is also estimated, as appropriate. Results: Since 2014, this methodology has been applied in about 30 food additive exposure assessments conducted as part of scientific opinions of the EFSA ANS Panel. For example, under the non-brand-loyal scenario, the highest 95th percentile of exposure to α-tocopherol (E 307) and ammonium phosphatides (E 442) was estimated in toddlers up to 5.9 and 8.7 mg/kg body weight/day, respectively. The same estimates under the brand-loyal scenario in toddlers resulted in exposures of 8.1 and 20.7 mg/kg body weight/day, respectively. For the regulatory maximum level exposure assessment scenario, the highest 95th percentile of exposure to α-tocopherol (E 307) and ammonium phosphatides (E 442) was estimated in toddlers up to 11.9 and 30.3 mg/kg body weight/day, respectively. Conclusions: Detailed and up-to-date information on food additive concentration values (usage and/or analytical occurrence data) and food consumption data enable the assessment of chronic dietary exposure to food additives to more realistic levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-tocopherol" title="α-tocopherol">α-tocopherol</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20phosphatides" title=" ammonium phosphatides"> ammonium phosphatides</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20exposure%20assessment" title=" dietary exposure assessment"> dietary exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Food%20Safety%20Authority" title=" European Food Safety Authority"> European Food Safety Authority</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20additives" title=" food additives"> food additives</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20consumption%20data" title=" food consumption data"> food consumption data</a> </p> <a href="https://publications.waset.org/abstracts/61553/european-food-safety-authority-efsa-safety-assessment-of-food-additives-data-and-methodology-used-for-the-assessment-of-dietary-exposure-for-different-european-countries-and-population-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Using Phase Equilibrium Theory to Calculate Solubility of γ-Oryzanol in Supercritical CO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boy%20Arief%20Fachri">Boy Arief Fachri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even its content is rich in antioxidants ϒ-oryzanol, rice bran is not used properly as functional food. This research aims to (1) extract ϒ-oryzanol; (2) determine the solubility of ϒ-oryzanol in supercritical CO<sub>2</sub> based on phase equilibrium theory; and (3) study the effect of process variables on solubility. Extraction experiments were carried out for rice bran (5 g) at various extraction pressures, temperatures and reaction times. The flowrate of supercritical fluid through the extraction vessel was 25 g/min. The extracts were collected and analysed with high-pressure liquid chromatography (HPLC). The conclusion based on the experiments are as: (1) The highest experimental solubility was 0.303 mcg/mL RBO at T= 60°C, P= 90 atm, t= 30 min; (2) Solubility of ϒ-oryzanol was influenced by pressure and temperature. As the pressure and temperature increase, the solubility increases; (3) The solubility data of supercritical extraction can be successfully determined using phase equilibrium theory. Meanwhile, tocopherol was found and slightly investigated in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title="rice bran">rice bran</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title=" supercritical CO2"> supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=%CF%92-orizanol" title=" ϒ-orizanol"> ϒ-orizanol</a> </p> <a href="https://publications.waset.org/abstracts/41830/using-phase-equilibrium-theory-to-calculate-solubility-of-gh-oryzanol-in-supercritical-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Investigation in Gassy Ozone Influence on Flaxes Made from Biologically Activated Whole Wheat Grains Quality Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatjana%20Rakcejeva">Tatjana Rakcejeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Zagorska"> Jelena Zagorska</a>, <a href="https://publications.waset.org/abstracts/search?q=Elina%20Zvezdina"> Elina Zvezdina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the current research was to investigate the gassy ozone effect on quality parameters of flaxes made form whole biologically activated wheat grains. The research was accomplished on in year 2012 harvested wheat grains variety ′Zentos′. Grains were washed, wetted; grain biological activation was performed in the climatic chamber up to 24 hours. After biological activation grains was compressed; than flaxes was dried in convective drier till constant moisture content 9±1%. For grain treatment gassy ozone concentration as 0.0002% and treatment time – 6 min was used. In the processed flaxes the content of A and G tocopherol decrease by 23% and by 9%; content of B2 and B6 vitamins – by 11% and by 10%; elaidic acid – by 46%, oleic acid – by 29%; arginine (by 80%), glutamine (by 74%), asparagine and serine (by 68%), valine (by 62%), cysteine (by 54%) and tyrosine (by 47%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gassy%20ozone" title="gassy ozone">gassy ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=flaxes" title=" flaxes"> flaxes</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20activated%20grains" title=" biologically activated grains"> biologically activated grains</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20parameters" title=" quality parameters"> quality parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/5203/investigation-in-gassy-ozone-influence-on-flaxes-made-from-biologically-activated-whole-wheat-grains-quality-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Oat Grain Functional Ingredient Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Sterna">Vita Sterna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanita%20Zute"> Sanita Zute</a>, <a href="https://publications.waset.org/abstracts/search?q=Inga%20Jansone"> Inga Jansone</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Brunava"> Linda Brunava</a>, <a href="https://publications.waset.org/abstracts/search?q=Inara%20Kantane"> Inara Kantane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grains, including oats (Avena sativa L.), have been recognized functional foods, because provide beneficial effect on the health of the consumer and decrease the risk of various diseases.Oats are good source of soluble fibre, essential amino acids, unsaturated fatty acids, vitamins and minerals. Oat breeders have developed oat varieties and improved yielding ability potential of oat varieties. Therefore, the aim of investigation was to analyze the composition of perspective oat varieties and breeding lines grains grown in different conditions and evaluate functional properties. In the studied samples content of protein, starch, β - glucans, total dietetic fibre, composition of amino acids and vitamin E were determined. The results of analysis showed that protein content depending of varieties ranged 9.70 –17.30% total dietary fibre 13.66-30.17 g100g-1, content of β-glucans 2.7-3.5 g100g-1, amount of vitamin E (α-tocopherol) determined from 4 to 9.9 mg kg-1. The sum of essential amino acids in oat grain samples were determined from 31.63 to 54.90 gkg-1. Concluded that amino acids composition of husked and naked oats grown in organic or conventional conditions is close to optimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietetic%20fibre" title="dietetic fibre">dietetic fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=scores" title=" scores"> scores</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20value" title=" nutrition value"> nutrition value</a> </p> <a href="https://publications.waset.org/abstracts/26261/oat-grain-functional-ingredient-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Separation of Oryzanol from Rice Bran Oil Using Silica: Equilibrium of Batch Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Susanti">A. D. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Sediawan"> W. B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Wirawan"> S. K. Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhijanto"> Budhijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritmaleni"> Ritmaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice bran oil contains significant amounts of oryzanol, a natural antioxidant that considered has higher antioxidant activity than vitamin E (tocopherol). Oryzanol reviewed has several health properties and interested in pharmacy, nutrition, and cosmetics. For practical usage, isolation and purification would be necessary due to the low concentration of oryzanol in crude rice bran oil (0.9-2.9%). Batch chromatography has proved as a promising process for the oryzanol recovery, but productivity was still low and scale-up processes of industrial interest have not yet been described. In order to improve productivity of batch chromatography, a continuous chromatography design namely Simulated Moving Bed (SMB) concept have been proposed. The SMB concept has interested for continuous commercial scale separation of binary system (oryzanol and rice bran oil), and rice bran oil still obtained as side product. Design of SMB chromatography for oryzanol separation requires quantification of its equilibrium. In this study, equilibrium of oryzanol separation conducted in batch adsorption using silica as the adsorbent and n-hexane/acetone (9:1) as the eluent. Three isotherm models, namely the Henry, Langmuir, and Freundlich equations, have been applied and modified for the experimental data to establish appropriate correlation for each sample. It turned out that the model quantitatively describe the equilibrium experimental data and will directed for design of SMB chromatography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=oryzanol" title=" oryzanol"> oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil"> rice bran oil</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20moving%20bed" title=" simulated moving bed"> simulated moving bed</a> </p> <a href="https://publications.waset.org/abstracts/30372/separation-of-oryzanol-from-rice-bran-oil-using-silica-equilibrium-of-batch-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Trastuzumab Decorated Bioadhesive Nanoparticles for Targeted Breast Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasi%20Viswanadh%20Matte">Kasi Viswanadh Matte</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhisheh%20Kumar%20%20Mehata"> Abhisheh Kumar Mehata</a>, <a href="https://publications.waset.org/abstracts/search?q=M.S.%20Muthu"> M.S. Muthu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brest cancer, up-regulated with human epidermal growth factor receptor type-2 (HER-2) led to the concept of developing HER-2 targeted anticancer therapeutics. Docetaxel-loaded D-α-tocopherol polyethylene glycol succinate 1000 conjugated chitosan (TPGS-g-chitosan) nanoparticles were prepared with or without Trastuzumab decoration. The particle size and entrapment efficiency of conventional, non-targeted and targeted nanoparticles were found to be in the range of 126-186 nm and 74-78% respectively. In-vitro, MDA-MB-231 cells showed that docetaxel-loaded non-targeted and HER-2 receptor targeted TPGS-g-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity with a promising bioadhesion property, in comparison to conventional nanoparticles. The IC50 values of non-targeted and targeted nanoparticles from cytotoxic assay were found to be 43 and 223 folds higher than DocelTM. The in-vivo pharmacokinetic study showed 2.33, and 2.82-fold enhancement in relative bioavailability of docetaxel for non-targeted and HER-2 receptor targeted nanoparticles, respectively than DocelTM, and after i.v administration, non-targeted and targeted nanoparticle achieved 3.48 and 5.94 times prolonged half-life in comparison to DocelTM. The area under the curve (AUC), relative bioavailability (FR) and mean residence time (MRT) were found to be higher for non-targeted and targeted nanoparticles compared to DocelTM. Further, histopathology results of non-targeted and targeted nanoparticles showed less toxicity on vital organs such as lungs, liver, and kidney compared to DocelTM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=HER-2%20receptor" title=" HER-2 receptor"> HER-2 receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20nanomedicine" title=" targeted nanomedicine"> targeted nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=TPGS" title=" TPGS"> TPGS</a> </p> <a href="https://publications.waset.org/abstracts/76813/trastuzumab-decorated-bioadhesive-nanoparticles-for-targeted-breast-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Preparation and Antioxidant Activity of Heterocyclic Indole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tunca%20Gul%20Altuntas">Tunca Gul Altuntas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Baydar"> Aziz Baydar</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Acar"> Cemre Acar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sezen%20Y%C4%B1lmaz"> Sezen Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tulay%20Coban"> Tulay Coban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free radicals, which are generated in many bioorganic redox processes, play a role in the pathogenesis of several diseases including cancer, arthritis, hemorrhagic shock, inflammatory, cardiovascular, neurodegenerative diseases and age-related degenerative brain diseases. Exposures of normal cell to free radical damages several structures, oxidizes nucleic acids, proteins, lipids, or DNA. Compounds interfere with the action of reactive oxygen species might be useful in prevention and treatment of these pathologies. A series of indole compounds containing piperazine ring were synthesized. Coupling of indole-2-carboxylic acid with monosubstituted piperazines was accomplished with 1,1’-carbonyldiimidazole (CDI) in a good yield. The structures of prepared compounds were verified in good agreement with their 1H NMR (nuclear magnetic resonance), MS (mass spectrophotometry), and IR (infrared spectrophotometry) characteristics. In this work, all synthetized indole derivatives were screened in vitro for their antioxidative potential against vitamin E (α-tocopherol) using different antioxidant assays such as superoxide anion formation, lipid peroxidation levels in rat liver, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) stable radical scavenging activity. The synthesized compounds showed various levels of inhibition compared to vitamin E. This may give promising results for the development of new antioxidant agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=indoles" title=" indoles"> indoles</a>, <a href="https://publications.waset.org/abstracts/search?q=piperazines" title=" piperazines"> piperazines</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/91784/preparation-and-antioxidant-activity-of-heterocyclic-indole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandrs%20Kovalcuks">Aleksandrs Kovalcuks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this study was to determine which factor, laying hen housing system or hen diet, has a primary influence on bioactive compound content in egg yolk oil. The egg yolk oil was extracted from eggs obtained from 4 different hen housing systems: cage, barn and two groups of free range. All hens were fed with commercially produced compound feed except one group of free range hens which get free diet – pastured hens. Extracted egg yolk oils were analyzed for fatty acids, oil soluble vitamins and β-carotene content. α-tocopherol, ergocalcipherol and polyunsaturated fatty acid content in egg yolk oil was higher from eggs obtained from all housing systems where hens were fed with commercial compound feed. β-carotene and retinol content in egg yolk oils from free range free diet eggs was significantly (p>0.05) higher that from other eggs because hens have access to green forage. Hen physical activity in free range housing systems decreases content of some bioactive compound in egg yolk oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20yolk%20oil" title="egg yolk oil">egg yolk oil</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamins" title=" vitamins"> vitamins</a>, <a href="https://publications.waset.org/abstracts/search?q=caged%20eggs" title=" caged eggs"> caged eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20range" title=" free range"> free range</a> </p> <a href="https://publications.waset.org/abstracts/21132/comparison-of-bioactive-compound-content-in-egg-yolk-oil-extracted-from-eggs-obtained-from-different-laying-hen-housing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Dependence of Free Fatty Acid and Chlorophyll Content on Thermal Stability of Extra Virgin Olive Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongjun%20Ahn">Yongjun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Gyu%20Choi"> Sung Gyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeop%20Kwak"> Seung-Yeop Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective removal of free fatty acid (FFA) and chlorophyll in extra virgin olive oil (EVOO) is necessary to enhance the thermal stability in the condition of the deep frying. In this work, we demonstrated improving the thermal stability of EVOO by selective removal of free fatty acid and chlorophyll using (3-Aminopropyl)trimethoxysilane (APTMS) functionalized mesoporous silica with controlled pore size. The adsorption kinetics of free fatty acid and chlorophyll into the mesoporous silica were quantitatively analyzed by Freundlich and Langmuir model. The highest chlorophyll adsorption efficiency was shown in the pore size at 5 nm, suggesting that the interaction between the silica and the chlorophyll could be optimized at this point. The amino-functionalized mesoporous silica showed drastically improved removal efficiency of FFA than the bare silica. Moreover, beneficial compounds like tocopherol and phenolic compounds maintained even after adsorptive removal. Extra virgin olive oil treated by aminopropyl-functionalized silica had a smoke point high enough to be used as commercial frying oil. Based on these results, it is expected to attract the considerable amount of interest toward facile adsorptive refining process of EVOO using pore size controlled and amino-functionalized mesoporous silica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title="mesoporous silica">mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20virgin%20olive%20oil" title=" extra virgin olive oil"> extra virgin olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20adsorption" title=" selective adsorption"> selective adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/96136/dependence-of-free-fatty-acid-and-chlorophyll-content-on-thermal-stability-of-extra-virgin-olive-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng">Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Bakry"> Amr M. Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20protein" title="milk protein">milk protein</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20nutrient" title=" bioactive nutrient"> bioactive nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a> </p> <a href="https://publications.waset.org/abstracts/32528/encapsulation-and-protection-of-bioactive-nutrients-based-on-ligand-binding-property-of-milk-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Effects of Live Yeast Supplementation to Reduce Oxidative Stress and Increase Lactation Performance of Dairy Cattle during the Summer Season</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawid%20Mirzad">Ahmad Nawid Mirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Goto"> Akira Goto</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuto%20Endo"> Takuto Endo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Ano"> Hitoshi Ano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromu%20Katamoto"> Hiromu Katamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Takenori%20Yamauchi"> Takenori Yamauchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the effects of live yeast supplementation on oxidative stress biomarker and antioxidant vitamin levels as well as lactation performance in Holstein Friesian cows during the summer season in Fukuoka prefecture. Sixteen lactating cows weighing 707.50 ± 13.09 kg (Mean ± SE) were used and randomly assigned to either supplemented (n = 8) or control (n = 8) group. The cows in supplemented group were administered with live yeast product at 10 g/d per cow from middle of July to middle of September for eight weeks. In treatment group, serum levels of derivatives of reactive oxygen metabolites (d-ROMs) were lower at week six. In addition, serum levels of glucose and retinol were higher at week eight and those of α-tocopherol were higher at week 2 in treatment group. During study period daily average milk yield decreased in both groups. Daily average milk yield 63 days after the onset of supplementation in treatment and control groups were 23.5 and 22.2 kg, respectively. The reduction rate of milk yield in treatment group tended to be lower (17.6 vs. 20.0%). These results suggest that live yeast supplementation may reduce oxidative stress and improve energy metabolism in lactating dairy cows during the summer season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow" title="cow">cow</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20yeast" title=" live yeast"> live yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=summer%20season" title=" summer season"> summer season</a> </p> <a href="https://publications.waset.org/abstracts/102176/effects-of-live-yeast-supplementation-to-reduce-oxidative-stress-and-increase-lactation-performance-of-dairy-cattle-during-the-summer-season" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Protection against Sodium Arsenate Induced Fetal Toxicity in Albino Mice by Vitamin C and E</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Qureshi">Fariha Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tahir"> Mohammad Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epidemiological evidences indicated that arsenic contamination in drinking water increased the incidence of spontaneous abortion, stillbirth and premature babies in pregnant women. This study was designed to investigate the protective role of vitamin C&E against sodium arsenate induced fetal toxicity in albino mice. Twenty-four pregnant albino mice of BALB/c strain were randomly divided into 4 groups having 6 animals in each. Group A1 served as control and was injected with 0.1ml/kg/day distilled water I/P for 18 days. Groups A2,A3 & A4 received single I/P injection of sodium arsenate 35mg/kg on 8th gestational day, whereas groups A3 and A4 were also given Vitamin C and E by I/P injection, 9 mg/kg/day and 15 mg/kg/day respectively, starting from 8th GD and continued for the rest of the pregnancy period. The early implantation sites, fetal resorptions, weight of live fetuses and crown rump length were recorded. Gross morphological examination was carried out for malformations. Fetal kidneys were extracted for histological and micrometric analysis. Group A2 exhibited an increased incidence of abortion, fetal resorptions, significant decrease in number of litter and fetal weight; the difference of means was statistically significant among the groups (p<0.000). In group A2 fetal kidneys presented glomerulonephritis with acute tubular necrotic changes and interstitial fibrosis. Groups A3&A4 showed statistically significant improvement in these parameters. The results revealed the antioxidant potential of Vitamin C and E in protecting against arsenic induced fetal toxicity in mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetal%20toxicity" title="fetal toxicity">fetal toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20resorptions" title=" fetal resorptions"> fetal resorptions</a>, <a href="https://publications.waset.org/abstracts/search?q=interstitial%20fibrosis" title=" interstitial fibrosis"> interstitial fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=tocopherol" title=" tocopherol"> tocopherol</a> </p> <a href="https://publications.waset.org/abstracts/12402/protection-against-sodium-arsenate-induced-fetal-toxicity-in-albino-mice-by-vitamin-c-and-e" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Chemical Composition, in vitro Antioxidant Activity and Gas Chromatography–Mass Spectrometry Analysis of Essential Oil and Extracts of Ruta chalpensis aerial Parts Growing in Tunisian Sahara</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Falhi">Samir Falhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neji%20Gharsallah"> Neji Gharsallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Kadri"> Adel Kadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ruta chalpensis L. is a medicinal plant in the family of Rutaceae, has been used as an important traditional in the Mediterranean basin in the treatment of many diseases. The current study was devoted to investigate and evaluate the chemical composition, total phenolic, flavonoid and tannin contents, and in vitro antioxidant activities of ethyl acetate, ethanol and hydroalcoholic extracts and essential oil from the aerial parts of Ruta chalpensis from Tunisian Sahara. Total phenolic, flavonoid and tannin contents of extracts ranged from 40.39 ± 1.87 to 75.13 ± 1.22 mg of GAE/g, from 22.62 ± 1.55 to 27.51 ± 1.04 mg of QE/g, and from 5.56 ± 1.32 to 10.89 ± 1.10 mg of CE/g respectively. Results showed that the highest antioxidant activities was determined for ethanol extract with IC50 value of 26.23 ± 0.91 µg/mL for 2,2-diphenyl-1-picrylhydrazyl assay, and for hydroalcoholic extract with EC50 value of 412.95±6.57 µg/mL and 105.52±2.45 mg of α-tocopherol/g for ferric reducing antioxidant power and total antioxidant capacity assays, respectively. Furthermore, Gas Chromatography–Mass Spectrometry (GC-MS) analysis of essential oil led to identification of 20 compounds representing 98.96 % of the total composition. The major components of essential oil were 2-undecanone (39.13%), 2-nonanone (25.04), 1-nonene (13.81), and α-limonene (7.72). Spectral data of Fourier-transform infrared spectroscopy analysis (FT-IR) of extracts revealed the presence of functional groups such as C= O, C─O, ─OH, and C─H, which confirmed its richness on polyphenols and biological active functional groups. These results showed that Ruta chalpensis could be a potential natural source of antioxidants that can be used in food and nutraceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR%20analysis" title=" FT-IR analysis"> FT-IR analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20analysis" title=" GC-MS analysis"> GC-MS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals%20contents" title=" phytochemicals contents"> phytochemicals contents</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruta%20chalpensis" title=" Ruta chalpensis"> Ruta chalpensis</a> </p> <a href="https://publications.waset.org/abstracts/95645/chemical-composition-in-vitro-antioxidant-activity-and-gas-chromatography-mass-spectrometry-analysis-of-essential-oil-and-extracts-of-ruta-chalpensis-aerial-parts-growing-in-tunisian-sahara" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Afarnegan">Hasan Afarnegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shahraki"> Ali Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20%20Shahraki"> Jafar Shahraki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatocyte%20protection" title="hepatocyte protection">hepatocyte protection</a>, <a href="https://publications.waset.org/abstracts/search?q=levisticum%20officinale" title=" levisticum officinale"> levisticum officinale</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=paraquat" title=" paraquat"> paraquat</a> </p> <a href="https://publications.waset.org/abstracts/75121/the-hepatoprotective-effects-of-aquatic-extract-of-levesticum-officinale-against-paraquat-toxicity-of-hepatocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Comparison of Fat Soluble Vitamins, Carotenoids and Cholesterol Content in Mytilus galloprovincialis, Rapana venosa and Ulva rigida from the Black Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20A.%20Dobreva">Diana A. Dobreva</a>, <a href="https://publications.waset.org/abstracts/search?q=Veselina%20Panayotova"> Veselina Panayotova</a>, <a href="https://publications.waset.org/abstracts/search?q=Albena%20Merdzhanova"> Albena Merdzhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubomir%20Makedonski"> Lubomir Makedonski</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Stancheva"> Mona Stancheva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies suggest that marine mollusks are healthy food, characterized by low fat and high digestible proteins content. They are one of the most important dietary sources of fat soluble vitamins. The most common species of mollusks in the Bulgarian Black Sea waters are the black mussel (Mytilus galloprovincialis) and the sea snail Rapana (Rapana venosa). One of the main problems of the region is the lack of information about chemical composition of these important marine species. Due to these facts, the aim of the present work was to determine the fat soluble vitamins A, D2, D3, and E, carotenoids–β-carotene and astaxanthin, and total cholesterol contents of mollusk samples and compare them to sample of green algae (Ulva rigida). Samples were collected during autumn from north region of the Black Sea coast, and their wet tissues were used for evaluation of vitamins A, D2, D3, and E, astaxanthin, β-carotene and cholesterol compositions. All fat soluble analytes were simultaneously analyzed by RP- HPLC/UV/FL system. The results were calculated as milligrams per gram total lipid (mg.g-1TL). Alpha-tocopherol and b-carotene were most abundant in algae samples, while mussel samples presented the highest amounts of vitamin D3 (several times higher than the recommended daily intake in Bulgaria (Ordinance № 23 / 19.07.2005)). In all samples, cholesterol content was significantly low, which falls within recommendation of the same ordinance (upper daily consumption should not exceed 300 mg per day). From data, it can be concluded that all samples were characterized as beneficial sources of biologically active compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fat%20soluble%20vitamins" title="fat soluble vitamins">fat soluble vitamins</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=mussel" title=" mussel"> mussel</a>, <a href="https://publications.waset.org/abstracts/search?q=rapana" title=" rapana"> rapana</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a> </p> <a href="https://publications.waset.org/abstracts/77518/comparison-of-fat-soluble-vitamins-carotenoids-and-cholesterol-content-in-mytilus-galloprovincialis-rapana-venosa-and-ulva-rigida-from-the-black-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Phenolic Compounds and Antioxidant Capacity of Nine Genotypes of Thai Rice (Oryza sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pitchaon%20Maisuthisakul">Pitchaon Maisuthisakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladawan%20Changchub"> Ladawan Changchub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice (Oryza sativa L.) is a staple diet in Thailand. Rice cultivation is traditional occupation of Thailand which passed down through generations. The 1 Rai 1 san project is new agricultural theory according to sufficient economy using green technology without using chemical substances. This study was conducted to evaluate total phenolics using HPLC and colorimetric methods including total anthocyanin content of Thai rice extracting by simulated gastric and intestinal condition and to estimate antioxidant capacity using DPPH and thiocyanate methods. Color and visible spectrum of rice grains were also investigated. Rice grains were classified into three groups according to their color appearance. The light brown grain genotypes are Sin Lek, Jasmine 105, Lao Tek and Hawm Ubon. The red group is Sang Yod and Red Jasmine. Genotypes Kum, Hawm Kanya and Hawm Nil are black rice grains. Cyanidin-3-O-glucoside was found in only black rice genotypes, whereas chlorogenic acid was found in all rice grains. The black rice had higher phenolic content than red and light brown samples. Phenolic acids constitute a small portion of phenolic compounds after digestion in human and contribute to the antioxidant activity of Thai rice grains. Anthocyanin contents of all rice extracts ranged from 45.9 to 442.1 mg CGE/kg. All rice extracts showed the antioxidant efficiency lower than ferulic acid. Genotype Kum and Hawm nil exhibited the ability of antioxidant efficiency higher than α-tocopherol. Interestingly, the visible spectrum of only black rice genotypes showed the maximum peak at 530-540 nm. The results suggest that consumption of black rice gives more health benefits of grain to consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic" title=" phenolic"> phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title=" anthocyanin "> anthocyanin </a> </p> <a href="https://publications.waset.org/abstracts/25542/phenolic-compounds-and-antioxidant-capacity-of-nine-genotypes-of-thai-rice-oryza-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Syairah">S. M. M. Syairah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Rajikin"> M. H. Rajikin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Sharaniza"> A. R. Sharaniza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delta-tocotrienol" title="delta-tocotrienol">delta-tocotrienol</a>, <a href="https://publications.waset.org/abstracts/search?q=embryonic%20development" title=" embryonic development"> embryonic development</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotine" title=" nicotine"> nicotine</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20E" title=" vitamin E"> vitamin E</a> </p> <a href="https://publications.waset.org/abstracts/24401/supplementation-of-annatto-bixa-orellana-derived-d-tocotrienol-produced-high-number-of-morula-through-increased-expression-of-3-phosphoinositide-dependent-protein-kinase-1-pdk1-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> In vivo Iron Availability and Profile Lipid Composition in Anemic Rats Fed on Diets with Black Rice Bran Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurlaili%20E.%20P.">Nurlaili E. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Astuti%20M."> Astuti M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Marsono%20Y."> Marsono Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Naruki%20S."> Naruki S. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron is an essential nutrient with limited bioavailability. Nutritional anemia caused mainly by iron deficiency is the most recognized nutritional problem in both countries as well as affluent societies. Rice (Oryza sativa L.) has become the most important cereal crop for the improvement of human health due to the starch, protein, oil, and the majority of micronutrients, particularly in Asian countries. In this study, the iron availability and profile lipid were evaluated for the extracts from Cibeusi varieties (black rices) of ancient rice brans. Results: The quality of K, B, R, E diets groups shows the same effect on the growth of rats. This indicate that groups is as efficiently utilized by the body as E diets. Hematocrit and MCHC levels of rats fed K, B, R and E diets were not significantly (P< 0.05). MCV and MCH levels of rats K, B, R were significantly (P< 0.05) with E groups but rats K, B, R were not significantly (P< 0.05). The iron content in the serum of rats fed with K, B, R and E diets were not significantly (P< 0.05). The highest level of iron in the serum was founded in the B group. The iron content in the liver of rats fed with K, B, R and E diets were not significantly (P< 0.05). The highest level of iron in the liver was founded in the R group. HDL cholesterol levels were significantly (P< 0.05) between rats of fed B, E with K, R, but K and R were not significantly (P< 0.05). LDL cholesterol levels of rats fed K and E significantly (P< 0.05) with B and R. Conclusions: the bran of pigmented rice varieties has, with some exceptions, greater antioxidant and free-radical scavenging activities. The results also show that pigmented rice extracts acted as pro-oxidants in the lipid peroxidation assay, possibly by mechanisms described for the pro-oxidant activities of tocopherol and ascorbic. Pigmented rice bran extracts more effectively increases iron stores and reduces the prevalence of iron deficiency. And reduces cholesterol, TG and LDL cholesterol and increses HDL cholesterol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anemia" title="anemia">anemia</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20rice%20bran%20extract" title=" black rice bran extract"> black rice bran extract</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20lipid" title=" profile lipid "> profile lipid </a> </p> <a href="https://publications.waset.org/abstracts/25959/in-vivo-iron-availability-and-profile-lipid-composition-in-anemic-rats-fed-on-diets-with-black-rice-bran-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Subramaniam">S. Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20A.%20Rao"> J. S. A. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ramdas"> P. Ramdas</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Selvaduray"> K. R. Selvaduray</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Han"> N. M. Han</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Kutty"> M. K. Kutty</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Radhakrishnan"> A. K. Radhakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20tocotrienol" title=" gamma tocotrienol"> gamma tocotrienol</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20suppression" title=" immune suppression"> immune suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=supplement" title=" supplement"> supplement</a> </p> <a href="https://publications.waset.org/abstracts/74546/effects-of-gamma-tocotrienol-supplementation-on-t-regulatory-cells-in-syngeneic-mouse-model-of-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effects of Vitamin E and Vitamin on Growth, Survival and Some Haematological and Immunological Parameters of Caspian Brown Trout, Salmo trutta caspius Juveniles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Khara">Hossein Khara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Sayyadborani"> Mahmoud Sayyadborani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sayyadborani"> Mohammad Sayyadborani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we examined the effects of different dietary levels of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) and their combinations on growth, survival and some haematological and immunological parameters of Caspian brown trout, Salmo trutta caspius juveniles. 15 experimental treatments and one control group with three replicates were considered for experiment. The experimental treatments were fish fed by experimental diets containing different levels of Vit C and E as follow: T1: Vit E (20 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T2: Vit E (30 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T3: Vit E (40 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T4: Vit E (20 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T5: Vit E (30 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T6: Vit E (40 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T7: Vit E (20 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T8: Vit E (30 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T9: Vit E (40 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T10: Vit C (100 mg.kg diet -1), T11: Vit C (200 mg.kg diet -1), T12: Vit C (300 mg.kg diet -1), T13: Vit E (20 mg.kg diet -1), T14: Vit E (30 mg.kg diet -1) T15: Vit E (40 mg.kg diet -1). Also a non-vitamin supplemented was considered as control group. Growth parameters were measured monthly and serum parameters assayed at the end of the experiment. According to our results, Vit C and E improved survival and growth parameters including specific growth rate (SGR), weight gain percent (WG%) and biomass. The highest values of these parameters obtained in T8, T9 and T8 respectively. The lowest FCR obtained in T8. The haematological parameters including red blood cells (RBCs), white blood cells (WBCs), haematocrit (Hct) and haemoglobin (Hb) were higher in vitamin treated groups than control group with highest values in T8. In T13, WBC values were higher compared to other experimental groups. The immunological parameters including lysozyme activity, Immunoglobulin (IgM) and total immunoglobulin (TIg) were significantly higher in vitamin supplemented groups than in control group. In this regard the highest values of these parameters were found in T12. The lowest values of TIg and lysozyme activity were observed in control group and fish fed by only vitamin E i.e. T13, T14 and T15. In conclusion, our results show that Vit C and E in combination or only can improve growth, survival, haematological and immunological indices of Caspian brown trout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitamins%20E" title="vitamins E">vitamins E</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamins%20C" title=" vitamins C"> vitamins C</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=haematological%20parameters" title=" haematological parameters"> haematological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20parameters" title=" immunological parameters"> immunological parameters</a> </p> <a href="https://publications.waset.org/abstracts/37646/effects-of-vitamin-e-and-vitamin-on-growth-survival-and-some-haematological-and-immunological-parameters-of-caspian-brown-trout-salmo-trutta-caspius-juveniles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tocopherol&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tocopherol&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>