CINXE.COM
Search results for: stainless steel shaft
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stainless steel shaft</title> <meta name="description" content="Search results for: stainless steel shaft"> <meta name="keywords" content="stainless steel shaft"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stainless steel shaft" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stainless steel shaft"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1910</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stainless steel shaft</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1910</span> Hybrid Stainless Steel Girder for Bridge Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Yabuki">Tetsuya Yabuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Arizumi"> Yasunori Arizumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuhiro%20Shimozato"> Tetsuhiro Shimozato</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20Guezouli"> Samy Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Matsusita"> Hiroaki Matsusita</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Tai"> Masayuki Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title="smart structure">smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20stainless%20steel%20members" title=" hybrid stainless steel members"> hybrid stainless steel members</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bridge" title=" steel bridge"> steel bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/51375/hybrid-stainless-steel-girder-for-bridge-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1909</span> The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ion" title="chromium ion">chromium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20saliva" title=" artificial saliva"> artificial saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=breadfruit%20leaf" title=" breadfruit leaf"> breadfruit leaf</a> </p> <a href="https://publications.waset.org/abstracts/87086/the-comparison-of-chromium-ions-release-for-stainless-steel-between-artificial-saliva-and-breadfruit-leaf-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1908</span> Natural Frequency Analysis of a Porous Functionally Graded Shaft System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natural%20Frequency%20Analysis%20of%20a%20Porous%20Functionally%20Graded%20Shaft%20System">Natural Frequency Analysis of a Porous Functionally Graded Shaft System</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20element%20method" title="Finite element method">Finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Functionally%20graded%20material" title=" Functionally graded material"> Functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=Porosity%20volume%20fraction" title=" Porosity volume fraction"> Porosity volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20law" title=" Power law"> Power law</a> </p> <a href="https://publications.waset.org/abstracts/123449/natural-frequency-analysis-of-a-porous-functionally-graded-shaft-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1907</span> Fabrication of a Continuous Flow System for Biofilm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jibrin%20Ndejiko">Mohammed Jibrin Ndejiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern and current models such as flow cell technology which enhances a non-destructive growth and inspection of the sessile microbial communities revealed a great understanding of biofilms. A continuous flow system was designed to evaluate possibility of biofilm formation by Escherichia coli DH5α on the stainless steel (type 304) under continuous nutrient supply. The result of the colony forming unit (CFU) count shows that bacterial attachment and subsequent biofilm formation on stainless steel coupons with average surface roughness of 1.5 ± 1.8 µm and 2.0 ± 0.09 µm were both significantly higher (p ≤ 0.05) than those of the stainless steel coupon with lower surface roughness of 0.38 ± 1.5 µm. These observations support the hypothesis that surface profile is one of the factors that influence biofilm formation on stainless steel surfaces. The SEM and FESEM micrographs of the stainless steel coupons also revealed the attached Escherichia coli DH5α biofilm and dehydrated extracellular polymeric substance on the stainless steel surfaces. Thus, the fabricated flow system represented a very useful tool to study biofilm formation under continuous nutrient supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcell" title=" flowcell"> flowcell</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=coupon" title=" coupon"> coupon</a> </p> <a href="https://publications.waset.org/abstracts/49119/fabrication-of-a-continuous-flow-system-for-biofilm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1906</span> The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nety%20Trisnawaty">Nety Trisnawaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani"> Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ion" title="chromium ion">chromium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20saliva" title=" artificial saliva"> artificial saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20tea%20leaves%20extracts" title=" black tea leaves extracts"> black tea leaves extracts</a> </p> <a href="https://publications.waset.org/abstracts/94605/the-comparison-of-chromium-ions-release-stainless-steel-18-8-between-artificial-saliva-and-black-tea-leaves-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1905</span> Effect of Demineralized Water Purity on the Corrosion Behavior of Steel Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El-Aziz">A. M. El-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elsehamy"> M. Elsehamy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hussein"> H. Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel or stainless steel have reasonable corrosion behavior in water, their corrosion resistance is significantly dependent on the water purity. It was not expected that demineralized water has an aggressive effect on steel alloys, in this study, the effect of water with different purity on steel X52 and stainless steel 316L was investigated. Weight loss and electrochemical measurements were employed to measure the corrosion behavior. Samples were microscopically investigated after test. It was observed that the higher the water purity the more reactive it is. Comparative analysis of the potentiodynamic curves for different water purity showed the aggressiveness of the demineralised water (conductivity of 0.05 microSiemens per cm) over the distilled water. Whereas, the corrosion rates of stainless steel 858 and 623 nm/y for demi and distilled water respectively. On the other hand, the corrosion rates of carbon steel x52 were estimated about 4.8 and 3.6 µm/y for demi and distilled water, respectively. Open circuit potential (OCP) recorded more positive potentials in case of stainless steel than carbon steel in different water purities. Generally, stainless steel illustrated high pitting resistance than carbon steel alloy, the surface film was investigated by scanning electron microscopy (SEM) and analyzed by energy dispersive X-ray spectroscopy (EDX). This behavior was explained based on that demi and distilled water might be considered as ‘hungry water’ in which it wants to be in equilibrium and will pull ions out of the surrounding metals trying to satisfy its ‘hunger’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralized%20water" title=" demineralized water"> demineralized water</a>, <a href="https://publications.waset.org/abstracts/search?q=distilled%20water" title=" distilled water"> distilled water</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20alloys" title=" steel alloys"> steel alloys</a> </p> <a href="https://publications.waset.org/abstracts/50480/effect-of-demineralized-water-purity-on-the-corrosion-behavior-of-steel-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">814</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1904</span> Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Mudinga%20Lemika">Serge Mudinga Lemika</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Olukayode%20Akinwamide"> Samuel Olukayode Akinwamide</a>, <a href="https://publications.waset.org/abstracts/search?q=Aribo%20Sunday"> Aribo Sunday</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Abiodun%20Obadele"> Babatunde Abiodun Obadele</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Apata%20Olubambi"> Peter Apata Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title="duplex stainless steel">duplex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoceramics" title=" nanoceramics"> nanoceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/88383/corrosion-behavior-of-induced-stress-duplex-stainless-steel-in-chloride-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1903</span> The Effects of Gas Metal Arc Welding Parameters on the Corrosion Behaviour of Austenitic Stainless Steel Immersed in Aqueous Sodium Hydroxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20B.%20Omiogbemi">I. M. B. Omiogbemi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Yawas"> D. S. Yawas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Dagwa"> I. M. Dagwa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20G.%20Okibe"> F. G. Okibe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work present the effects of some gas metal arc welding parameters on the corrosion behavior of austenitic stainless steel, exposed to 0.5M sodium hydroxide at ambient temperatures (298K) using conventional weight loss determination, together with surface morphology evaluation by scanning electron microscopy and the application of factorial design of experiment to determine welding conditions which enhance the integrity of the welded stainless steel. The welding variables evaluated include speed, voltage and current. Different samples of the welded stainless steels were immersed in the corrosion environment for 8, 16, 24, 32 and 40 days and weight loss determined. From the results, it was found that increase in welding current and speed at constant voltage gave the optimum performance of the austenitic stainless steel in the environment. At a of speed 40cm/min, 110Amp current and voltage of 230 volt the welded stainless steel showed only a 0.0015mg loss in weight after 40 days. Pit-like openings were observed on the surface of the metals indicating corrosion but were minimal at the optimum conditions. It was concluded from the research that relatively high welding speed and current at a constant voltage gives a good welded austenitic stainless steel with better integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/41028/the-effects-of-gas-metal-arc-welding-parameters-on-the-corrosion-behaviour-of-austenitic-stainless-steel-immersed-in-aqueous-sodium-hydroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1902</span> Static Strain Aging in Ferritic and Austenitic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Songul%20Kurucay">Songul Kurucay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Acarer"> Mustafa Acarer</a>, <a href="https://publications.waset.org/abstracts/search?q=Harun%20Sepet"> Harun Sepet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%20stainless%20steel" title=" ferritic stainless steel"> ferritic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20strain%20aging" title=" static strain aging"> static strain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/37051/static-strain-aging-in-ferritic-and-austenitic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1901</span> Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiawei%20Chen">Jiawei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Qu"> Jia Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianwei%20Ju"> Dianwei Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20stretch" title="impact stretch">impact stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=316L%20stainless%20steel" title=" 316L stainless steel"> 316L stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20stress-strain" title=" real stress-strain"> real stress-strain</a>, <a href="https://publications.waset.org/abstracts/search?q=normalization" title=" normalization"> normalization</a> </p> <a href="https://publications.waset.org/abstracts/88153/impact-tensile-mechanical-properties-of-316l-stainless-steel-at-different-strain-rates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1900</span> Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Jie%20Lin"> Zih-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/62892/liquid-phase-sintering-of-boron-alloyed-powder-metallurgy-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1899</span> Seismic Performance of Various Grades of Steel Columns through Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asal%20Pournaghshband">Asal Pournaghshband</a>, <a href="https://publications.waset.org/abstracts/search?q=Roham%20Maher"> Roham Maher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title="energy dissipation">energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=H-shaped%20columns" title=" H-shaped columns"> H-shaped columns</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20grades" title=" stainless steel grades"> stainless steel grades</a> </p> <a href="https://publications.waset.org/abstracts/191066/seismic-performance-of-various-grades-of-steel-columns-through-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1898</span> The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Dong-Yih">Lin Dong-Yih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20S.%20M."> Yang S. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20B.%20W."> Huang B. W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20J.%20A."> Lian J. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20stainless%20steel" title="complex stainless steel">complex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20formation" title=" phase formation"> phase formation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20element" title=" carbon element"> carbon element</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma%20phase" title=" sigma phase"> sigma phase</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20ferrite" title=" delta ferrite"> delta ferrite</a> </p> <a href="https://publications.waset.org/abstracts/154162/the-influence-of-c-element-on-the-phase-transformation-in-weldment-of-complex-stainless-steels-2507316316l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1897</span> Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi">Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi"> Stephen A. Akinlabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers micro-hardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite" title="austenite">austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20stainless%20steel" title=" microstructure and stainless steel"> microstructure and stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/5781/characterising-the-effects-of-heat-treatment-on-3cr12-and-aisi-316-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1896</span> Design and Fabrication of Electricity Generating Speed Breaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haider%20Aamir">Haider Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali%20Khalid"> Muhammad Ali Khalid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity harvesting speed bump (EHSB) is speed breaker of conventional shape, but the difference is that it is not fixed, rather it moves up and down, and electricity can be generated from its vibrating motion. This speed bump consists of an upper cover which will move up and down, a shaft mechanism which will be used to drive the generator and a rack and pinion mechanism which will connect the cover and shaft. There is a spring mechanism to return the cover to its initial state when a vehicle has passed over the bump. Produced energy in the past was up to 80 Watts. For this purpose, a clutch mechanism is used so that both the up-down movements of the cover can be used to drive the generator. Mechanical Motion Rectifier (MMR) mechanism ensures the conversion of both the linear motions into rotational motion which is used to drive the generator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20harvesting" title="electricity harvesting">electricity harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a>, <a href="https://publications.waset.org/abstracts/search?q=rack%20and%20pinion" title=" rack and pinion"> rack and pinion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft" title=" stainless steel shaft"> stainless steel shaft</a> </p> <a href="https://publications.waset.org/abstracts/83722/design-and-fabrication-of-electricity-generating-speed-breaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1895</span> An Investigation of Passivation Technology in Stainless Steel Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Tsai%20Weng">Feng-Tsai Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rick%20Wang"> Rick Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Cong%20Liao"> Yan-Cong Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passivation is a kind of surface treatment for material to reinforce the corrosion resistance specially the stainless alloy. Passive film, is to getting more potential compared to their status before passivation. An oxidation film can be formed on the surface of stainless steel, which has a strong corrosion resistance ability after passivation treatment. In this research, a new passivation technology is proposed for a special stainless alloy which contains a 12-14% Chromium. This method includes the A-A-A (alkaline-acid-alkaline) process basically, which was developed by Carpenter that can neutralize trapped acid. Besides, a corrosion resistant coating layer was obtained by immersing the parts in a water bath of mineral oil at high temperature. Salt spray test ASTM B368 was conducted to investigated performance of corrosion resistant of the passivated stainless steel alloy parts. Results show much better corrosion resistant that followed a coating process after A-A-A Passivation process, than only using A-A-A process. The passivation time is with more than 380 hours of salt spray test ASTM B368, which is equal to 3000 hours of Salt spray test ASTM B117. Proposed passivation method of stainless steel can be completed in about 3 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passivation" title="passivation">passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline-acid-alkaline" title=" alkaline-acid-alkaline"> alkaline-acid-alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20spray%20test" title=" salt spray test"> salt spray test</a> </p> <a href="https://publications.waset.org/abstracts/73718/an-investigation-of-passivation-technology-in-stainless-steel-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1894</span> Effects of Tensile Pre-Stresses on Corrosion Behavior of AISI 304 Stainless Steel in 1N H2SO4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ibrahim%20Jafar">Sami Ibrahim Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20Abud%20Alkadir"> Israa Abud Alkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Samah%20Abdul%20Kareem%20Khashin"> Samah Abdul Kareem Khashin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to assess the influence of tensile pre-stresses on the microstructure and corrosion behavior of the AISI304 stainless steel in 1N H2SO4 austenitic stainless steel. Samples of this stainless steel either with pre-stresses, corresponding to [255, 305, 355, 405, 455, 505, 555, 605 and σf] MPa induced by tensile tests, or without pre-stresses (as received), were characterized regarding their microstructure to investigate the pre-tensile stress effects on the corrosion behavior. The results showed that the corrosion rate of elastic pre-stresses 304 stainless steel was very little increased compared with that of as received specimens. The corrosion rate increases after applying pre-stress between (σ255 - σ 455) MPa. The microstructure showed that the austenitic grains begin to deform in the direction of applied pre-stresses. The maximum hardness at this region was (229.2) Hv, but at higher pre-stress (σ455 – σ 605) MPa unanticipated occurrence, the corrosion rate decreases. The microstructure inspection shows the deformed austenitic grain and ά-martensitic phase needle are appeared inside austenitic grains and the hardness reached the maximum value (332.433) Hv. The results showed that the corrosion rate increases at the values of pre-stresses between (σ605 – σf) MPa., which is inspected the result. The necking of gauge length of specimens occurs in specimens and this leads to deterioration in original properties and the corrosion rate reaches the maximum value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20pre-stresses" title="tensile pre-stresses">tensile pre-stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/47841/effects-of-tensile-pre-stresses-on-corrosion-behavior-of-aisi-304-stainless-steel-in-1n-h2so4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1893</span> The Interaction between Hydrogen and Surface Stress in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Takakuwa">Osamu Takakuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mano"> Yuta Mano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Soyama"> Hitoshi Soyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finishing" title=" surface finishing"> surface finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/16765/the-interaction-between-hydrogen-and-surface-stress-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1892</span> Investigation of the Effect of Nickel Electrodes as a Stainless Steel Buffer Layer on the Shielded Metal Arc Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Akbari">Meisam Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hossein%20Elahi"> Seyed Hossein Elahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mashadgarmeh"> Mohammad Mashadgarmeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of nickel-electrode as a stainless steel buffer layer is considered. Then, the effect of dilution of the last layer of welding on two samples of steel plate A516 Gr70 (C-Mn-Si) with SMAW welding process was investigated. Then, in a sample, the ENI-cl nickel electrode was welded as the buffer layer and the E316L-16 electrode as the last layer of welding and another sample with an E316L-16 electrode in two layers. The chemical composition of the latter layer was determined by spectrophotometry method. The results indicate that the chemical composition of the latter layer is different and the lowest dilution rate is obtained using the nickel electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20dilution" title="degree of dilution">degree of dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=C-Mn-Si" title=" C-Mn-Si"> C-Mn-Si</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrometry" title=" spectrometry"> spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20electrode" title=" nickel electrode"> nickel electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/106351/investigation-of-the-effect-of-nickel-electrodes-as-a-stainless-steel-buffer-layer-on-the-shielded-metal-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1891</span> Investigation into Black Oxide Coating of 410 Grade Surgical Stainless Steel Using Alkaline Bath Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Saju">K. K. Saju</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Reghuraj"> A. R. Reghuraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High reflectance of surgical instruments under bright light hinders the visual clarity during laparoscopic surgical procedures leading to loss of precision and device control and creates strain and undesired difficulties to surgeons. Majority of the surgical instruments are made of surgical grade steel. Instruments with a non reflective surface can enhance the visual clarity during precision surgeries. A conversion coating of black oxide has been successfully developed 410 grade surgical stainless steel .The characteristics of the developed coating suggests the application of this technique for developing 410 grade surgical instruments with minimal reflectance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conversion%20coatings" title="conversion coatings">conversion coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=410%20stainless%20steel" title=" 410 stainless steel"> 410 stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20oxide" title=" black oxide"> black oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a> </p> <a href="https://publications.waset.org/abstracts/41581/investigation-into-black-oxide-coating-of-410-grade-surgical-stainless-steel-using-alkaline-bath-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1890</span> Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Hasanpour">Parisa Hasanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Borooghani"> Bahram Borooghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Asadi"> Vahid Asadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis, tensile tests in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title="failure analysis">failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=304%20stainless%20steel" title=" 304 stainless steel"> 304 stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=flange" title=" flange"> flange</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20refinery" title=" petrochemical refinery"> petrochemical refinery</a> </p> <a href="https://publications.waset.org/abstracts/153854/failure-analysis-of-a-304-stainless-steel-flange-crack-at-pipeline-transportation-of-ethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1889</span> Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jin%20Tsai"> Yu-Jin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Huai%20Chang"> Ching-Huai Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/73936/microstructure-and-sintering-of-boron-alloyed-martensitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1888</span> Modeling of Nitrogen Solubility in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ghali">Saeed Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20El-Faramawy"> Hoda El-Faramawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Eissa"> Mamdouh Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Mishreky"> Michael Mishreky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Schaeffler" title=" Schaeffler"> Schaeffler</a> </p> <a href="https://publications.waset.org/abstracts/155322/modeling-of-nitrogen-solubility-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1887</span> Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hanafy"> H. Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Tassan"> H. Al-Tassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduction" title="reduction">reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ironmaking" title=" ironmaking"> ironmaking</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20dust" title=" steel dust"> steel dust</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/83968/steel-dust-as-a-coating-agent-for-iron-ore-pellets-at-ironmaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1886</span> Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Shariatzadeh">Mohammad Javad Shariatzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Grecov"> Dana Grecov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gland%20seal" title="gland seal">gland seal</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricant%20additives" title=" lubricant additives"> lubricant additives</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20cellulose" title=" nanocrystalline cellulose"> nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=water-based%20lubricants" title=" water-based lubricants"> water-based lubricants</a> </p> <a href="https://publications.waset.org/abstracts/87517/cellulose-nanocrystals-suspensions-as-water-based-lubricants-for-slurry-pump-gland-seals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1885</span> Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asal%20Pournaghshband">Asal Pournaghshband</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20restraint" title="axial restraint">axial restraint</a>, <a href="https://publications.waset.org/abstracts/search?q=catenary%20action" title=" catenary action"> catenary action</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20beam" title=" cellular beam"> cellular beam</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=transit%20temperature" title=" transit temperature"> transit temperature</a> </p> <a href="https://publications.waset.org/abstracts/179208/numerical-simulation-and-analysis-of-axially-restrained-steel-cellular-beams-in-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1884</span> Effect of Nitriding and Shot Peening on Corrosion Behavior and Surface Properties of Austenite Stainless Steel 316L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khiaira%20S.%20Hassan">Khiaira S. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20S.%20Alwan"> Abbas S. Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muna%20K.%20Abbass"> Muna K. Abbass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the effect of the liquid nitriding and shot peening on the hardness, surface roughness, residual stress, microstructure and corrosion behavior of austenite stainless steel 316 L. Chemical surface heat treatment by liquid nitriding process was carried out at 500 °C for 1 h and followed by shot peening with using ball steel diameter of 1.25 mm in different exposure time of 10 and 20 min. Electrochemical corrosion test was applied in sea water (3.5% NaCl solution) by using potentostat instrument. The results showed that the nitride layer consists of a compound layer (white layer) and diffusion zone immediately below the alloy layer. It has been found that the mechanical treatment (shot peening) has led to the formation of compressive residual stresses in layer surface that increased the hardness of stainless steel surface. All surface treatment (nitriding and shot peening) processes have led to the formation of carbide of CrN in hard surface layer. It was shown that both processes caused an increase in surface hardness and roughness which increases with shot peening time. Also, the corrosion results showed that the liquid nitriding and shot peening processes increase the corrosion rate to values more than that of not treated stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20316L" title="stainless steel 316L">stainless steel 316L</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a>, <a href="https://publications.waset.org/abstracts/search?q=nitriding" title=" nitriding"> nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/68488/effect-of-nitriding-and-shot-peening-on-corrosion-behavior-and-surface-properties-of-austenite-stainless-steel-316l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1883</span> Load Relaxation Behavior of Ferritic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-temperature deformation behavior of ferritic stainless steels such as STS 409L, STS 430J1L, and STS 429EM has been investigated in this study. Specimens with fully annealed microstructure were obtained by heat treatment. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 200 to 900oC to construct flow curves in the strain rate range from 10-6 s-1 to 10-3 s-1. Strain hardening was not observed at high temperatures above 800oC in any stainless steels. Load relaxation behavior at the temperature was closely related with high-temperature mechanical properties such as the thermal fatigue and tensile behaviors. Load drop ratio of 436L stainless steel was much higher than that of the other steels. With increasing temperature, strength and load drop ratio of ferritic stainless steels showed entirely different trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferritic%20stainless%20steel" title="ferritic stainless steel">ferritic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20relaxation" title=" load relaxation"> load relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate%20sensitivity" title=" strain rate sensitivity"> strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/47843/load-relaxation-behavior-of-ferritic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1882</span> Heat Forging Analysis Method on Blank Consist of Two Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ueda">Takashi Ueda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forging" title="forging">forging</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow" title=" hollow"> hollow</a> </p> <a href="https://publications.waset.org/abstracts/17370/heat-forging-analysis-method-on-blank-consist-of-two-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1881</span> Investigation of Specific Wear Rate of Austenitic and Duplex Stainless Steel Alloys in High Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dler%20Abdullah%20Ahmed">Dler Abdullah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zozan%20Ahmed%20Mohammed"> Zozan Ahmed Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wear as an unavoidable phenomenon in stainless steel contact sliding parts is investigated In this work. Two grades of austenitic AISI 304, and S31254, as well as duplexes of S32205, and AISI 2507, were chosen to compare their wear behavior in temperatures ranging from room temperature to 550°C. The experimental results show that AISI 304 austenitic and AISI 2205 duplex stainless steel had lower wear resistance compared with S31254 and AISI 2507 in various temperatures. When the temperature rose to 140°C, and the wear rate of all grades increased, AISI 304 had the highest at 7.028x10-4 mm3/Nm, and AISI 2507 had the lowest at 4.9033 x 10-4 mm3/Nm. At 300°C, the oxides began to form on the worn surfaces, causing the wear rate to slow. As a result, when temperatures exceeded 300°C, the specific wear rate decreased significantly in all specimens. According to the XRD patterns, the main types of oxides formed on worn surfaces were magnetite, hematite, and chromite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear" title="wear">wear</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=groove" title=" groove"> groove</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide" title=" oxide"> oxide</a> </p> <a href="https://publications.waset.org/abstracts/173377/investigation-of-specific-wear-rate-of-austenitic-and-duplex-stainless-steel-alloys-in-high-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=64">64</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20shaft&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>