CINXE.COM
Search results for: small signal model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: small signal model</title> <meta name="description" content="Search results for: small signal model"> <meta name="keywords" content="small signal model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="small signal model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="small signal model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21754</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: small signal model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21754</span> A Small Signal Model for Resonant Tunneling Diode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20M.%20Abdallah">Rania M. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20S.%20Dessouki"> Ahmed A. S. Dessouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Aly"> Moustafa H. Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has presented a new simple small signal model for a resonant tunnelling diode device. The resonant tunnelling diode equivalent circuit elements were calculated and the results led to good agreement between the calculated equivalent circuit elements and the measurement results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resonant%20tunnelling%20diode" title="resonant tunnelling diode">resonant tunnelling diode</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20signal%20model" title=" small signal model"> small signal model</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20differential%20conductance" title=" negative differential conductance"> negative differential conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20engineering" title=" electronic engineering"> electronic engineering</a> </p> <a href="https://publications.waset.org/abstracts/5891/a-small-signal-model-for-resonant-tunneling-diode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21753</span> Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amarouayache">Mohamed Amarouayache</a>, <a href="https://publications.waset.org/abstracts/search?q=Badia%20Amrouche"> Badia Amrouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharbi%20Akila"> Gharbi Akila</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukadoume%20Mohamed"> Boukadoume Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MPPT" title="MPPT">MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=criterion%20of%20Routh" title=" criterion of Routh"> criterion of Routh</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20small%20signal%20model" title=" average small signal model "> average small signal model </a> </p> <a href="https://publications.waset.org/abstracts/2045/contribution-to-the-analytical-study-of-the-stability-of-a-dc-dc-converter-boost-used-for-mppt-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21752</span> Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelmadjid%20Mammeri">Abdelmadjid Mammeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Mahi"> Fatima Zohra Mahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Varani"> Luca Varani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Marinchoi"> H. Marinchoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InGaAs%20transistors" title="InGaAs transistors">InGaAs transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=InGaAs%20diode" title=" InGaAs diode"> InGaAs diode</a>, <a href="https://publications.waset.org/abstracts/search?q=admittance" title=" admittance"> admittance</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20peaks" title=" resonant peaks"> resonant peaks</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20waves" title=" plasma waves"> plasma waves</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/45170/analytical-terahertz-characterization-of-in053ga047as-transistors-and-homogenous-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21751</span> Analytical Response Characterization of High Mobility Transistor Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Mahi">F. Z. Mahi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Marinchio"> H. Marinchio</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Palermo"> C. Palermo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Varani"> L. Varani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small-signal%20admittance" title="small-signal admittance">small-signal admittance</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20equation" title=" Poisson equation"> Poisson equation</a>, <a href="https://publications.waset.org/abstracts/search?q=currents%20and%20potentials%20matrix" title=" currents and potentials matrix"> currents and potentials matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20drain%20and%20the%20gate%20terminals" title=" the drain and the gate terminals"> the drain and the gate terminals</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/35861/analytical-response-characterization-of-high-mobility-transistor-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21750</span> Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Crompton">Bryan Crompton</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Giger"> Daniel Giger</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanay%20Mehta"> Tanay Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurva%20Mody"> Apurva Mody</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title="signal processing">signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclostationary%20signal%20processing" title=" cyclostationary signal processing"> cyclostationary signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20classification" title=" signal classification"> signal classification</a> </p> <a href="https://publications.waset.org/abstracts/164958/classification-of-cochannel-signals-using-cyclostationary-signal-processing-and-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21749</span> Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Hyun%20Ha">Dong-Hyun Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Min%20Ko"> Young-Min Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Bin%20Ha"> Chang-Bin Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20transmission" title="adaptive transmission">adaptive transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20communication" title=" cooperative communication"> cooperative communication</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20gain" title=" diversity gain"> diversity gain</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a> </p> <a href="https://publications.waset.org/abstracts/33086/cooperative-diversity-scheme-based-on-mimo-ofdm-in-small-cell-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21748</span> Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjuan%20Du">Wenjuan Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingtian%20Bi"> Jingtian Bi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Wang"> Tong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haifeng%20Wang"> Haifeng Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system%20small-signal%20angular%20stability" title="power system small-signal angular stability">power system small-signal angular stability</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20low-frequency%20oscillations" title=" power system low-frequency oscillations"> power system low-frequency oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20oscillation%20modes" title=" electromechanical oscillation modes"> electromechanical oscillation modes</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farms" title=" wind farms"> wind farms</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20induction%20generator%20%28DFIG%29" title=" double fed induction generator (DFIG)"> double fed induction generator (DFIG)</a> </p> <a href="https://publications.waset.org/abstracts/44871/assessing-the-effect-of-grid-connection-of-large-scale-wind-farms-on-power-system-small-signal-angular-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21747</span> Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nileshkumar%20Vishnav">Nileshkumar Vishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Tatu"> Aditya Tatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signal%20processing" title="graph signal processing">graph signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20signal%20processing" title=" algebraic signal processing"> algebraic signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20similarity" title=" graph similarity"> graph similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=isospectral%20graphs" title=" isospectral graphs"> isospectral graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniform%20signal%20processing" title=" nonuniform signal processing"> nonuniform signal processing</a> </p> <a href="https://publications.waset.org/abstracts/59404/graph-similarity-algebraic-model-and-its-application-to-nonuniform-signal-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21746</span> Modal Analysis for Optimal Location of Doubly Fed Induction-Generator-Based Wind Farms for Reduction of Small Signal Oscillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meet%20Patel">Meet Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Darshan%20Patel"> Darshan Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Shah"> Nilay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excess growth of wind-based renewable energy sources is required to identify the optimal location and damping capacity of doubly fed induction-generator-based (DFIG) wind farms while it penetrates into the transmission network. In this analysis, various ratings of DFIG wind farms are penetrated into the Single Machine Infinite Bus (SMIB ) at a different distance of the transmission line. On the basis of detailed examinations, a prime position is evaluated to maximize the stability of overall systems. A damping controller is designed at an optimum location to mitigate the small oscillations. The proposed model was validated using eigenvalue analysis, calculation of the participation factor, and time-domain simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFIG" title="DFIG">DFIG</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20signal%20stability" title=" small signal stability"> small signal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation" title=" time domain simulation"> time domain simulation</a> </p> <a href="https://publications.waset.org/abstracts/163608/modal-analysis-for-optimal-location-of-doubly-fed-induction-generator-based-wind-farms-for-reduction-of-small-signal-oscillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21745</span> Study of Three Channel Electrode Position to Detect Optimum Myoelectric Signal on Five Type Grasp Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Priadythama">Ilham Priadythama</a>, <a href="https://publications.waset.org/abstracts/search?q=Pringgo%20Widyo%20Laksono"> Pringgo Widyo Laksono</a>, <a href="https://publications.waset.org/abstracts/search?q=Agung%20Pamungkas"> Agung Pamungkas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myoelectric is prosthetic, flexible, and offered industrial application has been highly developed and widely used. Myoelectric hand use myoelectric signal from muscle to activate and control the membrane part of hand. Commonly myoelectric signal is detected on human arm from skin surface. So that it only small magnitude signal captured. Detecting myoelectric signal on the skin surface takes proper and consistent procedure. This paper provides preliminary study of electrodes position which gives best signal strength for five basic grasping. Two-position scenario used to place three channel electrodes set. A bi-potential amplifier based on AD620 used to amplify the signal. Finally, the signal was analyzed using DSSF3 software. From this study, we found that grasp type was stronger using first scenario electrode placement while the rest type better with another scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=myoelectric%20signal" title="myoelectric signal">myoelectric signal</a>, <a href="https://publications.waset.org/abstracts/search?q=basic%20grasp" title=" basic grasp"> basic grasp</a>, <a href="https://publications.waset.org/abstracts/search?q=DSSF3" title=" DSSF3"> DSSF3</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-potential%20amplifier" title=" bi-potential amplifier"> bi-potential amplifier</a> </p> <a href="https://publications.waset.org/abstracts/42663/study-of-three-channel-electrode-position-to-detect-optimum-myoelectric-signal-on-five-type-grasp-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21744</span> A Mathematical-Based Formulation of EEG Fluctuations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razi%20Khalafi">Razi Khalafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model鈥檚 outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brain" title="Brain">Brain</a>, <a href="https://publications.waset.org/abstracts/search?q=stimuli" title=" stimuli"> stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=eeg%20signal" title=" eeg signal"> eeg signal</a> </p> <a href="https://publications.waset.org/abstracts/30791/a-mathematical-based-formulation-of-eeg-fluctuations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21743</span> Partial Differential Equation-Based Modeling of Brain Response to Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Khalafi">Razieh Khalafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model鈥檚 outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=stimuli" title=" stimuli"> stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a> </p> <a href="https://publications.waset.org/abstracts/29783/partial-differential-equation-based-modeling-of-brain-response-to-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21742</span> Review: Wavelet New Tool for Path Loss Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danladi%20Ali">Danladi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Mukaila"> Abdullahi Mukaila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decomposition" title="decomposition">decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20strength%20and%20spectral%20efficiency" title=" signal strength and spectral efficiency"> signal strength and spectral efficiency</a> </p> <a href="https://publications.waset.org/abstracts/38599/review-wavelet-new-tool-for-path-loss-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21741</span> Lab Bench for Synthetic Aperture Radar Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthiyayini%20Nagarajan">Karthiyayini Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ramakrishna"> P. V. Ramakrishna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title="synthetic aperture radar">synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20reflection%20model" title=" radio reflection model"> radio reflection model</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20bench" title=" lab bench"> lab bench</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20engineering" title=" imaging engineering"> imaging engineering</a> </p> <a href="https://publications.waset.org/abstracts/29485/lab-bench-for-synthetic-aperture-radar-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21740</span> Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair">Muhammad Umair</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Qasim%20Gilani"> Syed Qasim Gilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20equalization" title="blind equalization">blind equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20signal%20separation" title=" blind signal separation"> blind signal separation</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization"> equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20impairments" title=" transmission impairments"> transmission impairments</a>, <a href="https://publications.waset.org/abstracts/search?q=QAM%20receiver" title=" QAM receiver"> QAM receiver</a> </p> <a href="https://publications.waset.org/abstracts/94433/exploiting-fast-independent-component-analysis-based-algorithm-for-equalization-of-impaired-baseband-received-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21739</span> Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthiyayini%20Nagarajan">Karthiyayini Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20RamaKrishna"> P. V. RamaKrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title="synthetic aperture radar">synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20reflection%20model" title=" radio reflection model"> radio reflection model</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20bench" title=" lab bench"> lab bench</a> </p> <a href="https://publications.waset.org/abstracts/29475/design-and-implementation-of-a-lab-bench-for-synthetic-aperture-radar-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21738</span> Sparsity Order Selection and Denoising in Compressed Sensing Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shamsi">Mahdi Shamsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tohid%20Yousefi%20Rezaii"> Tohid Yousefi Rezaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Eftekharifar"> Siavash Eftekharifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20denoising" title=" data denoising"> data denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20order%20selection" title=" model order selection"> model order selection</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/31470/sparsity-order-selection-and-denoising-in-compressed-sensing-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21737</span> New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piecewise" title="piecewise">piecewise</a>, <a href="https://publications.waset.org/abstracts/search?q=moving-average%20model" title=" moving-average model"> moving-average model</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20MCMC" title=" reversible jump MCMC"> reversible jump MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20segmentation" title=" signal segmentation"> signal segmentation</a> </p> <a href="https://publications.waset.org/abstracts/53614/new-segmentation-of-piecewise-moving-average-model-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21736</span> Development of a Tesla Music Coil from Signal Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaniego%20Campoverde%20Jos%C3%A9%20Enrique">Samaniego Campoverde Jos茅 Enrique</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosero%20Mu%C3%B1oz%20Jorge%20Enrique"> Rosero Mu帽oz Jorge Enrique</a>, <a href="https://publications.waset.org/abstracts/search?q=Luzcando%20Narea%20Lorena%20Elizabeth"> Luzcando Narea Lorena Elizabeth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a practical and theoretical model for the operation of the Tesla coil using digital signal processing. The research is based on the analysis of ten scientific papers exploring the development and operation of the Tesla coil. Starting from the Testa coil, several modifications were carried out on the Tesla coil, with the aim of amplifying the digital signal by making use of digital signal processing. To achieve this, an amplifier with a transistor and digital filters provided by MATLAB software were used, which were chosen according to the characteristics of the signals in question. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tesla%20coil" title="tesla coil">tesla coil</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20signal%20process" title=" digital signal process"> digital signal process</a>, <a href="https://publications.waset.org/abstracts/search?q=equalizer" title=" equalizer"> equalizer</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20environment" title=" graphical environment"> graphical environment</a> </p> <a href="https://publications.waset.org/abstracts/170965/development-of-a-tesla-music-coil-from-signal-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21735</span> Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneesh%20Babu">Aneesh Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Anusha"> S. P. Anusha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20signal%20control" title="dynamic signal control">dynamic signal control</a>, <a href="https://publications.waset.org/abstracts/search?q=intersection%20delay" title=" intersection delay"> intersection delay</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20traffic%20conditions" title=" mixed traffic conditions"> mixed traffic conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID%20sensors" title=" RFID sensors"> RFID sensors</a> </p> <a href="https://publications.waset.org/abstracts/156123/performance-evaluation-of-dynamic-signal-control-system-for-mixed-traffic-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21734</span> Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Chahmi">Abdelghani Chahmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20damage" title=" bearing damage"> bearing damage</a>, <a href="https://publications.waset.org/abstracts/search?q=airgap%20eccentricity" title=" airgap eccentricity"> airgap eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20variation" title=" torque variation"> torque variation</a> </p> <a href="https://publications.waset.org/abstracts/91336/induction-machine-bearing-failure-detection-using-advanced-signal-processing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21733</span> Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-particle" title="nano-particle">nano-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=opto-acoustic%20effect" title=" opto-acoustic effect"> opto-acoustic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20imaging" title=" in vivo imaging"> in vivo imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imaging" title=" molecular imaging"> molecular imaging</a> </p> <a href="https://publications.waset.org/abstracts/114196/generation-mechanism-of-opto-acoustic-wave-from-in-vivo-imaging-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21732</span> Experimental and CFD of Desgined Small Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20A.%20Mekail">Tarek A. Mekail</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20M.%20A.%20Elmagid"> Walid M. A. Elmagid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20wind%20turbine" title="small wind turbine">small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20of%20wind%20turbine" title=" CFD of wind turbine"> CFD of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20wind%20turbine" title=" performance of wind turbine"> performance of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20of%20small%20wind%20turbine" title=" test of small wind turbine"> test of small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20aerodynamic" title=" wind turbine aerodynamic"> wind turbine aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/18446/experimental-and-cfd-of-desgined-small-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21731</span> Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danladi%20Ali">Danladi Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-dimensional%20multilevel%20wavelets" title="one-dimensional multilevel wavelets">one-dimensional multilevel wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20loss" title=" path loss"> path loss</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM%20signal%20strength" title=" GSM signal strength"> GSM signal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment%20and%20model" title=" urban environment and model"> urban environment and model</a> </p> <a href="https://publications.waset.org/abstracts/14119/neural-network-based-path-loss-prediction-for-global-system-for-mobile-communication-in-an-urban-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21730</span> Distributed Acoustic Sensing Signal Model under Static Fiber Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Punithavathy">G. Punithavathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20acoustic%20sensing" title="distributed acoustic sensing">distributed acoustic sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber%20devices" title=" optical fiber devices"> optical fiber devices</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20time%20domain%20reflectometry" title=" optical time domain reflectometry"> optical time domain reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20scattering" title=" Rayleigh scattering"> Rayleigh scattering</a> </p> <a href="https://publications.waset.org/abstracts/170787/distributed-acoustic-sensing-signal-model-under-static-fiber-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21729</span> Nano-Particle of 蟺-Conjugated Polymer for Near-Infrared Bio-Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular imaging has attracted much attention recently, which visualizes biological molecules, cells, tissue, and so on. Among various in vivo imaging techniques, the fluorescence imaging method has been widely employed as a useful modality for small animals in pre-clinical researches. However, the higher signal intensity is needed for highly sensitive in vivo imaging. The objective of the current study is the development of a fluorescent imaging agent with high brightness for the tumor imaging of a mouse. The strategy to enhance the fluorescence signal of a bio-imaging agent is the increase of the absorption of the excitation light and the fluorescence conversion efficiency. We developed a nano-particle fluorescence imaging agent consisting of a 蟺-conjugated polymer emitting a fluorescence signal in a near infrared region. A large absorption coefficient and high emission intensity at a near infrared optical window for biological tissue enabled highly sensitive in vivo imaging with a tumor-targeting ability by an EPR (enhanced permeation and retention) effect. The signal intensity from the 蟺-conjugated fluorescence imaging agent is larger by two orders of magnitude compared to a quantum dot, which has been known as the brightest imaging agent. The 蟺-conjugated polymer nano-particle would be a promising candidate in the in vivo imaging of small animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20polymer" title=" conjugated polymer"> conjugated polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20imaging" title=" in vivo imaging"> in vivo imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particle" title=" nano-particle"> nano-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared" title=" near-infrared"> near-infrared</a> </p> <a href="https://publications.waset.org/abstracts/97998/nano-particle-of-p-conjugated-polymer-for-near-infrared-bio-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21728</span> A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Eftekharifar">Siavash Eftekharifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tohid%20Yousefi%20Rezaii"> Tohid Yousefi Rezaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shamsi"> Mahdi Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20compression" title=" ECG compression"> ECG compression</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20kernel" title=" Gaussian kernel"> Gaussian kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/31469/a-new-framework-for-ecg-signal-modeling-and-compression-based-on-compressed-sensing-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21727</span> Wavelet Based Residual Method of Detecting GSM Signal Strength Fading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danladi%20Ali">Danladi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Onah%20Festus%20Iloabuchi"> Onah Festus Iloabuchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-dimensional%20multilevel%20wavelets" title="one-dimensional multilevel wavelets">one-dimensional multilevel wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20loss" title=" path loss"> path loss</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM%20signal%20strength" title=" GSM signal strength"> GSM signal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title=" urban environment"> urban environment</a> </p> <a href="https://publications.waset.org/abstracts/14434/wavelet-based-residual-method-of-detecting-gsm-signal-strength-fading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21726</span> Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Tao">Feng Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Ye"> Han Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaoyi%20Liao"> Shaoyi Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signal%20propagation%20model" title="signal propagation model">signal propagation model</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20algorithm" title=" centroid algorithm"> centroid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20filtering" title=" mixed filtering"> mixed filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=RSSI" title=" RSSI"> RSSI</a> </p> <a href="https://publications.waset.org/abstracts/75284/localization-of-buried-people-using-received-signal-strength-indication-measurement-of-wireless-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21725</span> Voice Signal Processing and Coding in MATLAB Generating a Plasma Signal in a Tesla Coil for a Security System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Jimenez">Juan Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Yambay"> Erika Yambay</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayana%20Pilco"> Dayana Pilco</a>, <a href="https://publications.waset.org/abstracts/search?q=Brayan%20Parra"> Brayan Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation of voice signal processing and coding using MATLAB, with the objective of generating a plasma signal on a Tesla coil within a security system. The approach focuses on using advanced voice signal processing techniques to encode and modulate the audio signal, which is then amplified and applied to a Tesla coil. The result is the creation of a striking visual effect of voice-controlled plasma with specific applications in security systems. The article explores the technical aspects of voice signal processing, the generation of the plasma signal, and its relationship to security. The implications and creative potential of this technology are discussed, highlighting its relevance at the forefront of research in signal processing and visual effect generation in the field of security systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voice%20signal%20processing" title="voice signal processing">voice signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20signal%20coding" title=" voice signal coding"> voice signal coding</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20signal" title=" plasma signal"> plasma signal</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesla%20coil" title=" Tesla coil"> Tesla coil</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20system" title=" security system"> security system</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20effects" title=" visual effects"> visual effects</a>, <a href="https://publications.waset.org/abstracts/search?q=audiovisual%20interaction" title=" audiovisual interaction"> audiovisual interaction</a> </p> <a href="https://publications.waset.org/abstracts/170828/voice-signal-processing-and-coding-in-matlab-generating-a-plasma-signal-in-a-tesla-coil-for-a-security-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=725">725</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=726">726</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20signal%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>