CINXE.COM
Search results for: elemental composition
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: elemental composition</title> <meta name="description" content="Search results for: elemental composition"> <meta name="keywords" content="elemental composition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="elemental composition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="elemental composition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2908</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: elemental composition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2908</span> Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Sadeghi">Maryam Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Bazin"> Claude Bazin</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Hodouin"> Daniel Hodouin</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Perez%20Barnuevo"> Laura Perez Barnuevo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20reconciliation" title="data reconciliation">data reconciliation</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20concentration" title=" iron ore concentration"> iron ore concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20performance%20assessment" title=" process performance assessment"> process performance assessment</a> </p> <a href="https://publications.waset.org/abstracts/93580/potential-of-mineral-composition-reconstruction-for-monitoring-the-performance-of-an-iron-ore-concentration-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2907</span> Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Ashraful">A. M. Ashraful</a>, <a href="https://publications.waset.org/abstracts/search?q=H%20.H.%20Masjuki"> H .H. Masjuki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Kalam"> M. A. Kalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title="particulate matter">particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20carbon" title=" elemental carbon"> elemental carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20carbon" title=" organic carbon"> organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a> </p> <a href="https://publications.waset.org/abstracts/37824/analysis-of-particulate-matter-concentration-ec-oc-emission-and-elemental-composition-for-biodiesel-fuelled-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2906</span> Geochemical Composition of Deep and Highly Weathered Soils Leyte and Samar Islands Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Snowie%20Jane%20Galgo">Snowie Jane Galgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Asio"> Victor Asio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geochemical composition of soils provides vital information about their origin and development. Highly weathered soils are widespread in the islands of Leyte and Samar but limited data have been published in terms of their nature, characteristics and nutrient status. This study evaluated the total elemental composition, properties and nutrient status of eight (8) deep and highly weathered soils in various parts of Leyte and Samar. Sampling was done down to 3 to 4 meters deep. Total amounts of Al₂O₃, As₂O₃, CaO, CdO, Cr₂O₃, CuO, Fe₂O₃, K₂O, MgO, MnO, Na₂O, NiO, P₂O₅, PbO, SO₃, SiO₂, TiO₂, ZnO and ZrO₂ were analyzed using an X-ray analytical microscope for eight soil profiles. Most of the deep and highly weathered soils have probably developed from homogenous parent materials based on the regular distribution with depth of TiO₂ and ZrO₂. Two of the soils indicated high variability with depth of TiO₂ and ZrO₂ suggesting that these soils developed from heterogeneous parent material. Most soils have K₂O and CaO values below those of MgO and Na₂O. This suggests more losses of K₂O and CaO have occurred since they are more mobile in the weathering environment. Most of the soils contain low amounts of other elements such as CuO, ZnO, PbO, NiO, CrO and SO₂. Basic elements such as K₂O and CaO are more mobile in the weathering environment than MgO and Na₂O resulting in higher losses of the former than the latter. Other elements also show small amounts in all soil profile. Thus, this study is very useful for sustainable crop production and environmental conservation in the study area specifically for highly weathered soils which are widespread in the Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20function" title="depth function">depth function</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20composition" title=" geochemical composition"> geochemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20weathered%20soils" title=" highly weathered soils"> highly weathered soils</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20elemental%20composition" title=" total elemental composition"> total elemental composition</a> </p> <a href="https://publications.waset.org/abstracts/83586/geochemical-composition-of-deep-and-highly-weathered-soils-leyte-and-samar-islands-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2905</span> A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Na%20Li">Wei-Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Lan%20Piao"> Mei-Lan Piao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Kim"> Nam Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elemental%20image" title="elemental image">elemental image</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-generated%20hologram%20%28CGH%29" title=" computer-generated hologram (CGH)"> computer-generated hologram (CGH)</a>, <a href="https://publications.waset.org/abstracts/search?q=autostereoscopic%20display" title=" autostereoscopic display"> autostereoscopic display</a> </p> <a href="https://publications.waset.org/abstracts/11827/a-novel-computer-generated-hologram-cgh-achieved-scheme-generated-from-point-cloud-by-using-a-lens-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2904</span> Measuring Elemental Sulfur in Late Manually-Treated Grape Juice in Relation to Polyfunctional Mercaptan Formation in Sauvignon Blanc Wines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Sarmadi">Bahareh Sarmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20A.%20Kilmartin"> Paul A. Kilmartin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20D.%20Ara%C3%BAjo"> Leandro D. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Brandt%20P.%20Bastow"> Brandt P. Bastow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Sauvignon blanc is the most substantial variety cultivated in almost 62% of all producing vineyards of New Zealand. The popularity of New Zealand Sauvignon blanc is due to its unique taste. It is the most famous wine characterized by its aroma profile derived from mercaptans. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) are two of the most important volatile mercaptans found in Sauvignon blanc wines. “Viticultural” and “Enological” factors such as machine-harvesting, the most common harvesting practice used in New Zealand, can be among the reasons for this distinct flavor. Elemental sulfur is commonly sprayed in the fields to protect berries against powdery mildew. Although it is not the only source of sulfur, this practice creates a source of elemental sulfur that can be transferred into the must and eventually into wines. Despite the clear effects of residual elemental sulfur present in the must on the quality and aroma of the final wines, its measurement before harvest or fermentation is not a regular practice in the wineries. This can be due to the lack of accessible and applicable methods for the equipment at most commercial wineries. This study aims to establish a relationship between the number and frequency of elemental sulfur applications and the concentration of polyfunctional mercaptans in the final wines. Methods: An apparatus was designed to reduce elemental sulfur to sulfide, then an ion-selective electrode to measure sulfide concentration. During harvest 2022, we explored a wider range of residual elemental sulfur levels than what typically applies in the vineyards. This has been done through later manual elemental sulfur applications in the vineyard. Additional sulfur applications were made 20, 10 and 5 days prior to harvesting the treated grapes, covering long and short pre-harvest intervals (PHI). The grapes were processed into juice and fermented into wine; then, they were analyzed to find the correlation between polyfunctional mercaptans concentrations in the wines and residual elemental sulfur in the juice samples. Results: The research showed that higher 3MH/3MHA was formed when elemental sulfur was applied more frequent in the vineyards and supported the proposed pathway in which elemental sulfur is a source of 3MH formation in wines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sauvignon%20blanc" title="sauvignon blanc">sauvignon blanc</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=polyfunctional%20mercaptans" title=" polyfunctional mercaptans"> polyfunctional mercaptans</a>, <a href="https://publications.waset.org/abstracts/search?q=varietal%20thiols" title=" varietal thiols"> varietal thiols</a> </p> <a href="https://publications.waset.org/abstracts/153956/measuring-elemental-sulfur-in-late-manually-treated-grape-juice-in-relation-to-polyfunctional-mercaptan-formation-in-sauvignon-blanc-wines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2903</span> Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mangaka%20C.%20Matoetoe">Mangaka C. Matoetoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredrick%20O.%20Okumu"> Fredrick O. Okumu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver "> silver </a> </p> <a href="https://publications.waset.org/abstracts/36810/bimetallic-silver-platinum-core-shell-nanoparticles-formation-and-spectroscopic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2902</span> Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Chen">Jie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Cheng"> Chris Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Zhang"> Kai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20surface" title="fracture surface">fracture surface</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20surface" title=" wear surface"> wear surface</a> </p> <a href="https://publications.waset.org/abstracts/178914/tailoring-polycrystalline-diamond-for-increasing-earth-drilling-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2901</span> Multi-Elemental Analysis Using Inductively Coupled Plasma Mass Spectrometry for the Geographical Origin Discrimination of Greek Giant Beans “Gigantes Elefantes”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20C.%20Mazarakioti">Eleni C. Mazarakioti</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Zotos"> Anastasios Zotos</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna-Akrivi%20Thomatou"> Anna-Akrivi Thomatou</a>, <a href="https://publications.waset.org/abstracts/search?q=Efthimios%20Kokkotos"> Efthimios Kokkotos</a>, <a href="https://publications.waset.org/abstracts/search?q=Achilleas%20Kontogeorgos"> Achilleas Kontogeorgos</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Ladavos"> Athanasios Ladavos</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelos%20Patakas"> Angelos Patakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Gigantes Elefantes” is a particularly dynamic crop of giant beans cultivated in western Macedonia (Greece). This variety of large beans growing in this area and specifically in the regions of Prespes and Kastoria is a protected designation of origin (PDO) species with high nutritional quality. Mislabeling of geographical origin and blending with unidentified samples are common fraudulent practices in Greek food market with financial and possible health consequences. In the last decades, multi-elemental composition analysis has been used in identifying the geographical origin of foods and agricultural products. In an attempt to discriminate the authenticity of Greek beans, multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, Zr) was performed by inductively coupled plasma mass spectrometry (ICP-MS) on 320 samples of beans, originated from Greece (Prespes and Kastoria), China and Poland. All samples were collected during the autumn of 2021. The obtained data were analysed by principal component analysis (PCA), an unsupervised statistical method, which allows for to reduce of the dimensionality of the enormous datasets. Statistical analysis revealed a clear separation of beans that had been cultivated in Greece compared with those from China and Poland. An adequate discrimination of geographical origin between bean samples originating from the two Greece regions, Prespes and Kastoria, was also evident. Our results suggest that multi-elemental analysis combined with the appropriate multivariate statistical method could be a useful tool for bean’s geographical authentication. Acknowledgment: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographical%20origin" title="geographical origin">geographical origin</a>, <a href="https://publications.waset.org/abstracts/search?q=authenticity" title=" authenticity"> authenticity</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-elemental%20analysis" title=" multi-elemental analysis"> multi-elemental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=beans" title=" beans"> beans</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-MS" title=" ICP-MS"> ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a> </p> <a href="https://publications.waset.org/abstracts/165738/multi-elemental-analysis-using-inductively-coupled-plasma-mass-spectrometry-for-the-geographical-origin-discrimination-of-greek-giant-beans-gigantes-elefantes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2900</span> Identification of the Usage of Some Special Places in the Prehistoric Site of Tapeh Zagheh through Multi-Elemental Chemical Analysis of the Soil Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iraj%20Rezaei">Iraj Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Al%20Din%20Niknami"> Kamal Al Din Niknami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tapeh Zagheh is an important prehistoric site located in the central plateau of Iran, which has settlement layers of the Neolithic and Chalcolithic periods. For this research, 38 soil samples were collected from different parts of the site, as well as two samples from its outside as witnesses. Then the samples were analyzed by XRF. The purpose of this research was to identify some places with special usage for human activities in Tapeh Zagheh by measuring the amount of some special elements in the soil. The result of XRF analysis shows a significant amount of P and K in samples No.3 (fourth floor) and No.4 (third floor), probably due to certain activities such as food preparation and consumption. Samples No.9 and No.10 can be considered suitable examples of the hearths of the prehistoric period in the central plateau of Iran. The color of these samples was completely darkened due to the presence of ash, charcoal, and burnt materials. According to the XRF results, the soil of these hearths has very high amounts of elements such as P, Ca, Mn, S, K, and significant amounts of Ti, Fe, and Na. In addition, the elemental composition of sample No. 14, which was taken from a home waster, also has very high amounts of P, Mn, Mg, Ti, and Fe and high amounts of K and Ca. Sample No. 11, which is related to soil containing large amounts of waster of the kiln, along with a very strong increase in Cl and Na, the amount of elements such as K, Mg, and S has also increased significantly. It seems that the reason for the increase of elements such as Ti and Fe in some Tapeh Zagheh floors (for example, samples number 1, 2, 3, 4, 5) was the use of materials such as ocher mud or fire ash in the composition of these floors. Sample No. 13, which was taken from an oven located in the FIX trench, has very high amounts of Mn, Ti, and Fe and high amounts of P and Ca. Sample No. 15, which is related to House No. VII (probably related to a pen or a place where animals were kept) has much more phosphate compared to the control samples, which is probably due to the addition of animal excrement and urine to the soil. Sample No. 29 was taken from the north of the industrial area of Zagheh village (place of pottery kilns). The very low amount of index elements in sample No. 29 shows that the industrial activities did not extend to the mentioned point, and therefore, the range of this point can be considered as the boundary between the residential part of the Zagheh village and its industrial part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prehistory" title="prehistory">prehistory</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-elemental%20analysis" title=" multi-elemental analysis"> multi-elemental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapeh%20Zagheh" title=" Tapeh Zagheh"> Tapeh Zagheh</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a> </p> <a href="https://publications.waset.org/abstracts/154627/identification-of-the-usage-of-some-special-places-in-the-prehistoric-site-of-tapeh-zagheh-through-multi-elemental-chemical-analysis-of-the-soil-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2899</span> Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melik%20Kara">Melik Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Tulger%20Kara"> Gulsah Tulger Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title="trace elements">trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20soil" title=" surface soil"> surface soil</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20apportionment" title=" source apportionment"> source apportionment</a>, <a href="https://publications.waset.org/abstracts/search?q=Izmir" title=" Izmir"> Izmir</a> </p> <a href="https://publications.waset.org/abstracts/95869/spatial-distribution-and-source-identification-of-trace-elements-in-surface-soil-from-izmir-metropolitan-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2898</span> Survey of Web Service Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wala%20Ben%20Messaoud">Wala Ben Messaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ghedira"> Khaled Ghedira</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Ben%20Halima"> Youssef Ben Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Henda%20Ben%20Ghezala"> Henda Ben Ghezala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A web service (WS) is called compound or composite when its execution involves interactions with other WS to use their features. The composition of WS specifies which services need to be invoked, in what order and how to handle exception conditions. This paper gives an overview of research efforts of WS composition. The approaches proposed in the literature are diverse, interesting and have opened important research areas. Based on many studies, we extracted the most important role of WS composition use in order to facilitate its introduction in WS concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOA" title="SOA">SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20services" title=" web services"> web services</a>, <a href="https://publications.waset.org/abstracts/search?q=composition%20approach" title=" composition approach"> composition approach</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20WS" title=" composite WS"> composite WS</a> </p> <a href="https://publications.waset.org/abstracts/40923/survey-of-web-service-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2897</span> Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sorour%20Semsari%20Parapari">Sorour Semsari Parapari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20G%C3%BClg%C3%BCn"> Mehmet Ali Gülgün</a>, <a href="https://publications.waset.org/abstracts/search?q=Melih%20Papila"> Melih Papila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title="alternative fuels">alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20clinker" title=" cement clinker"> cement clinker</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/37823/scanning-electron-microscopy-of-cement-clinkers-produced-using-alternative-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2896</span> Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassira%20Ouslimani">Nassira Ouslimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic" title="catalytic">catalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=coprecipitation" title=" coprecipitation"> coprecipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a> </p> <a href="https://publications.waset.org/abstracts/156522/synthesis-and-characterization-of-mass-catalysts-based-on-cobalt-and-molybdenum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2895</span> Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Kavetskiy">Aleksandr Kavetskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20Yakubova"> Galina Yakubova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Sargsyan"> Nikolay Sargsyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Prior"> Stephen A. Prior</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Allen%20Torbert"> H. Allen Torbert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ArcGIS%20mapping" title="ArcGIS mapping">ArcGIS mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20gamma%20analysis" title=" neutron gamma analysis"> neutron gamma analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20elemental%20content" title=" soil elemental content"> soil elemental content</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20gamma%20spectroscopy" title=" soil gamma spectroscopy"> soil gamma spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/110999/application-of-neutron-stimulated-gamma-spectroscopy-for-soil-elemental-analysis-and-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2894</span> Physical Characterization of Indoor Dust Particles Using Scanning Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20S.%20Mohammed">Fatima S. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Derrick%20Crump"> Derrick Crump</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmattan, a dusty weather condition characterized by thick smog-like suspended particles and dust storm are the peculiar events that happen during ¾ of the year in the Sahelian regions including Damaturu Town, Nigeria), resulting in heavy dust deposits especially indoors. The inhabitants of the Damaturu community are always inflicted with different ailments; respiratory tract infections, asthma, gastrointestinal infections and different ailments associated with the dusty nature of the immediate environment. This brought the need to investigate the nature of the settled indoor dust. Vacuum cleaner bag dust was collected from indoor of some Nigerian and UK homes, as well as outdoors including during seasonal dusty weather event (Harmattan and Storm dust). The dust was sieved, and the (150 µm size) particles were examined using scanning electron microscope (SEM). The physical characterization of the settled dust samples has revealed the various shapes and sizes, and elemental composition of the dust samples is indicating that some of the dust fractions were the respirable fractions and also the dust contained PM10 to PM 2.5 fractions with possible health effects. The elemental compositions were indicative of the diverse nature of the dust particle sources, which showed dust as a complex matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20dust" title="indoor dust">indoor dust</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmattan%20dust" title=" Harmattan dust"> Harmattan dust</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20effects" title=" health effects"> health effects</a> </p> <a href="https://publications.waset.org/abstracts/60517/physical-characterization-of-indoor-dust-particles-using-scanning-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2893</span> Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yihunie%20Hibstie%20Asres">Yihunie Hibstie Asres</a>, <a href="https://publications.waset.org/abstracts/search?q=Manny%20Mathuthu"> Manny Mathuthu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NAA" title="NAA">NAA</a>, <a href="https://publications.waset.org/abstracts/search?q=Yebrage" title=" Yebrage"> Yebrage</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemoga" title=" Chemoga"> Chemoga</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%2Fmicronutrient" title=" macro/micronutrient "> macro/micronutrient </a> </p> <a href="https://publications.waset.org/abstracts/93602/application-of-neutron-activation-analysis-technique-for-the-analysis-of-soil-samples-from-farmlands-of-yebrage-hawariat-east-gojjam-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2892</span> Quantitative Elemental Analysis of Cyperus rotundus Medicinal Plant by Particle Induced X-Ray Emission and ICP-MS Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Chandrasekhar%20Rao">J. Chandrasekhar Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Naidu"> B. G. Naidu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20J.%20Naga%20Raju"> G. J. Naga Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sarita"> P. Sarita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques have been employed in this work to determine the elements present in the root of Cyperus rotundus medicinal plant used in the treatment of rheumatoid arthritis. The elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, and Sr were commonly identified and quantified by both PIXE and ICP-MS whereas the elements Li, Be, Al, As, Se, Ag, Cd, Ba, Tl, Pb and U were determined by ICP-MS and Cl, K, Ca, Ti and Br were determined by PIXE. The regional variation of elemental content has also been studied by analyzing the same plant collected from different geographical locations. Information on the elemental content of the medicinal plant would be helpful in correlating its ability in the treatment of rheumatoid arthritis and also in deciding the dosage of this herbal medicine from the metal toxicity point of view. Principal component analysis and cluster analysis were also applied to the data matrix to understand the correlation among the elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PIXE" title="PIXE">PIXE</a>, <a href="https://publications.waset.org/abstracts/search?q=CP-MS" title=" CP-MS"> CP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=elements" title=" elements"> elements</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyperus%20rotundus" title=" Cyperus rotundus"> Cyperus rotundus</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a> </p> <a href="https://publications.waset.org/abstracts/65887/quantitative-elemental-analysis-of-cyperus-rotundus-medicinal-plant-by-particle-induced-x-ray-emission-and-icp-ms-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2891</span> Additional Opportunities of Forensic Medical Identification of Dead Bodies of Unkown Persons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saule%20Mussabekova">Saule Mussabekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of chemical elements widely presented in the nature is seldom met in people and vice versa. This is a peculiarity of accumulation of elements in the body, and their selective use regardless of widely changed parameters of external environment. Microelemental identification of human hair and particularly dead body is a new step in the development of modern forensic medicine which needs reliable criteria while identifying the person. In the condition of technology-related pressing of large industrial cities for many years and specific for each region multiple-factor toxic effect from many industrial enterprises it’s important to assess actuality and the role of researches of human hair while assessing degree of deposition with specific pollution. Hair is highly sensitive biological indicator and allows to assess ecological situation, to perform regionalism of large territories of geological and chemical methods. Besides, monitoring of concentrations of chemical elements in the regions of Kazakhstan gives opportunity to use these data while performing forensic medical identification of dead bodies of unknown persons. Methods based on identification of chemical composition of hair with further computer processing allowed to compare received data with average values for the sex, age, and to reveal causally significant deviations. It gives an opportunity preliminary to suppose the region of residence of the person, having concentrated actions of policy for search of people who are unaccounted for. It also allows to perform purposeful legal actions for its further identification having created more optimal and strictly individual scheme of personal identity. Hair is the most suitable material for forensic researches as it has such advances as long term storage properties with no time limitations and specific equipment. Besides, quantitative analysis of micro elements is well correlated with level of pollution of the environment, reflects professional diseases and with pinpoint accuracy helps not only to diagnose region of temporary residence of the person but to establish regions of his migration as well. Peculiarities of elemental composition of human hair have been established regardless of age and sex of persons residing on definite territories of Kazakhstan. Data regarding average content of 29 chemical elements in hair of population in different regions of Kazakhstan have been systemized. Coefficients of concentration of studies elements in hair relative to average values around the region have been calculated for each region. Groups of regions with specific spectrum of elements have been emphasized; these elements are accumulated in hair in quantities exceeding average indexes. Our results have showed significant differences in concentrations of chemical elements for studies groups and showed that population of Kazakhstan is exposed to different toxic substances. It depends on emissions to atmosphere from industrial enterprises dominating in each separate region. Performed researches have showed that obtained elemental composition of human hair residing in different regions of Kazakhstan reflects technogenic spectrum of elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20elemental%20composition%20of%20hair" title="analysis of elemental composition of hair">analysis of elemental composition of hair</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20medical%20research%20of%20hair" title=" forensic medical research of hair"> forensic medical research of hair</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20of%20unknown%20dead%20bodies" title=" identification of unknown dead bodies"> identification of unknown dead bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=microelements" title=" microelements"> microelements</a> </p> <a href="https://publications.waset.org/abstracts/79979/additional-opportunities-of-forensic-medical-identification-of-dead-bodies-of-unkown-persons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2890</span> Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Nakib">C. Nakib</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi"> N. Ammouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Otmani"> A. Otmani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djekoun"> A. Djekoun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Gren%C3%A8che"> J. M. Grenèche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title="mechanical alloying">mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20composition" title=" ternary composition"> ternary composition</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation%20density" title=" dislocation density"> dislocation density</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a> </p> <a href="https://publications.waset.org/abstracts/16694/microstructure-characterization-of-the-ball-milled-fe50al30ni20-wt-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2889</span> Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Khalek%20Selim">Abdel Khalek Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa%20Mahmoud"> Safaa Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alluvial%20soil" title="alluvial soil">alluvial soil</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20soil" title=" calcareous soil"> calcareous soil</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20leaching" title=" nitrate leaching"> nitrate leaching</a> </p> <a href="https://publications.waset.org/abstracts/62101/leaching-losses-of-fertilizer-nitrogen-as-affected-by-sulfur-and-nitrification-inhibitor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2888</span> Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniela%20N.%20Correa-Llant%C3%A9n">Daniela N. Correa-Llantén</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebasti%C3%A1n%20A.%20Mu%C3%B1oz-Ibacache"> Sebastián A. Muñoz-Ibacache</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathilde%20Maire"> Mathilde Maire</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20M.%20Blamey"> Jenny M. Blamey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genus%20Geobacillus" title="genus Geobacillus">genus Geobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=NADPH%2FNADH-dependent%20reductase" title=" NADPH/NADH-dependent reductase"> NADPH/NADH-dependent reductase</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium%20nanoparticles" title=" selenium nanoparticles"> selenium nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a> </p> <a href="https://publications.waset.org/abstracts/8973/enzyme-involvement-in-the-biosynthesis-of-selenium-nanoparticles-by-geobacillus-wiegelii-strain-gwe1-isolated-from-a-drying-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2887</span> Structural Property and Mechanical Behavior of Polypropylene–Elemental Sulfur (S8) Composites: Effect of Sulfur Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vijay%20Kumar">S. Vijay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishore%20K.%20Jena"> Kishore K. Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Alhassan"> Saeed M. Alhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elemental sulfur is currently produced on the level of 70 million tons annually by petroleum refining, majority of which is used in the production of sulfuric acid, fertilizer and other chemicals. Still, over 6 million tons of elemental sulfur is generated in excess, which creates exciting opportunities to develop new chemistry to utilize sulfur as a feedstock for polymers. Development of new polymer composite materials using sulfur is not widely explored and remains an important challenge in the field. Polymer nanocomposites prepared by carbon nanotube, graphene, silica and other nanomaterials were well established. However, utilization of sulfur as filler in the polymer matrix could be an interesting study. This work is to presents the possibility of utilizing elemental sulfur as reinforcing fillers in the polymer matrix. In this study we attempted to prepare polypropylene/sulfur nanocomposite. The physical, mechanical and morphological properties of the newly developed composites were studied according to the sulfur loading. In the sample preparation, four levels of elemental sulfur loading (5, 10, 20 and 30 wt. %) were designed. Composites were prepared by the melt mixing process by using laboratory scale mini twin screw extruder at 180°C for 15 min. The reaction time and temperature were maintained constant for all prepared composites. The structure and crystallization behavior of composites was investigated by Raman, FTIR, XRD and DSC analysis. It was observed that sulfur interfere with the crystalline arrangement of polypropylene and depresses the crystallization, which affects the melting point, mechanical and thermal stability. In the tensile test, one level of test temperature (room temperature) and crosshead speed (10 mm/min) was designed. Tensile strengths and tensile modulus of the composites were slightly decreased with increasing in filler loading, however, percentage of elongation improved by more than 350% compared to neat polypropylene. The effect of sulfur on the morphology of polypropylene was studied with TEM and SEM techniques. Microscope analysis revels that sulfur is homogeneously dispersed in polymer matrix and behaves as single phase arrangement in the polymer. The maximum elongation for the polypropylene can be achieved by adjusting the sulfur loading in the polymer. This study reviles the possibility of using elemental sulfur as a solid plasticizer in the polypropylene matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallization" title="crystallization">crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20properties" title=" thermo-mechanical properties"> thermo-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/36983/structural-property-and-mechanical-behavior-of-polypropylene-elemental-sulfur-s8-composites-effect-of-sulfur-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2886</span> Characterization of Complex Gold Ores for Preliminary Process Selection: The Case of Kapanda, Ibindi, Mawemeru, and Itumbi in Tanzania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sospeter%20P.%20Maganga">Sospeter P. Maganga</a>, <a href="https://publications.waset.org/abstracts/search?q=Alphonce%20Wikedzi"> Alphonce Wikedzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mussa%20D.%20Budeba"> Mussa D. Budeba</a>, <a href="https://publications.waset.org/abstracts/search?q=Samwel%20V.%20Manyele"> Samwel V. Manyele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study characterizes complex gold ores (elemental and mineralogical composition, gold distribution, ore grindability, and mineral liberation) for preliminary process selection. About 200 kg of ore samples were collected from each location using systematic sampling by mass interval. Ores were dried, crushed, milled, and split into representative sub-samples (about 1 kg) for elemental and mineralogical composition analyses using X-ray fluorescence (XRF), fire assay finished with Atomic Absorption Spectrometer (AAS), and X-ray Diffraction (XRD) methods, respectively. The gold distribution was studied on size-by-size fractions, while ore grindability was determined using the standard Bond test. The mineral liberation analysis was conducted using ThermoFisher Scientific Mineral Liberation Analyzer (MLA) 650, where unsieved polished grain mounts (80% passing 700 µm) were used as MLA feed. Two MLA measurement modes, X-ray modal analysis (XMOD) and sparse phase liberation-grain X-ray mapping analysis (SPL-GXMAP), were employed. At least two cyanide consumers (Cu, Fe, Pb, and Zn) and kinetics impeders (Mn, S, As, and Bi) were present in all locations investigated. Copper content at Kapanda (0.77% Cu) and Ibindi (7.48% Cu) exceeded the recommended threshold of 0.5% Cu for direct cyanidation. The gold ore at Ibindi indicated a higher rate of grinding compared to other locations. This could be explained by the highest grindability (2.119 g/rev.) and lowest Bond work index (10.213 kWh/t) values. The pyrite-marcasite, chalcopyrite, galena, and siderite were identified as major gold, copper, lead, and iron-bearing minerals, respectively, with potential for economic extraction. However, only gold and copper can be recovered under conventional milling because of grain size issues (galena is exposed by 10%) and process complexity (difficult to concentrate and smelt iron from siderite). Therefore, the preliminary process selection is copper flotation followed by gold cyanidation for Kapanda and Ibindi ores, whereas gold cyanidation with additives such as glycine or ammonia is selected for Mawemeru and Itumbi ores because of low concentrations of Cu, Pb, Fe, and Zn minerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20gold%20ores" title="complex gold ores">complex gold ores</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20liberation" title=" mineral liberation"> mineral liberation</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20characterization" title=" ore characterization"> ore characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20grindability" title=" ore grindability"> ore grindability</a> </p> <a href="https://publications.waset.org/abstracts/166554/characterization-of-complex-gold-ores-for-preliminary-process-selection-the-case-of-kapanda-ibindi-mawemeru-and-itumbi-in-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2885</span> Fatty Acid Composition and Therapeutic Effects of Beebread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Silici">Sibel Silici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palynological spectrum, proximate and fatty acids composition of eight beebread samples obtained from different geographical origins were determined. Beebread moisture contents varied between 11.4-15.9 %, ash 1.9-2.54 %, fat 5.9-11.5 %, and protein between 14.8-24.3 %. To our knowledge, this is the first study investigating fatty acids (FAs) composition of the selected monofloral beebreads. A total of thirty-seven FAs were identified. Of these (9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoic acid, (9Z, 12Z)-octadeca-9, 12-dienoic acid, hexadecanoic acid, (Z)-octadec-9-enoic acid, (Z)-icos-11-enoic acid and octadecanoic acid were the most abundant in all the samples. Cotton beebread contained the highest level of ω-3 FAs, 41.3 %. Unsaturated/saturated FAs ratios ranged between 1.38 and 2.39 indicating that beebread is a good source of unsaturated FAs. The pollen, proximate and FAs composition of beebread samples of different botanical and geographical origins varied significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20bread" title="bee bread">bee bread</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20composition" title=" fatty acid composition"> fatty acid composition</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20analysis" title=" pollen analysis"> pollen analysis</a> </p> <a href="https://publications.waset.org/abstracts/52901/fatty-acid-composition-and-therapeutic-effects-of-beebread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2884</span> Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20A.%20S.%20Essawy">Yasmeen A. S. Essawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Nassar"> Khaled Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling%20%28BIM%29" title="building information modeling (BIM)">building information modeling (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20graph%20data%20model%20%28EGDM%29" title=" elemental graph data model (EGDM)"> elemental graph data model (EGDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20and%20topological%20data%20models" title=" geometric and topological data models"> geometric and topological data models</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a> </p> <a href="https://publications.waset.org/abstracts/70542/elemental-graph-data-model-a-semantic-and-topological-representation-of-building-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2883</span> Health Risk Assessment and Source Apportionment of Elemental Particulate Contents from a South Asian Future Megacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afifa%20Aslam">Afifa Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ibrahim"> Muhammad Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Mahmood"> Abid Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman%20Alvi"> Muhammad Usman Alvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Jabeen"> Fariha Jabeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Umara%20Tabassum"> Umara Tabassum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many factors cause air pollution in Pakistan, which poses a significant threat to human health. Diesel fuel and gasoline motor vehicles, as well as industrial companies, pollute the air in Pakistan's cities. The study's goal is to determine the level of air pollution in a Pakistani industrial city and to establish risk levels for the health of the population. We measured the intensity of air pollution by chemical characterization and examination of air samples collected at stationary remark sites. The PM10 levels observed at all sampling sites, including residential, commercial, high-traffic, and industrial areas were well above the limits imposed by Pakistan EPA, the United States EPA, and WHO. We assessed the health risk via chemical factors using a methodology approved for risk assessment. All Igeo index values greater than one were considered moderately contaminated or moderately to severely contaminated. Heavy metals have a substantial risk of acute adverse effects. In Faisalabad, Pakistan, there was an enormously high risk of chronic effects produced by a heavy metal acquaintance. Concerning specified toxic metals, intolerable levels of carcinogenic risks have been determined for the entire population. As a result, in most of the investigated areas of Faisalabad, the indices and hazard quotients for chronic and acute exposure exceeded the permissible level of 1.0. In the current study, re-suspended roadside mineral dust, anthropogenic exhaust emissions from traffic and industry, and industrial dust were identified as major emission sources of elemental particulate contents. Because of the unacceptable levels of risk in the research area, it is strongly suggested that a comprehensive study of the population's health status as a result of air pollution should be conducted for policies to be developed against these risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elemental%20composition" title="elemental composition">elemental composition</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20pollution" title=" particulate pollution"> particulate pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=Igeo%20index" title=" Igeo index"> Igeo index</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20assessment" title=" health risk assessment"> health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20quotient" title=" hazard quotient"> hazard quotient</a> </p> <a href="https://publications.waset.org/abstracts/158911/health-risk-assessment-and-source-apportionment-of-elemental-particulate-contents-from-a-south-asian-future-megacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2882</span> A Conceptual Framework for Integrating Musical Instrument Digital Interface Composition in the Music Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Kashi">Aditi Kashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While educational technologies have taken great strides, especially in Musical Instrument Digital Interface (MIDI) composition, teachers across the world are still adjusting to incorporate such technology into their curricula. While using MIDI in the classroom has become more common, limited class time and a strong focus on performance have made composition a lesser priority. The balance between music theory, performance time, and composition learning is delicate and difficult to maintain for many music educators. This makes including MIDI in the classroom. To address this issue, this paper aims to outline a general conceptual framework centered around a key element of music theory to integrate MIDI composition into the music classroom to not only introduce students to digital composition but also enhance their understanding of music theory and its applicability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20framework" title="educational framework">educational framework</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20technology" title=" education technology"> education technology</a>, <a href="https://publications.waset.org/abstracts/search?q=MIDI" title=" MIDI"> MIDI</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20education" title=" music education"> music education</a> </p> <a href="https://publications.waset.org/abstracts/155266/a-conceptual-framework-for-integrating-musical-instrument-digital-interface-composition-in-the-music-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2881</span> Libyan Crude Oil Composition Analysis and Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hussein%20El%20Ayadi">Omar Hussein El Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=EmadY.%20El-Mansouri"> EmadY. El-Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20B.%20Dozan"> Mohamed B. Dozan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production oil process require specific details i.e. oil composition. Generally, types of oil or differentiation between reservoir fluids depend specifically on composition. The main purpose of this study is to correlate and predict the Libyan oil (reservoir fluid and residual) composition utilizing tri-angle-coordinate plots discovered and tasked with Excel. The reservoir fluid data (61 old + 47 new), the residual oil data (33 new) collected from most of Libyan reservoirs were correlated with each others. Moreover, find a relation between stock tank molecular weight and stock tank oil gravity (oAPI), the molecular weight oh (C7+) versus residual oil gravity (oAPI). The average value of every oil composition was estimated including non-hydrocarbon (H2S, CO2, and N2). Nevertheless, the isomers (i-…) and normal (n-…) structure of (C4) and (C5) were also obtained. The summary of the conclusion is; utilizing excel Microsoft office to draw triangle coordinates to find two unknown component if only one is known. However, it is recommended to use the obtained oil composition plots and equations for any oil composition dependents i.e. optimum separator pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVT" title="PVT">PVT</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20behavior" title=" phase behavior"> phase behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title=" chemical engineering"> chemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/37446/libyan-crude-oil-composition-analysis-and-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2880</span> Proximate and Mineral Composition of Chicken Giblets from Vojvodina, Northern Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Jokanovi%C4%87">M. R. Jokanović</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Tomovi%C4%87"> V. M. Tomović</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Jovi%C4%87"> M. T. Jović</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20%C5%A0kaljac"> S. B. Škaljac</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20%C5%A0oji%C4%87"> B. V. Šojić</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Ikoni%C4%87"> P. M. Ikonić</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Tasi%C4%87"> T. A. Tasić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proximate (moisture, protein, total fat, total ash) and mineral (K, P, Na, Mg, Ca, Zn, Fe, Cu and Mn) composition of chicken giblets (heart, liver and gizzard) were investigated. Phosphorous content, as well as proximate composition, were determined according to recommended ISO methods. The content of all elements, except phosphorus, of the giblets tissues were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES), after dry ashing mineralization. Regarding proximate composition heart was the highest in total fat content, and the lowest in protein content. Liver was the highest in protein and total ash content, while gizzard was the highest in moisture and the lowest in total fat content. Regarding mineral composition liver was the highest for K, P, Ca, Mg, Fe, Zn, Cu, and Mn, while heart was the highest for Na content. The contents of almost all investigated minerals in analysed giblets tissues of chickens from Vojvodina were similar to values reported in the literature, i.e. in national food composition databases of other countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20giblets" title="chicken giblets">chicken giblets</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma-optical%20emission%20spectrometry%20%28ICP-OES%29" title=" inductively coupled plasma-optical emission spectrometry (ICP-OES)"> inductively coupled plasma-optical emission spectrometry (ICP-OES)</a> </p> <a href="https://publications.waset.org/abstracts/14345/proximate-and-mineral-composition-of-chicken-giblets-from-vojvodina-northern-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2879</span> Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Kunecki">Piotr Kunecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Wdowin"> Magdalena Wdowin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20zeolites" title=" synthetic zeolites"> synthetic zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20mercury%20removal" title=" elemental mercury removal"> elemental mercury removal</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20gas%20stream" title=" simulated gas stream"> simulated gas stream</a> </p> <a href="https://publications.waset.org/abstracts/161119/fly-ash-derived-zeolites-as-potential-sorbents-for-elemental-mercury-removal-from-simulated-gas-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=96">96</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elemental%20composition&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>