CINXE.COM

Ruhul Sarker | The University of New South Wales - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ruhul Sarker | The University of New South Wales - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="PqgIt0vtD8unSIElm+n7YC7+CmmTU8LsZj3Hqpm4c5CCC15oTjScvwG5ETyuKvadhIMhRNXI9x+u/3fYAsdRfw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ruhul sarker" /> <meta name="description" content="Professor of Operations Research and Director of Postgraduate Research at UNSW Csnberra" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'c7c923e13c2d00b99cbe85c9159af2026a636b1c'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277445737,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732715627000); window.Aedu.timeDifference = new Date().getTime() - 1732715627000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-abfe14709f87872daacfe98b00812033ac214684652bef9d49abfed8b549f9f6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-57c07c4415ad4e6a22ced3639e4df9a5401c1e44346ffeb379134e0f2293c589.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://unsw.academia.edu/RuhulSarker" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-b83a2fd9dd2a75882a43a58ee3160b1ab3b6f66ac7d1ef9248d5ee4c09cebaae.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":689384,"name":"School Of Engineering And Information Technology","url":"https://unsw.academia.edu/Departments/school_of_Engineering_and_Information_Technology/Documents","university":{"id":487,"name":"The University of New South Wales","url":"https://unsw.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":72834,"name":"Production and Inventory planning and control systems","url":"https://www.academia.edu/Documents/in/Production_and_Inventory_planning_and_control_systems"},{"id":44293,"name":"Literature Review","url":"https://www.academia.edu/Documents/in/Literature_Review"},{"id":83702,"name":"Disruption Management","url":"https://www.academia.edu/Documents/in/Disruption_Management"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling"},{"id":2535,"name":"Operations Research","url":"https://www.academia.edu/Documents/in/Operations_Research"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://unsw.academia.edu/RuhulSarker&quot;,&quot;location&quot;:&quot;/RuhulSarker&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;unsw.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RuhulSarker&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-6b502c0f-f910-4882-8566-f839c5960d7c"></div> <div id="ProfileCheckPaperUpdate-react-component-6b502c0f-f910-4882-8566-f839c5960d7c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ruhul Sarker</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://unsw.academia.edu/">The University of New South Wales</a>, <a class="u-tcGrayDarker" href="https://unsw.academia.edu/Departments/school_of_Engineering_and_Information_Technology/Documents">School Of Engineering And Information Technology</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ruhul" data-follow-user-id="31714480" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="31714480"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">166</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">8</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">7</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Professor of Operations Research and Director of Postgraduate Research at UNSW Csnberra<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31714480" href="https://www.academia.edu/Documents/in/Production_and_Inventory_planning_and_control_systems"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://unsw.academia.edu/RuhulSarker&quot;,&quot;location&quot;:&quot;/RuhulSarker&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;unsw.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RuhulSarker&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Production and Inventory planning and control systems&quot;]}" data-trace="false" data-dom-id="Pill-react-component-8b17f134-3e15-4d31-9a9d-91602664ead9"></div> <div id="Pill-react-component-8b17f134-3e15-4d31-9a9d-91602664ead9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31714480" href="https://www.academia.edu/Documents/in/Literature_Review"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Literature Review&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5b81bbfe-8122-48ee-8f16-003c03a23b6a"></div> <div id="Pill-react-component-5b81bbfe-8122-48ee-8f16-003c03a23b6a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31714480" href="https://www.academia.edu/Documents/in/Disruption_Management"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Disruption Management&quot;]}" data-trace="false" data-dom-id="Pill-react-component-45a5f8a1-a7a4-4296-a664-8a3eff556dab"></div> <div id="Pill-react-component-45a5f8a1-a7a4-4296-a664-8a3eff556dab"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31714480" href="https://www.academia.edu/Documents/in/Mathematical_Modelling"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mathematical Modelling&quot;]}" data-trace="false" data-dom-id="Pill-react-component-18dd6e6c-5840-44f7-ae68-dfc2a4346fab"></div> <div id="Pill-react-component-18dd6e6c-5840-44f7-ae68-dfc2a4346fab"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31714480" href="https://www.academia.edu/Documents/in/Operations_Research"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Operations Research&quot;]}" data-trace="false" data-dom-id="Pill-react-component-7e839125-1b45-44e3-9ae3-44ef152f9832"></div> <div id="Pill-react-component-7e839125-1b45-44e3-9ae3-44ef152f9832"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ruhul Sarker</h3></div><div class="js-work-strip profile--work_container" data-work-id="86115013"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115013/Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview"><img alt="Research paper thumbnail of Evolutionary Approaches for Project Portfolio Optimization: An Overview" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115013/Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview">Evolutionary Approaches for Project Portfolio Optimization: An Overview</a></div><div class="wp-workCard_item"><span>Adaptation, Learning, and Optimization</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115013"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115013"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115013; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115013]").text(description); $(".js-view-count[data-work-id=86115013]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115013; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115013']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115013, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86115013]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115013,"title":"Evolutionary Approaches for Project Portfolio Optimization: An Overview","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Adaptation, Learning, and Optimization"},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115013/Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview","translated_internal_url":"","created_at":"2022-09-04T01:55:01.972-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[],"urls":[{"id":23593467,"url":"https://link.springer.com/content/pdf/10.1007/978-3-030-88315-7_2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115011"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115011/Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization"><img alt="Research paper thumbnail of Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/90641479/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115011/Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization">Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Evolutionary Computation</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cce66ffba7d177e850cdc24b5089ea0c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641479,&quot;asset_id&quot;:86115011,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641479/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115011"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115011"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115011; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115011]").text(description); $(".js-view-count[data-work-id=86115011]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115011; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115011']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115011, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cce66ffba7d177e850cdc24b5089ea0c" } } $('.js-work-strip[data-work-id=86115011]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115011,"title":"Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Evolutionary algorithms have shown their promise in coping with many-objective optimization problems. However, the strategies of balancing convergence and diversity and the effectiveness of handling problems with irregular Pareto fronts (PFs) are still far from perfect. To address these issues, this paper proposes an adaptive sorting-based evolutionary algorithm based on the idea of decomposition. First, we propose an adaptive sorting-based environmental selection strategy. Solutions in each subpopulation (partitioned by reference vectors) are sorted based on their convergence. Those with better convergence are further sorted based on their diversity, then being selected according to their sorting levels. Second, we provide an adaptive promising subpopulation sorting-based environmental selection strategy for problems which may have irregular PFs. This strategy provides additional sorting-based selection effort on promising subpopulations after the general environmental selection process. Third, we extend the algorithm to handle constraints. Finally, we conduct an extensive experimental study on the proposed algorithm by comparing with start-of-the-state algorithms. Results demonstrate the superiority of the proposed algorithm.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Transactions on Evolutionary Computation","grobid_abstract_attachment_id":90641479},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115011/Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization","translated_internal_url":"","created_at":"2022-09-04T01:55:00.076-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641479/thumbnails/1.jpg","file_name":"f79fc996-6111-11e9-895b-00163e08bb86.pdf","download_url":"https://www.academia.edu/attachments/90641479/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adaptive_Sorting_Based_Evolutionary_Algo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641479/f79fc996-6111-11e9-895b-00163e08bb86-libre.pdf?1662290994=\u0026response-content-disposition=attachment%3B+filename%3DAdaptive_Sorting_Based_Evolutionary_Algo.pdf\u0026Expires=1732705641\u0026Signature=K3XV36Usp4IXrc8QLkYrbzZouw-L4jKrtBy-0uhmzCtEQqRIKyHPlEnZH3Z6XfEgKQ1gV9nkknDVO2ZDlsdQYGvHbDbDkgKebNP2UY1ta4H2loOw8-yG0KsBtEMopEoc0nDjIrodDaR~V6fVcMqTfXlw3H2czOmaN6-O6zJCbVZw3ZrpHHlMwuyw553QtoSrU4J7xlu8KE1DbIfTEoRYHrKh3r3eBNlcHW2IYgIEawadCvcLbZGDHlUaw0keZdeDyh-HnlfO2eJQWP6o5ZgvLtS4vSvK7rbMsI134BMth2tGDhnzGHDNM~pWFh8LpkVYp2~CahZ~9KddXs0WWbtl2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641479/thumbnails/1.jpg","file_name":"f79fc996-6111-11e9-895b-00163e08bb86.pdf","download_url":"https://www.academia.edu/attachments/90641479/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adaptive_Sorting_Based_Evolutionary_Algo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641479/f79fc996-6111-11e9-895b-00163e08bb86-libre.pdf?1662290994=\u0026response-content-disposition=attachment%3B+filename%3DAdaptive_Sorting_Based_Evolutionary_Algo.pdf\u0026Expires=1732705642\u0026Signature=L7YcZDe6tV19LgfTuqepo9CaNVa66Rc9ZmirZAA3cs8g5icRJobPh84kPBk~G7kzNEldCxivmRR1FaiO3YWJFc9r6UNMswzcMA2NJFw7acdCDiLY2OE-KhoWyftpf6SkB64ipFDsOgh3xOl7v3tQKEuYBTSk7ZRPMWioMaPWk-Z5XIh0oc3IRaOpwpYq~OQrtPLNqJ1Lk4ExmCytF8QQL~ka~qkoTtxlGCMbyBWULJRlazaGhhb2sUlLfZ7SqE7VnKmOUF6h1I1XQqKCiF0aaLgoTbRLS22downaIaH64ZQ7X352EoRveUEGohSm~QXWKZdD5WXqUeEgskrhQjmDuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":223634,"name":"Sorting","url":"https://www.academia.edu/Documents/in/Sorting"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":23593465,"url":"http://xplorestaging.ieee.org/ielx7/4235/8676364/08387473.pdf?arnumber=8387473"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115008"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115008/Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets"><img alt="Research paper thumbnail of Co-evolutionary approach for strategic bidding in competitive electricity markets" class="work-thumbnail" src="https://attachments.academia-assets.com/90641476/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115008/Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets">Co-evolutionary approach for strategic bidding in competitive electricity markets</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c6cad2fb5c4cf4b8aaced1e24e20149f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641476,&quot;asset_id&quot;:86115008,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641476/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115008"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115008"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115008; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115008]").text(description); $(".js-view-count[data-work-id=86115008]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115008; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115008']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115008, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c6cad2fb5c4cf4b8aaced1e24e20149f" } } $('.js-work-strip[data-work-id=86115008]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115008,"title":"Co-evolutionary approach for strategic bidding in competitive electricity markets","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Determining optimal bidding strategies in a competitive electricity market to maximize the profit of each bidder is a challenging economic game problem. In this paper, it is formulated as a bi-level optimization problem in which, in the lower level, the community's social welfare is maximized by solving a power flow problem while, in the upper level, the profits of individual bidders are maximized. In this bidders' game, instead of using a set of discrete strategies as is usual, we consider continuous functions as strategies. To solve the upper-level problem, two co-evolutionary approaches are proposed and, for the lower level, an interior point algorithm is applied. Three IEEE benchmark problems in four different scenarios are solved and their results compared with those obtained from two conventional approaches and the literature which indicate that the proposed approaches have some merit regarding quality and efficiency.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Applied Soft Computing","grobid_abstract_attachment_id":90641476},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115008/Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets","translated_internal_url":"","created_at":"2022-09-04T01:54:58.247-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641476/thumbnails/1.jpg","file_name":"109681.pdf","download_url":"https://www.academia.edu/attachments/90641476/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Co_evolutionary_approach_for_strategic_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641476/109681-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DCo_evolutionary_approach_for_strategic_b.pdf\u0026Expires=1732705642\u0026Signature=T8tGC5Y66RDfPExELMnWwcWigqO0G9G8zBGXXzAXfeZQePqwUa8zARRK~ArschKWHndOcJHvbyaREjPrPN~IDwue3uZ3sAIHY7z4zdDMPLX-8AYdK752Xyg91TnOJ4BrzpCg0iBrXFnmLumjWEv5W48uTXky8SwmdvDhSJgvZaUC8ZpEXzJSaFnjjXWdK-1cKtpqaCGFEOHEYMyyIwu8794IlZPjN4tNVQFFRWZd8wVStr9SYyGFDNxj-iC~kRxSejD6WW45DF1TmJXG0SG5eWGIstiYrNjnTm3eZh5d0hqnKzaioTjmRWibYQOCo8fISUla2TFffVZNSmEHddHVfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641476/thumbnails/1.jpg","file_name":"109681.pdf","download_url":"https://www.academia.edu/attachments/90641476/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Co_evolutionary_approach_for_strategic_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641476/109681-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DCo_evolutionary_approach_for_strategic_b.pdf\u0026Expires=1732705642\u0026Signature=T8tGC5Y66RDfPExELMnWwcWigqO0G9G8zBGXXzAXfeZQePqwUa8zARRK~ArschKWHndOcJHvbyaREjPrPN~IDwue3uZ3sAIHY7z4zdDMPLX-8AYdK752Xyg91TnOJ4BrzpCg0iBrXFnmLumjWEv5W48uTXky8SwmdvDhSJgvZaUC8ZpEXzJSaFnjjXWdK-1cKtpqaCGFEOHEYMyyIwu8794IlZPjN4tNVQFFRWZd8wVStr9SYyGFDNxj-iC~kRxSejD6WW45DF1TmJXG0SG5eWGIstiYrNjnTm3eZh5d0hqnKzaioTjmRWibYQOCo8fISUla2TFffVZNSmEHddHVfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":38644,"name":"Bidding","url":"https://www.academia.edu/Documents/in/Bidding"}],"urls":[{"id":23593463,"url":"https://api.elsevier.com/content/article/PII:S1568494616306196?httpAccept=text/plain"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115005"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115005/Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms"><img alt="Research paper thumbnail of Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/90641473/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115005/Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms">Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3b8ce520d99ad54c42af109b1e035f99" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641473,&quot;asset_id&quot;:86115005,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641473/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115005"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115005"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115005; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115005]").text(description); $(".js-view-count[data-work-id=86115005]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115005; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115005']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115005, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3b8ce520d99ad54c42af109b1e035f99" } } $('.js-work-strip[data-work-id=86115005]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115005,"title":"Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Capability-based planning (CBP) is a strategy focused planning framework that facilitates organizations to systematically develop capacity to achieve their business objectives in highly uncertain, dynamic and competitive environments. Capability programming is an integral part of CBP which requires selecting a portfolio of capability projects for execution, referred as a capability program, such that the overall strategic risk facing the planning organization across a number of projected future operating scenarios is minimized while maintaining the most economical choice. It is a challenging optimization problem that requires handling a number of dynamic constraints and objectives that vary throughout the entire planning horizon. An optimizing simulation approach is presented in this paper that combines an evolutionary multi-objective optimization algorithm with a reinforcement learning technique to generate capability programs which optimize strategic risks and program costs across multiple planning scenarios as well as over a rolling planning horizon. The role of the optimization algorithm in this approach is to search for the non-dominated capability programs at each decision point by minimizing the strategic risks associated with individual capability projects across a number of planning scenarios as well as the total cost of the program. The reinforcement learning algorithm, on the other hand, searches horizontally within the set of non-dominated programs to minimize capability risks and costs over the entire planning horizon. The methodology is evaluated on a test problem generated based on the data distributions in an Australian Defence Capability Plan and the performance is compared with two myopic heuristic methods.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Applied Soft Computing","grobid_abstract_attachment_id":90641473},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115005/Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms","translated_internal_url":"","created_at":"2022-09-04T01:54:56.774-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641473/thumbnails/1.jpg","file_name":"111183.pdf","download_url":"https://www.academia.edu/attachments/90641473/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scenario_based_multi_period_program_opti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641473/111183-libre.pdf?1662290984=\u0026response-content-disposition=attachment%3B+filename%3DScenario_based_multi_period_program_opti.pdf\u0026Expires=1732705642\u0026Signature=BuEZZ2spyx0Ois9yKaVd9~bTtD1HTAiob6AiiWMYPuzEEFtk~m-xpZlunggIdKkT3Zmili1~Id7F86zJSNbMoeCWX-giofbkPE6HtjW76PUQIwZjhVZLZPMSDeui0Jd7cJqbNCYNhXC26tcrpR1Khn5aAKbr7ReXTUE2LuK7JpRgyUfAUXTDbn0R4A6TGAderOCzzGwkgJSZRRwiw1Jhz6q4n3HJ5GjjRoJou5JGYn46WmnYIsLpvBlmPYQrQmIOXM0RIQCNYAm5TF9Y5FeJamyiH8g9Q3K5oIDV4B4Wxri4cGwPuOLoyIhfeKpai6SigDXBZpDPwHpj0c~RcGh1Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641473/thumbnails/1.jpg","file_name":"111183.pdf","download_url":"https://www.academia.edu/attachments/90641473/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scenario_based_multi_period_program_opti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641473/111183-libre.pdf?1662290984=\u0026response-content-disposition=attachment%3B+filename%3DScenario_based_multi_period_program_opti.pdf\u0026Expires=1732705642\u0026Signature=BuEZZ2spyx0Ois9yKaVd9~bTtD1HTAiob6AiiWMYPuzEEFtk~m-xpZlunggIdKkT3Zmili1~Id7F86zJSNbMoeCWX-giofbkPE6HtjW76PUQIwZjhVZLZPMSDeui0Jd7cJqbNCYNhXC26tcrpR1Khn5aAKbr7ReXTUE2LuK7JpRgyUfAUXTDbn0R4A6TGAderOCzzGwkgJSZRRwiw1Jhz6q4n3HJ5GjjRoJou5JGYn46WmnYIsLpvBlmPYQrQmIOXM0RIQCNYAm5TF9Y5FeJamyiH8g9Q3K5oIDV4B4Wxri4cGwPuOLoyIhfeKpai6SigDXBZpDPwHpj0c~RcGh1Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":23593461,"url":"https://api.elsevier.com/content/article/PII:S1568494616303349?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115001"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86115001/Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection"><img alt="Research paper thumbnail of Investigating Multi-Operator Differential Evolution for Feature Selection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86115001/Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection">Investigating Multi-Operator Differential Evolution for Feature Selection</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Performance issues when dealing with a large number of features are well-known for classification...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115001"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115001"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115001; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115001]").text(description); $(".js-view-count[data-work-id=86115001]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115001; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115001']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115001, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86115001]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115001,"title":"Investigating Multi-Operator Differential Evolution for Feature Selection","translated_title":"","metadata":{"abstract":"Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.","internal_url":"https://www.academia.edu/86115001/Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection","translated_internal_url":"","created_at":"2022-09-04T01:54:55.267-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":12346,"name":"Differential Evolution","url":"https://www.academia.edu/Documents/in/Differential_Evolution"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":115676,"name":"Cyber Security","url":"https://www.academia.edu/Documents/in/Cyber_Security"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114998"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114998/Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm"><img alt="Research paper thumbnail of Solving an economic and environmental dispatch problem using evolutionary algorithm" class="work-thumbnail" src="https://attachments.academia-assets.com/90641468/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114998/Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm">Solving an economic and environmental dispatch problem using evolutionary algorithm</a></div><div class="wp-workCard_item"><span>2014 IEEE International Conference on Industrial Engineering and Engineering Management</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="744cff46512e09cef0969fd8df415d77" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641468,&quot;asset_id&quot;:86114998,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641468/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114998"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114998"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114998; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114998]").text(description); $(".js-view-count[data-work-id=86114998]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114998; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114998']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114998, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "744cff46512e09cef0969fd8df415d77" } } $('.js-work-strip[data-work-id=86114998]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114998,"title":"Solving an economic and environmental dispatch problem using evolutionary algorithm","translated_title":"","metadata":{"grobid_abstract":"For successful operation of any power system, an effective scheduling of power generation is crucial. In this paper, we consider a power system with two types of generators, thermal and hydro. The characteristics of these generators vary with respect to the cost, emission to the environment, input source, capacity limit, and technological constraints. The mathematical model considering two objectives, such as minimization of the operating cost and minimization of total emissions, for a hydrothermal system is discussed. A solution approach has been proposed, based on evolutionary computation concept, for solving a benchmark problem for both single and bi-objective version of the problem. In the approach, an initial population of solutions is generated based on a heuristic and the population is then evolved using two well-known evolutionary search algorithms. The solutions of our approaches are compared with another approach from the literature. The analysis of the results reveals that the heuristic enhanced the performance of the evolutionary algorithms considered in this paper.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"2014 IEEE International Conference on Industrial Engineering and Engineering Management","grobid_abstract_attachment_id":90641468},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114998/Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm","translated_internal_url":"","created_at":"2022-09-04T01:54:53.254-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641468/thumbnails/1.jpg","file_name":"bin21d48383-87f7-4a6e-b816-58b48caf8b8b.pdf","download_url":"https://www.academia.edu/attachments/90641468/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_an_economic_and_environmental_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641468/bin21d48383-87f7-4a6e-b816-58b48caf8b8b-libre.pdf?1662290987=\u0026response-content-disposition=attachment%3B+filename%3DSolving_an_economic_and_environmental_di.pdf\u0026Expires=1732705642\u0026Signature=NlYMo4RGQlPb3pLLXmyKpt0RGR6lnwEp6SkzlQzGhf2w2sbX6roij3XWCDpOtZ-RlibAjRnYFniYSObBhTayX2dBPktwEcjUylxErdtKhBoAdCj1Q9QOP3oBynSvqa0qhXRLu2T6hTdn~QHc6x6Vzveuzj9a4OAFu8MwXEdHLLtbz4ZxPJgqtFdngbBdDtPtTruFA~SBxji9TgdWBJae1oqhIsN8V2f422q9Omu6zQFwjbrek8vT0-uzEBi-sdLeolFjz0r6to2EYRycbNCQLRb7V2Rzj3WCsJKP7AWAvjW~WMZebeRM9ypiZW7G8nwgw1GMURk9h~MFhppyQ6Xq-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641468/thumbnails/1.jpg","file_name":"bin21d48383-87f7-4a6e-b816-58b48caf8b8b.pdf","download_url":"https://www.academia.edu/attachments/90641468/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_an_economic_and_environmental_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641468/bin21d48383-87f7-4a6e-b816-58b48caf8b8b-libre.pdf?1662290987=\u0026response-content-disposition=attachment%3B+filename%3DSolving_an_economic_and_environmental_di.pdf\u0026Expires=1732705642\u0026Signature=NlYMo4RGQlPb3pLLXmyKpt0RGR6lnwEp6SkzlQzGhf2w2sbX6roij3XWCDpOtZ-RlibAjRnYFniYSObBhTayX2dBPktwEcjUylxErdtKhBoAdCj1Q9QOP3oBynSvqa0qhXRLu2T6hTdn~QHc6x6Vzveuzj9a4OAFu8MwXEdHLLtbz4ZxPJgqtFdngbBdDtPtTruFA~SBxji9TgdWBJae1oqhIsN8V2f422q9Omu6zQFwjbrek8vT0-uzEBi-sdLeolFjz0r6to2EYRycbNCQLRb7V2Rzj3WCsJKP7AWAvjW~WMZebeRM9ypiZW7G8nwgw1GMURk9h~MFhppyQ6Xq-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114995"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114995/Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion"><img alt="Research paper thumbnail of Evolutionary algorithm for analyzing higher degree research student recruitment and completion" class="work-thumbnail" src="https://attachments.academia-assets.com/90641467/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114995/Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion">Evolutionary algorithm for analyzing higher degree research student recruitment and completion</a></div><div class="wp-workCard_item"><span>Cogent Engineering</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a7f81b92e92771abf1307e6ef2b0292c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641467,&quot;asset_id&quot;:86114995,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641467/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114995"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114995"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114995; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114995]").text(description); $(".js-view-count[data-work-id=86114995]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114995; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114995']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114995, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a7f81b92e92771abf1307e6ef2b0292c" } } $('.js-work-strip[data-work-id=86114995]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114995,"title":"Evolutionary algorithm for analyzing higher degree research student recruitment and completion","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Students recruited group 1 Students recruited group 2 Students recruited group 3 Students recruited group 4 Students recruited group 5 Eligible students in group 1 Eligible students in group 2 Eligible students in group 3 Eligible students in group 4 Eligible students in group 5","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Cogent Engineering","grobid_abstract_attachment_id":90641467},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114995/Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion","translated_internal_url":"","created_at":"2022-09-04T01:54:50.870-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641467/thumbnails/1.jpg","file_name":"23311916.2015.1063760.pdf","download_url":"https://www.academia.edu/attachments/90641467/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_algorithm_for_analyzing_hig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641467/23311916.2015.1063760-libre.pdf?1662290995=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_algorithm_for_analyzing_hig.pdf\u0026Expires=1732705642\u0026Signature=KDk6GLhLU2ZOAGjCLpZqtrAQ-a1c6sTYnXcwzOyt11fzFELB9Cez-~YnVdIo4frjS-3vilmo6vCWJH665OthBUnBPzDlFGi6UDBScV2uNYZTyYcvGrmJNtE5AEDqJKWoTyWgMPxqkuQg0vpNLtck5yp2~wJO6PQqM8BrjDJekrBjMY3wWaMbhfYzmWvUgyy25NLJ14Ivl7oV2mAHcZ0LcQ-cDGKSJEJ0iYQgL8s4UQiQH9SLMht8q-1gtliJOjyNOXImMOwbu188ssNa9f7GOArjMOcBrw8koGgu2fYrYt-eViIiHjNUGkKL37iUOKSe0bWPopZoyyTBg18vnU55Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641467/thumbnails/1.jpg","file_name":"23311916.2015.1063760.pdf","download_url":"https://www.academia.edu/attachments/90641467/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_algorithm_for_analyzing_hig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641467/23311916.2015.1063760-libre.pdf?1662290995=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_algorithm_for_analyzing_hig.pdf\u0026Expires=1732705642\u0026Signature=KDk6GLhLU2ZOAGjCLpZqtrAQ-a1c6sTYnXcwzOyt11fzFELB9Cez-~YnVdIo4frjS-3vilmo6vCWJH665OthBUnBPzDlFGi6UDBScV2uNYZTyYcvGrmJNtE5AEDqJKWoTyWgMPxqkuQg0vpNLtck5yp2~wJO6PQqM8BrjDJekrBjMY3wWaMbhfYzmWvUgyy25NLJ14Ivl7oV2mAHcZ0LcQ-cDGKSJEJ0iYQgL8s4UQiQH9SLMht8q-1gtliJOjyNOXImMOwbu188ssNa9f7GOArjMOcBrw8koGgu2fYrYt-eViIiHjNUGkKL37iUOKSe0bWPopZoyyTBg18vnU55Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1868473,"name":"Cogent","url":"https://www.academia.edu/Documents/in/Cogent"}],"urls":[{"id":23593457,"url":"https://www.tandfonline.com/doi/pdf/10.1080/23311916.2015.1063760"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114991"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114991/Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems"><img alt="Research paper thumbnail of Memetic algorithm for solving resource constrained project scheduling problems" class="work-thumbnail" src="https://attachments.academia-assets.com/90641465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114991/Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems">Memetic algorithm for solving resource constrained project scheduling problems</a></div><div class="wp-workCard_item"><span>2015 IEEE Congress on Evolutionary Computation (CEC)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="42953639795e715ca245559c8762a19b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641465,&quot;asset_id&quot;:86114991,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641465/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114991"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114991"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114991; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114991]").text(description); $(".js-view-count[data-work-id=86114991]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114991; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114991']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114991, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "42953639795e715ca245559c8762a19b" } } $('.js-work-strip[data-work-id=86114991]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114991,"title":"Memetic algorithm for solving resource constrained project scheduling problems","translated_title":"","metadata":{"grobid_abstract":"The resource constrained project scheduling problem (RCPSP) has a wide variety of practical applications in construction, manufacturing, project planning, and other areas. Since the 1960s many optimization algorithms have been proposed to solve this NP-hard problem, and their performances are evaluated in well-known test problems with different complexities. Although it is desirable to find an algorithm which can provide promising solutions with reasonable computational efforts for any problem under consideration, no single algorithm can meet that condition. To deal with this challenge, we present a genetic algorithm based memetic algorithm (MA) for solving RCPSP. The algorithm is initiated by a critical path-based heuristic and a variant of the Nawaz, Enscore, and Ham (NEH) heuristic. The algorithm involves a similar block order crossover and a variable insertion based local search. An automatic restart scheme is also presented which assists the algorithm to escape from local optima. In addition, a design-of-experiment (DOE) method is used to determine the set of suitable parameters for the proposed MA. Numerical results, statistical analysis and comparisons with state-of-the-art algorithms demonstrate the effectiveness of the proposed approach. 2 1 j (4) a {0, 1} jt (5) The objective function is the minimization of makespan, C max (Eq. (1)). Eq. (2) ensures that an activity can be executed only once. Eq. (3) ensures that each activity j cannot be started unless all its predecessors have been completed. Eq. (4) ensures that an activity can be started when its required renewable resources (such as workforce, machines, tools or equipment) are available. Over the years, exact techniques such as branch and bound [4-6], branch and cut [7], and the event based approach [8] have been proposed for the optimal solution of RCPSPs. Due to computational","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 IEEE Congress on Evolutionary Computation (CEC)","grobid_abstract_attachment_id":90641465},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114991/Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems","translated_internal_url":"","created_at":"2022-09-04T01:54:49.083-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641465/thumbnails/1.jpg","file_name":"j.autcon.2019.10305220220904-1-1vi8ntb.pdf","download_url":"https://www.academia.edu/attachments/90641465/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Memetic_algorithm_for_solving_resource_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641465/j.autcon.2019.10305220220904-1-1vi8ntb-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DMemetic_algorithm_for_solving_resource_c.pdf\u0026Expires=1732705642\u0026Signature=gUJmBZbzvYEnZXrJ6a12mLS2befUU6hThbSXVIxU~gM7mGGrrHrHSqgIJ-MLrRRhjwMF4yZD39ugWARe2RLtRr3tdiF7GUw~XioxfawLFo-aF5i4RWC9w6J7C3Wt3O4fRpbwmctMjRi-quD0fjsoqjTX5iAYRsh9hJiBT8xXCcJ2-AbFMsQ2ryFzL7SaZI-ojfRKE0XEOIYnsDAAYP55iNk9G038Pn34g06~788TQI0jw0HWtLC23Fu7TBQgKOrUw0V9EaiL9DGf9PsvFIqd-um4IlLJZrP-jyHX0i0Dk-Ap0gkJHWFuLNDPPyzkak4B~U3ZLq9BdszRK5hlMWy8GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641465/thumbnails/1.jpg","file_name":"j.autcon.2019.10305220220904-1-1vi8ntb.pdf","download_url":"https://www.academia.edu/attachments/90641465/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Memetic_algorithm_for_solving_resource_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641465/j.autcon.2019.10305220220904-1-1vi8ntb-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DMemetic_algorithm_for_solving_resource_c.pdf\u0026Expires=1732705642\u0026Signature=gUJmBZbzvYEnZXrJ6a12mLS2befUU6hThbSXVIxU~gM7mGGrrHrHSqgIJ-MLrRRhjwMF4yZD39ugWARe2RLtRr3tdiF7GUw~XioxfawLFo-aF5i4RWC9w6J7C3Wt3O4fRpbwmctMjRi-quD0fjsoqjTX5iAYRsh9hJiBT8xXCcJ2-AbFMsQ2ryFzL7SaZI-ojfRKE0XEOIYnsDAAYP55iNk9G038Pn34g06~788TQI0jw0HWtLC23Fu7TBQgKOrUw0V9EaiL9DGf9PsvFIqd-um4IlLJZrP-jyHX0i0Dk-Ap0gkJHWFuLNDPPyzkak4B~U3ZLq9BdszRK5hlMWy8GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":482058,"name":"Memetic Algorithm","url":"https://www.academia.edu/Documents/in/Memetic_Algorithm"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114979"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114979/A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain"><img alt="Research paper thumbnail of A combined approach for modeling multi-echelon multi-period decentralized supply chain" class="work-thumbnail" src="https://attachments.academia-assets.com/90641451/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114979/A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain">A combined approach for modeling multi-echelon multi-period decentralized supply chain</a></div><div class="wp-workCard_item"><span>Annals of Operations Research</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e07f9093c67555850328b734cb8b944e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641451,&quot;asset_id&quot;:86114979,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641451/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114979"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114979"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114979; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114979]").text(description); $(".js-view-count[data-work-id=86114979]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114979; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114979']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114979, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e07f9093c67555850328b734cb8b944e" } } $('.js-work-strip[data-work-id=86114979]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114979,"title":"A combined approach for modeling multi-echelon multi-period decentralized supply chain","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"In this paper, a multi-echelon, multi-period, decentralized supply chain (SC) with a single manufacturer, single distributor and single retailer is considered. For this setting, a twophase planning approach combining centralized and decentralized decision-making processes is proposed, in which the first-phase planning is a coordinated centralized controlled, and the second-phase planning is viewed as independent decentralized decision-making for individual entities. This research focuses on the independence and equally powerful behavior of the individual entities with the aim of achieving the maximum profit for each stage. A mathematical model for total SC coordination as a first-phase planning problem and separate ones for each of the independent members with their individual objectives and constraints as second-phase planning problems are developed. We introduce a new solution approach using a goal programming technique in which a target or goal value is set for each independent decision problem to ensure that it obtains a near value for its individual optimum profit, with a numerical analysis presented to explain the results. Moreover, the proposed two-phase model is compared with a single-phase approach in which all stages are considered dependent on each other as parts of a centralized SC. The results prove that the combined two-phase planning method for a decentralized SC network is more realistic and effective than a traditional single-phase one.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Annals of Operations Research","grobid_abstract_attachment_id":90641451},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114979/A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain","translated_internal_url":"","created_at":"2022-09-04T01:54:12.145-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641451,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641451/thumbnails/1.jpg","file_name":"s10479-021-04121-0.pdf","download_url":"https://www.academia.edu/attachments/90641451/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_combined_approach_for_modeling_multi_e.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641451/s10479-021-04121-0-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DA_combined_approach_for_modeling_multi_e.pdf\u0026Expires=1732705642\u0026Signature=FeQb5VJSPA~YeeG6pkpiUDcKWwAZeHP1EbBGF~sTX8qBN99CBJpm6PMvtqO64ZFkpQXzYXc0YrE4wfaplXm3fEDgl7rT7MTOtofXqOjrckgLcNIlwCrdp1hb-sB1ErdqeaZz3S5aqLRAe~MCWtFTenTY~pb0rb3vSnCXyhUy8g0UKPl~KFGY324tPP1an-C1gfsCfHXntciUToHV3lfEmozVHXa12eB15iaH0tO1IWCYjnaOqMGuCfj3mf4PLOnfkRV~bK2Gnm0QpywWgJsUxSw3R-hofejDzJWszXl1Yc9wVHQ2tNy7L5i~URxi00DB9~SV6megM0o5j1CF-d5ilA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain","translated_slug":"","page_count":38,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641451,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641451/thumbnails/1.jpg","file_name":"s10479-021-04121-0.pdf","download_url":"https://www.academia.edu/attachments/90641451/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_combined_approach_for_modeling_multi_e.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641451/s10479-021-04121-0-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DA_combined_approach_for_modeling_multi_e.pdf\u0026Expires=1732705642\u0026Signature=FeQb5VJSPA~YeeG6pkpiUDcKWwAZeHP1EbBGF~sTX8qBN99CBJpm6PMvtqO64ZFkpQXzYXc0YrE4wfaplXm3fEDgl7rT7MTOtofXqOjrckgLcNIlwCrdp1hb-sB1ErdqeaZz3S5aqLRAe~MCWtFTenTY~pb0rb3vSnCXyhUy8g0UKPl~KFGY324tPP1an-C1gfsCfHXntciUToHV3lfEmozVHXa12eB15iaH0tO1IWCYjnaOqMGuCfj3mf4PLOnfkRV~bK2Gnm0QpywWgJsUxSw3R-hofejDzJWszXl1Yc9wVHQ2tNy7L5i~URxi00DB9~SV6megM0o5j1CF-d5ilA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":23593449,"url":"https://link.springer.com/content/pdf/10.1007/s10479-021-04121-0.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114978"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114978/Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers"><img alt="Research paper thumbnail of Real-Time disruption management in a coordinated supply chain system with multiple suppliers" class="work-thumbnail" src="https://attachments.academia-assets.com/90641450/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114978/Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers">Real-Time disruption management in a coordinated supply chain system with multiple suppliers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the study of a real-time procurement and production mechanism for a three-sta...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the study of a real-time procurement and production mechanism for a three-stage supply chain system with multiple suppliers, subject to unexpected disruptions. In the first part of the paper, a mathematical model was developed for the optimization of replenishment and production decisions for each node after the occurrence of a transportation disruption. In addition, an experiment was conducted to study the effects of disruptions to the system using predefined scenarios, where the supplier’s prioritization of disruption mitigation strategies was explored. Various disruption scenarios were predefined by combining different disruption types and locations as well as different combinations of suppliers. It will be shown that the solution to the transportation disruption was more sensitive to the lot size when the lost sales cost was large. However, when the lost sales cost was low, the sensitivity to the lot size decreased, and the setup cost and inventory holding co...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="193a59241d896300b4aee5f85928e3aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641450,&quot;asset_id&quot;:86114978,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641450/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114978"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114978"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114978; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114978]").text(description); $(".js-view-count[data-work-id=86114978]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114978; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114978']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114978, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "193a59241d896300b4aee5f85928e3aa" } } $('.js-work-strip[data-work-id=86114978]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114978,"title":"Real-Time disruption management in a coordinated supply chain system with multiple suppliers","translated_title":"","metadata":{"abstract":"This paper presents the study of a real-time procurement and production mechanism for a three-stage supply chain system with multiple suppliers, subject to unexpected disruptions. In the first part of the paper, a mathematical model was developed for the optimization of replenishment and production decisions for each node after the occurrence of a transportation disruption. In addition, an experiment was conducted to study the effects of disruptions to the system using predefined scenarios, where the supplier’s prioritization of disruption mitigation strategies was explored. Various disruption scenarios were predefined by combining different disruption types and locations as well as different combinations of suppliers. It will be shown that the solution to the transportation disruption was more sensitive to the lot size when the lost sales cost was large. However, when the lost sales cost was low, the sensitivity to the lot size decreased, and the setup cost and inventory holding co...","publisher":"ICIS 2016","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"This paper presents the study of a real-time procurement and production mechanism for a three-stage supply chain system with multiple suppliers, subject to unexpected disruptions. In the first part of the paper, a mathematical model was developed for the optimization of replenishment and production decisions for each node after the occurrence of a transportation disruption. In addition, an experiment was conducted to study the effects of disruptions to the system using predefined scenarios, where the supplier’s prioritization of disruption mitigation strategies was explored. Various disruption scenarios were predefined by combining different disruption types and locations as well as different combinations of suppliers. It will be shown that the solution to the transportation disruption was more sensitive to the lot size when the lost sales cost was large. However, when the lost sales cost was low, the sensitivity to the lot size decreased, and the setup cost and inventory holding co...","internal_url":"https://www.academia.edu/86114978/Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers","translated_internal_url":"","created_at":"2022-09-04T01:54:11.944-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641450/thumbnails/1.jpg","file_name":"ILS2016_FB04_2.pdf","download_url":"https://www.academia.edu/attachments/90641450/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Real_Time_disruption_management_in_a_coo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641450/ILS2016_FB04_2-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DReal_Time_disruption_management_in_a_coo.pdf\u0026Expires=1732705643\u0026Signature=KWuDp7ZHXvxzSZ1kY2UkosyFQBbwr938gleaqS73Z9gZSIQS8Zbz30Re6qRqLnvkyO4mdT6I6sZttCHLSbNuBYRIhQt3Liotd3-xZaHgVqN~6uz7N6DRT22zT6o0M-NP5rJzMchynWQV3sQP6tQ-Pw3MC5Mes8zwjhi4xmj88PLIngv2D~xbcEFqArJ-6987HWcR3KH4foydcyJleyhZQOSjs1-jnQfGLf2c2ya~vr7TDvFJ5KekHdnJlCuUVEHFzamiZ6MUTl2wX0YeKNzFcLn~MvD9eu9Ob6YBUApSfNPeU819YERgMD2AbDHs~VFHmlW9tZIVfZF268kpCvyeHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641450/thumbnails/1.jpg","file_name":"ILS2016_FB04_2.pdf","download_url":"https://www.academia.edu/attachments/90641450/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Real_Time_disruption_management_in_a_coo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641450/ILS2016_FB04_2-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DReal_Time_disruption_management_in_a_coo.pdf\u0026Expires=1732705643\u0026Signature=KWuDp7ZHXvxzSZ1kY2UkosyFQBbwr938gleaqS73Z9gZSIQS8Zbz30Re6qRqLnvkyO4mdT6I6sZttCHLSbNuBYRIhQt3Liotd3-xZaHgVqN~6uz7N6DRT22zT6o0M-NP5rJzMchynWQV3sQP6tQ-Pw3MC5Mes8zwjhi4xmj88PLIngv2D~xbcEFqArJ-6987HWcR3KH4foydcyJleyhZQOSjs1-jnQfGLf2c2ya~vr7TDvFJ5KekHdnJlCuUVEHFzamiZ6MUTl2wX0YeKNzFcLn~MvD9eu9Ob6YBUApSfNPeU819YERgMD2AbDHs~VFHmlW9tZIVfZF268kpCvyeHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"}],"urls":[{"id":23593448,"url":"http://ils2016conference.com/wp-content/uploads/2015/03/ILS2016_FB04_2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114977"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114977/An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation"><img alt="Research paper thumbnail of An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation" class="work-thumbnail" src="https://attachments.academia-assets.com/90641447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114977/An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation">An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation</a></div><div class="wp-workCard_item"><span>IEEE Access</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="27047870656a669343c1179ade487697" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641447,&quot;asset_id&quot;:86114977,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641447/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114977"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114977"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114977; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114977]").text(description); $(".js-view-count[data-work-id=86114977]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114977; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114977']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114977, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "27047870656a669343c1179ade487697" } } $('.js-work-strip[data-work-id=86114977]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114977,"title":"An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"The performance of a Convolutional Neural Network (CNN) highly depends on its architecture and corresponding parameters. Manually designing a CNN is a time-consuming process in regards to the various layers that it can have, and the variety of parameters that must be set up. Increasing the complexity of the network structure by employing various types of connections makes designing a network even more challenging. Evolutionary computation as an optimisation technique can be applied to arrange the CNN layers and/or initiate its parameters automatically or semi-automatically. Dense network and Residual network are two popular network structures that were introduced to facilitate the training of deep networks. In this paper, leveraging the potentials of Dense and Residual blocks, and using the capability of evolutionary computation, we propose an automatic evolutionary model to detect an optimum and accurate network structure and its parameters for medical image segmentation. The proposed evolutionary DenseRes model is employed for segmentation of six publicly available MRI and CT medical datasets. The proposed model obtained high accuracy while employing networks with minimal parameters for the segmentation of medical images and outperformed manual and automatic designed networks, including U","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"IEEE Access","grobid_abstract_attachment_id":90641447},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114977/An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation","translated_internal_url":"","created_at":"2022-09-04T01:54:11.728-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641447/thumbnails/1.jpg","file_name":"09265246.pdf","download_url":"https://www.academia.edu/attachments/90641447/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Evolutionary_DenseRes_Deep_Convolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641447/09265246-libre.pdf?1662290992=\u0026response-content-disposition=attachment%3B+filename%3DAn_Evolutionary_DenseRes_Deep_Convolutio.pdf\u0026Expires=1732705643\u0026Signature=NuWepqKF6JRNM1hdlTpcqBGt3xKYfLAliREghaQ7SNRaNlBg0M3xYsCliRXvwllmqZdqwMNjMXH~h3082XYLT7vmWJlvBcd2vwGB2hpOkd4sMFgLvf02s5ZPjun-SnFOt3EH7-G1Fncsj2IXLbODPcr3jNfc~qh~-ZSziIRRrGzSN~dVNsBErmrdXHM2q6M-7OF4W10KwUJSx2~ENc4PpCMqHX6yFvIKwjv-uWceeuxAgKAHO-Q~D22I6e3lorxFGgzLEkBG3Wq6bdsdywTDmh40hBFiBQCxhoKfVQJb8aKRejASQtm~JyPZrnlMg4ch4nEmrg2WrAtTLbqFiCSvbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641447/thumbnails/1.jpg","file_name":"09265246.pdf","download_url":"https://www.academia.edu/attachments/90641447/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Evolutionary_DenseRes_Deep_Convolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641447/09265246-libre.pdf?1662290992=\u0026response-content-disposition=attachment%3B+filename%3DAn_Evolutionary_DenseRes_Deep_Convolutio.pdf\u0026Expires=1732705643\u0026Signature=NuWepqKF6JRNM1hdlTpcqBGt3xKYfLAliREghaQ7SNRaNlBg0M3xYsCliRXvwllmqZdqwMNjMXH~h3082XYLT7vmWJlvBcd2vwGB2hpOkd4sMFgLvf02s5ZPjun-SnFOt3EH7-G1Fncsj2IXLbODPcr3jNfc~qh~-ZSziIRRrGzSN~dVNsBErmrdXHM2q6M-7OF4W10KwUJSx2~ENc4PpCMqHX6yFvIKwjv-uWceeuxAgKAHO-Q~D22I6e3lorxFGgzLEkBG3Wq6bdsdywTDmh40hBFiBQCxhoKfVQJb8aKRejASQtm~JyPZrnlMg4ch4nEmrg2WrAtTLbqFiCSvbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation"},{"id":1568111,"name":"Convolutional Neural Network","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network"}],"urls":[{"id":23593447,"url":"http://xplorestaging.ieee.org/ielx7/6287639/8948470/09265246.pdf?arnumber=9265246"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114976/Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers"><img alt="Research paper thumbnail of Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers" class="work-thumbnail" src="https://attachments.academia-assets.com/90641448/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114976/Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers">Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers</a></div><div class="wp-workCard_item"><span>2014 IEEE International Conference on Industrial Engineering and Engineering Management</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1dcff268e92045969eaa71ae80bd2b76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641448,&quot;asset_id&quot;:86114976,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641448/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114976]").text(description); $(".js-view-count[data-work-id=86114976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114976, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1dcff268e92045969eaa71ae80bd2b76" } } $('.js-work-strip[data-work-id=86114976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114976,"title":"Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"In this paper, a supply disruption management model is introduced in a three-tier supply chain with multiple suppliers and retailers, where the system may face sudden disruption in its raw material supply. At first, we formulated a mathematical model for ideal conditions and then reformulated it to revise the supply, production and delivery plan after the occurrence of a disruption, for a future period, to recover from the disruption. Here, the objective is to minimize the total cost during the recovery time window while being subject to supply, capacity, demand, and delivery constraints. We have also proposed an efficient heuristic to solve the model and the results have been compared, with another established solution approach, for a good number of randomly generated test problems. The comparison showed the consistent performance of our developed heuristic. This paper also presents some numerical examples to explain the usefulness of the proposed approach.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"2014 IEEE International Conference on Industrial Engineering and Engineering Management","grobid_abstract_attachment_id":90641448},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114976/Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers","translated_internal_url":"","created_at":"2022-09-04T01:54:11.489-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641448/thumbnails/1.jpg","file_name":"2-s2.0-84988293808_20am_201.pdf","download_url":"https://www.academia.edu/attachments/90641448/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_supply_disruption_in_a_three_ti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641448/2-s2.0-84988293808_20am_201-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DManaging_supply_disruption_in_a_three_ti.pdf\u0026Expires=1732705643\u0026Signature=HRyCChkyBHSh52Q4mQ57dRJk-M4RkHLIhLLPAa-RWeltNJNn~u-CmopfJfh3pKF0Ny-bAYfFDKgyHzI-eokmReklCr3N8EnieXCj8wIKpVSkCSeUJ1G7cy2ESFMOCXiwkxpan1iktuLtiyUBIUpHMUtvHmWmCb5lasXt~8HwCup8rIE4oCCzMwcXyGNAWxAI19duMc-YjK-uA4GCyZV6uci~ks14UWV6uPsaePpvKFAvCqkAnw1zttCG5vtQnemKjjl8bZNNN~jqaSmDvpi21JvdfsZwiP~7x5fJ9OsDBIcFjhA6OOozKRnaYzxTETpoGVDyp6AlEtgSdzaCCGE1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641448/thumbnails/1.jpg","file_name":"2-s2.0-84988293808_20am_201.pdf","download_url":"https://www.academia.edu/attachments/90641448/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_supply_disruption_in_a_three_ti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641448/2-s2.0-84988293808_20am_201-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DManaging_supply_disruption_in_a_three_ti.pdf\u0026Expires=1732705643\u0026Signature=HRyCChkyBHSh52Q4mQ57dRJk-M4RkHLIhLLPAa-RWeltNJNn~u-CmopfJfh3pKF0Ny-bAYfFDKgyHzI-eokmReklCr3N8EnieXCj8wIKpVSkCSeUJ1G7cy2ESFMOCXiwkxpan1iktuLtiyUBIUpHMUtvHmWmCb5lasXt~8HwCup8rIE4oCCzMwcXyGNAWxAI19duMc-YjK-uA4GCyZV6uci~ks14UWV6uPsaePpvKFAvCqkAnw1zttCG5vtQnemKjjl8bZNNN~jqaSmDvpi21JvdfsZwiP~7x5fJ9OsDBIcFjhA6OOozKRnaYzxTETpoGVDyp6AlEtgSdzaCCGE1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"},{"id":83702,"name":"Disruption Management","url":"https://www.academia.edu/Documents/in/Disruption_Management"},{"id":419504,"name":"Heuristic","url":"https://www.academia.edu/Documents/in/Heuristic"}],"urls":[{"id":23593446,"url":"http://xplorestaging.ieee.org/ielx7/7048056/7058583/07058627.pdf?arnumber=7058627"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114975/An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption"><img alt="Research paper thumbnail of An Inventory Recovery Model for an Economic Lot Sizing Problem with Disruption" class="work-thumbnail" src="https://attachments.academia-assets.com/90641446/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114975/An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption">An Inventory Recovery Model for an Economic Lot Sizing Problem with Disruption</a></div><div class="wp-workCard_item"><span>Jurnal Teknologi</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Supply chains face risks from various unexpected events that make disruptions almost inevitable. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a disruption recovery model for a single stage production and inventory system, where finished product supply is randomly disrupted for periods of random duration. A production facility that manufactures a single product following the Economic Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="98979ca67ee3561403b0d2e85a8de3b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641446,&quot;asset_id&quot;:86114975,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641446/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114975]").text(description); $(".js-view-count[data-work-id=86114975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "98979ca67ee3561403b0d2e85a8de3b7" } } $('.js-work-strip[data-work-id=86114975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114975,"title":"An Inventory Recovery Model for an Economic Lot Sizing Problem with Disruption","translated_title":"","metadata":{"abstract":"Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a disruption recovery model for a single stage production and inventory system, where finished product supply is randomly disrupted for periods of random duration. A production facility that manufactures a single product following the Economic Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption.","publisher":"Penerbit UTM Press","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Jurnal Teknologi"},"translated_abstract":"Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a disruption recovery model for a single stage production and inventory system, where finished product supply is randomly disrupted for periods of random duration. A production facility that manufactures a single product following the Economic Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption.","internal_url":"https://www.academia.edu/86114975/An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption","translated_internal_url":"","created_at":"2022-09-04T01:54:11.199-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641446,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641446/thumbnails/1.jpg","file_name":"f161.pdf","download_url":"https://www.academia.edu/attachments/90641446/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inventory_Recovery_Model_for_an_Econo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641446/f161-libre.pdf?1662290990=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inventory_Recovery_Model_for_an_Econo.pdf\u0026Expires=1732705643\u0026Signature=Isx-THnMOiog4O5mzHbwD~TQXh4AqOKMVMq3NcWi9n1-OzM6PZoO5FjYTYQZToGviBWgiJhNphwZ8VoW6Z7ADx1TZlXam82MSMhwupM6HFUfX9c9IL~EENg4FUAVDst2tYlncNNrV5t8ImRvOoq-uQlYaYktQIpCdfSGjTNXz22jPYzsyGtl~8BatjiqMOj2hTgw9hTj5SDydVODJuUtbWxgIFe204H8fUX7u7Oe094q5W~~OCg0HhsMe3X6VIqhR9x1AMk54As-Cpza8-bM2MUMliY0cSEGyYAUgpUmvskqf~7nQOjPFO1Ui9Y7EXxVNuySfqV7pkzqqYX~U7rdKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641446,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641446/thumbnails/1.jpg","file_name":"f161.pdf","download_url":"https://www.academia.edu/attachments/90641446/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inventory_Recovery_Model_for_an_Econo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641446/f161-libre.pdf?1662290990=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inventory_Recovery_Model_for_an_Econo.pdf\u0026Expires=1732705643\u0026Signature=Isx-THnMOiog4O5mzHbwD~TQXh4AqOKMVMq3NcWi9n1-OzM6PZoO5FjYTYQZToGviBWgiJhNphwZ8VoW6Z7ADx1TZlXam82MSMhwupM6HFUfX9c9IL~EENg4FUAVDst2tYlncNNrV5t8ImRvOoq-uQlYaYktQIpCdfSGjTNXz22jPYzsyGtl~8BatjiqMOj2hTgw9hTj5SDydVODJuUtbWxgIFe204H8fUX7u7Oe094q5W~~OCg0HhsMe3X6VIqhR9x1AMk54As-Cpza8-bM2MUMliY0cSEGyYAUgpUmvskqf~7nQOjPFO1Ui9Y7EXxVNuySfqV7pkzqqYX~U7rdKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":582376,"name":"Sizing","url":"https://www.academia.edu/Documents/in/Sizing"}],"urls":[{"id":23593445,"url":"https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/viewFile/9162/5459"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114974"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114974/Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review"><img alt="Research paper thumbnail of Managing risk and disruption in production-inventory and supply chain systems: A review" class="work-thumbnail" src="https://attachments.academia-assets.com/90641453/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114974/Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review">Managing risk and disruption in production-inventory and supply chain systems: A review</a></div><div class="wp-workCard_item"><span>Journal of Industrial and Management Optimization</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3039be8bf32c15e0b52c6d90d5a2e389" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641453,&quot;asset_id&quot;:86114974,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641453/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114974"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114974"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114974; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114974]").text(description); $(".js-view-count[data-work-id=86114974]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114974; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114974']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114974, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3039be8bf32c15e0b52c6d90d5a2e389" } } $('.js-work-strip[data-work-id=86114974]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114974,"title":"Managing risk and disruption in production-inventory and supply chain systems: A review","translated_title":"","metadata":{"publisher":"American Institute of Mathematical Sciences (AIMS)","grobid_abstract":"This paper presents a literature review on risk and disruption management in productioninventory and supply chain systems. The review is conducted on the basis of comparing various works published in this research domain, specifically the papers, which considered real-life risk factors, such as imperfect production processes, risk and disruption in production, supply, demand, and transportation, while developing models for productioninventory and supply chain systems. Emphasis is given on the assumptions and the types of problems considered in the published research. We also focus on reviewing the mathematical models and the solution approaches used in solving the models using both hypothetical and real-world problem scenarios. Finally, the literature review is summarized and future research directions are discussed.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of Industrial and Management Optimization","grobid_abstract_attachment_id":90641453},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114974/Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review","translated_internal_url":"","created_at":"2022-09-04T01:54:10.994-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641453,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641453/thumbnails/1.jpg","file_name":"8e5f208e1bf768e157f28b0188dae41a8ffa.pdf","download_url":"https://www.academia.edu/attachments/90641453/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_risk_and_disruption_in_producti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641453/8e5f208e1bf768e157f28b0188dae41a8ffa-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DManaging_risk_and_disruption_in_producti.pdf\u0026Expires=1732705643\u0026Signature=NObOQnCCb-3wj5b0uzQM5w8xO7uEVlge7Dc-jELvYYz1TTdRwpvOHgT7PVj~bdkTJmfLnexx9NavN-6e0OBn~wp7oicLdD9HU7is303vzrgP1pWdP6bbgqeYV-5pHcLVKPoJNViGcySdPMlClUU-esEvHgYH1FsvmmwbmcRj7Rit7p1mBMy2BS4dgoJTSD~7lqwa9~KWJDH3rANvitP8s1yrylKiEUIFzJgoiKmUFjym~ZVx9DonNtlWYnA1JdKaJsiWTUTFI6rHIOUP8w0pm1cQQBYhl4aG4mfpH3dfbyghG0x-vYC9lKSAotkgWBiiAlRymCgonOm0NSH3m6e81Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641453,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641453/thumbnails/1.jpg","file_name":"8e5f208e1bf768e157f28b0188dae41a8ffa.pdf","download_url":"https://www.academia.edu/attachments/90641453/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_risk_and_disruption_in_producti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641453/8e5f208e1bf768e157f28b0188dae41a8ffa-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DManaging_risk_and_disruption_in_producti.pdf\u0026Expires=1732705643\u0026Signature=NObOQnCCb-3wj5b0uzQM5w8xO7uEVlge7Dc-jELvYYz1TTdRwpvOHgT7PVj~bdkTJmfLnexx9NavN-6e0OBn~wp7oicLdD9HU7is303vzrgP1pWdP6bbgqeYV-5pHcLVKPoJNViGcySdPMlClUU-esEvHgYH1FsvmmwbmcRj7Rit7p1mBMy2BS4dgoJTSD~7lqwa9~KWJDH3rANvitP8s1yrylKiEUIFzJgoiKmUFjym~ZVx9DonNtlWYnA1JdKaJsiWTUTFI6rHIOUP8w0pm1cQQBYhl4aG4mfpH3dfbyghG0x-vYC9lKSAotkgWBiiAlRymCgonOm0NSH3m6e81Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":12061,"name":"Risk Management","url":"https://www.academia.edu/Documents/in/Risk_Management"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"},{"id":44293,"name":"Literature Review","url":"https://www.academia.edu/Documents/in/Literature_Review"},{"id":72834,"name":"Production and Inventory planning and control systems","url":"https://www.academia.edu/Documents/in/Production_and_Inventory_planning_and_control_systems"},{"id":83702,"name":"Disruption Management","url":"https://www.academia.edu/Documents/in/Disruption_Management"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":23593444,"url":"http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11613"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114973"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86114973/Managing_risk_in_production_scheduling_under_uncertain_disruption"><img alt="Research paper thumbnail of Managing risk in production scheduling under uncertain disruption" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86114973/Managing_risk_in_production_scheduling_under_uncertain_disruption">Managing risk in production scheduling under uncertain disruption</a></div><div class="wp-workCard_item"><span>Artificial Intelligence for Engineering Design, Analysis and Manufacturing</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simulation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114973"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114973"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114973; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114973]").text(description); $(".js-view-count[data-work-id=86114973]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114973; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114973']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114973, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86114973]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114973,"title":"Managing risk in production scheduling under uncertain disruption","translated_title":"","metadata":{"abstract":"The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simulation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.","publisher":"Cambridge University Press (CUP)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Artificial Intelligence for Engineering Design, Analysis and Manufacturing"},"translated_abstract":"The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simulation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.","internal_url":"https://www.academia.edu/86114973/Managing_risk_in_production_scheduling_under_uncertain_disruption","translated_internal_url":"","created_at":"2022-09-04T01:54:10.844-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Managing_risk_in_production_scheduling_under_uncertain_disruption","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114972"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86114972/A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems"><img alt="Research paper thumbnail of A real-time order acceptance and scheduling approach for permutation flow shop problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86114972/A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems">A real-time order acceptance and scheduling approach for permutation flow shop problems</a></div><div class="wp-workCard_item"><span>European Journal of Operational Research</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimization problem. PFSP has been widely studied as a static problem using heuristics and metaheuristics. In reality, PFSPs are not usually static, but are rather dynamic, as customer orders are placed at random time intervals. In the dynamic problem, two tasks must be considered: (i) should a new order be accepted? and (ii) if accepted, how can this schedule be ordered, when some orders may be already under process and or be in the queue for processing? For the first task, we propose a simple heuristic based decision process, and for the second task, we developed a Genetic Algorithm (GA) based approach that is applied repeatedly for re-optimization as each new order arrives. The usefulness of the proposed approach has been demonstrated by solving a set of test problems. In addition the proposed approach, along with a simulation model, has been tested for maximizing the revenue of a flow shop production business under different order arrival scenarios. Finally, a case study is presented to show the applicability of the proposed approach in practice.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114972"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114972"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114972; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114972]").text(description); $(".js-view-count[data-work-id=86114972]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114972; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114972']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114972, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86114972]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114972,"title":"A real-time order acceptance and scheduling approach for permutation flow shop problems","translated_title":"","metadata":{"abstract":"ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimization problem. PFSP has been widely studied as a static problem using heuristics and metaheuristics. In reality, PFSPs are not usually static, but are rather dynamic, as customer orders are placed at random time intervals. In the dynamic problem, two tasks must be considered: (i) should a new order be accepted? and (ii) if accepted, how can this schedule be ordered, when some orders may be already under process and or be in the queue for processing? For the first task, we propose a simple heuristic based decision process, and for the second task, we developed a Genetic Algorithm (GA) based approach that is applied repeatedly for re-optimization as each new order arrives. The usefulness of the proposed approach has been demonstrated by solving a set of test problems. In addition the proposed approach, along with a simulation model, has been tested for maximizing the revenue of a flow shop production business under different order arrival scenarios. Finally, a case study is presented to show the applicability of the proposed approach in practice.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"European Journal of Operational Research"},"translated_abstract":"ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimization problem. PFSP has been widely studied as a static problem using heuristics and metaheuristics. In reality, PFSPs are not usually static, but are rather dynamic, as customer orders are placed at random time intervals. In the dynamic problem, two tasks must be considered: (i) should a new order be accepted? and (ii) if accepted, how can this schedule be ordered, when some orders may be already under process and or be in the queue for processing? For the first task, we propose a simple heuristic based decision process, and for the second task, we developed a Genetic Algorithm (GA) based approach that is applied repeatedly for re-optimization as each new order arrives. The usefulness of the proposed approach has been demonstrated by solving a set of test problems. In addition the proposed approach, along with a simulation model, has been tested for maximizing the revenue of a flow shop production business under different order arrival scenarios. Finally, a case study is presented to show the applicability of the proposed approach in practice.","internal_url":"https://www.academia.edu/86114972/A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems","translated_internal_url":"","created_at":"2022-09-04T01:54:10.613-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":9049,"name":"Flow Shop Scheduling","url":"https://www.academia.edu/Documents/in/Flow_Shop_Scheduling"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"}],"urls":[{"id":23593443,"url":"https://api.elsevier.com/content/article/PII:S0377221715005329?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114958"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86114958/Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems"><img alt="Research paper thumbnail of Neurodynamic differential evolution algorithm and solving CEC2015 competition problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86114958/Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems">Neurodynamic differential evolution algorithm and solving CEC2015 competition problems</a></div><div class="wp-workCard_item"><span>2015 IEEE Congress on Evolutionary Computation (CEC)</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Recently, the success history based parameter adaptation for differential evolution algo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Recently, the success history based parameter adaptation for differential evolution algorithm with linear population size reduction has been claimed to be a great algorithm for solving optimization problems. Neuro-dynamic is another recent approach that has shown remarkable convergence for certain problems, even for high dimensional cases. In this paper, we proposed a new algorithm by embedding the concept of neuro-dynamic into a modified success history based parameter adaptation for differential evolution with linear population size reduction. We have also proposed an adaptive mechanism for the appropriate use of the success history based parameter adaptation for differential evolution with linear population size reduction and neuro-dynamic during the search process. The new algorithm has been tested on the CEC’2015 single objective real-parameter competition problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from the success history based parameter adaptation for differential evolution with linear population size reduction and a few of the other state-of-the-art algorithms considered in this paper</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114958"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114958"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114958; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114958]").text(description); $(".js-view-count[data-work-id=86114958]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114958; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114958']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114958, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86114958]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114958,"title":"Neurodynamic differential evolution algorithm and solving CEC2015 competition problems","translated_title":"","metadata":{"abstract":"ABSTRACT Recently, the success history based parameter adaptation for differential evolution algorithm with linear population size reduction has been claimed to be a great algorithm for solving optimization problems. Neuro-dynamic is another recent approach that has shown remarkable convergence for certain problems, even for high dimensional cases. In this paper, we proposed a new algorithm by embedding the concept of neuro-dynamic into a modified success history based parameter adaptation for differential evolution with linear population size reduction. We have also proposed an adaptive mechanism for the appropriate use of the success history based parameter adaptation for differential evolution with linear population size reduction and neuro-dynamic during the search process. The new algorithm has been tested on the CEC’2015 single objective real-parameter competition problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from the success history based parameter adaptation for differential evolution with linear population size reduction and a few of the other state-of-the-art algorithms considered in this paper","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 IEEE Congress on Evolutionary Computation (CEC)"},"translated_abstract":"ABSTRACT Recently, the success history based parameter adaptation for differential evolution algorithm with linear population size reduction has been claimed to be a great algorithm for solving optimization problems. Neuro-dynamic is another recent approach that has shown remarkable convergence for certain problems, even for high dimensional cases. In this paper, we proposed a new algorithm by embedding the concept of neuro-dynamic into a modified success history based parameter adaptation for differential evolution with linear population size reduction. We have also proposed an adaptive mechanism for the appropriate use of the success history based parameter adaptation for differential evolution with linear population size reduction and neuro-dynamic during the search process. The new algorithm has been tested on the CEC’2015 single objective real-parameter competition problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from the success history based parameter adaptation for differential evolution with linear population size reduction and a few of the other state-of-the-art algorithms considered in this paper","internal_url":"https://www.academia.edu/86114958/Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems","translated_internal_url":"","created_at":"2022-09-04T01:53:39.796-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":12346,"name":"Differential Evolution","url":"https://www.academia.edu/Documents/in/Differential_Evolution"}],"urls":[{"id":23593439,"url":"http://xplorestaging.ieee.org/ielx7/7229815/7256859/07257003.pdf?arnumber=7257003"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62318263"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62318263/Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns"><img alt="Research paper thumbnail of Evolutionary scheduling with rescheduling option for sudden machine breakdowns" class="work-thumbnail" src="https://attachments.academia-assets.com/75125490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62318263/Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns">Evolutionary scheduling with rescheduling option for sudden machine breakdowns</a></div><div class="wp-workCard_item"><span>Ieee Congress on Evolutionary Computation</span><span>, Jul 18, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2e660820a0901f9f8f1142e3dcb42cdd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75125490,&quot;asset_id&quot;:62318263,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75125490/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62318263"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62318263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62318263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62318263]").text(description); $(".js-view-count[data-work-id=62318263]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62318263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62318263']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 62318263, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2e660820a0901f9f8f1142e3dcb42cdd" } } $('.js-work-strip[data-work-id=62318263]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62318263,"title":"Evolutionary scheduling with rescheduling option for sudden machine breakdowns","translated_title":"","metadata":{"grobid_abstract":"The job scheduling problem (JSP) is considered as one of the complex combinatorial optimization problems. In this paper, we have developed a hybrid Genetic Algorithm (HGA), which improves the performance of GAs when solving JSPs. We have also modified the developed algorithm to study JSPs under the machine unavailability condition. We have considered two types of machine unavailability. Firstly, where the unavailability information is available in advance (predictive) and, secondly, where the information is known after a real breakdown (reactive). We have shown that the revised schedule is mostly able to recover if the disruptions occur during the early stages of a schedule.","publication_date":{"day":18,"month":7,"year":2010,"errors":{}},"publication_name":"Ieee Congress on Evolutionary Computation","grobid_abstract_attachment_id":75125490},"translated_abstract":null,"internal_url":"https://www.academia.edu/62318263/Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns","translated_internal_url":"","created_at":"2021-11-24T22:48:01.349-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75125490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75125490/thumbnails/1.jpg","file_name":"Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf","download_url":"https://www.academia.edu/attachments/75125490/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_scheduling_with_reschedulin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75125490/Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf?1637822947=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_scheduling_with_reschedulin.pdf\u0026Expires=1732705644\u0026Signature=YM2T15Nu0LwtTTN9BGcmSj1SMQOC~Uvb0kP4gH~N7my8ZKgfWg-nPJjYAetO-0lPXcjClfVqpJrrLTz-E1Kg2COOLNCcSME71YKbwBgPYGo95~PqFh9FdH2aShtd71Lom-Qr1dqqiZ40-IUg8wwKuByJwDH7z~~9GEYd7HvmCcr8tQrVSkKW9DGhDIIsPHddEFbUEpePCjN72UT1ZSewGxU~kY33JJZJ5ZvhjgNc9ZIjrdKwhWP9fvy3gZkfTorDF6OSMPyCF9DB4NfLU1WrpJ3oriDycSSlkjBgFikY42ZORQ0t6MDEYWygxue6YlxH0YCWT7JYMhLXbMj53RCqCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":75125490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75125490/thumbnails/1.jpg","file_name":"Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf","download_url":"https://www.academia.edu/attachments/75125490/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_scheduling_with_reschedulin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75125490/Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf?1637822947=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_scheduling_with_reschedulin.pdf\u0026Expires=1732705644\u0026Signature=YM2T15Nu0LwtTTN9BGcmSj1SMQOC~Uvb0kP4gH~N7my8ZKgfWg-nPJjYAetO-0lPXcjClfVqpJrrLTz-E1Kg2COOLNCcSME71YKbwBgPYGo95~PqFh9FdH2aShtd71Lom-Qr1dqqiZ40-IUg8wwKuByJwDH7z~~9GEYd7HvmCcr8tQrVSkKW9DGhDIIsPHddEFbUEpePCjN72UT1ZSewGxU~kY33JJZJ5ZvhjgNc9ZIjrdKwhWP9fvy3gZkfTorDF6OSMPyCF9DB4NfLU1WrpJ3oriDycSSlkjBgFikY42ZORQ0t6MDEYWygxue6YlxH0YCWT7JYMhLXbMj53RCqCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms"},{"id":9048,"name":"Scheduling","url":"https://www.academia.edu/Documents/in/Scheduling"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":165126,"name":"Maintenance Engineering","url":"https://www.academia.edu/Documents/in/Maintenance_Engineering"},{"id":171233,"name":"Job Scheduling","url":"https://www.academia.edu/Documents/in/Job_Scheduling"},{"id":231678,"name":"Makespan","url":"https://www.academia.edu/Documents/in/Makespan"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"},{"id":507968,"name":"Hybrid genetic algorithm","url":"https://www.academia.edu/Documents/in/Hybrid_genetic_algorithm"},{"id":3423098,"name":"Schedules","url":"https://www.academia.edu/Documents/in/Schedules"}],"urls":[{"id":14460092,"url":"http://dx.doi.org/10.1109/cec.2010.5586374"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62318104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62318104/Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization"><img alt="Research paper thumbnail of Constraint Consensus Mutation based Differential Evolution for Constrained Optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/62318104/Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization">Constraint Consensus Mutation based Differential Evolution for Constrained Optimization</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Evolutionary Computation</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62318104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62318104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62318104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62318104]").text(description); $(".js-view-count[data-work-id=62318104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62318104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62318104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 62318104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62318104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62318104,"title":"Constraint Consensus Mutation based Differential Evolution for Constrained Optimization","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"IEEE Transactions on Evolutionary Computation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/62318104/Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization","translated_internal_url":"","created_at":"2021-11-24T22:47:38.602-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56065404"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56065404/Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling"><img alt="Research paper thumbnail of Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling" class="work-thumbnail" src="https://attachments.academia-assets.com/71634658/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56065404/Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling">Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling</a></div><div class="wp-workCard_item"><span>Algorithms</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fe8203c0c5a78379064aee27831ce43" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71634658,&quot;asset_id&quot;:56065404,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71634658/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56065404"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56065404"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56065404; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56065404]").text(description); $(".js-view-count[data-work-id=56065404]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56065404; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56065404']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56065404, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fe8203c0c5a78379064aee27831ce43" } } $('.js-work-strip[data-work-id=56065404]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56065404,"title":"Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling","translated_title":"","metadata":{"publisher":"MDPI AG","grobid_abstract":"The number of just-in-time jobs maximization in a permutation flow shop scheduling problem is considered. A mixed integer linear programming model to represent the problem as well as solution approaches based on enumeration and constructive heuristics were proposed and computationally implemented. Instances with up to 10 jobs and five machines are solved by the mathematical model in an acceptable running time (3.3 min on average) while the enumeration method consumes, on average, 1.5 s. The 10 constructive heuristics proposed show they are practical especially for large-scale instances (up to 100 jobs and 20 machines), with very good-quality results and efficient running times. The best two heuristics obtain near-optimal solutions, with only 0.6% and 0.8% average relative deviations. They prove to be better than adaptations of the NEH heuristic (well-known for providing very good solutions for makespan minimization in flow shop) for the considered problem.","publication_name":"Algorithms","grobid_abstract_attachment_id":71634658},"translated_abstract":null,"internal_url":"https://www.academia.edu/56065404/Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling","translated_internal_url":"","created_at":"2021-10-06T14:38:12.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71634658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71634658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/71634658/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_Optimal_Heuristics_for_Just_In_Time.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71634658/pdf-libre.pdf?1633563568=\u0026response-content-disposition=attachment%3B+filename%3DNear_Optimal_Heuristics_for_Just_In_Time.pdf\u0026Expires=1732705644\u0026Signature=IMSAnw7KdrQqhTnls-szGbdTFAIzJWFIXSB6EMibUU6Trj8YFsMvjVt24oiDlmMoQVr0NaGFp9RVcWzeba6tLWWMURD4y9dd4HwjBl5m7zx6znxu9DV9J1K7hZWVxoq382HiV62M4az0Uh6vxmJRpPIeSfsITYFyfVrH9JeL6B8f838L1A~JAEslsNuiwHcEHKWTZq8b3RImCSgJqQU36KNWFaeqiXmSd6abnxQwQF5o2iTqqrxEiYgYUhfTWRXbB4asecMDgHSnocysKtsaG8xFwyIzvtF9mrKCBv2t9lRXX-cIFHyVcYoGHX9PWb~otNshb9q2SDATJ6Kr1yl7yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":71634658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71634658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/71634658/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_Optimal_Heuristics_for_Just_In_Time.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71634658/pdf-libre.pdf?1633563568=\u0026response-content-disposition=attachment%3B+filename%3DNear_Optimal_Heuristics_for_Just_In_Time.pdf\u0026Expires=1732705644\u0026Signature=IMSAnw7KdrQqhTnls-szGbdTFAIzJWFIXSB6EMibUU6Trj8YFsMvjVt24oiDlmMoQVr0NaGFp9RVcWzeba6tLWWMURD4y9dd4HwjBl5m7zx6znxu9DV9J1K7hZWVxoq382HiV62M4az0Uh6vxmJRpPIeSfsITYFyfVrH9JeL6B8f838L1A~JAEslsNuiwHcEHKWTZq8b3RImCSgJqQU36KNWFaeqiXmSd6abnxQwQF5o2iTqqrxEiYgYUhfTWRXbB4asecMDgHSnocysKtsaG8xFwyIzvtF9mrKCBv2t9lRXX-cIFHyVcYoGHX9PWb~otNshb9q2SDATJ6Kr1yl7yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":71634657,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71634657/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/71634657/download_file","bulk_download_file_name":"Near_Optimal_Heuristics_for_Just_In_Time.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71634657/pdf-libre.pdf?1633563568=\u0026response-content-disposition=attachment%3B+filename%3DNear_Optimal_Heuristics_for_Just_In_Time.pdf\u0026Expires=1732705644\u0026Signature=S2SZYl6cqRVdvkzAJ9dBcZQ3EOruU25eRMNkYcD55XJ2B2-5ZJ1~yanfD8jSrknt8fNG9HjyjS4k~kX74zVhB5DYxBc6FMzYucQLGigXvbcaZTgQTHDXXPi7g1-VSW0hVHR0Xqxf-mwOJM1qgECaGCoUk4kNR9yB29R6RO84oqI2UGgso8Mtua9VAkBu6t8Bzw7kgORIKNUVhocY-XcGhDhdJO-FVi7Y3ICb8G6OVKR27VkDNd3NLknY8ALrghMhLchulADFXJTVO1DuefY~0BfSg2p-MkjN1PuyM1e8clMz~PWD~Qk3NAgEyHR9d3pWS4O9uItJJ-WhxlKCJzzOkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":12411831,"url":"http://www.mdpi.com/1999-4893/11/4/43/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2990832" id="papers"><div class="js-work-strip profile--work_container" data-work-id="86115013"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115013/Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview"><img alt="Research paper thumbnail of Evolutionary Approaches for Project Portfolio Optimization: An Overview" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115013/Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview">Evolutionary Approaches for Project Portfolio Optimization: An Overview</a></div><div class="wp-workCard_item"><span>Adaptation, Learning, and Optimization</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115013"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115013"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115013; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115013]").text(description); $(".js-view-count[data-work-id=86115013]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115013; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115013']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115013, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86115013]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115013,"title":"Evolutionary Approaches for Project Portfolio Optimization: An Overview","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Adaptation, Learning, and Optimization"},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115013/Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview","translated_internal_url":"","created_at":"2022-09-04T01:55:01.972-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evolutionary_Approaches_for_Project_Portfolio_Optimization_An_Overview","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[],"urls":[{"id":23593467,"url":"https://link.springer.com/content/pdf/10.1007/978-3-030-88315-7_2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115011"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115011/Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization"><img alt="Research paper thumbnail of Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/90641479/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115011/Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization">Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Evolutionary Computation</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cce66ffba7d177e850cdc24b5089ea0c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641479,&quot;asset_id&quot;:86115011,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641479/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115011"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115011"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115011; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115011]").text(description); $(".js-view-count[data-work-id=86115011]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115011; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115011']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115011, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cce66ffba7d177e850cdc24b5089ea0c" } } $('.js-work-strip[data-work-id=86115011]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115011,"title":"Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"Evolutionary algorithms have shown their promise in coping with many-objective optimization problems. However, the strategies of balancing convergence and diversity and the effectiveness of handling problems with irregular Pareto fronts (PFs) are still far from perfect. To address these issues, this paper proposes an adaptive sorting-based evolutionary algorithm based on the idea of decomposition. First, we propose an adaptive sorting-based environmental selection strategy. Solutions in each subpopulation (partitioned by reference vectors) are sorted based on their convergence. Those with better convergence are further sorted based on their diversity, then being selected according to their sorting levels. Second, we provide an adaptive promising subpopulation sorting-based environmental selection strategy for problems which may have irregular PFs. This strategy provides additional sorting-based selection effort on promising subpopulations after the general environmental selection process. Third, we extend the algorithm to handle constraints. Finally, we conduct an extensive experimental study on the proposed algorithm by comparing with start-of-the-state algorithms. Results demonstrate the superiority of the proposed algorithm.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"IEEE Transactions on Evolutionary Computation","grobid_abstract_attachment_id":90641479},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115011/Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization","translated_internal_url":"","created_at":"2022-09-04T01:55:00.076-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641479/thumbnails/1.jpg","file_name":"f79fc996-6111-11e9-895b-00163e08bb86.pdf","download_url":"https://www.academia.edu/attachments/90641479/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adaptive_Sorting_Based_Evolutionary_Algo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641479/f79fc996-6111-11e9-895b-00163e08bb86-libre.pdf?1662290994=\u0026response-content-disposition=attachment%3B+filename%3DAdaptive_Sorting_Based_Evolutionary_Algo.pdf\u0026Expires=1732705641\u0026Signature=K3XV36Usp4IXrc8QLkYrbzZouw-L4jKrtBy-0uhmzCtEQqRIKyHPlEnZH3Z6XfEgKQ1gV9nkknDVO2ZDlsdQYGvHbDbDkgKebNP2UY1ta4H2loOw8-yG0KsBtEMopEoc0nDjIrodDaR~V6fVcMqTfXlw3H2czOmaN6-O6zJCbVZw3ZrpHHlMwuyw553QtoSrU4J7xlu8KE1DbIfTEoRYHrKh3r3eBNlcHW2IYgIEawadCvcLbZGDHlUaw0keZdeDyh-HnlfO2eJQWP6o5ZgvLtS4vSvK7rbMsI134BMth2tGDhnzGHDNM~pWFh8LpkVYp2~CahZ~9KddXs0WWbtl2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adaptive_Sorting_Based_Evolutionary_Algorithm_for_Many_Objective_Optimization","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641479/thumbnails/1.jpg","file_name":"f79fc996-6111-11e9-895b-00163e08bb86.pdf","download_url":"https://www.academia.edu/attachments/90641479/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adaptive_Sorting_Based_Evolutionary_Algo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641479/f79fc996-6111-11e9-895b-00163e08bb86-libre.pdf?1662290994=\u0026response-content-disposition=attachment%3B+filename%3DAdaptive_Sorting_Based_Evolutionary_Algo.pdf\u0026Expires=1732705642\u0026Signature=L7YcZDe6tV19LgfTuqepo9CaNVa66Rc9ZmirZAA3cs8g5icRJobPh84kPBk~G7kzNEldCxivmRR1FaiO3YWJFc9r6UNMswzcMA2NJFw7acdCDiLY2OE-KhoWyftpf6SkB64ipFDsOgh3xOl7v3tQKEuYBTSk7ZRPMWioMaPWk-Z5XIh0oc3IRaOpwpYq~OQrtPLNqJ1Lk4ExmCytF8QQL~ka~qkoTtxlGCMbyBWULJRlazaGhhb2sUlLfZ7SqE7VnKmOUF6h1I1XQqKCiF0aaLgoTbRLS22downaIaH64ZQ7X352EoRveUEGohSm~QXWKZdD5WXqUeEgskrhQjmDuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":223634,"name":"Sorting","url":"https://www.academia.edu/Documents/in/Sorting"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":23593465,"url":"http://xplorestaging.ieee.org/ielx7/4235/8676364/08387473.pdf?arnumber=8387473"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115008"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115008/Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets"><img alt="Research paper thumbnail of Co-evolutionary approach for strategic bidding in competitive electricity markets" class="work-thumbnail" src="https://attachments.academia-assets.com/90641476/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115008/Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets">Co-evolutionary approach for strategic bidding in competitive electricity markets</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c6cad2fb5c4cf4b8aaced1e24e20149f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641476,&quot;asset_id&quot;:86115008,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641476/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115008"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115008"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115008; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115008]").text(description); $(".js-view-count[data-work-id=86115008]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115008; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115008']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115008, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c6cad2fb5c4cf4b8aaced1e24e20149f" } } $('.js-work-strip[data-work-id=86115008]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115008,"title":"Co-evolutionary approach for strategic bidding in competitive electricity markets","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Determining optimal bidding strategies in a competitive electricity market to maximize the profit of each bidder is a challenging economic game problem. In this paper, it is formulated as a bi-level optimization problem in which, in the lower level, the community's social welfare is maximized by solving a power flow problem while, in the upper level, the profits of individual bidders are maximized. In this bidders' game, instead of using a set of discrete strategies as is usual, we consider continuous functions as strategies. To solve the upper-level problem, two co-evolutionary approaches are proposed and, for the lower level, an interior point algorithm is applied. Three IEEE benchmark problems in four different scenarios are solved and their results compared with those obtained from two conventional approaches and the literature which indicate that the proposed approaches have some merit regarding quality and efficiency.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Applied Soft Computing","grobid_abstract_attachment_id":90641476},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115008/Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets","translated_internal_url":"","created_at":"2022-09-04T01:54:58.247-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641476/thumbnails/1.jpg","file_name":"109681.pdf","download_url":"https://www.academia.edu/attachments/90641476/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Co_evolutionary_approach_for_strategic_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641476/109681-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DCo_evolutionary_approach_for_strategic_b.pdf\u0026Expires=1732705642\u0026Signature=T8tGC5Y66RDfPExELMnWwcWigqO0G9G8zBGXXzAXfeZQePqwUa8zARRK~ArschKWHndOcJHvbyaREjPrPN~IDwue3uZ3sAIHY7z4zdDMPLX-8AYdK752Xyg91TnOJ4BrzpCg0iBrXFnmLumjWEv5W48uTXky8SwmdvDhSJgvZaUC8ZpEXzJSaFnjjXWdK-1cKtpqaCGFEOHEYMyyIwu8794IlZPjN4tNVQFFRWZd8wVStr9SYyGFDNxj-iC~kRxSejD6WW45DF1TmJXG0SG5eWGIstiYrNjnTm3eZh5d0hqnKzaioTjmRWibYQOCo8fISUla2TFffVZNSmEHddHVfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Co_evolutionary_approach_for_strategic_bidding_in_competitive_electricity_markets","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641476,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641476/thumbnails/1.jpg","file_name":"109681.pdf","download_url":"https://www.academia.edu/attachments/90641476/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Co_evolutionary_approach_for_strategic_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641476/109681-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DCo_evolutionary_approach_for_strategic_b.pdf\u0026Expires=1732705642\u0026Signature=T8tGC5Y66RDfPExELMnWwcWigqO0G9G8zBGXXzAXfeZQePqwUa8zARRK~ArschKWHndOcJHvbyaREjPrPN~IDwue3uZ3sAIHY7z4zdDMPLX-8AYdK752Xyg91TnOJ4BrzpCg0iBrXFnmLumjWEv5W48uTXky8SwmdvDhSJgvZaUC8ZpEXzJSaFnjjXWdK-1cKtpqaCGFEOHEYMyyIwu8794IlZPjN4tNVQFFRWZd8wVStr9SYyGFDNxj-iC~kRxSejD6WW45DF1TmJXG0SG5eWGIstiYrNjnTm3eZh5d0hqnKzaioTjmRWibYQOCo8fISUla2TFffVZNSmEHddHVfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":38644,"name":"Bidding","url":"https://www.academia.edu/Documents/in/Bidding"}],"urls":[{"id":23593463,"url":"https://api.elsevier.com/content/article/PII:S1568494616306196?httpAccept=text/plain"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115005"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86115005/Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms"><img alt="Research paper thumbnail of Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/90641473/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86115005/Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms">Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3b8ce520d99ad54c42af109b1e035f99" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641473,&quot;asset_id&quot;:86115005,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641473/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115005"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115005"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115005; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115005]").text(description); $(".js-view-count[data-work-id=86115005]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115005; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115005']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115005, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3b8ce520d99ad54c42af109b1e035f99" } } $('.js-work-strip[data-work-id=86115005]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115005,"title":"Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Capability-based planning (CBP) is a strategy focused planning framework that facilitates organizations to systematically develop capacity to achieve their business objectives in highly uncertain, dynamic and competitive environments. Capability programming is an integral part of CBP which requires selecting a portfolio of capability projects for execution, referred as a capability program, such that the overall strategic risk facing the planning organization across a number of projected future operating scenarios is minimized while maintaining the most economical choice. It is a challenging optimization problem that requires handling a number of dynamic constraints and objectives that vary throughout the entire planning horizon. An optimizing simulation approach is presented in this paper that combines an evolutionary multi-objective optimization algorithm with a reinforcement learning technique to generate capability programs which optimize strategic risks and program costs across multiple planning scenarios as well as over a rolling planning horizon. The role of the optimization algorithm in this approach is to search for the non-dominated capability programs at each decision point by minimizing the strategic risks associated with individual capability projects across a number of planning scenarios as well as the total cost of the program. The reinforcement learning algorithm, on the other hand, searches horizontally within the set of non-dominated programs to minimize capability risks and costs over the entire planning horizon. The methodology is evaluated on a test problem generated based on the data distributions in an Australian Defence Capability Plan and the performance is compared with two myopic heuristic methods.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Applied Soft Computing","grobid_abstract_attachment_id":90641473},"translated_abstract":null,"internal_url":"https://www.academia.edu/86115005/Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms","translated_internal_url":"","created_at":"2022-09-04T01:54:56.774-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641473/thumbnails/1.jpg","file_name":"111183.pdf","download_url":"https://www.academia.edu/attachments/90641473/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scenario_based_multi_period_program_opti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641473/111183-libre.pdf?1662290984=\u0026response-content-disposition=attachment%3B+filename%3DScenario_based_multi_period_program_opti.pdf\u0026Expires=1732705642\u0026Signature=BuEZZ2spyx0Ois9yKaVd9~bTtD1HTAiob6AiiWMYPuzEEFtk~m-xpZlunggIdKkT3Zmili1~Id7F86zJSNbMoeCWX-giofbkPE6HtjW76PUQIwZjhVZLZPMSDeui0Jd7cJqbNCYNhXC26tcrpR1Khn5aAKbr7ReXTUE2LuK7JpRgyUfAUXTDbn0R4A6TGAderOCzzGwkgJSZRRwiw1Jhz6q4n3HJ5GjjRoJou5JGYn46WmnYIsLpvBlmPYQrQmIOXM0RIQCNYAm5TF9Y5FeJamyiH8g9Q3K5oIDV4B4Wxri4cGwPuOLoyIhfeKpai6SigDXBZpDPwHpj0c~RcGh1Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scenario_based_multi_period_program_optimization_for_capability_based_planning_using_evolutionary_algorithms","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641473/thumbnails/1.jpg","file_name":"111183.pdf","download_url":"https://www.academia.edu/attachments/90641473/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scenario_based_multi_period_program_opti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641473/111183-libre.pdf?1662290984=\u0026response-content-disposition=attachment%3B+filename%3DScenario_based_multi_period_program_opti.pdf\u0026Expires=1732705642\u0026Signature=BuEZZ2spyx0Ois9yKaVd9~bTtD1HTAiob6AiiWMYPuzEEFtk~m-xpZlunggIdKkT3Zmili1~Id7F86zJSNbMoeCWX-giofbkPE6HtjW76PUQIwZjhVZLZPMSDeui0Jd7cJqbNCYNhXC26tcrpR1Khn5aAKbr7ReXTUE2LuK7JpRgyUfAUXTDbn0R4A6TGAderOCzzGwkgJSZRRwiw1Jhz6q4n3HJ5GjjRoJou5JGYn46WmnYIsLpvBlmPYQrQmIOXM0RIQCNYAm5TF9Y5FeJamyiH8g9Q3K5oIDV4B4Wxri4cGwPuOLoyIhfeKpai6SigDXBZpDPwHpj0c~RcGh1Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":23593461,"url":"https://api.elsevier.com/content/article/PII:S1568494616303349?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86115001"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86115001/Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection"><img alt="Research paper thumbnail of Investigating Multi-Operator Differential Evolution for Feature Selection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86115001/Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection">Investigating Multi-Operator Differential Evolution for Feature Selection</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Performance issues when dealing with a large number of features are well-known for classification...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86115001"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86115001"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86115001; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86115001]").text(description); $(".js-view-count[data-work-id=86115001]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86115001; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86115001']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86115001, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86115001]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86115001,"title":"Investigating Multi-Operator Differential Evolution for Feature Selection","translated_title":"","metadata":{"abstract":"Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.","internal_url":"https://www.academia.edu/86115001/Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection","translated_internal_url":"","created_at":"2022-09-04T01:54:55.267-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigating_Multi_Operator_Differential_Evolution_for_Feature_Selection","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":12346,"name":"Differential Evolution","url":"https://www.academia.edu/Documents/in/Differential_Evolution"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":115676,"name":"Cyber Security","url":"https://www.academia.edu/Documents/in/Cyber_Security"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114998"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114998/Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm"><img alt="Research paper thumbnail of Solving an economic and environmental dispatch problem using evolutionary algorithm" class="work-thumbnail" src="https://attachments.academia-assets.com/90641468/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114998/Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm">Solving an economic and environmental dispatch problem using evolutionary algorithm</a></div><div class="wp-workCard_item"><span>2014 IEEE International Conference on Industrial Engineering and Engineering Management</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="744cff46512e09cef0969fd8df415d77" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641468,&quot;asset_id&quot;:86114998,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641468/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114998"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114998"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114998; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114998]").text(description); $(".js-view-count[data-work-id=86114998]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114998; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114998']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114998, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "744cff46512e09cef0969fd8df415d77" } } $('.js-work-strip[data-work-id=86114998]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114998,"title":"Solving an economic and environmental dispatch problem using evolutionary algorithm","translated_title":"","metadata":{"grobid_abstract":"For successful operation of any power system, an effective scheduling of power generation is crucial. In this paper, we consider a power system with two types of generators, thermal and hydro. The characteristics of these generators vary with respect to the cost, emission to the environment, input source, capacity limit, and technological constraints. The mathematical model considering two objectives, such as minimization of the operating cost and minimization of total emissions, for a hydrothermal system is discussed. A solution approach has been proposed, based on evolutionary computation concept, for solving a benchmark problem for both single and bi-objective version of the problem. In the approach, an initial population of solutions is generated based on a heuristic and the population is then evolved using two well-known evolutionary search algorithms. The solutions of our approaches are compared with another approach from the literature. The analysis of the results reveals that the heuristic enhanced the performance of the evolutionary algorithms considered in this paper.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"2014 IEEE International Conference on Industrial Engineering and Engineering Management","grobid_abstract_attachment_id":90641468},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114998/Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm","translated_internal_url":"","created_at":"2022-09-04T01:54:53.254-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641468/thumbnails/1.jpg","file_name":"bin21d48383-87f7-4a6e-b816-58b48caf8b8b.pdf","download_url":"https://www.academia.edu/attachments/90641468/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_an_economic_and_environmental_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641468/bin21d48383-87f7-4a6e-b816-58b48caf8b8b-libre.pdf?1662290987=\u0026response-content-disposition=attachment%3B+filename%3DSolving_an_economic_and_environmental_di.pdf\u0026Expires=1732705642\u0026Signature=NlYMo4RGQlPb3pLLXmyKpt0RGR6lnwEp6SkzlQzGhf2w2sbX6roij3XWCDpOtZ-RlibAjRnYFniYSObBhTayX2dBPktwEcjUylxErdtKhBoAdCj1Q9QOP3oBynSvqa0qhXRLu2T6hTdn~QHc6x6Vzveuzj9a4OAFu8MwXEdHLLtbz4ZxPJgqtFdngbBdDtPtTruFA~SBxji9TgdWBJae1oqhIsN8V2f422q9Omu6zQFwjbrek8vT0-uzEBi-sdLeolFjz0r6to2EYRycbNCQLRb7V2Rzj3WCsJKP7AWAvjW~WMZebeRM9ypiZW7G8nwgw1GMURk9h~MFhppyQ6Xq-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Solving_an_economic_and_environmental_dispatch_problem_using_evolutionary_algorithm","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641468/thumbnails/1.jpg","file_name":"bin21d48383-87f7-4a6e-b816-58b48caf8b8b.pdf","download_url":"https://www.academia.edu/attachments/90641468/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Solving_an_economic_and_environmental_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641468/bin21d48383-87f7-4a6e-b816-58b48caf8b8b-libre.pdf?1662290987=\u0026response-content-disposition=attachment%3B+filename%3DSolving_an_economic_and_environmental_di.pdf\u0026Expires=1732705642\u0026Signature=NlYMo4RGQlPb3pLLXmyKpt0RGR6lnwEp6SkzlQzGhf2w2sbX6roij3XWCDpOtZ-RlibAjRnYFniYSObBhTayX2dBPktwEcjUylxErdtKhBoAdCj1Q9QOP3oBynSvqa0qhXRLu2T6hTdn~QHc6x6Vzveuzj9a4OAFu8MwXEdHLLtbz4ZxPJgqtFdngbBdDtPtTruFA~SBxji9TgdWBJae1oqhIsN8V2f422q9Omu6zQFwjbrek8vT0-uzEBi-sdLeolFjz0r6to2EYRycbNCQLRb7V2Rzj3WCsJKP7AWAvjW~WMZebeRM9ypiZW7G8nwgw1GMURk9h~MFhppyQ6Xq-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114995"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114995/Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion"><img alt="Research paper thumbnail of Evolutionary algorithm for analyzing higher degree research student recruitment and completion" class="work-thumbnail" src="https://attachments.academia-assets.com/90641467/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114995/Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion">Evolutionary algorithm for analyzing higher degree research student recruitment and completion</a></div><div class="wp-workCard_item"><span>Cogent Engineering</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a7f81b92e92771abf1307e6ef2b0292c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641467,&quot;asset_id&quot;:86114995,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641467/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114995"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114995"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114995; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114995]").text(description); $(".js-view-count[data-work-id=86114995]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114995; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114995']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114995, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a7f81b92e92771abf1307e6ef2b0292c" } } $('.js-work-strip[data-work-id=86114995]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114995,"title":"Evolutionary algorithm for analyzing higher degree research student recruitment and completion","translated_title":"","metadata":{"publisher":"Informa UK Limited","grobid_abstract":"Students recruited group 1 Students recruited group 2 Students recruited group 3 Students recruited group 4 Students recruited group 5 Eligible students in group 1 Eligible students in group 2 Eligible students in group 3 Eligible students in group 4 Eligible students in group 5","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Cogent Engineering","grobid_abstract_attachment_id":90641467},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114995/Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion","translated_internal_url":"","created_at":"2022-09-04T01:54:50.870-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641467/thumbnails/1.jpg","file_name":"23311916.2015.1063760.pdf","download_url":"https://www.academia.edu/attachments/90641467/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_algorithm_for_analyzing_hig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641467/23311916.2015.1063760-libre.pdf?1662290995=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_algorithm_for_analyzing_hig.pdf\u0026Expires=1732705642\u0026Signature=KDk6GLhLU2ZOAGjCLpZqtrAQ-a1c6sTYnXcwzOyt11fzFELB9Cez-~YnVdIo4frjS-3vilmo6vCWJH665OthBUnBPzDlFGi6UDBScV2uNYZTyYcvGrmJNtE5AEDqJKWoTyWgMPxqkuQg0vpNLtck5yp2~wJO6PQqM8BrjDJekrBjMY3wWaMbhfYzmWvUgyy25NLJ14Ivl7oV2mAHcZ0LcQ-cDGKSJEJ0iYQgL8s4UQiQH9SLMht8q-1gtliJOjyNOXImMOwbu188ssNa9f7GOArjMOcBrw8koGgu2fYrYt-eViIiHjNUGkKL37iUOKSe0bWPopZoyyTBg18vnU55Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolutionary_algorithm_for_analyzing_higher_degree_research_student_recruitment_and_completion","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641467/thumbnails/1.jpg","file_name":"23311916.2015.1063760.pdf","download_url":"https://www.academia.edu/attachments/90641467/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_algorithm_for_analyzing_hig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641467/23311916.2015.1063760-libre.pdf?1662290995=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_algorithm_for_analyzing_hig.pdf\u0026Expires=1732705642\u0026Signature=KDk6GLhLU2ZOAGjCLpZqtrAQ-a1c6sTYnXcwzOyt11fzFELB9Cez-~YnVdIo4frjS-3vilmo6vCWJH665OthBUnBPzDlFGi6UDBScV2uNYZTyYcvGrmJNtE5AEDqJKWoTyWgMPxqkuQg0vpNLtck5yp2~wJO6PQqM8BrjDJekrBjMY3wWaMbhfYzmWvUgyy25NLJ14Ivl7oV2mAHcZ0LcQ-cDGKSJEJ0iYQgL8s4UQiQH9SLMht8q-1gtliJOjyNOXImMOwbu188ssNa9f7GOArjMOcBrw8koGgu2fYrYt-eViIiHjNUGkKL37iUOKSe0bWPopZoyyTBg18vnU55Cg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1868473,"name":"Cogent","url":"https://www.academia.edu/Documents/in/Cogent"}],"urls":[{"id":23593457,"url":"https://www.tandfonline.com/doi/pdf/10.1080/23311916.2015.1063760"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114991"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114991/Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems"><img alt="Research paper thumbnail of Memetic algorithm for solving resource constrained project scheduling problems" class="work-thumbnail" src="https://attachments.academia-assets.com/90641465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114991/Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems">Memetic algorithm for solving resource constrained project scheduling problems</a></div><div class="wp-workCard_item"><span>2015 IEEE Congress on Evolutionary Computation (CEC)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="42953639795e715ca245559c8762a19b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641465,&quot;asset_id&quot;:86114991,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641465/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114991"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114991"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114991; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114991]").text(description); $(".js-view-count[data-work-id=86114991]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114991; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114991']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114991, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "42953639795e715ca245559c8762a19b" } } $('.js-work-strip[data-work-id=86114991]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114991,"title":"Memetic algorithm for solving resource constrained project scheduling problems","translated_title":"","metadata":{"grobid_abstract":"The resource constrained project scheduling problem (RCPSP) has a wide variety of practical applications in construction, manufacturing, project planning, and other areas. Since the 1960s many optimization algorithms have been proposed to solve this NP-hard problem, and their performances are evaluated in well-known test problems with different complexities. Although it is desirable to find an algorithm which can provide promising solutions with reasonable computational efforts for any problem under consideration, no single algorithm can meet that condition. To deal with this challenge, we present a genetic algorithm based memetic algorithm (MA) for solving RCPSP. The algorithm is initiated by a critical path-based heuristic and a variant of the Nawaz, Enscore, and Ham (NEH) heuristic. The algorithm involves a similar block order crossover and a variable insertion based local search. An automatic restart scheme is also presented which assists the algorithm to escape from local optima. In addition, a design-of-experiment (DOE) method is used to determine the set of suitable parameters for the proposed MA. Numerical results, statistical analysis and comparisons with state-of-the-art algorithms demonstrate the effectiveness of the proposed approach. 2 1 j (4) a {0, 1} jt (5) The objective function is the minimization of makespan, C max (Eq. (1)). Eq. (2) ensures that an activity can be executed only once. Eq. (3) ensures that each activity j cannot be started unless all its predecessors have been completed. Eq. (4) ensures that an activity can be started when its required renewable resources (such as workforce, machines, tools or equipment) are available. Over the years, exact techniques such as branch and bound [4-6], branch and cut [7], and the event based approach [8] have been proposed for the optimal solution of RCPSPs. Due to computational","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 IEEE Congress on Evolutionary Computation (CEC)","grobid_abstract_attachment_id":90641465},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114991/Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems","translated_internal_url":"","created_at":"2022-09-04T01:54:49.083-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641465/thumbnails/1.jpg","file_name":"j.autcon.2019.10305220220904-1-1vi8ntb.pdf","download_url":"https://www.academia.edu/attachments/90641465/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Memetic_algorithm_for_solving_resource_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641465/j.autcon.2019.10305220220904-1-1vi8ntb-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DMemetic_algorithm_for_solving_resource_c.pdf\u0026Expires=1732705642\u0026Signature=gUJmBZbzvYEnZXrJ6a12mLS2befUU6hThbSXVIxU~gM7mGGrrHrHSqgIJ-MLrRRhjwMF4yZD39ugWARe2RLtRr3tdiF7GUw~XioxfawLFo-aF5i4RWC9w6J7C3Wt3O4fRpbwmctMjRi-quD0fjsoqjTX5iAYRsh9hJiBT8xXCcJ2-AbFMsQ2ryFzL7SaZI-ojfRKE0XEOIYnsDAAYP55iNk9G038Pn34g06~788TQI0jw0HWtLC23Fu7TBQgKOrUw0V9EaiL9DGf9PsvFIqd-um4IlLJZrP-jyHX0i0Dk-Ap0gkJHWFuLNDPPyzkak4B~U3ZLq9BdszRK5hlMWy8GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Memetic_algorithm_for_solving_resource_constrained_project_scheduling_problems","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641465/thumbnails/1.jpg","file_name":"j.autcon.2019.10305220220904-1-1vi8ntb.pdf","download_url":"https://www.academia.edu/attachments/90641465/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Memetic_algorithm_for_solving_resource_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641465/j.autcon.2019.10305220220904-1-1vi8ntb-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DMemetic_algorithm_for_solving_resource_c.pdf\u0026Expires=1732705642\u0026Signature=gUJmBZbzvYEnZXrJ6a12mLS2befUU6hThbSXVIxU~gM7mGGrrHrHSqgIJ-MLrRRhjwMF4yZD39ugWARe2RLtRr3tdiF7GUw~XioxfawLFo-aF5i4RWC9w6J7C3Wt3O4fRpbwmctMjRi-quD0fjsoqjTX5iAYRsh9hJiBT8xXCcJ2-AbFMsQ2ryFzL7SaZI-ojfRKE0XEOIYnsDAAYP55iNk9G038Pn34g06~788TQI0jw0HWtLC23Fu7TBQgKOrUw0V9EaiL9DGf9PsvFIqd-um4IlLJZrP-jyHX0i0Dk-Ap0gkJHWFuLNDPPyzkak4B~U3ZLq9BdszRK5hlMWy8GA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":482058,"name":"Memetic Algorithm","url":"https://www.academia.edu/Documents/in/Memetic_Algorithm"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114979"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114979/A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain"><img alt="Research paper thumbnail of A combined approach for modeling multi-echelon multi-period decentralized supply chain" class="work-thumbnail" src="https://attachments.academia-assets.com/90641451/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114979/A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain">A combined approach for modeling multi-echelon multi-period decentralized supply chain</a></div><div class="wp-workCard_item"><span>Annals of Operations Research</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e07f9093c67555850328b734cb8b944e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641451,&quot;asset_id&quot;:86114979,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641451/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114979"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114979"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114979; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114979]").text(description); $(".js-view-count[data-work-id=86114979]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114979; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114979']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114979, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e07f9093c67555850328b734cb8b944e" } } $('.js-work-strip[data-work-id=86114979]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114979,"title":"A combined approach for modeling multi-echelon multi-period decentralized supply chain","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"In this paper, a multi-echelon, multi-period, decentralized supply chain (SC) with a single manufacturer, single distributor and single retailer is considered. For this setting, a twophase planning approach combining centralized and decentralized decision-making processes is proposed, in which the first-phase planning is a coordinated centralized controlled, and the second-phase planning is viewed as independent decentralized decision-making for individual entities. This research focuses on the independence and equally powerful behavior of the individual entities with the aim of achieving the maximum profit for each stage. A mathematical model for total SC coordination as a first-phase planning problem and separate ones for each of the independent members with their individual objectives and constraints as second-phase planning problems are developed. We introduce a new solution approach using a goal programming technique in which a target or goal value is set for each independent decision problem to ensure that it obtains a near value for its individual optimum profit, with a numerical analysis presented to explain the results. Moreover, the proposed two-phase model is compared with a single-phase approach in which all stages are considered dependent on each other as parts of a centralized SC. The results prove that the combined two-phase planning method for a decentralized SC network is more realistic and effective than a traditional single-phase one.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Annals of Operations Research","grobid_abstract_attachment_id":90641451},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114979/A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain","translated_internal_url":"","created_at":"2022-09-04T01:54:12.145-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641451,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641451/thumbnails/1.jpg","file_name":"s10479-021-04121-0.pdf","download_url":"https://www.academia.edu/attachments/90641451/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_combined_approach_for_modeling_multi_e.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641451/s10479-021-04121-0-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DA_combined_approach_for_modeling_multi_e.pdf\u0026Expires=1732705642\u0026Signature=FeQb5VJSPA~YeeG6pkpiUDcKWwAZeHP1EbBGF~sTX8qBN99CBJpm6PMvtqO64ZFkpQXzYXc0YrE4wfaplXm3fEDgl7rT7MTOtofXqOjrckgLcNIlwCrdp1hb-sB1ErdqeaZz3S5aqLRAe~MCWtFTenTY~pb0rb3vSnCXyhUy8g0UKPl~KFGY324tPP1an-C1gfsCfHXntciUToHV3lfEmozVHXa12eB15iaH0tO1IWCYjnaOqMGuCfj3mf4PLOnfkRV~bK2Gnm0QpywWgJsUxSw3R-hofejDzJWszXl1Yc9wVHQ2tNy7L5i~URxi00DB9~SV6megM0o5j1CF-d5ilA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_combined_approach_for_modeling_multi_echelon_multi_period_decentralized_supply_chain","translated_slug":"","page_count":38,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641451,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641451/thumbnails/1.jpg","file_name":"s10479-021-04121-0.pdf","download_url":"https://www.academia.edu/attachments/90641451/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_combined_approach_for_modeling_multi_e.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641451/s10479-021-04121-0-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DA_combined_approach_for_modeling_multi_e.pdf\u0026Expires=1732705642\u0026Signature=FeQb5VJSPA~YeeG6pkpiUDcKWwAZeHP1EbBGF~sTX8qBN99CBJpm6PMvtqO64ZFkpQXzYXc0YrE4wfaplXm3fEDgl7rT7MTOtofXqOjrckgLcNIlwCrdp1hb-sB1ErdqeaZz3S5aqLRAe~MCWtFTenTY~pb0rb3vSnCXyhUy8g0UKPl~KFGY324tPP1an-C1gfsCfHXntciUToHV3lfEmozVHXa12eB15iaH0tO1IWCYjnaOqMGuCfj3mf4PLOnfkRV~bK2Gnm0QpywWgJsUxSw3R-hofejDzJWszXl1Yc9wVHQ2tNy7L5i~URxi00DB9~SV6megM0o5j1CF-d5ilA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":23593449,"url":"https://link.springer.com/content/pdf/10.1007/s10479-021-04121-0.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114978"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114978/Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers"><img alt="Research paper thumbnail of Real-Time disruption management in a coordinated supply chain system with multiple suppliers" class="work-thumbnail" src="https://attachments.academia-assets.com/90641450/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114978/Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers">Real-Time disruption management in a coordinated supply chain system with multiple suppliers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents the study of a real-time procurement and production mechanism for a three-sta...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents the study of a real-time procurement and production mechanism for a three-stage supply chain system with multiple suppliers, subject to unexpected disruptions. In the first part of the paper, a mathematical model was developed for the optimization of replenishment and production decisions for each node after the occurrence of a transportation disruption. In addition, an experiment was conducted to study the effects of disruptions to the system using predefined scenarios, where the supplier’s prioritization of disruption mitigation strategies was explored. Various disruption scenarios were predefined by combining different disruption types and locations as well as different combinations of suppliers. It will be shown that the solution to the transportation disruption was more sensitive to the lot size when the lost sales cost was large. However, when the lost sales cost was low, the sensitivity to the lot size decreased, and the setup cost and inventory holding co...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="193a59241d896300b4aee5f85928e3aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641450,&quot;asset_id&quot;:86114978,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641450/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114978"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114978"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114978; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114978]").text(description); $(".js-view-count[data-work-id=86114978]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114978; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114978']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114978, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "193a59241d896300b4aee5f85928e3aa" } } $('.js-work-strip[data-work-id=86114978]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114978,"title":"Real-Time disruption management in a coordinated supply chain system with multiple suppliers","translated_title":"","metadata":{"abstract":"This paper presents the study of a real-time procurement and production mechanism for a three-stage supply chain system with multiple suppliers, subject to unexpected disruptions. In the first part of the paper, a mathematical model was developed for the optimization of replenishment and production decisions for each node after the occurrence of a transportation disruption. In addition, an experiment was conducted to study the effects of disruptions to the system using predefined scenarios, where the supplier’s prioritization of disruption mitigation strategies was explored. Various disruption scenarios were predefined by combining different disruption types and locations as well as different combinations of suppliers. It will be shown that the solution to the transportation disruption was more sensitive to the lot size when the lost sales cost was large. However, when the lost sales cost was low, the sensitivity to the lot size decreased, and the setup cost and inventory holding co...","publisher":"ICIS 2016","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"This paper presents the study of a real-time procurement and production mechanism for a three-stage supply chain system with multiple suppliers, subject to unexpected disruptions. In the first part of the paper, a mathematical model was developed for the optimization of replenishment and production decisions for each node after the occurrence of a transportation disruption. In addition, an experiment was conducted to study the effects of disruptions to the system using predefined scenarios, where the supplier’s prioritization of disruption mitigation strategies was explored. Various disruption scenarios were predefined by combining different disruption types and locations as well as different combinations of suppliers. It will be shown that the solution to the transportation disruption was more sensitive to the lot size when the lost sales cost was large. However, when the lost sales cost was low, the sensitivity to the lot size decreased, and the setup cost and inventory holding co...","internal_url":"https://www.academia.edu/86114978/Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers","translated_internal_url":"","created_at":"2022-09-04T01:54:11.944-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641450/thumbnails/1.jpg","file_name":"ILS2016_FB04_2.pdf","download_url":"https://www.academia.edu/attachments/90641450/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Real_Time_disruption_management_in_a_coo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641450/ILS2016_FB04_2-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DReal_Time_disruption_management_in_a_coo.pdf\u0026Expires=1732705643\u0026Signature=KWuDp7ZHXvxzSZ1kY2UkosyFQBbwr938gleaqS73Z9gZSIQS8Zbz30Re6qRqLnvkyO4mdT6I6sZttCHLSbNuBYRIhQt3Liotd3-xZaHgVqN~6uz7N6DRT22zT6o0M-NP5rJzMchynWQV3sQP6tQ-Pw3MC5Mes8zwjhi4xmj88PLIngv2D~xbcEFqArJ-6987HWcR3KH4foydcyJleyhZQOSjs1-jnQfGLf2c2ya~vr7TDvFJ5KekHdnJlCuUVEHFzamiZ6MUTl2wX0YeKNzFcLn~MvD9eu9Ob6YBUApSfNPeU819YERgMD2AbDHs~VFHmlW9tZIVfZF268kpCvyeHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Real_Time_disruption_management_in_a_coordinated_supply_chain_system_with_multiple_suppliers","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641450/thumbnails/1.jpg","file_name":"ILS2016_FB04_2.pdf","download_url":"https://www.academia.edu/attachments/90641450/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Real_Time_disruption_management_in_a_coo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641450/ILS2016_FB04_2-libre.pdf?1662290993=\u0026response-content-disposition=attachment%3B+filename%3DReal_Time_disruption_management_in_a_coo.pdf\u0026Expires=1732705643\u0026Signature=KWuDp7ZHXvxzSZ1kY2UkosyFQBbwr938gleaqS73Z9gZSIQS8Zbz30Re6qRqLnvkyO4mdT6I6sZttCHLSbNuBYRIhQt3Liotd3-xZaHgVqN~6uz7N6DRT22zT6o0M-NP5rJzMchynWQV3sQP6tQ-Pw3MC5Mes8zwjhi4xmj88PLIngv2D~xbcEFqArJ-6987HWcR3KH4foydcyJleyhZQOSjs1-jnQfGLf2c2ya~vr7TDvFJ5KekHdnJlCuUVEHFzamiZ6MUTl2wX0YeKNzFcLn~MvD9eu9Ob6YBUApSfNPeU819YERgMD2AbDHs~VFHmlW9tZIVfZF268kpCvyeHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"}],"urls":[{"id":23593448,"url":"http://ils2016conference.com/wp-content/uploads/2015/03/ILS2016_FB04_2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114977"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114977/An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation"><img alt="Research paper thumbnail of An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation" class="work-thumbnail" src="https://attachments.academia-assets.com/90641447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114977/An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation">An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation</a></div><div class="wp-workCard_item"><span>IEEE Access</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="27047870656a669343c1179ade487697" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641447,&quot;asset_id&quot;:86114977,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641447/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114977"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114977"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114977; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114977]").text(description); $(".js-view-count[data-work-id=86114977]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114977; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114977']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114977, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "27047870656a669343c1179ade487697" } } $('.js-work-strip[data-work-id=86114977]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114977,"title":"An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","grobid_abstract":"The performance of a Convolutional Neural Network (CNN) highly depends on its architecture and corresponding parameters. Manually designing a CNN is a time-consuming process in regards to the various layers that it can have, and the variety of parameters that must be set up. Increasing the complexity of the network structure by employing various types of connections makes designing a network even more challenging. Evolutionary computation as an optimisation technique can be applied to arrange the CNN layers and/or initiate its parameters automatically or semi-automatically. Dense network and Residual network are two popular network structures that were introduced to facilitate the training of deep networks. In this paper, leveraging the potentials of Dense and Residual blocks, and using the capability of evolutionary computation, we propose an automatic evolutionary model to detect an optimum and accurate network structure and its parameters for medical image segmentation. The proposed evolutionary DenseRes model is employed for segmentation of six publicly available MRI and CT medical datasets. The proposed model obtained high accuracy while employing networks with minimal parameters for the segmentation of medical images and outperformed manual and automatic designed networks, including U","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"IEEE Access","grobid_abstract_attachment_id":90641447},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114977/An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation","translated_internal_url":"","created_at":"2022-09-04T01:54:11.728-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641447/thumbnails/1.jpg","file_name":"09265246.pdf","download_url":"https://www.academia.edu/attachments/90641447/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Evolutionary_DenseRes_Deep_Convolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641447/09265246-libre.pdf?1662290992=\u0026response-content-disposition=attachment%3B+filename%3DAn_Evolutionary_DenseRes_Deep_Convolutio.pdf\u0026Expires=1732705643\u0026Signature=NuWepqKF6JRNM1hdlTpcqBGt3xKYfLAliREghaQ7SNRaNlBg0M3xYsCliRXvwllmqZdqwMNjMXH~h3082XYLT7vmWJlvBcd2vwGB2hpOkd4sMFgLvf02s5ZPjun-SnFOt3EH7-G1Fncsj2IXLbODPcr3jNfc~qh~-ZSziIRRrGzSN~dVNsBErmrdXHM2q6M-7OF4W10KwUJSx2~ENc4PpCMqHX6yFvIKwjv-uWceeuxAgKAHO-Q~D22I6e3lorxFGgzLEkBG3Wq6bdsdywTDmh40hBFiBQCxhoKfVQJb8aKRejASQtm~JyPZrnlMg4ch4nEmrg2WrAtTLbqFiCSvbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Evolutionary_DenseRes_Deep_Convolutional_Neural_Network_for_Medical_Image_Segmentation","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641447/thumbnails/1.jpg","file_name":"09265246.pdf","download_url":"https://www.academia.edu/attachments/90641447/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Evolutionary_DenseRes_Deep_Convolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641447/09265246-libre.pdf?1662290992=\u0026response-content-disposition=attachment%3B+filename%3DAn_Evolutionary_DenseRes_Deep_Convolutio.pdf\u0026Expires=1732705643\u0026Signature=NuWepqKF6JRNM1hdlTpcqBGt3xKYfLAliREghaQ7SNRaNlBg0M3xYsCliRXvwllmqZdqwMNjMXH~h3082XYLT7vmWJlvBcd2vwGB2hpOkd4sMFgLvf02s5ZPjun-SnFOt3EH7-G1Fncsj2IXLbODPcr3jNfc~qh~-ZSziIRRrGzSN~dVNsBErmrdXHM2q6M-7OF4W10KwUJSx2~ENc4PpCMqHX6yFvIKwjv-uWceeuxAgKAHO-Q~D22I6e3lorxFGgzLEkBG3Wq6bdsdywTDmh40hBFiBQCxhoKfVQJb8aKRejASQtm~JyPZrnlMg4ch4nEmrg2WrAtTLbqFiCSvbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation"},{"id":1568111,"name":"Convolutional Neural Network","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network"}],"urls":[{"id":23593447,"url":"http://xplorestaging.ieee.org/ielx7/6287639/8948470/09265246.pdf?arnumber=9265246"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114976/Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers"><img alt="Research paper thumbnail of Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers" class="work-thumbnail" src="https://attachments.academia-assets.com/90641448/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114976/Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers">Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers</a></div><div class="wp-workCard_item"><span>2014 IEEE International Conference on Industrial Engineering and Engineering Management</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1dcff268e92045969eaa71ae80bd2b76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641448,&quot;asset_id&quot;:86114976,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641448/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114976]").text(description); $(".js-view-count[data-work-id=86114976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114976, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1dcff268e92045969eaa71ae80bd2b76" } } $('.js-work-strip[data-work-id=86114976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114976,"title":"Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"In this paper, a supply disruption management model is introduced in a three-tier supply chain with multiple suppliers and retailers, where the system may face sudden disruption in its raw material supply. At first, we formulated a mathematical model for ideal conditions and then reformulated it to revise the supply, production and delivery plan after the occurrence of a disruption, for a future period, to recover from the disruption. Here, the objective is to minimize the total cost during the recovery time window while being subject to supply, capacity, demand, and delivery constraints. We have also proposed an efficient heuristic to solve the model and the results have been compared, with another established solution approach, for a good number of randomly generated test problems. The comparison showed the consistent performance of our developed heuristic. This paper also presents some numerical examples to explain the usefulness of the proposed approach.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"2014 IEEE International Conference on Industrial Engineering and Engineering Management","grobid_abstract_attachment_id":90641448},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114976/Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers","translated_internal_url":"","created_at":"2022-09-04T01:54:11.489-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641448/thumbnails/1.jpg","file_name":"2-s2.0-84988293808_20am_201.pdf","download_url":"https://www.academia.edu/attachments/90641448/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_supply_disruption_in_a_three_ti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641448/2-s2.0-84988293808_20am_201-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DManaging_supply_disruption_in_a_three_ti.pdf\u0026Expires=1732705643\u0026Signature=HRyCChkyBHSh52Q4mQ57dRJk-M4RkHLIhLLPAa-RWeltNJNn~u-CmopfJfh3pKF0Ny-bAYfFDKgyHzI-eokmReklCr3N8EnieXCj8wIKpVSkCSeUJ1G7cy2ESFMOCXiwkxpan1iktuLtiyUBIUpHMUtvHmWmCb5lasXt~8HwCup8rIE4oCCzMwcXyGNAWxAI19duMc-YjK-uA4GCyZV6uci~ks14UWV6uPsaePpvKFAvCqkAnw1zttCG5vtQnemKjjl8bZNNN~jqaSmDvpi21JvdfsZwiP~7x5fJ9OsDBIcFjhA6OOozKRnaYzxTETpoGVDyp6AlEtgSdzaCCGE1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Managing_supply_disruption_in_a_three_tier_supply_chain_with_multiple_suppliers_and_retailers","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641448/thumbnails/1.jpg","file_name":"2-s2.0-84988293808_20am_201.pdf","download_url":"https://www.academia.edu/attachments/90641448/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_supply_disruption_in_a_three_ti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641448/2-s2.0-84988293808_20am_201-libre.pdf?1662290985=\u0026response-content-disposition=attachment%3B+filename%3DManaging_supply_disruption_in_a_three_ti.pdf\u0026Expires=1732705643\u0026Signature=HRyCChkyBHSh52Q4mQ57dRJk-M4RkHLIhLLPAa-RWeltNJNn~u-CmopfJfh3pKF0Ny-bAYfFDKgyHzI-eokmReklCr3N8EnieXCj8wIKpVSkCSeUJ1G7cy2ESFMOCXiwkxpan1iktuLtiyUBIUpHMUtvHmWmCb5lasXt~8HwCup8rIE4oCCzMwcXyGNAWxAI19duMc-YjK-uA4GCyZV6uci~ks14UWV6uPsaePpvKFAvCqkAnw1zttCG5vtQnemKjjl8bZNNN~jqaSmDvpi21JvdfsZwiP~7x5fJ9OsDBIcFjhA6OOozKRnaYzxTETpoGVDyp6AlEtgSdzaCCGE1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"},{"id":83702,"name":"Disruption Management","url":"https://www.academia.edu/Documents/in/Disruption_Management"},{"id":419504,"name":"Heuristic","url":"https://www.academia.edu/Documents/in/Heuristic"}],"urls":[{"id":23593446,"url":"http://xplorestaging.ieee.org/ielx7/7048056/7058583/07058627.pdf?arnumber=7058627"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114975/An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption"><img alt="Research paper thumbnail of An Inventory Recovery Model for an Economic Lot Sizing Problem with Disruption" class="work-thumbnail" src="https://attachments.academia-assets.com/90641446/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114975/An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption">An Inventory Recovery Model for an Economic Lot Sizing Problem with Disruption</a></div><div class="wp-workCard_item"><span>Jurnal Teknologi</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Supply chains face risks from various unexpected events that make disruptions almost inevitable. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a disruption recovery model for a single stage production and inventory system, where finished product supply is randomly disrupted for periods of random duration. A production facility that manufactures a single product following the Economic Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="98979ca67ee3561403b0d2e85a8de3b7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641446,&quot;asset_id&quot;:86114975,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641446/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114975]").text(description); $(".js-view-count[data-work-id=86114975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "98979ca67ee3561403b0d2e85a8de3b7" } } $('.js-work-strip[data-work-id=86114975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114975,"title":"An Inventory Recovery Model for an Economic Lot Sizing Problem with Disruption","translated_title":"","metadata":{"abstract":"Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a disruption recovery model for a single stage production and inventory system, where finished product supply is randomly disrupted for periods of random duration. A production facility that manufactures a single product following the Economic Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption.","publisher":"Penerbit UTM Press","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Jurnal Teknologi"},"translated_abstract":"Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a disruption recovery model for a single stage production and inventory system, where finished product supply is randomly disrupted for periods of random duration. A production facility that manufactures a single product following the Economic Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption.","internal_url":"https://www.academia.edu/86114975/An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption","translated_internal_url":"","created_at":"2022-09-04T01:54:11.199-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641446,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641446/thumbnails/1.jpg","file_name":"f161.pdf","download_url":"https://www.academia.edu/attachments/90641446/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inventory_Recovery_Model_for_an_Econo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641446/f161-libre.pdf?1662290990=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inventory_Recovery_Model_for_an_Econo.pdf\u0026Expires=1732705643\u0026Signature=Isx-THnMOiog4O5mzHbwD~TQXh4AqOKMVMq3NcWi9n1-OzM6PZoO5FjYTYQZToGviBWgiJhNphwZ8VoW6Z7ADx1TZlXam82MSMhwupM6HFUfX9c9IL~EENg4FUAVDst2tYlncNNrV5t8ImRvOoq-uQlYaYktQIpCdfSGjTNXz22jPYzsyGtl~8BatjiqMOj2hTgw9hTj5SDydVODJuUtbWxgIFe204H8fUX7u7Oe094q5W~~OCg0HhsMe3X6VIqhR9x1AMk54As-Cpza8-bM2MUMliY0cSEGyYAUgpUmvskqf~7nQOjPFO1Ui9Y7EXxVNuySfqV7pkzqqYX~U7rdKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Inventory_Recovery_Model_for_an_Economic_Lot_Sizing_Problem_with_Disruption","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641446,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641446/thumbnails/1.jpg","file_name":"f161.pdf","download_url":"https://www.academia.edu/attachments/90641446/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Inventory_Recovery_Model_for_an_Econo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641446/f161-libre.pdf?1662290990=\u0026response-content-disposition=attachment%3B+filename%3DAn_Inventory_Recovery_Model_for_an_Econo.pdf\u0026Expires=1732705643\u0026Signature=Isx-THnMOiog4O5mzHbwD~TQXh4AqOKMVMq3NcWi9n1-OzM6PZoO5FjYTYQZToGviBWgiJhNphwZ8VoW6Z7ADx1TZlXam82MSMhwupM6HFUfX9c9IL~EENg4FUAVDst2tYlncNNrV5t8ImRvOoq-uQlYaYktQIpCdfSGjTNXz22jPYzsyGtl~8BatjiqMOj2hTgw9hTj5SDydVODJuUtbWxgIFe204H8fUX7u7Oe094q5W~~OCg0HhsMe3X6VIqhR9x1AMk54As-Cpza8-bM2MUMliY0cSEGyYAUgpUmvskqf~7nQOjPFO1Ui9Y7EXxVNuySfqV7pkzqqYX~U7rdKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":582376,"name":"Sizing","url":"https://www.academia.edu/Documents/in/Sizing"}],"urls":[{"id":23593445,"url":"https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/viewFile/9162/5459"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114974"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86114974/Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review"><img alt="Research paper thumbnail of Managing risk and disruption in production-inventory and supply chain systems: A review" class="work-thumbnail" src="https://attachments.academia-assets.com/90641453/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86114974/Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review">Managing risk and disruption in production-inventory and supply chain systems: A review</a></div><div class="wp-workCard_item"><span>Journal of Industrial and Management Optimization</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3039be8bf32c15e0b52c6d90d5a2e389" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90641453,&quot;asset_id&quot;:86114974,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90641453/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114974"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114974"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114974; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114974]").text(description); $(".js-view-count[data-work-id=86114974]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114974; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114974']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114974, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3039be8bf32c15e0b52c6d90d5a2e389" } } $('.js-work-strip[data-work-id=86114974]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114974,"title":"Managing risk and disruption in production-inventory and supply chain systems: A review","translated_title":"","metadata":{"publisher":"American Institute of Mathematical Sciences (AIMS)","grobid_abstract":"This paper presents a literature review on risk and disruption management in productioninventory and supply chain systems. The review is conducted on the basis of comparing various works published in this research domain, specifically the papers, which considered real-life risk factors, such as imperfect production processes, risk and disruption in production, supply, demand, and transportation, while developing models for productioninventory and supply chain systems. Emphasis is given on the assumptions and the types of problems considered in the published research. We also focus on reviewing the mathematical models and the solution approaches used in solving the models using both hypothetical and real-world problem scenarios. Finally, the literature review is summarized and future research directions are discussed.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of Industrial and Management Optimization","grobid_abstract_attachment_id":90641453},"translated_abstract":null,"internal_url":"https://www.academia.edu/86114974/Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review","translated_internal_url":"","created_at":"2022-09-04T01:54:10.994-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90641453,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641453/thumbnails/1.jpg","file_name":"8e5f208e1bf768e157f28b0188dae41a8ffa.pdf","download_url":"https://www.academia.edu/attachments/90641453/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_risk_and_disruption_in_producti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641453/8e5f208e1bf768e157f28b0188dae41a8ffa-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DManaging_risk_and_disruption_in_producti.pdf\u0026Expires=1732705643\u0026Signature=NObOQnCCb-3wj5b0uzQM5w8xO7uEVlge7Dc-jELvYYz1TTdRwpvOHgT7PVj~bdkTJmfLnexx9NavN-6e0OBn~wp7oicLdD9HU7is303vzrgP1pWdP6bbgqeYV-5pHcLVKPoJNViGcySdPMlClUU-esEvHgYH1FsvmmwbmcRj7Rit7p1mBMy2BS4dgoJTSD~7lqwa9~KWJDH3rANvitP8s1yrylKiEUIFzJgoiKmUFjym~ZVx9DonNtlWYnA1JdKaJsiWTUTFI6rHIOUP8w0pm1cQQBYhl4aG4mfpH3dfbyghG0x-vYC9lKSAotkgWBiiAlRymCgonOm0NSH3m6e81Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Managing_risk_and_disruption_in_production_inventory_and_supply_chain_systems_A_review","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":90641453,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90641453/thumbnails/1.jpg","file_name":"8e5f208e1bf768e157f28b0188dae41a8ffa.pdf","download_url":"https://www.academia.edu/attachments/90641453/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Managing_risk_and_disruption_in_producti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90641453/8e5f208e1bf768e157f28b0188dae41a8ffa-libre.pdf?1662290991=\u0026response-content-disposition=attachment%3B+filename%3DManaging_risk_and_disruption_in_producti.pdf\u0026Expires=1732705643\u0026Signature=NObOQnCCb-3wj5b0uzQM5w8xO7uEVlge7Dc-jELvYYz1TTdRwpvOHgT7PVj~bdkTJmfLnexx9NavN-6e0OBn~wp7oicLdD9HU7is303vzrgP1pWdP6bbgqeYV-5pHcLVKPoJNViGcySdPMlClUU-esEvHgYH1FsvmmwbmcRj7Rit7p1mBMy2BS4dgoJTSD~7lqwa9~KWJDH3rANvitP8s1yrylKiEUIFzJgoiKmUFjym~ZVx9DonNtlWYnA1JdKaJsiWTUTFI6rHIOUP8w0pm1cQQBYhl4aG4mfpH3dfbyghG0x-vYC9lKSAotkgWBiiAlRymCgonOm0NSH3m6e81Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":1335,"name":"Supply Chain Management","url":"https://www.academia.edu/Documents/in/Supply_Chain_Management"},{"id":12061,"name":"Risk Management","url":"https://www.academia.edu/Documents/in/Risk_Management"},{"id":24699,"name":"Supply Chain","url":"https://www.academia.edu/Documents/in/Supply_Chain"},{"id":44293,"name":"Literature Review","url":"https://www.academia.edu/Documents/in/Literature_Review"},{"id":72834,"name":"Production and Inventory planning and control systems","url":"https://www.academia.edu/Documents/in/Production_and_Inventory_planning_and_control_systems"},{"id":83702,"name":"Disruption Management","url":"https://www.academia.edu/Documents/in/Disruption_Management"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":23593444,"url":"http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11613"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114973"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86114973/Managing_risk_in_production_scheduling_under_uncertain_disruption"><img alt="Research paper thumbnail of Managing risk in production scheduling under uncertain disruption" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86114973/Managing_risk_in_production_scheduling_under_uncertain_disruption">Managing risk in production scheduling under uncertain disruption</a></div><div class="wp-workCard_item"><span>Artificial Intelligence for Engineering Design, Analysis and Manufacturing</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simulation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114973"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114973"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114973; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114973]").text(description); $(".js-view-count[data-work-id=86114973]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114973; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114973']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114973, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86114973]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114973,"title":"Managing risk in production scheduling under uncertain disruption","translated_title":"","metadata":{"abstract":"The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simulation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.","publisher":"Cambridge University Press (CUP)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Artificial Intelligence for Engineering Design, Analysis and Manufacturing"},"translated_abstract":"The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simulation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.","internal_url":"https://www.academia.edu/86114973/Managing_risk_in_production_scheduling_under_uncertain_disruption","translated_internal_url":"","created_at":"2022-09-04T01:54:10.844-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Managing_risk_in_production_scheduling_under_uncertain_disruption","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114972"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86114972/A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems"><img alt="Research paper thumbnail of A real-time order acceptance and scheduling approach for permutation flow shop problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86114972/A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems">A real-time order acceptance and scheduling approach for permutation flow shop problems</a></div><div class="wp-workCard_item"><span>European Journal of Operational Research</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimization problem. PFSP has been widely studied as a static problem using heuristics and metaheuristics. In reality, PFSPs are not usually static, but are rather dynamic, as customer orders are placed at random time intervals. In the dynamic problem, two tasks must be considered: (i) should a new order be accepted? and (ii) if accepted, how can this schedule be ordered, when some orders may be already under process and or be in the queue for processing? For the first task, we propose a simple heuristic based decision process, and for the second task, we developed a Genetic Algorithm (GA) based approach that is applied repeatedly for re-optimization as each new order arrives. The usefulness of the proposed approach has been demonstrated by solving a set of test problems. In addition the proposed approach, along with a simulation model, has been tested for maximizing the revenue of a flow shop production business under different order arrival scenarios. Finally, a case study is presented to show the applicability of the proposed approach in practice.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114972"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114972"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114972; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114972]").text(description); $(".js-view-count[data-work-id=86114972]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114972; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114972']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114972, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86114972]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114972,"title":"A real-time order acceptance and scheduling approach for permutation flow shop problems","translated_title":"","metadata":{"abstract":"ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimization problem. PFSP has been widely studied as a static problem using heuristics and metaheuristics. In reality, PFSPs are not usually static, but are rather dynamic, as customer orders are placed at random time intervals. In the dynamic problem, two tasks must be considered: (i) should a new order be accepted? and (ii) if accepted, how can this schedule be ordered, when some orders may be already under process and or be in the queue for processing? For the first task, we propose a simple heuristic based decision process, and for the second task, we developed a Genetic Algorithm (GA) based approach that is applied repeatedly for re-optimization as each new order arrives. The usefulness of the proposed approach has been demonstrated by solving a set of test problems. In addition the proposed approach, along with a simulation model, has been tested for maximizing the revenue of a flow shop production business under different order arrival scenarios. Finally, a case study is presented to show the applicability of the proposed approach in practice.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"European Journal of Operational Research"},"translated_abstract":"ABSTRACT The Permutation Flow Shop Scheduling Problem (PFSP) is a complex combinatorial optimization problem. PFSP has been widely studied as a static problem using heuristics and metaheuristics. In reality, PFSPs are not usually static, but are rather dynamic, as customer orders are placed at random time intervals. In the dynamic problem, two tasks must be considered: (i) should a new order be accepted? and (ii) if accepted, how can this schedule be ordered, when some orders may be already under process and or be in the queue for processing? For the first task, we propose a simple heuristic based decision process, and for the second task, we developed a Genetic Algorithm (GA) based approach that is applied repeatedly for re-optimization as each new order arrives. The usefulness of the proposed approach has been demonstrated by solving a set of test problems. In addition the proposed approach, along with a simulation model, has been tested for maximizing the revenue of a flow shop production business under different order arrival scenarios. Finally, a case study is presented to show the applicability of the proposed approach in practice.","internal_url":"https://www.academia.edu/86114972/A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems","translated_internal_url":"","created_at":"2022-09-04T01:54:10.613-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_real_time_order_acceptance_and_scheduling_approach_for_permutation_flow_shop_problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":9049,"name":"Flow Shop Scheduling","url":"https://www.academia.edu/Documents/in/Flow_Shop_Scheduling"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"}],"urls":[{"id":23593443,"url":"https://api.elsevier.com/content/article/PII:S0377221715005329?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86114958"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/86114958/Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems"><img alt="Research paper thumbnail of Neurodynamic differential evolution algorithm and solving CEC2015 competition problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/86114958/Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems">Neurodynamic differential evolution algorithm and solving CEC2015 competition problems</a></div><div class="wp-workCard_item"><span>2015 IEEE Congress on Evolutionary Computation (CEC)</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Recently, the success history based parameter adaptation for differential evolution algo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Recently, the success history based parameter adaptation for differential evolution algorithm with linear population size reduction has been claimed to be a great algorithm for solving optimization problems. Neuro-dynamic is another recent approach that has shown remarkable convergence for certain problems, even for high dimensional cases. In this paper, we proposed a new algorithm by embedding the concept of neuro-dynamic into a modified success history based parameter adaptation for differential evolution with linear population size reduction. We have also proposed an adaptive mechanism for the appropriate use of the success history based parameter adaptation for differential evolution with linear population size reduction and neuro-dynamic during the search process. The new algorithm has been tested on the CEC’2015 single objective real-parameter competition problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from the success history based parameter adaptation for differential evolution with linear population size reduction and a few of the other state-of-the-art algorithms considered in this paper</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86114958"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86114958"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86114958; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86114958]").text(description); $(".js-view-count[data-work-id=86114958]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86114958; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86114958']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86114958, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=86114958]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86114958,"title":"Neurodynamic differential evolution algorithm and solving CEC2015 competition problems","translated_title":"","metadata":{"abstract":"ABSTRACT Recently, the success history based parameter adaptation for differential evolution algorithm with linear population size reduction has been claimed to be a great algorithm for solving optimization problems. Neuro-dynamic is another recent approach that has shown remarkable convergence for certain problems, even for high dimensional cases. In this paper, we proposed a new algorithm by embedding the concept of neuro-dynamic into a modified success history based parameter adaptation for differential evolution with linear population size reduction. We have also proposed an adaptive mechanism for the appropriate use of the success history based parameter adaptation for differential evolution with linear population size reduction and neuro-dynamic during the search process. The new algorithm has been tested on the CEC’2015 single objective real-parameter competition problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from the success history based parameter adaptation for differential evolution with linear population size reduction and a few of the other state-of-the-art algorithms considered in this paper","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"2015 IEEE Congress on Evolutionary Computation (CEC)"},"translated_abstract":"ABSTRACT Recently, the success history based parameter adaptation for differential evolution algorithm with linear population size reduction has been claimed to be a great algorithm for solving optimization problems. Neuro-dynamic is another recent approach that has shown remarkable convergence for certain problems, even for high dimensional cases. In this paper, we proposed a new algorithm by embedding the concept of neuro-dynamic into a modified success history based parameter adaptation for differential evolution with linear population size reduction. We have also proposed an adaptive mechanism for the appropriate use of the success history based parameter adaptation for differential evolution with linear population size reduction and neuro-dynamic during the search process. The new algorithm has been tested on the CEC’2015 single objective real-parameter competition problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from the success history based parameter adaptation for differential evolution with linear population size reduction and a few of the other state-of-the-art algorithms considered in this paper","internal_url":"https://www.academia.edu/86114958/Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems","translated_internal_url":"","created_at":"2022-09-04T01:53:39.796-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Neurodynamic_differential_evolution_algorithm_and_solving_CEC2015_competition_problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":12346,"name":"Differential Evolution","url":"https://www.academia.edu/Documents/in/Differential_Evolution"}],"urls":[{"id":23593439,"url":"http://xplorestaging.ieee.org/ielx7/7229815/7256859/07257003.pdf?arnumber=7257003"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62318263"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/62318263/Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns"><img alt="Research paper thumbnail of Evolutionary scheduling with rescheduling option for sudden machine breakdowns" class="work-thumbnail" src="https://attachments.academia-assets.com/75125490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/62318263/Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns">Evolutionary scheduling with rescheduling option for sudden machine breakdowns</a></div><div class="wp-workCard_item"><span>Ieee Congress on Evolutionary Computation</span><span>, Jul 18, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2e660820a0901f9f8f1142e3dcb42cdd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:75125490,&quot;asset_id&quot;:62318263,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/75125490/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62318263"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62318263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62318263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62318263]").text(description); $(".js-view-count[data-work-id=62318263]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62318263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62318263']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 62318263, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2e660820a0901f9f8f1142e3dcb42cdd" } } $('.js-work-strip[data-work-id=62318263]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62318263,"title":"Evolutionary scheduling with rescheduling option for sudden machine breakdowns","translated_title":"","metadata":{"grobid_abstract":"The job scheduling problem (JSP) is considered as one of the complex combinatorial optimization problems. In this paper, we have developed a hybrid Genetic Algorithm (HGA), which improves the performance of GAs when solving JSPs. We have also modified the developed algorithm to study JSPs under the machine unavailability condition. We have considered two types of machine unavailability. Firstly, where the unavailability information is available in advance (predictive) and, secondly, where the information is known after a real breakdown (reactive). We have shown that the revised schedule is mostly able to recover if the disruptions occur during the early stages of a schedule.","publication_date":{"day":18,"month":7,"year":2010,"errors":{}},"publication_name":"Ieee Congress on Evolutionary Computation","grobid_abstract_attachment_id":75125490},"translated_abstract":null,"internal_url":"https://www.academia.edu/62318263/Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns","translated_internal_url":"","created_at":"2021-11-24T22:48:01.349-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":75125490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75125490/thumbnails/1.jpg","file_name":"Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf","download_url":"https://www.academia.edu/attachments/75125490/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_scheduling_with_reschedulin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75125490/Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf?1637822947=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_scheduling_with_reschedulin.pdf\u0026Expires=1732705644\u0026Signature=YM2T15Nu0LwtTTN9BGcmSj1SMQOC~Uvb0kP4gH~N7my8ZKgfWg-nPJjYAetO-0lPXcjClfVqpJrrLTz-E1Kg2COOLNCcSME71YKbwBgPYGo95~PqFh9FdH2aShtd71Lom-Qr1dqqiZ40-IUg8wwKuByJwDH7z~~9GEYd7HvmCcr8tQrVSkKW9DGhDIIsPHddEFbUEpePCjN72UT1ZSewGxU~kY33JJZJ5ZvhjgNc9ZIjrdKwhWP9fvy3gZkfTorDF6OSMPyCF9DB4NfLU1WrpJ3oriDycSSlkjBgFikY42ZORQ0t6MDEYWygxue6YlxH0YCWT7JYMhLXbMj53RCqCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolutionary_scheduling_with_rescheduling_option_for_sudden_machine_breakdowns","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":75125490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/75125490/thumbnails/1.jpg","file_name":"Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf","download_url":"https://www.academia.edu/attachments/75125490/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolutionary_scheduling_with_reschedulin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/75125490/Evolutionary_scheduling_with_reschedulin20211124-18181-qds01q.pdf?1637822947=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_scheduling_with_reschedulin.pdf\u0026Expires=1732705644\u0026Signature=YM2T15Nu0LwtTTN9BGcmSj1SMQOC~Uvb0kP4gH~N7my8ZKgfWg-nPJjYAetO-0lPXcjClfVqpJrrLTz-E1Kg2COOLNCcSME71YKbwBgPYGo95~PqFh9FdH2aShtd71Lom-Qr1dqqiZ40-IUg8wwKuByJwDH7z~~9GEYd7HvmCcr8tQrVSkKW9DGhDIIsPHddEFbUEpePCjN72UT1ZSewGxU~kY33JJZJ5ZvhjgNc9ZIjrdKwhWP9fvy3gZkfTorDF6OSMPyCF9DB4NfLU1WrpJ3oriDycSSlkjBgFikY42ZORQ0t6MDEYWygxue6YlxH0YCWT7JYMhLXbMj53RCqCw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms"},{"id":9048,"name":"Scheduling","url":"https://www.academia.edu/Documents/in/Scheduling"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":165126,"name":"Maintenance Engineering","url":"https://www.academia.edu/Documents/in/Maintenance_Engineering"},{"id":171233,"name":"Job Scheduling","url":"https://www.academia.edu/Documents/in/Job_Scheduling"},{"id":231678,"name":"Makespan","url":"https://www.academia.edu/Documents/in/Makespan"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"},{"id":507968,"name":"Hybrid genetic algorithm","url":"https://www.academia.edu/Documents/in/Hybrid_genetic_algorithm"},{"id":3423098,"name":"Schedules","url":"https://www.academia.edu/Documents/in/Schedules"}],"urls":[{"id":14460092,"url":"http://dx.doi.org/10.1109/cec.2010.5586374"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62318104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62318104/Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization"><img alt="Research paper thumbnail of Constraint Consensus Mutation based Differential Evolution for Constrained Optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/62318104/Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization">Constraint Consensus Mutation based Differential Evolution for Constrained Optimization</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Evolutionary Computation</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62318104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62318104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62318104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62318104]").text(description); $(".js-view-count[data-work-id=62318104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62318104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62318104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 62318104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62318104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62318104,"title":"Constraint Consensus Mutation based Differential Evolution for Constrained Optimization","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"IEEE Transactions on Evolutionary Computation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/62318104/Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization","translated_internal_url":"","created_at":"2021-11-24T22:47:38.602-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Constraint_Consensus_Mutation_based_Differential_Evolution_for_Constrained_Optimization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56065404"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56065404/Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling"><img alt="Research paper thumbnail of Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling" class="work-thumbnail" src="https://attachments.academia-assets.com/71634658/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56065404/Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling">Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling</a></div><div class="wp-workCard_item"><span>Algorithms</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fe8203c0c5a78379064aee27831ce43" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:71634658,&quot;asset_id&quot;:56065404,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/71634658/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56065404"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56065404"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56065404; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56065404]").text(description); $(".js-view-count[data-work-id=56065404]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56065404; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56065404']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56065404, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fe8203c0c5a78379064aee27831ce43" } } $('.js-work-strip[data-work-id=56065404]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56065404,"title":"Near-Optimal Heuristics for Just-In-Time Jobs Maximization in Flow Shop Scheduling","translated_title":"","metadata":{"publisher":"MDPI AG","grobid_abstract":"The number of just-in-time jobs maximization in a permutation flow shop scheduling problem is considered. A mixed integer linear programming model to represent the problem as well as solution approaches based on enumeration and constructive heuristics were proposed and computationally implemented. Instances with up to 10 jobs and five machines are solved by the mathematical model in an acceptable running time (3.3 min on average) while the enumeration method consumes, on average, 1.5 s. The 10 constructive heuristics proposed show they are practical especially for large-scale instances (up to 100 jobs and 20 machines), with very good-quality results and efficient running times. The best two heuristics obtain near-optimal solutions, with only 0.6% and 0.8% average relative deviations. They prove to be better than adaptations of the NEH heuristic (well-known for providing very good solutions for makespan minimization in flow shop) for the considered problem.","publication_name":"Algorithms","grobid_abstract_attachment_id":71634658},"translated_abstract":null,"internal_url":"https://www.academia.edu/56065404/Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling","translated_internal_url":"","created_at":"2021-10-06T14:38:12.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31714480,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71634658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71634658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/71634658/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_Optimal_Heuristics_for_Just_In_Time.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71634658/pdf-libre.pdf?1633563568=\u0026response-content-disposition=attachment%3B+filename%3DNear_Optimal_Heuristics_for_Just_In_Time.pdf\u0026Expires=1732705644\u0026Signature=IMSAnw7KdrQqhTnls-szGbdTFAIzJWFIXSB6EMibUU6Trj8YFsMvjVt24oiDlmMoQVr0NaGFp9RVcWzeba6tLWWMURD4y9dd4HwjBl5m7zx6znxu9DV9J1K7hZWVxoq382HiV62M4az0Uh6vxmJRpPIeSfsITYFyfVrH9JeL6B8f838L1A~JAEslsNuiwHcEHKWTZq8b3RImCSgJqQU36KNWFaeqiXmSd6abnxQwQF5o2iTqqrxEiYgYUhfTWRXbB4asecMDgHSnocysKtsaG8xFwyIzvtF9mrKCBv2t9lRXX-cIFHyVcYoGHX9PWb~otNshb9q2SDATJ6Kr1yl7yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Near_Optimal_Heuristics_for_Just_In_Time_Jobs_Maximization_in_Flow_Shop_Scheduling","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":31714480,"first_name":"Ruhul","middle_initials":null,"last_name":"Sarker","page_name":"RuhulSarker","domain_name":"unsw","created_at":"2015-05-31T02:01:09.855-07:00","display_name":"Ruhul Sarker","url":"https://unsw.academia.edu/RuhulSarker"},"attachments":[{"id":71634658,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71634658/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/71634658/download_file?st=MTczMjcxNTYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_Optimal_Heuristics_for_Just_In_Time.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71634658/pdf-libre.pdf?1633563568=\u0026response-content-disposition=attachment%3B+filename%3DNear_Optimal_Heuristics_for_Just_In_Time.pdf\u0026Expires=1732705644\u0026Signature=IMSAnw7KdrQqhTnls-szGbdTFAIzJWFIXSB6EMibUU6Trj8YFsMvjVt24oiDlmMoQVr0NaGFp9RVcWzeba6tLWWMURD4y9dd4HwjBl5m7zx6znxu9DV9J1K7hZWVxoq382HiV62M4az0Uh6vxmJRpPIeSfsITYFyfVrH9JeL6B8f838L1A~JAEslsNuiwHcEHKWTZq8b3RImCSgJqQU36KNWFaeqiXmSd6abnxQwQF5o2iTqqrxEiYgYUhfTWRXbB4asecMDgHSnocysKtsaG8xFwyIzvtF9mrKCBv2t9lRXX-cIFHyVcYoGHX9PWb~otNshb9q2SDATJ6Kr1yl7yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":71634657,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71634657/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/71634657/download_file","bulk_download_file_name":"Near_Optimal_Heuristics_for_Just_In_Time.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71634657/pdf-libre.pdf?1633563568=\u0026response-content-disposition=attachment%3B+filename%3DNear_Optimal_Heuristics_for_Just_In_Time.pdf\u0026Expires=1732705644\u0026Signature=S2SZYl6cqRVdvkzAJ9dBcZQ3EOruU25eRMNkYcD55XJ2B2-5ZJ1~yanfD8jSrknt8fNG9HjyjS4k~kX74zVhB5DYxBc6FMzYucQLGigXvbcaZTgQTHDXXPi7g1-VSW0hVHR0Xqxf-mwOJM1qgECaGCoUk4kNR9yB29R6RO84oqI2UGgso8Mtua9VAkBu6t8Bzw7kgORIKNUVhocY-XcGhDhdJO-FVi7Y3ICb8G6OVKR27VkDNd3NLknY8ALrghMhLchulADFXJTVO1DuefY~0BfSg2p-MkjN1PuyM1e8clMz~PWD~Qk3NAgEyHR9d3pWS4O9uItJJ-WhxlKCJzzOkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":12411831,"url":"http://www.mdpi.com/1999-4893/11/4/43/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "d7b1cc6bffaa6e833744b4dc728ed2477777c28686fc5206f0d27d81760f0d22", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="xSIS2ADoASrcO6Zl4Wec2eEk9veVuKsJZJ5H+NJieXF5gUQHBTGSXnrKNnzUpJEkS1nd2tMjnvqsXPeKSR1bng==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://unsw.academia.edu/RuhulSarker" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="SN/X32HW/YM5zI35nrzK+QyCPPuEIyffH+xzjktrRwT0fIEAZA9u9589HeCrf8cEpv8X1sK4EizXLsP80BRl6w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10