CINXE.COM
Logaritma - Wikipedia bahasa Indonesia, ensiklopedia bebas
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="id" dir="ltr"> <head> <meta charset="UTF-8"> <title>Logaritma - Wikipedia bahasa Indonesia, ensiklopedia bebas</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )idwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Januari","Februari","Maret","April","Mei","Juni","Juli","Agustus","September","Oktober","November","Desember"],"wgRequestId":"dc1fb644-de3e-4451-b764-56843c3afc35","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Logaritma","wgTitle":"Logaritma","wgCurRevisionId":25603332,"wgRevisionId":25603332,"wgArticleId":61028,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Halaman yang menggunakan ekstensi Phonos","Artikel dengan pranala luar nonaktif","Artikel dengan pranala luar nonaktif permanen","CS1 sumber berbahasa Latin (la)","Halaman dengan rujukan yang menggunakan parameter yang tidak didukung","Artikel mengandung aksara Jerman","Halaman yang menggunakan multiple image dengan pengubahan ukuran gambar otomatis","Pranala kategori Commons dari Wikidata", "Artikel Wikipedia yang memuat kutipan dari Encyclopaedia Britannica 1911 dengan rujukan Wikisource","Artikel Wikipedia dengan penanda GND","Artikel Wikipedia dengan penanda BNE","Artikel Wikipedia dengan penanda BNF","Artikel Wikipedia dengan penanda LCCN","Artikel Wikipedia dengan penanda NDL","Artikel Wikipedia dengan penanda MA","Matematika","Persamaan diferensial","Persamaan matematika","Persamaan"],"wgPageViewLanguage":"id","wgPageContentLanguage":"id","wgPageContentModel":"wikitext","wgRelevantPageName":"Logaritma","wgRelevantArticleId":61028,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"id","pageLanguageDir":"ltr","pageVariantFallbacks":"id"}, "wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11197","wgCheckUserClientHintsHeadersJsApi":["architecture","bitness","brands","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready", "ext.phonos.styles":"ready","ext.phonos.icons":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.phonos.init","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.watchlist-notice","ext.gadget.charinsert","ext.gadget.refToolbar","ext.gadget.AdvancedSiteNotices","ext.gadget.switcher","ext.gadget.Bagikan","ext.gadget.CurIDLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=id&modules=ext.cite.styles%7Cext.math.styles%7Cext.phonos.icons%2Cstyles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=id&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=id&modules=ext.gadget.charinsert-styles&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=id&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.3"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/1200px-Logarithm_plots.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="910"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/800px-Logarithm_plots.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="607"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/640px-Logarithm_plots.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="485"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Logaritma - Wikipedia bahasa Indonesia, ensiklopedia bebas"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//id.m.wikipedia.org/wiki/Logaritma"> <link rel="alternate" type="application/x-wiki" title="Sunting" href="/w/index.php?title=Logaritma&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (id)"> <link rel="EditURI" type="application/rsd+xml" href="//id.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://id.wikipedia.org/wiki/Logaritma"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.id"> <link rel="alternate" type="application/atom+xml" title="Umpan Atom Wikipedia" href="/w/index.php?title=Istimewa:Perubahan_terbaru&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Logaritma rootpage-Logaritma skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Lompat ke isi</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Situs"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu utama" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu utama</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu utama</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">sembunyikan</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigasi </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Halaman_Utama" title="Kunjungi Halaman Utama [z]" accesskey="z"><span>Halaman Utama</span></a></li><li id="n-Daftar-isi" class="mw-list-item"><a href="/wiki/Wikipedia:Isi"><span>Daftar isi</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Istimewa:Perubahan_terbaru" title="Daftar perubahan terbaru dalam wiki. [r]" accesskey="r"><span>Perubahan terbaru</span></a></li><li id="n-Artikel-pilihan" class="mw-list-item"><a href="/wiki/Wikipedia:Artikel_pilihan/Topik"><span>Artikel pilihan</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Peristiwa_terkini" title="Temukan informasi tentang peristiwa terkini"><span>Peristiwa terkini</span></a></li><li id="n-newpage" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_baru"><span>Halaman baru</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_sembarang" title="Tampilkan sembarang halaman [x]" accesskey="x"><span>Halaman sembarang</span></a></li> </ul> </div> </div> <div id="p-Komunitas" class="vector-menu mw-portlet mw-portlet-Komunitas" > <div class="vector-menu-heading"> Komunitas </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Warung-Kopi" class="mw-list-item"><a href="/wiki/Wikipedia:Warung_Kopi"><span>Warung Kopi</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Komunitas" title="Tentang proyek, apa yang dapat Anda lakukan, di mana untuk mencari sesuatu"><span>Portal komunitas</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Bantuan:Isi" title="Tempat mencari bantuan."><span>Bantuan</span></a></li> </ul> </div> </div> <div id="p-Wikipedia" class="vector-menu mw-portlet mw-portlet-Wikipedia" > <div class="vector-menu-heading"> Wikipedia </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:Perihal"><span>Tentang Wikipedia</span></a></li><li id="n-Pancapilar" class="mw-list-item"><a href="/wiki/Wikipedia:Pancapilar"><span>Pancapilar</span></a></li><li id="n-Kebijakan" class="mw-list-item"><a href="/wiki/Wikipedia:Kebijakan_dan_pedoman"><span>Kebijakan</span></a></li><li id="n-Hubungi-kami" class="mw-list-item"><a href="/wiki/Wikipedia:Hubungi_kami"><span>Hubungi kami</span></a></li><li id="n-Bak-pasir" class="mw-list-item"><a href="/wiki/Wikipedia:Bak_pasir"><span>Bak pasir</span></a></li> </ul> </div> </div> <div id="p-Bagikan" class="vector-menu mw-portlet mw-portlet-Bagikan emptyPortlet" > <div class="vector-menu-heading"> Bagikan </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Halaman_Utama" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Ensiklopedia Bebas" src="/static/images/mobile/copyright/wikipedia-tagline-id.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Istimewa:Pencarian" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cari di Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Pencarian</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Telusuri Wikipedia" aria-label="Telusuri Wikipedia" autocapitalize="sentences" title="Cari di Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Istimewa:Pencarian"> </div> <button class="cdx-button cdx-search-input__end-button">Cari</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Perkakas pribadi"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Tampilan"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Tampilan" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Tampilan</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_id.wikipedia.org&uselang=id" class=""><span>Menyumbang</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Istimewa:Buat_akun&returnto=Logaritma" title="Anda dianjurkan untuk membuat akun dan masuk log; meskipun, hal itu tidak diwajibkan" class=""><span>Buat akun baru</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Istimewa:Masuk_log&returnto=Logaritma" title="Anda disarankan untuk masuk log, meskipun hal itu tidak diwajibkan. [o]" accesskey="o" class=""><span>Masuk log</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Opsi lainnya" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Perkakas pribadi" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Perkakas pribadi</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu pengguna" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_id.wikipedia.org&uselang=id"><span>Menyumbang</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Istimewa:Buat_akun&returnto=Logaritma" title="Anda dianjurkan untuk membuat akun dan masuk log; meskipun, hal itu tidak diwajibkan"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Buat akun baru</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Istimewa:Masuk_log&returnto=Logaritma" title="Anda disarankan untuk masuk log, meskipun hal itu tidak diwajibkan. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Masuk log</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Halaman penyunting yang telah keluar log <a href="/wiki/Bantuan:Pengantar" aria-label="Pelajari lebih lanjut tentang menyunting"><span>pelajari lebih lanjut</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Istimewa:Kontribusi_saya" title="Daftar suntingan yang dibuat dari alamat IP ini [y]" accesskey="y"><span>Kontribusi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Istimewa:Pembicaraan_saya" title="Pembicaraan tentang suntingan dari alamat IP ini [n]" accesskey="n"><span>Pembicaraan</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Situs"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Daftar isi" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Daftar isi</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">sembunyikan</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Awal</div> </a> </li> <li id="toc-Alasan" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Alasan"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Alasan</span> </div> </a> <ul id="toc-Alasan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definisi" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definisi"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definisi</span> </div> </a> <ul id="toc-Definisi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Identitas_logaritma" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Identitas_logaritma"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Identitas logaritma</span> </div> </a> <button aria-controls="toc-Identitas_logaritma-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Identitas logaritma</span> </button> <ul id="toc-Identitas_logaritma-sublist" class="vector-toc-list"> <li id="toc-Hasil_kali,_hasil_bagi,_pangkat,_dan_akar" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hasil_kali,_hasil_bagi,_pangkat,_dan_akar"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Hasil kali, hasil bagi, pangkat, dan akar</span> </div> </a> <ul id="toc-Hasil_kali,_hasil_bagi,_pangkat,_dan_akar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mengubah_bilangan_pokok" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mengubah_bilangan_pokok"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Mengubah bilangan pokok</span> </div> </a> <ul id="toc-Mengubah_bilangan_pokok-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Bilangan_pokok_khusus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bilangan_pokok_khusus"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Bilangan pokok khusus</span> </div> </a> <ul id="toc-Bilangan_pokok_khusus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sejarah" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sejarah"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Sejarah</span> </div> </a> <ul id="toc-Sejarah-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tabel_logaritma,_mistar_hitung,_dan_penerapan_bersejarah" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Tabel_logaritma,_mistar_hitung,_dan_penerapan_bersejarah"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Tabel logaritma, mistar hitung, dan penerapan bersejarah</span> </div> </a> <button aria-controls="toc-Tabel_logaritma,_mistar_hitung,_dan_penerapan_bersejarah-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Tabel logaritma, mistar hitung, dan penerapan bersejarah</span> </button> <ul id="toc-Tabel_logaritma,_mistar_hitung,_dan_penerapan_bersejarah-sublist" class="vector-toc-list"> <li id="toc-Tabel_logaritma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tabel_logaritma"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Tabel logaritma</span> </div> </a> <ul id="toc-Tabel_logaritma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Perhitungan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Perhitungan"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Perhitungan</span> </div> </a> <ul id="toc-Perhitungan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mistar_hitung" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mistar_hitung"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Mistar hitung</span> </div> </a> <ul id="toc-Mistar_hitung-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Sifat_analitik" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sifat_analitik"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Sifat analitik</span> </div> </a> <button aria-controls="toc-Sifat_analitik-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Sifat analitik</span> </button> <ul id="toc-Sifat_analitik-sublist" class="vector-toc-list"> <li id="toc-Keberadaan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Keberadaan"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Keberadaan</span> </div> </a> <ul id="toc-Keberadaan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Karakterisasi_melalui_rumus_hasil_kali" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Karakterisasi_melalui_rumus_hasil_kali"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Karakterisasi melalui rumus hasil kali</span> </div> </a> <ul id="toc-Karakterisasi_melalui_rumus_hasil_kali-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grafik_fungsi_logaritma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Grafik_fungsi_logaritma"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Grafik fungsi logaritma</span> </div> </a> <ul id="toc-Grafik_fungsi_logaritma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Turunan_dan_antiturunan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Turunan_dan_antiturunan"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Turunan dan antiturunan</span> </div> </a> <ul id="toc-Turunan_dan_antiturunan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representasi_integral_mengenai_fungsi_logaritma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representasi_integral_mengenai_fungsi_logaritma"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Representasi integral mengenai fungsi logaritma</span> </div> </a> <ul id="toc-Representasi_integral_mengenai_fungsi_logaritma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transendensi_logaritma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transendensi_logaritma"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Transendensi logaritma</span> </div> </a> <ul id="toc-Transendensi_logaritma-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Perhitungan_2" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Perhitungan_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Perhitungan</span> </div> </a> <button aria-controls="toc-Perhitungan_2-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Perhitungan</span> </button> <ul id="toc-Perhitungan_2-sublist" class="vector-toc-list"> <li id="toc-Deret_pangkat" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deret_pangkat"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Deret pangkat</span> </div> </a> <ul id="toc-Deret_pangkat-sublist" class="vector-toc-list"> <li id="toc-Deret_Taylor" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Deret_Taylor"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1.1</span> <span>Deret Taylor</span> </div> </a> <ul id="toc-Deret_Taylor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deret_lebih_efisien" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Deret_lebih_efisien"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1.2</span> <span>Deret lebih efisien</span> </div> </a> <ul id="toc-Deret_lebih_efisien-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Hampiran_purata_aritmetika-geometrik" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hampiran_purata_aritmetika-geometrik"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Hampiran purata aritmetika-geometrik</span> </div> </a> <ul id="toc-Hampiran_purata_aritmetika-geometrik-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algoritma_Feynman" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algoritma_Feynman"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Algoritma Feynman</span> </div> </a> <ul id="toc-Algoritma_Feynman-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Penerapan" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Penerapan"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Penerapan</span> </div> </a> <button aria-controls="toc-Penerapan-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Penerapan</span> </button> <ul id="toc-Penerapan-sublist" class="vector-toc-list"> <li id="toc-Penerapannya_dalam_skala_logaritmik" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_skala_logaritmik"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Penerapannya dalam skala logaritmik</span> </div> </a> <ul id="toc-Penerapannya_dalam_skala_logaritmik-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_psikologi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_psikologi"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Penerapannya dalam psikologi</span> </div> </a> <ul id="toc-Penerapannya_dalam_psikologi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_teori_peluang_dan_statistika" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_teori_peluang_dan_statistika"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Penerapannya dalam teori peluang dan statistika</span> </div> </a> <ul id="toc-Penerapannya_dalam_teori_peluang_dan_statistika-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_kompleksitas_perhitungan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_kompleksitas_perhitungan"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.4</span> <span>Penerapannya dalam kompleksitas perhitungan</span> </div> </a> <ul id="toc-Penerapannya_dalam_kompleksitas_perhitungan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_entropi_dan_ketidakteraturan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_entropi_dan_ketidakteraturan"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.5</span> <span>Penerapannya dalam entropi dan ketidakteraturan</span> </div> </a> <ul id="toc-Penerapannya_dalam_entropi_dan_ketidakteraturan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_bangunan_fraktal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_bangunan_fraktal"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.6</span> <span>Penerapannya dalam bangunan fraktal</span> </div> </a> <ul id="toc-Penerapannya_dalam_bangunan_fraktal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_musik" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_musik"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.7</span> <span>Penerapannya dalam musik</span> </div> </a> <ul id="toc-Penerapannya_dalam_musik-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Penerapannya_dalam_teori_bilangan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Penerapannya_dalam_teori_bilangan"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.8</span> <span>Penerapannya dalam teori bilangan</span> </div> </a> <ul id="toc-Penerapannya_dalam_teori_bilangan-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Perumuman" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Perumuman"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Perumuman</span> </div> </a> <button aria-controls="toc-Perumuman-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Perumuman</span> </button> <ul id="toc-Perumuman-sublist" class="vector-toc-list"> <li id="toc-Logaritma_kompleks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logaritma_kompleks"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Logaritma kompleks</span> </div> </a> <ul id="toc-Logaritma_kompleks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kebalikan_dari_fungsi_eksponensial_lainnya" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kebalikan_dari_fungsi_eksponensial_lainnya"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Kebalikan dari fungsi eksponensial lainnya</span> </div> </a> <ul id="toc-Kebalikan_dari_fungsi_eksponensial_lainnya-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Konsep_yang_berkaitan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Konsep_yang_berkaitan"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Konsep yang berkaitan</span> </div> </a> <ul id="toc-Konsep_yang_berkaitan-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lihat_pula" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lihat_pula"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Lihat pula</span> </div> </a> <ul id="toc-Lihat_pula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Catatan" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Catatan"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Catatan</span> </div> </a> <ul id="toc-Catatan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referensi" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Referensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Referensi</span> </div> </a> <ul id="toc-Referensi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pranala_luar" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Pranala_luar"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Pranala luar</span> </div> </a> <ul id="toc-Pranala_luar-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Daftar isi" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Gulingkan daftar isi" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Gulingkan daftar isi</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Logaritma</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Pergi ke artikel dalam bahasa lain. Terdapat 109 bahasa" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-109" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">109 bahasa</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Logaritme" title="Logaritme – Afrikaans" lang="af" hreflang="af" data-title="Logaritme" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Jerman (Swiss)" lang="gsw" hreflang="gsw" data-title="Logarithmus" data-language-autonym="Alemannisch" data-language-local-name="Jerman (Swiss)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8E%E1%8C%8B%E1%88%AA%E1%8B%9D%E1%88%9D" title="ሎጋሪዝም – Amharik" lang="am" hreflang="am" data-title="ሎጋሪዝም" data-language-autonym="አማርኛ" data-language-local-name="Amharik" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Aragon" lang="an" hreflang="an" data-title="Logaritmo" data-language-autonym="Aragonés" data-language-local-name="Aragon" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%84%D9%88%D8%BA%D8%A7%D8%B1%D9%8A%D8%AA%D9%85" title="لوغاريتم – Arab" lang="ar" hreflang="ar" data-title="لوغاريتم" data-language-autonym="العربية" data-language-local-name="Arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D9%84%D9%88%DA%AD%D8%A7%D8%B1%D9%8A%D8%AA%D9%85" title="لوڭاريتم – Arab Maroko" lang="ary" hreflang="ary" data-title="لوڭاريتم" data-language-autonym="الدارجة" data-language-local-name="Arab Maroko" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%98%E0%A6%BE%E0%A6%A4%E0%A6%BE%E0%A6%82%E0%A6%95" title="ঘাতাংক – Assam" lang="as" hreflang="as" data-title="ঘাতাংক" data-language-autonym="অসমীয়া" data-language-local-name="Assam" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Logaritmu" title="Logaritmu – Asturia" lang="ast" hreflang="ast" data-title="Logaritmu" data-language-autonym="Asturianu" data-language-local-name="Asturia" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Loqarifm" title="Loqarifm – Azerbaijani" lang="az" hreflang="az" data-title="Loqarifm" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Bashkir" lang="ba" hreflang="ba" data-title="Логарифм" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Luogar%C4%97tmos" title="Luogarėtmos – Samogitian" lang="sgs" hreflang="sgs" data-title="Luogarėtmos" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Central Bikol" lang="bcl" hreflang="bcl" data-title="Logaritmo" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B3%D0%B0%D1%80%D1%8B%D1%84%D0%BC" title="Лагарыфм – Belarusia" lang="be" hreflang="be" data-title="Лагарыфм" data-language-autonym="Беларуская" data-language-local-name="Belarusia" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9B%D1%8F%D0%B3%D0%B0%D1%80%D1%8B%D1%82%D0%BC" title="Лягарытм – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Лягарытм" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D1%8A%D0%BC" title="Логаритъм – Bulgaria" lang="bg" hreflang="bg" data-title="Логаритъм" data-language-autonym="Български" data-language-local-name="Bulgaria" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bjn mw-list-item"><a href="https://bjn.wikipedia.org/wiki/Logaritma" title="Logaritma – Banjar" lang="bjn" hreflang="bjn" data-title="Logaritma" data-language-autonym="Banjar" data-language-local-name="Banjar" class="interlanguage-link-target"><span>Banjar</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B2%E0%A6%97%E0%A6%BE%E0%A6%B0%E0%A6%BF%E0%A6%A6%E0%A6%AE" title="লগারিদম – Bengali" lang="bn" hreflang="bn" data-title="লগারিদম" data-language-autonym="বাংলা" data-language-local-name="Bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Logaritm" title="Logaritm – Breton" lang="br" hreflang="br" data-title="Logaritm" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Logaritam" title="Logaritam – Bosnia" lang="bs" hreflang="bs" data-title="Logaritam" data-language-autonym="Bosanski" data-language-local-name="Bosnia" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Логарифм" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Logaritme" title="Logaritme – Katalan" lang="ca" hreflang="ca" data-title="Logaritme" data-language-autonym="Català" data-language-local-name="Katalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%84%DB%86%DA%AF%D8%A7%D8%B1%DB%8C%D8%AA%D9%85" title="لۆگاریتم – Kurdi Sorani" lang="ckb" hreflang="ckb" data-title="لۆگاریتم" data-language-autonym="کوردی" data-language-local-name="Kurdi Sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Logaritmus" title="Logaritmus – Cheska" lang="cs" hreflang="cs" data-title="Logaritmus" data-language-autonym="Čeština" data-language-local-name="Cheska" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Chuvash" lang="cv" hreflang="cv" data-title="Логарифм" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Logarithm" title="Logarithm – Welsh" lang="cy" hreflang="cy" data-title="Logarithm" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Logaritme" title="Logaritme – Dansk" lang="da" hreflang="da" data-title="Logaritme" data-language-autonym="Dansk" data-language-local-name="Dansk" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Jerman" lang="de" hreflang="de" data-title="Logarithmus" data-language-autonym="Deutsch" data-language-local-name="Jerman" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Logaritma" title="Logaritma – Zazaki" lang="diq" hreflang="diq" data-title="Logaritma" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%AC%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%82" title="Λογάριθμος – Yunani" lang="el" hreflang="el" data-title="Λογάριθμος" data-language-autonym="Ελληνικά" data-language-local-name="Yunani" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Logar%C3%ACtem" title="Logarìtem – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Logarìtem" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://en.wikipedia.org/wiki/Logarithm" title="Logarithm – Inggris" lang="en" hreflang="en" data-title="Logarithm" data-language-autonym="English" data-language-local-name="Inggris" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Esperanto" lang="eo" hreflang="eo" data-title="Logaritmo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Spanyol" lang="es" hreflang="es" data-title="Logaritmo" data-language-autonym="Español" data-language-local-name="Spanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Logaritm" title="Logaritm – Esti" lang="et" hreflang="et" data-title="Logaritm" data-language-autonym="Eesti" data-language-local-name="Esti" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Basque" lang="eu" hreflang="eu" data-title="Logaritmo" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Logaritmu" title="Logaritmu – Extremaduran" lang="ext" hreflang="ext" data-title="Logaritmu" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%84%DA%AF%D8%A7%D8%B1%DB%8C%D8%AA%D9%85" title="لگاریتم – Persia" lang="fa" hreflang="fa" data-title="لگاریتم" data-language-autonym="فارسی" data-language-local-name="Persia" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Logaritmi" title="Logaritmi – Suomi" lang="fi" hreflang="fi" data-title="Logaritmi" data-language-autonym="Suomi" data-language-local-name="Suomi" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Logaritma" title="Logaritma – Faroe" lang="fo" hreflang="fo" data-title="Logaritma" data-language-autonym="Føroyskt" data-language-local-name="Faroe" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Logarithme" title="Logarithme – Prancis" lang="fr" hreflang="fr" data-title="Logarithme" data-language-autonym="Français" data-language-local-name="Prancis" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Logartam" title="Logartam – Irlandia" lang="ga" hreflang="ga" data-title="Logartam" data-language-autonym="Gaeilge" data-language-local-name="Irlandia" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8" title="對數 – Gan" lang="gan" hreflang="gan" data-title="對數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Logaritm" title="Logaritm – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Logaritm" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Galisia" lang="gl" hreflang="gl" data-title="Logaritmo" data-language-autonym="Galego" data-language-local-name="Galisia" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9C%D7%95%D7%92%D7%A8%D7%99%D7%AA%D7%9D" title="לוגריתם – Ibrani" lang="he" hreflang="he" data-title="לוגריתם" data-language-autonym="עברית" data-language-local-name="Ibrani" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B2%E0%A4%98%E0%A5%81%E0%A4%97%E0%A4%A3%E0%A4%95" title="लघुगणक – Hindi" lang="hi" hreflang="hi" data-title="लघुगणक" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Logarithm" title="Logarithm – Hindi Fiji" lang="hif" hreflang="hif" data-title="Logarithm" data-language-autonym="Fiji Hindi" data-language-local-name="Hindi Fiji" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Logaritam" title="Logaritam – Kroasia" lang="hr" hreflang="hr" data-title="Logaritam" data-language-autonym="Hrvatski" data-language-local-name="Kroasia" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://hu.wikipedia.org/wiki/Logaritmus" title="Logaritmus – Hungaria" lang="hu" hreflang="hu" data-title="Logaritmus" data-language-autonym="Magyar" data-language-local-name="Hungaria" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BC%D5%B8%D5%A3%D5%A1%D6%80%D5%AB%D5%A9%D5%B4" title="Լոգարիթմ – Armenia" lang="hy" hreflang="hy" data-title="Լոգարիթմ" data-language-autonym="Հայերեն" data-language-local-name="Armenia" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Logarithmo" title="Logarithmo – Interlingua" lang="ia" hreflang="ia" data-title="Logarithmo" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Ido" lang="io" hreflang="io" data-title="Logaritmo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Logri" title="Logri – Islandia" lang="is" hreflang="is" data-title="Logri" data-language-autonym="Íslenska" data-language-local-name="Islandia" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Italia" lang="it" hreflang="it" data-title="Logaritmo" data-language-autonym="Italiano" data-language-local-name="Italia" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0" title="対数 – Jepang" lang="ja" hreflang="ja" data-title="対数" data-language-autonym="日本語" data-language-local-name="Jepang" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Lagaridim" title="Lagaridim – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Lagaridim" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9A%E1%83%9D%E1%83%92%E1%83%90%E1%83%A0%E1%83%98%E1%83%97%E1%83%9B%E1%83%98" title="ლოგარითმი – Georgia" lang="ka" hreflang="ka" data-title="ლოგარითმი" data-language-autonym="ქართული" data-language-local-name="Georgia" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Kazakh" lang="kk" hreflang="kk" data-title="Логарифм" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A1%9C%EA%B7%B8_(%EC%88%98%ED%95%99)" title="로그 (수학) – Korea" lang="ko" hreflang="ko" data-title="로그 (수학)" data-language-autonym="한국어" data-language-local-name="Korea" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Latin" lang="la" hreflang="la" data-title="Logarithmus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Logaritmo" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Logaritm" title="Logaritm – Lombard" lang="lmo" hreflang="lmo" data-title="Logaritm" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Logaritmas" title="Logaritmas – Lituavi" lang="lt" hreflang="lt" data-title="Logaritmas" data-language-autonym="Lietuvių" data-language-local-name="Lituavi" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Logaritms" title="Logaritms – Latvi" lang="lv" hreflang="lv" data-title="Logaritms" data-language-autonym="Latviešu" data-language-local-name="Latvi" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Anisa" title="Anisa – Malagasi" lang="mg" hreflang="mg" data-title="Anisa" data-language-autonym="Malagasy" data-language-local-name="Malagasi" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://mk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – Makedonia" lang="mk" hreflang="mk" data-title="Логаритам" data-language-autonym="Македонски" data-language-local-name="Makedonia" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B2%E0%B5%8B%E0%B4%97%E0%B4%B0%E0%B4%BF%E0%B4%A4%E0%B4%82" title="ലോഗരിതം – Malayalam" lang="ml" hreflang="ml" data-title="ലോഗരിതം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B2%E0%A5%89%E0%A4%97%E0%A5%85%E0%A4%B0%E0%A4%BF%E0%A4%A6%E0%A4%AE" title="लॉगॅरिदम – Marathi" lang="mr" hreflang="mr" data-title="लॉगॅरिदम" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Logaritma" title="Logaritma – Melayu" lang="ms" hreflang="ms" data-title="Logaritma" data-language-autonym="Bahasa Melayu" data-language-local-name="Melayu" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9C%E1%80%B1%E1%80%AC%E1%80%B7%E1%80%82%E1%80%9B%E1%80%85%E1%80%BA%E1%80%9E%E1%80%99%E1%80%BA" title="လော့ဂရစ်သမ် – Burma" lang="my" hreflang="my" data-title="လော့ဂရစ်သမ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burma" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Jerman Rendah" lang="nds" hreflang="nds" data-title="Logarithmus" data-language-autonym="Plattdüütsch" data-language-local-name="Jerman Rendah" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Logaritme" title="Logaritme – Belanda" lang="nl" hreflang="nl" data-title="Logaritme" data-language-autonym="Nederlands" data-language-local-name="Belanda" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Logaritme" title="Logaritme – Nynorsk Norwegia" lang="nn" hreflang="nn" data-title="Logaritme" data-language-autonym="Norsk nynorsk" data-language-local-name="Nynorsk Norwegia" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Logaritme" title="Logaritme – Bokmål Norwegia" lang="nb" hreflang="nb" data-title="Logaritme" data-language-autonym="Norsk bokmål" data-language-local-name="Bokmål Norwegia" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Logaritme" title="Logaritme – Ositania" lang="oc" hreflang="oc" data-title="Logaritme" data-language-autonym="Occitan" data-language-local-name="Ositania" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Loogarizimii" title="Loogarizimii – Oromo" lang="om" hreflang="om" data-title="Loogarizimii" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B2%E0%A8%98%E0%A9%82%E0%A8%97%E0%A8%A3%E0%A8%95" title="ਲਘੂਗਣਕ – Punjabi" lang="pa" hreflang="pa" data-title="ਲਘੂਗਣਕ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Logarytm" title="Logarytm – Polski" lang="pl" hreflang="pl" data-title="Logarytm" data-language-autonym="Polski" data-language-local-name="Polski" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%84%D8%A7%DA%AF%D8%B1%D8%AA%DA%BE%D9%85" title="لاگرتھم – Western Punjabi" lang="pnb" hreflang="pnb" data-title="لاگرتھم" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://pt.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Portugis" lang="pt" hreflang="pt" data-title="Logaritmo" data-language-autonym="Português" data-language-local-name="Portugis" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Logaritm" title="Logaritm – Rumania" lang="ro" hreflang="ro" data-title="Logaritm" data-language-autonym="Română" data-language-local-name="Rumania" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Rusia" lang="ru" hreflang="ru" data-title="Логарифм" data-language-autonym="Русский" data-language-local-name="Rusia" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Sakha" lang="sah" hreflang="sah" data-title="Логарифм" data-language-autonym="Саха тыла" data-language-local-name="Sakha" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Logaritmu" title="Logaritmu – Sisilia" lang="scn" hreflang="scn" data-title="Logaritmu" data-language-autonym="Sicilianu" data-language-local-name="Sisilia" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh badge-Q70893996 mw-list-item" title=""><a href="https://sh.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – Serbo-Kroasia" lang="sh" hreflang="sh" data-title="Логаритам" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Kroasia" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BD%E0%B6%9D%E0%B7%94_%E0%B6%9C%E0%B6%AB%E0%B6%9A" title="ලඝු ගණක – Sinhala" lang="si" hreflang="si" data-title="ලඝු ගණක" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Logarithm" title="Logarithm – Simple English" lang="en-simple" hreflang="en-simple" data-title="Logarithm" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Logaritmus" title="Logaritmus – Slovak" lang="sk" hreflang="sk" data-title="Logaritmus" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Logaritem" title="Logaritem – Sloven" lang="sl" hreflang="sl" data-title="Logaritem" data-language-autonym="Slovenščina" data-language-local-name="Sloven" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Daraunene" title="Daraunene – Shona" lang="sn" hreflang="sn" data-title="Daraunene" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Logaritmet" title="Logaritmet – Albania" lang="sq" hreflang="sq" data-title="Logaritmet" data-language-autonym="Shqip" data-language-local-name="Albania" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – Serbia" lang="sr" hreflang="sr" data-title="Логаритам" data-language-autonym="Српски / srpski" data-language-local-name="Serbia" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Logaritm" title="Logaritm – Swedia" lang="sv" hreflang="sv" data-title="Logaritm" data-language-autonym="Svenska" data-language-local-name="Swedia" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Logi" title="Logi – Swahili" lang="sw" hreflang="sw" data-title="Logi" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%9F%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%88" title="மடக்கை – Tamil" lang="ta" hreflang="ta" data-title="மடக்கை" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A5%E0%B8%AD%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%B4%E0%B8%97%E0%B8%B6%E0%B8%A1" title="ลอการิทึม – Thai" lang="th" hreflang="th" data-title="ลอการิทึม" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Tagalog" lang="tl" hreflang="tl" data-title="Logaritmo" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Logaritma" title="Logaritma – Turki" lang="tr" hreflang="tr" data-title="Logaritma" data-language-autonym="Türkçe" data-language-local-name="Turki" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Tatar" lang="tt" hreflang="tt" data-title="Логарифм" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Ukraina" lang="uk" hreflang="uk" data-title="Логарифм" data-language-autonym="Українська" data-language-local-name="Ukraina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%84%D8%A7%DA%AF%D8%B1%D8%AA%DA%BE%D9%85" title="لاگرتھم – Urdu" lang="ur" hreflang="ur" data-title="لاگرتھم" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Logarifm" title="Logarifm – Uzbek" lang="uz" hreflang="uz" data-title="Logarifm" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://vi.wikipedia.org/wiki/Logarit" title="Logarit – Vietnam" lang="vi" hreflang="vi" data-title="Logarit" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnam" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Warai" lang="war" hreflang="war" data-title="Logaritmo" data-language-autonym="Winaray" data-language-local-name="Warai" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0" title="对数 – Wu Tionghoa" lang="wuu" hreflang="wuu" data-title="对数" data-language-autonym="吴语" data-language-local-name="Wu Tionghoa" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%9C%D7%90%D7%92%D7%90%D7%A8%D7%99%D7%98%D7%9D" title="לאגאריטם – Yiddish" lang="yi" hreflang="yi" data-title="לאגאריטם" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0" title="对数 – Tionghoa" lang="zh" hreflang="zh" data-title="对数" data-language-autonym="中文" data-language-local-name="Tionghoa" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/T%C3%B9i-s%C3%B2%CD%98" title="Tùi-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Tùi-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8" title="對數 – Kanton" lang="yue" hreflang="yue" data-title="對數" data-language-autonym="粵語" data-language-local-name="Kanton" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11197#sitelinks-wikipedia" title="Sunting pranala interwiki" class="wbc-editpage">Sunting pranala</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Ruang nama"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logaritma" title="Lihat halaman isi [c]" accesskey="c"><span>Halaman</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Pembicaraan:Logaritma" rel="discussion" title="Pembicaraan halaman isi [t]" accesskey="t"><span>Pembicaraan</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Ubah varian bahasa" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Bahasa Indonesia</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Tampilan"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logaritma"><span>Baca</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logaritma&veaction=edit" title="Sunting halaman ini [v]" accesskey="v"><span>Sunting</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logaritma&action=edit" title="Sunting kode sumber halaman ini [e]" accesskey="e"><span>Sunting sumber</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logaritma&action=history" title="Revisi sebelumnya dari halaman ini. [h]" accesskey="h"><span>Lihat riwayat</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Peralatan halaman"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Perkakas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Perkakas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Perkakas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">sembunyikan</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Opsi lainnya" > <div class="vector-menu-heading"> Tindakan </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Logaritma"><span>Baca</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logaritma&veaction=edit" title="Sunting halaman ini [v]" accesskey="v"><span>Sunting</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logaritma&action=edit" title="Sunting kode sumber halaman ini [e]" accesskey="e"><span>Sunting sumber</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logaritma&action=history"><span>Lihat riwayat</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Umum </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Istimewa:Pranala_balik/Logaritma" title="Daftar semua halaman wiki yang memiliki pranala ke halaman ini [j]" accesskey="j"><span>Pranala balik</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Istimewa:Perubahan_terkait/Logaritma" rel="nofollow" title="Perubahan terbaru halaman-halaman yang memiliki pranala ke halaman ini [k]" accesskey="k"><span>Perubahan terkait</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_istimewa" title="Daftar semua halaman istimewa [q]" accesskey="q"><span>Halaman istimewa</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Logaritma&oldid=25603332" title="Pranala permanen untuk revisi halaman ini"><span>Pranala permanen</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Logaritma&action=info" title="Informasi lanjut tentang halaman ini"><span>Informasi halaman</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Istimewa:Kutip&page=Logaritma&id=25603332&wpFormIdentifier=titleform" title="Informasi tentang bagaimana mengutip halaman ini"><span>Kutip halaman ini</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Istimewa:UrlShortener&url=https%3A%2F%2Fid.wikipedia.org%2Fwiki%2FLogaritma"><span>Lihat URL pendek</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Istimewa:QrCode&url=https%3A%2F%2Fid.wikipedia.org%2Fwiki%2FLogaritma"><span>Unduh kode QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Cetak/ekspor </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Istimewa:Buku&bookcmd=book_creator&referer=Logaritma"><span>Buat buku</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Istimewa:DownloadAsPdf&page=Logaritma&action=show-download-screen"><span>Unduh versi PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Logaritma&printable=yes" title="Versi cetak halaman ini [p]" accesskey="p"><span>Versi cetak</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dalam proyek lain </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Logarithm" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11197" title="Pranala untuk menghubungkan butir pada ruang penyimpanan data [g]" accesskey="g"><span>Butir di Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Peralatan halaman"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Tampilan"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Tampilan</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">sembunyikan</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Dari Wikipedia bahasa Indonesia, ensiklopedia bebas</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="id" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/Berkas:Logarithm_plots.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/300px-Logarithm_plots.png" decoding="async" width="300" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/450px-Logarithm_plots.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/600px-Logarithm_plots.png 2x" data-file-width="1706" data-file-height="1294" /></a><figcaption>Grafik fungsi logaritma dengan tiga bilangan pokok yang umum. Titik khusus <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>b</i> = 1</span> diperlihatkan oleh garis bertitik, dan semua kurva fungsi memotong di <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log 1 = 0</span>.</figcaption></figure><style data-mw-deduplicate="TemplateStyles:r26333518">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar"><tbody><tr><td class="sidebar-above" style="background:#efefef;"> <span style="font-size:130%;"><a href="/wiki/Operasi_aritmetika" class="mw-redirect" title="Operasi aritmetika">Operasi aritmetika</a></span><style data-mw-deduplicate="TemplateStyles:r18590415">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:100%}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><div class="navbar plainlinks hlist navbar-mini" style="float:right"><ul><li class="nv-lihat"><a href="/wiki/Templat:Operasi_aritmetika" title="Templat:Operasi aritmetika"><abbr title="Lihat templat ini">l</abbr></a></li><li class="nv-bicara"><a href="/wiki/Pembicaraan_Templat:Operasi_aritmetika" title="Pembicaraan Templat:Operasi aritmetika"><abbr title="Diskusikan templat ini">b</abbr></a></li><li class="nv-sunting"><a class="external text" href="https://id.wikipedia.org/w/index.php?title=Templat:Operasi_aritmetika&action=edit"><abbr title="Sunting templat ini">s</abbr></a></li></ul></div></td></tr><tr><td class="sidebar-content" style="font-size:130%;"> <table class="infobox" style="padding:0;border:none;margin:auto;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent"><tbody><tr><th colspan="4" style="text-align:center"><a href="/wiki/Penambahan" title="Penambahan">Penambahan</a> (+)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{suku}}\,+\,{\text{suku}}\\\scriptstyle {\text{yang ditambah}}\,+\,{\text{penambah}}\\\scriptstyle {\text{tinambah}}\,+\,{\text{penambah}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>suku</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>suku</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>yang ditambah</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>penambah</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>tinambah</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>penambah</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{suku}}\,+\,{\text{suku}}\\\scriptstyle {\text{yang ditambah}}\,+\,{\text{penambah}}\\\scriptstyle {\text{tinambah}}\,+\,{\text{penambah}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0abf25240789d26035c4b88fde8c1f7da5026a8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.575ex; height:7.176ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{suku}}\,+\,{\text{suku}}\\\scriptstyle {\text{yang ditambah}}\,+\,{\text{penambah}}\\\scriptstyle {\text{tinambah}}\,+\,{\text{penambah}}\end{matrix}}\right\}\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{jumlah}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>jumlah</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{jumlah}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3152a34678478f7a87ac42f6159b0f1d22a1a68b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.09ex; width:5.069ex; height:2.009ex;" alt="{\displaystyle \scriptstyle {\text{jumlah}}}"></span></td></tr><tr><th colspan="4" style="text-align:center"><a href="/wiki/Pengurangan" title="Pengurangan">Pengurangan</a> (−)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{suku}}\,-\,{\text{suku}}\\\scriptstyle {\text{kinurang}}\,-\,{\text{pengurang}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>suku</mtext> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>suku</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>kinurang</mtext> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>pengurang</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{suku}}\,-\,{\text{suku}}\\\scriptstyle {\text{kinurang}}\,-\,{\text{pengurang}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62cfc0d27931fb706c71565a72111e11b0301da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.702ex; margin-bottom: -0.303ex; width:19.942ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{suku}}\,-\,{\text{suku}}\\\scriptstyle {\text{kinurang}}\,-\,{\text{pengurang}}\end{matrix}}\right\}\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\scriptstyle {\text{selisih}}\\\scriptstyle {\text{beda}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>selisih</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>beda</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\scriptstyle {\text{selisih}}\\\scriptstyle {\text{beda}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/741bcf4fe5f403567b1815645fc21616e0e64a2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:5.063ex; height:6.176ex;" alt="{\displaystyle {\begin{matrix}\scriptstyle {\text{selisih}}\\\scriptstyle {\text{beda}}\end{matrix}}}"></span></td></tr><tr><th colspan="4" style="text-align:center"><a href="/wiki/Perkalian" title="Perkalian">Perkalian</a> (×)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{faktor}}\,\times \,{\text{faktor}}\\\scriptstyle {\text{pengali}}\,\times \,{\text{kinali}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>faktor</mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>faktor</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>pengali</mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>kinali</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{faktor}}\,\times \,{\text{faktor}}\\\scriptstyle {\text{pengali}}\,\times \,{\text{kinali}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d81a91a53c7ed8e1aa9bde68515fa1585dbed6f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.702ex; margin-bottom: -0.303ex; width:15.182ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{faktor}}\,\times \,{\text{faktor}}\\\scriptstyle {\text{pengali}}\,\times \,{\text{kinali}}\end{matrix}}\right\}\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <a href="/wiki/Darab_(matematika)" class="mw-redirect" title="Darab (matematika)"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\scriptstyle {\text{hasil kali}}\\\scriptstyle {\text{darab}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>hasil kali</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>darab</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\scriptstyle {\text{hasil kali}}\\\scriptstyle {\text{darab}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c2fb9478ac37b88ea462b47d438cc854477404d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:7.235ex; height:6.176ex;" alt="{\displaystyle {\begin{matrix}\scriptstyle {\text{hasil kali}}\\\scriptstyle {\text{darab}}\end{matrix}}}"></span></a></td></tr><tr><th colspan="4" style="text-align:center"><a href="/wiki/Pembagian" title="Pembagian">Pembagian</a> (÷), (/)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividen}}}{\scriptstyle {\text{pembagi}}}}\\\scriptstyle {\text{ }}\\\scriptstyle {\frac {\scriptstyle {\text{pembilang}}}{\scriptstyle {\text{penyebut}}}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>dividen</mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>pembagi</mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>pembilang</mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>penyebut</mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividen}}}{\scriptstyle {\text{pembagi}}}}\\\scriptstyle {\text{ }}\\\scriptstyle {\frac {\scriptstyle {\text{pembilang}}}{\scriptstyle {\text{penyebut}}}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/190f9a94aeecc40c0cab70438dd9108c16b8c5d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:12.501ex; height:11.509ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividen}}}{\scriptstyle {\text{pembagi}}}}\\\scriptstyle {\text{ }}\\\scriptstyle {\frac {\scriptstyle {\text{pembilang}}}{\scriptstyle {\text{penyebut}}}}\end{matrix}}\right\}\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <a href="/wiki/Hasil_bagi" title="Hasil bagi"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\scriptstyle {\text{hasil bagi}}\\\scriptstyle {\text{pecahan}}\\\scriptstyle {\text{rasio}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>hasil bagi</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>pecahan</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>rasio</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\scriptstyle {\text{hasil bagi}}\\\scriptstyle {\text{pecahan}}\\\scriptstyle {\text{rasio}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c6ba77a51fc706430d79a566ab8eca3a462f80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:7.646ex; height:9.176ex;" alt="{\displaystyle {\begin{matrix}\scriptstyle {\text{hasil bagi}}\\\scriptstyle {\text{pecahan}}\\\scriptstyle {\text{rasio}}\end{matrix}}}"></span></a></td></tr><tr><th colspan="4" style="text-align:center"><a href="/wiki/Eksponensiasi" title="Eksponensiasi">Eksponensiasi</a> (^)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{bilangan pokok}}^{\text{eksponen}}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>bilangan pokok</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>eksponen</mtext> </mrow> </msup> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{bilangan pokok}}^{\text{eksponen}}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b8239a1c0b55a4929e7b376823a57c8189253e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.523ex; height:2.509ex;" alt="{\displaystyle \scriptstyle {\text{bilangan pokok}}^{\text{eksponen}}\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{pangkat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>pangkat</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{pangkat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/116a830a8ccb0d8ad6fb450c3925836676bdcbd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.801ex; height:2.009ex;" alt="{\displaystyle \scriptstyle {\text{pangkat}}}"></span></td></tr><tr><th colspan="4" style="text-align:center"><a href="/wiki/Akar_bilangan" title="Akar bilangan">Penarikan akar</a> (√)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt[{\text{pangkat}}]{\scriptstyle {\text{radikan}}}}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>radikan</mtext> </mrow> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mtext>pangkat</mtext> </mrow> </mroot> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt[{\text{pangkat}}]{\scriptstyle {\text{radikan}}}}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b19418be0cf9ed355df169ae0dc3df1084139542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.609ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\sqrt[{\text{pangkat}}]{\scriptstyle {\text{radikan}}}}\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{akar}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>akar</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{akar}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d99ca490c5ebea5481bb86a79369e4b9f2c8c88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.157ex; height:1.676ex;" alt="{\displaystyle \scriptstyle {\text{akar}}}"></span></td></tr><tr><th colspan="4" style="text-align:center"><a class="mw-selflink selflink">Logaritma</a> (log)</th></tr><tr><th scope="row" style="display:none;"></th><td style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle ^{\text{bilangan pokok}}\!\log({\text{antilogaritma}})\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>bilangan pokok</mtext> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>antilogaritma</mtext> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle ^{\text{bilangan pokok}}\!\log({\text{antilogaritma}})\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b1bfc346c1502b92d3f49715adc05ad70f370a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.324ex; height:2.509ex;" alt="{\displaystyle \scriptstyle ^{\text{bilangan pokok}}\!\log({\text{antilogaritma}})\,=\,}"></span></td><td style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{logaritma}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>logaritma</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{logaritma}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5984abf04597d718b2ce3cc99ef9fe3a4f9340f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.856ex; height:2.009ex;" alt="{\displaystyle \scriptstyle {\text{logaritma}}}"></span></td></tr></tbody></table></td> </tr></tbody></table> <p>Dalam <a href="/wiki/Matematika" title="Matematika">matematika</a>, <b>logaritma</b> adalah <a href="/wiki/Fungsi_invers" title="Fungsi invers">fungsi invers</a> dari <a href="/wiki/Eksponensiasi" title="Eksponensiasi">eksponensiasi</a>. Dengan kata lain, logaritma dari <span class="texhtml mvar" style="font-style:italic;">x</span> adalah <a href="/wiki/Eksponen" class="mw-redirect" title="Eksponen">eksponen</a> dengan <a href="/wiki/Bilangan_pokok" title="Bilangan pokok">bilangan pokok</a> <span class="texhtml mvar" style="font-style:italic;">b</span> yang dipangkatkan dengan bilangan konstan lain agar memperoleh nilai <span class="texhtml mvar" style="font-style:italic;">x</span>. Kasus sederhana dalam logaritma adalah menghitung jumlah munculnya faktor yang sama dalam perkalian berulang. Sebagai contoh, <span class="texhtml" style="white-space: nowrap;">1000 = 10 × 10 × 10 = 10<sup>3</sup></span> dibaca, "logaritma 1000 dengan bilangan pokok 10 sama dengan 3" atau dinotasikan sebagai <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log (1000) = 3</span>. Logaritma dari <span class="texhtml mvar" style="font-style:italic;">x</span> dengan <i>bilangan pokok</i> <span class="texhtml mvar" style="font-style:italic;">b</span> dilambangkan <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span>. Terkadang logaritma dilambangkan sebagai <span class="texhtml" style="white-space: nowrap;">log<sub><i>b</i></sub> (<i>x</i>)</span> atau tanpa menggunakan tanda kurung, <span class="texhtml" style="white-space: nowrap;">log<sub><i>b</i></sub> <i>x</i></span>, atau bahkan tanpa menggunakan bilangan pokok khusus, <span class="texhtml" style="white-space: nowrap;">log <i>x</i></span>. </p><p>Ada tiga bilangan pokok logaritma yang umum beserta kegunaannya. Logaritma dengan bilangan pokok <span class="texhtml" style="white-space: nowrap;">10</span> (<span class="texhtml" style="white-space: nowrap;"><i>b</i> = 10</span>) disebut sebagai <a href="/wiki/Logaritma_umum" title="Logaritma umum">logaritma umum</a>, yang biasanya dipakai dalam ilmu sains dan rekayasa. Logaritma dengan dengan bilangan pokok <a href="/wiki/E_(konstanta_matematika)" title="E (konstanta matematika)">bilangan <span class="texhtml" style="white-space: nowrap;"><i>e</i></span></a> (<span class="texhtml" style="white-space: nowrap;"><i>b</i> ≈ 2.718</span>) disebut sebagai <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a>, yang dipakai dengan luas dalam matematika dan fisika, karena dapat mempermudah perhitungan <a href="/wiki/Integral" title="Integral">integral</a> dan <a href="/wiki/Turunan" title="Turunan">turunan</a>. Logaritma dengan bilangan pokok <span class="texhtml" style="white-space: nowrap;">2</span> (<span class="texhtml" style="white-space: nowrap;"><i>b</i> = 2</span>) disebut sebagai <a href="/wiki/Logaritma_biner" title="Logaritma biner">logaritma biner</a>, yang seringkali dipakai dalam <a href="/wiki/Ilmu_komputer" title="Ilmu komputer">ilmu komputer</a>. </p><p>Logaritma diperkenalkan oleh <a href="/wiki/John_Napier" title="John Napier">John Napier</a> pada tahun 1614 sebagai alat yang menyederhanakan perhitungan.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Logaritma dipakai lebih cepat dalam navigator, ilmu sains, rekayasa, ilmu ukur wilayah, dan bidang lainnya untuk lebih mempermudah perhitungan nilai yang sangat akurat. Dengan menggunakan <a href="/wiki/Tabel_matematika" title="Tabel matematika">tabel logaritma</a>, cara yang membosankan seperti mengalikan digit yang banyak dapat digantikan dengan melihat tabel dan penjumlahan yang lebih mudah. Ini dapat dilakukan karena logaritma dari <a href="/wiki/Darab_(matematika)" class="mw-redirect" title="Darab (matematika)">hasil kali</a> bilangan merupakan logaritma dari <a href="/wiki/Penjumlahan" class="mw-redirect" title="Penjumlahan">jumlah</a> faktor bilangan: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fadaf31996c98e92decc9ddbfcbc621398935ead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.642ex; height:3.176ex;" alt="{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y,}"></span></dd></dl> <p>asalkan bahwa <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">y</span> bilangan positif dan <span class="texhtml" style="white-space: nowrap;"><i>b</i> ≠ 1</span>. <a href="/wiki/Mistar_hitung" title="Mistar hitung">Mistar hitung</a> yang juga berasal dari logaritma dapat mempermudah perhitungan tanpa menggunakan tabel, namun perhitungannya kurang akurat. <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> mengaitkan gagasan logaritma saat ini dengan <a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">fungsi eksponensial</a> pada abad ke-18, dan juga memperkenalkan huruf <span class="texhtml mvar" style="font-style:italic;">e</span> sebagai bilangan pokok dari logaritma alami.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Penerapan <a href="/wiki/Skala_logaritmik" title="Skala logaritmik">skala logaritmik</a> dipakai dalam mengurangi kuantitas yang sangat besar menjadi lebih kecil. Sebagai contoh, <a href="/wiki/Desibel" title="Desibel">desibel</a> (dB) adalah <a href="/wiki/Satuan" title="Satuan">satuan</a> yang digunakan untuk menyatakan <a href="/wiki/Tingkat_(kuantitas_logaritmik)" title="Tingkat (kuantitas logaritmik)">rasio sebagai logaritma</a>, sebagian besar untuk kekuatan sinyal dan amplitudo (contoh umumnya pada <a href="/wiki/Tekanan_suara" class="mw-redirect" title="Tekanan suara">tekanan suara</a>). Dalam kimia, <a href="/wiki/PH" title="PH">pH</a> mengukur <a href="/wiki/Asam" title="Asam">keasaman</a> dari <a href="/wiki/Larutan_berair" title="Larutan berair">larutan berair</a> melalui logaritma. Logaritma umumnya dipakai dalam <a href="/wiki/Rumus" title="Rumus">rumus</a> ilmiah, dalam pengukuran <a href="/w/index.php?title=Teori_kompleksitas_komputasi&action=edit&redlink=1" class="new" title="Teori kompleksitas komputasi (halaman belum tersedia)">kompleksitas algoritma</a> dan objek geometris yang disebut sebagai <a href="/wiki/Fraktal" title="Fraktal">fraktal</a>. Logaritma juga membantu untuk menjelaskan <a href="/wiki/Frekuensi" title="Frekuensi">frekuensi</a> rasio <a href="/wiki/Interval_(musik)" title="Interval (musik)">interval musik</a>, ditemukan di rumus yang menghitung <a href="/wiki/Bilangan_prima" title="Bilangan prima">bilangan prima</a> atau <a href="/w/index.php?title=Hampiran_Stirling&action=edit&redlink=1" class="new" title="Hampiran Stirling (halaman belum tersedia)">hampiran</a> <a href="/wiki/Faktorial" title="Faktorial">faktorial</a>, memberikan gambaran dalam <a href="/wiki/Psikofisika" title="Psikofisika">psikofisika</a>, dan dapat membantu perhitungan <a href="/wiki/Akuntansi_forensik" title="Akuntansi forensik">akuntansi forensik</a>. </p><p>Konsep logaritma sebagai invers dari eksponensiasi juga memperluas ke struktur matematika lain. Namun pada umumnya, logaritma cenderung merupakan fungsi bernilai banyak. Sebagai contoh, <a href="/w/index.php?title=Logaritma_kompleks&action=edit&redlink=1" class="new" title="Logaritma kompleks (halaman belum tersedia)">logaritma kompleks</a> merupakan <a href="/wiki/Fungsi_invers" title="Fungsi invers">invers</a> dari fungsi eksponensial pada <a href="/wiki/Bilangan_kompleks" title="Bilangan kompleks">bilangan kompleks</a>. Mirip dengan contoh sebelumnya, <a href="/wiki/Logaritma_diskret" title="Logaritma diskret">logaritma diskret</a> dalam grup hingga, merupakan invers fungsi eksponensial bernilai banyak yang memiliki kegunaan dalam <a href="/wiki/Kriptografi_kunci_publik" title="Kriptografi kunci publik">kriptografi kunci publik</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Alasan">Alasan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=1" title="Sunting bagian: Alasan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=1" title="Sunting kode sumber bagian: Alasan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Binary_logarithm_plot_with_grid.png" class="mw-file-description"><img alt="Grafik memperlihatkan kurva logaritmik yang memotong\ sumbu-x di dan mendekati negatif takhingga di sepanjang garis sumbu-y." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Binary_logarithm_plot_with_grid.png/300px-Binary_logarithm_plot_with_grid.png" decoding="async" width="300" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Binary_logarithm_plot_with_grid.png/450px-Binary_logarithm_plot_with_grid.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Binary_logarithm_plot_with_grid.png/600px-Binary_logarithm_plot_with_grid.png 2x" data-file-width="1704" data-file-height="1292" /></a><figcaption>Gambar memperlihatkan <a href="/wiki/Grafik_fungsi" title="Grafik fungsi">grafik</a> logaritma dengan bilangan pokok 2 memotong <a href="/wiki/Sistem_koordinat_Cartesius" title="Sistem koordinat Cartesius">sumbu-<i>x</i></a> di <span class="texhtml" style="white-space: nowrap;"><i>x</i> = 1</span> dan melalui titik <span class="nowrap">(2, 1)</span>, <span class="nowrap">(4, 2)</span>, dan <span class="nowrap">(8, 3)</span>, sebagai contoh, <span class="texhtml" style="white-space: nowrap;">log<sub>2</sub>(8) = 3</span> dan <span class="texhtml" style="white-space: nowrap;">2<sup>3</sup> = 8</span>. Grafik tersebut dengan sembarang mendekati sumbu-<span class="texhtml mvar" style="font-style:italic;">y</span>, namun <a href="/wiki/Asimtot" title="Asimtot">tidak mendekati sumbu-<i>x</i></a>.</figcaption></figure> <p>Operasi aritmetika yang paling dasar adalah <a href="/wiki/Penambahan" title="Penambahan">penambahan</a>, <a href="/wiki/Perkalian" title="Perkalian">perkalian</a>, dan <a href="/wiki/Eksponensiasi" title="Eksponensiasi">eksponen</a>. Kebalikan dari penambahan adalah <a href="/wiki/Pengurangan" title="Pengurangan">pengurangan</a>, dan kebalikan dari perkalian adalah <a href="/wiki/Pembagian" title="Pembagian">pembagian</a>. Mirip dengan contoh sebelumnya, logaritma merupakan kebalikan (atau invers) dari operasi <a href="/wiki/Eksponensiasi" title="Eksponensiasi">eksponensiasi</a>. Eksponensiasi adalah bilangan <i>bilangan pokok</i> <span class="texhtml mvar" style="font-style:italic;">b</span> yang ketika dipangkatkan dengan <span class="texhtml mvar" style="font-style:italic;">y</span> memberikan nilai <span class="texhtml mvar" style="font-style:italic;">x</span>. Ini dirumuskan sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{y}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{y}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32d862a261be92079096455ce1af882eb1c15f99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.122ex; height:2.343ex;" alt="{\displaystyle b^{y}=x.}"></span></dd></dl> <p>Sebagai contoh, <span class="texhtml" style="white-space: nowrap;">2</span> pangkat <span class="texhtml" style="white-space: nowrap;">3</span> memberikan nilai <span class="texhtml" style="white-space: nowrap;">8</span>. Secara matematis, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{3}=8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{3}=8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb2dded8eba905e4a019b70abad935422b198db4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.478ex; height:2.676ex;" alt="{\displaystyle 2^{3}=8}"></span>. </p><p>Logaritma dengan bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span> adalah operasi invers yang menyediakan nilai keluaran <span class="texhtml mvar" style="font-style:italic;">y</span> dari nilai masukan <span class="texhtml mvar" style="font-style:italic;">x</span>. Hal ini mengartikan bahwa <span class="texhtml" style="white-space: nowrap;"><i>y</i> = <sup>b</sup>log <i>x</i></span> ekuivalen dengan <span class="texhtml" style="white-space: nowrap;"><i>x</i> = <i>b</i><sup><i>y</i></sup></span>, jika <span class="texhtml mvar" style="font-style:italic;">b</span> <a href="/wiki/Bilangan_real" class="mw-redirect" title="Bilangan real">bilangan real</a> positif. (Jika <span class="texhtml mvar" style="font-style:italic;">b</span> bukanlah bilangan real positif, eksponensiasi dan logaritma dapat terdefinisi tetapi membutuhkan beberapa nilai, sehingga definisi darinya semakin rumit.) </p><p>Salah satu alasan bersejarah utamanya dalam memperkenalkan logaritma adalah rumus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fadaf31996c98e92decc9ddbfcbc621398935ead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.642ex; height:3.176ex;" alt="{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y,}"></span></dd></dl> <p>yang dapat mempermudah perhitungan nilai perkalian dan pembagian dengan penjumlahan, pengurangan, dan melihat <a href="/wiki/Tabel_logaritma" class="mw-redirect" title="Tabel logaritma">tabel logaritma</a>. Perhitungan ini dipakai sebelum komputer ditemukan. </p> <div class="mw-heading mw-heading2"><h2 id="Definisi">Definisi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=2" title="Sunting bagian: Definisi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=2" title="Sunting kode sumber bagian: Definisi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Diberikan <a href="/wiki/Bilangan_real" class="mw-redirect" title="Bilangan real">bilangan real</a> positif <span class="texhtml mvar" style="font-style:italic;"><i>b</i></span> sehingga <span class="texhtml" style="white-space: nowrap;"><i>b</i> ≠ 1</span>, maka <i>logaritma</i> dari bilangan real positif <span class="texhtml mvar" style="font-style:italic;">x</span> terhadap bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>nb 1<span class="cite-bracket">]</span></a></sup> adalah eksponen dengan bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span> yang dipangkatkan bilangan agar memperoleh nilai <span class="texhtml mvar" style="font-style:italic;">x</span>. Dengan kata lain, logaritma bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span> dari <span class="texhtml mvar" style="font-style:italic;">x</span> adalah bilangan real <span class="texhtml mvar" style="font-style:italic;">y</span> sehingga <span class="texhtml" style="white-space: nowrap;"><i>b</i><sup><i>y</i></sup> = <i>x</i></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Logaritma dilambangkan sebagai <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> (dibaca "logaritma <span class="texhtml mvar" style="font-style:italic;">x</span> dengan bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span>"). Terdapat definisi yang mirip dan lebih ringkas mengatakan bahwa fungsi <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log</span> <a href="/wiki/Fungsi_invers" title="Fungsi invers">invers</a> dengan fungsi <span class="texhtml" style="white-space: nowrap;"><i>x</i> ↦ <i>b</i><sup><i>x</i></sup></span>. </p><p>Sebagai contoh, <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log 16 = 4</span>, karena <span class="texhtml" style="white-space: nowrap;">2<sup>4</sup> = 2 × 2 × 2 × 2 = 16</span>. Logaritma juga dapat bernilai negatif, contohnya <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log <span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">2</span></span> = –1</span>, karena <span class="texhtml" style="white-space: nowrap;">2<sup>–1</sup> = <span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">2<sup>1</sup></span></span> = <span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">2</span></span></span>. Logaritma juga berupa nilai desimal, sebagai contoh <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log 150</span> kira-kira sama dengan 2,176 karena terletak di antara 2 dan 3, dan begitupula 150 terletak antara <span class="texhtml" style="white-space: nowrap;">10<sup>2</sup> = 100</span> dan <span class="texhtml" style="white-space: nowrap;">10<sup>3</sup> = 1000</span>. Adapun sifat logaritma bahwa untuk setiap <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>b</i> = 1</span> karena <span class="texhtml" style="white-space: nowrap;"><i>b</i><sup>1</sup> = <span class="texhtml mvar" style="font-style:italic;">b</span></span>, dan <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log 1 = 0</span> karena <span class="texhtml" style="white-space: nowrap;"><i>b</i><sup>0</sup> = 1</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Identitas_logaritma">Identitas logaritma</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=3" title="Sunting bagian: Identitas logaritma" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=3" title="Sunting kode sumber bagian: Identitas logaritma"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r18844875">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Daftar_identitas_logaritma" title="Daftar identitas logaritma">Daftar identitas logaritma</a></div> <p>Ada beberapa rumus penting yang mengaitkan logaritma dengan yang lainnya.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Hasil_kali,_hasil_bagi,_pangkat,_dan_akar"><span id="Hasil_kali.2C_hasil_bagi.2C_pangkat.2C_dan_akar"></span>Hasil kali, hasil bagi, pangkat, dan akar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=4" title="Sunting bagian: Hasil kali, hasil bagi, pangkat, dan akar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=4" title="Sunting kode sumber bagian: Hasil kali, hasil bagi, pangkat, dan akar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Logaritma dari hasil kali merupakan jumlah logaritma dari bilangan yang dikalikan, dan logaritma dari hasil bagi dari dua bilangan merupakan selisih logaritma. Logaritma dari bilangan pangkat ke-<span class="texhtml mvar" style="font-style:italic;">p</span> sama dengan <i><span class="texhtml mvar" style="font-style:italic;">p</span></i> dikali logaritma dari bilangan tersendiri, dan logaritma bilangan akar ke-<span class="texhtml mvar" style="font-style:italic;">p</span> sama dengan logaritma dibagi dengan <span class="texhtml mvar" style="font-style:italic;">p</span>. Tabel berikut memuat daftar sifat-sifat logaritma tersebut beserta contohnya. Masing-masing identitas ini diperoleh dari hasil substitusi dari definisi logaritma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=b^{\,^{b}\!\log x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=b^{\,^{b}\!\log x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d6be1df7afc4f6a0d28fccb70b40140a742a4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.211ex; height:3.009ex;" alt="{\displaystyle x=b^{\,^{b}\!\log x}}"></span> atau <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=b^{\,^{b}\!\log y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>y</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=b^{\,^{b}\!\log y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcf3028d4d2c0e72f4a2e3d978e0618f19166125" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.913ex; height:3.343ex;" alt="{\displaystyle y=b^{\,^{b}\!\log y}}"></span> pada ruas kiri persamaan. </p> <table class="wikitable" style="margin: 0 auto;"> <tbody><tr> <th> </th> <th>Rumus </th> <th>Contoh </th></tr> <tr> <td>Hasil kali </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42b7a55ec5ce9cbfad34349aff676b26f6bd0489" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.995ex; height:3.009ex;" alt="{\textstyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{3}\!\log 243=\,^{3}\!\log(9\cdot 27)=^{3}\!\log 9+\,^{3}\!\log 27=2+3=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>243</mn> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mn>27</mn> <mo stretchy="false">)</mo> <msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>9</mn> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>27</mn> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{3}\!\log 243=\,^{3}\!\log(9\cdot 27)=^{3}\!\log 9+\,^{3}\!\log 27=2+3=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56a1fa0759fd83b711f4f453ed06d0cd771e2c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.165ex; height:3.009ex;" alt="{\textstyle ^{3}\!\log 243=\,^{3}\!\log(9\cdot 27)=^{3}\!\log 9+\,^{3}\!\log 27=2+3=5}"></span> </td></tr> <tr> <td>Hasil bagi </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{b}\!\log \!{\frac {x}{y}}=\,^{b}\!\log x-\,^{b}\!\log y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>−<!-- − --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{b}\!\log \!{\frac {x}{y}}=\,^{b}\!\log x-\,^{b}\!\log y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdbf21fb73f27cca111953fa92b75d0ed903dcb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:23.477ex; height:3.509ex;" alt="{\textstyle ^{b}\!\log \!{\frac {x}{y}}=\,^{b}\!\log x-\,^{b}\!\log y}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{2}\!\log 16=\,^{2}\!\log \!{\frac {64}{4}}=\,^{2}\!\log 64-\,^{2}\!\log 4=6-2=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>16</mn> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>64</mn> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>64</mn> <mo>−<!-- − --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>4</mn> <mo>=</mo> <mn>6</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{2}\!\log 16=\,^{2}\!\log \!{\frac {64}{4}}=\,^{2}\!\log 64-\,^{2}\!\log 4=6-2=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18134f21e507c0acb7ff817c6a616029588aeef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:48.281ex; height:3.676ex;" alt="{\textstyle ^{2}\!\log 16=\,^{2}\!\log \!{\frac {64}{4}}=\,^{2}\!\log 64-\,^{2}\!\log 4=6-2=4}"></span> </td></tr> <tr> <td>Pangkat </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{b}\!\log \left(x^{p}\right)=p\,^{b}\!\log x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>p</mi> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{b}\!\log \left(x^{p}\right)=p\,^{b}\!\log x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ca4784feb1206b1ea865e2670c863c4763eed7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.389ex; height:3.009ex;" alt="{\textstyle ^{b}\!\log \left(x^{p}\right)=p\,^{b}\!\log x}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{2}\!\log 64=\,^{2}\!\log \left(2^{6}\right)=6\cdot \,^{2}\!\log 2=6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>64</mn> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>2</mn> <mo>=</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{2}\!\log 64=\,^{2}\!\log \left(2^{6}\right)=6\cdot \,^{2}\!\log 2=6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac1c0116aebc87248b057a48ed1b601c2fa42371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.76ex; height:3.343ex;" alt="{\textstyle ^{2}\!\log 64=\,^{2}\!\log \left(2^{6}\right)=6\cdot \,^{2}\!\log 2=6}"></span> </td></tr> <tr> <td>Akar </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{b}\!\log {\sqrt[{p}]{x}}={\frac {^{b}\!\log x}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{b}\!\log {\sqrt[{p}]{x}}={\frac {^{b}\!\log x}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c1e18a9c48fb08b3dbbf2387e0646fefcc3303" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.662ex; height:4.509ex;" alt="{\textstyle ^{b}\!\log {\sqrt[{p}]{x}}={\frac {^{b}\!\log x}{p}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ^{10}\!\log {\sqrt {1000}}=\,{\frac {1}{2}}\cdot \,^{10}\!\log 1000={\frac {3}{2}}=1,5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1000</mn> </msqrt> </mrow> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>1000</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ^{10}\!\log {\sqrt {1000}}=\,{\frac {1}{2}}\cdot \,^{10}\!\log 1000={\frac {3}{2}}=1,5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94afce6ef6929e33bee619e0040b02d3684208fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:40.129ex; height:3.509ex;" alt="{\textstyle ^{10}\!\log {\sqrt {1000}}=\,{\frac {1}{2}}\cdot \,^{10}\!\log 1000={\frac {3}{2}}=1,5}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Mengubah_bilangan_pokok">Mengubah bilangan pokok</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=5" title="Sunting bagian: Mengubah bilangan pokok" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=5" title="Sunting kode sumber bagian: Mengubah bilangan pokok"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Logaritma <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> dapat dihitung sebagai hasil bagi logaritma <span class="texhtml mvar" style="font-style:italic;">x</span> dengan logaritma <span class="texhtml mvar" style="font-style:italic;">b</span> terhadap bilangan pokok sembarang <span class="texhtml mvar" style="font-style:italic;">k</span>. Secara matematis dirumuskan sebagai: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log x={\frac {^{k}\!\log x}{^{k}\!\log b}}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log x={\frac {^{k}\!\log x}{^{k}\!\log b}}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/897d480dbb249738f56be9a2e86d270b06ea5df0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.372ex; height:6.676ex;" alt="{\displaystyle ^{b}\!\log x={\frac {^{k}\!\log x}{^{k}\!\log b}}.\,}"></span></dd></dl> <div style="margin-left:0"> <table class="mw-collapsible mw-collapsed" style="background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:80%; clear: both; padding: 1px;"> <tbody><tr> <th style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center;"><span style="font-size:115%">Bukti konversi antara logaritma dari bilangan pokok sembarang </span> </th></tr> <tr> <td style="border: solid 1px Silver; padding: 0.6em; background: White;"> <p>Dimulai dari identitas berikut </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=b^{^{b}\!\log x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=b^{^{b}\!\log x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da9ad49ef0c3a7475397fd157c3cb33533a59b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.47ex; height:3.343ex;" alt="{\displaystyle x=b^{^{b}\!\log x},}"></span></dd></dl> <p>ini dapat menerapkan <span class="texhtml" style="white-space: nowrap;"><sup><i>k</i></sup>log</span> pada kedua ruas sehingga memperoleh </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{k}\!\log x=\,^{k}\!\log \left(b^{^{b}\!\log x}\right)=\,^{b}\!\log x\cdot \,^{k}\!\log b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{k}\!\log x=\,^{k}\!\log \left(b^{^{b}\!\log x}\right)=\,^{b}\!\log x\cdot \,^{k}\!\log b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e833f5e7878ec6135f16aaf0ef3b6ca6d2565b37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.117ex; height:4.843ex;" alt="{\displaystyle ^{k}\!\log x=\,^{k}\!\log \left(b^{^{b}\!\log x}\right)=\,^{b}\!\log x\cdot \,^{k}\!\log b}"></span>.</dd></dl> <p>Ketika mencari penyelesaian untuk <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span>, maka menghasilkan persamaan: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log x={\frac {^{k}\!\log x}{^{k}\!\log b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log x={\frac {^{k}\!\log x}{^{k}\!\log b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fe99750d293399c557ba913d787d22a67235932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.338ex; height:6.676ex;" alt="{\displaystyle ^{b}\!\log x={\frac {^{k}\!\log x}{^{k}\!\log b}}}"></span>.</dd></dl> <p>Hal ini memperlihatkan faktor konversi dari nilai <span class="texhtml" style="white-space: nowrap;"><sup><i>k</i></sup>log</span> ke nilai <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log</span> yang serupa agar memperoleh bentuk <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><sup><i>k</i></sup>log <i>b</i></span></span></span> </p> </td></tr></tbody></table></div><p><a href="/wiki/Kalkulator_ilmiah" title="Kalkulator ilmiah">Kalkulator ilmiah</a> merupakan alat yang menghitung logaritma dengan bilangan pokok 10 dan <span class="texhtml mvar" style="font-style:italic;"><a href="/wiki/E_(konstanta_matematika)" title="E (konstanta matematika)">e</a></span>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Logaritma terhadap setiap bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span> dapat ditentukan menggunakan kedua logaritma tersebut melalui rumus sebelumnya: </p><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log x={\frac {^{10}\!\log x}{^{10}\!\log b}}={\frac {^{e}\!\log x}{^{e}\!\log b}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log x={\frac {^{10}\!\log x}{^{10}\!\log b}}={\frac {^{e}\!\log x}{^{e}\!\log b}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf9bcdbff50986732c47e623bae318c91597a33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.394ex; height:6.343ex;" alt="{\displaystyle ^{b}\!\log x={\frac {^{10}\!\log x}{^{10}\!\log b}}={\frac {^{e}\!\log x}{^{e}\!\log b}}.}"></span></dd></dl> <p>Diberikan suatu bilangan <span class="texhtml mvar" style="font-style:italic;">x</span> dan logaritma <span class="texhtml" style="white-space: nowrap;"><i>y</i> = <sup><i>b</i></sup>log <i>x</i></span>, dengan <span class="texhtml mvar" style="font-style:italic;">b</span> adalah bilangan pokok yang tidak diketahui. Bilangan pokok tersebut dapat dinyatakan dengan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=x^{\frac {1}{y}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>y</mi> </mfrac> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=x^{\frac {1}{y}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3fd9660ce8c1b5ba4ef5d2f1f08a8ed5dde5a08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.808ex; height:3.843ex;" alt="{\displaystyle b=x^{\frac {1}{y}},}"></span></dd></dl> <p>Rumus ini dapat diperlihatkan dengan mengambil persamaan yang mendefinisikan <span class="texhtml" style="white-space: nowrap;"><i>x</i> = <i>b</i><sup><sup><i>b</i></sup>log <i>x</i></sup> = <i>b</i><sup><i>y</i></sup></span>, lalu dipangkatkan dengan <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">y</span></span></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Bilangan_pokok_khusus">Bilangan pokok khusus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=6" title="Sunting bagian: Bilangan pokok khusus" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=6" title="Sunting kode sumber bagian: Bilangan pokok khusus"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Log4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Log4.svg/220px-Log4.svg.png" decoding="async" width="220" height="191" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Log4.svg/330px-Log4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Log4.svg/440px-Log4.svg.png 2x" data-file-width="575" data-file-height="500" /></a><figcaption>Grafik logaritma dengan bilangan pokok 0,5; 2; dan <span class="texhtml mvar" style="font-style:italic;">e</span></figcaption></figure> <p>Secara khusus, terdapat tiga bilangan pokok yang umum di antara semua pilihan bilangan pokok pada logaritma. Ketiga bilangan pokok tersebut adalah <span class="texhtml" style="white-space: nowrap;"><i>b</i> = 10</span>, <span class="texhtml" style="white-space: nowrap;"><i>b</i> = <a href="/wiki/E_(konstanta_matematika)" title="E (konstanta matematika)"><i>e</i></a></span> (konstanta <a href="/wiki/Bilangan_irasional" title="Bilangan irasional">bilangan irasional</a> yang kira-kira sama dengan 2,71828), dan <span class="texhtml" style="white-space: nowrap;"><i>b</i> = 2</span> (<a href="/wiki/Logaritma_biner" title="Logaritma biner">logaritma biner</a>). Dalam <a href="/wiki/Analisis_matematika" class="mw-redirect" title="Analisis matematika">analisis matematika</a>, logaritma dengan bilangan pokok <span class="texhtml mvar" style="font-style:italic;">e</span> tersebar karena sifat analitik yang dijelaskan di bawah. Di sisi lain, logaritma dengan <span class="nowrap">bilangan pokok 10</span> mudah dipakai dalam perhitungan <a href="/wiki/Transmisi_manual" title="Transmisi manual">manual</a> dalam sistem bilangan <a href="/wiki/Desimal" class="mw-redirect" title="Desimal">desimal</a>:<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{10}\!\log(10x)=\,^{10}\!\log 10+\,^{10}\!\log x=1+\,^{10}\!\log x.\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>10</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>10</mn> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>.</mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{10}\!\log(10x)=\,^{10}\!\log 10+\,^{10}\!\log x=1+\,^{10}\!\log x.\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368e085b4ea04af2ed356bdab1d53a726abc3cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.817ex; height:3.176ex;" alt="{\displaystyle ^{10}\!\log(10x)=\,^{10}\!\log 10+\,^{10}\!\log x=1+\,^{10}\!\log x.\ }"></span></dd></dl> <p>Jadi, <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log <i>x</i></span> berkaitan dengan jumlah <a href="/wiki/Digit" title="Digit">digit desimal</a> dari bilangan bulat positif <span class="texhtml mvar" style="font-style:italic;">x</span>: jumlah digitnya merupakan <a href="/wiki/Bilangan_bulat" title="Bilangan bulat">bilangan bulat</a> terkecil yang lebih besar dari <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log <i>x</i></span>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Sebagai contoh, <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log 1430</span> kira-kira sama dengan 3,15. Bilangan berikutnya merupakan jumlah digit dari 1430, yaitu 4. Dalam <a href="/wiki/Teori_informasi" title="Teori informasi">teori informasi</a>, logaritma alami dipakai dalam <a href="/w/index.php?title=Nat_(unit)&action=edit&redlink=1" class="new" title="Nat (unit) (halaman belum tersedia)">nat</a> dan logaritma dengan bilangan pokok 2 dipakai dalam <a href="/wiki/Bit" class="mw-disambig" title="Bit">bit</a> sebagai satuan dasar informasi.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Logaritma biner juga dipakai dalam <a href="/wiki/Ilmu_komputer" title="Ilmu komputer">ilmu komputer</a>, dengan <a href="/wiki/Sistem_biner" class="mw-redirect" title="Sistem biner">sistem biner</a> ditemukan dimana-mana. Dalam <a href="/wiki/Teori_musik" title="Teori musik">teori musik</a>, rasio tinggi nada kedua (yaitu <a href="/wiki/Oktaf" title="Oktaf">oktaf</a>) ditemukan dimana-mana dan jumlah <a href="/wiki/Sen_(musik)" title="Sen (musik)">sen</a> antara setiap dua tinggi nada dirumuskan sebagai konstanta 1200 dikali logaritma dari rasio (yaitu, 100 sen per <a href="/wiki/Setengah_nada" title="Setengah nada">setengah nada</a> dengan <a href="/w/index.php?title=Temperamen_sama&action=edit&redlink=1" class="new" title="Temperamen sama (halaman belum tersedia)">temperamen sama</a>). Dalam <a href="/wiki/Fotografi" title="Fotografi">fotografi</a>, logaritma dengan bilangan pokok dua dipakai untuk mengukur <a href="/wiki/Nilai_pajanan" title="Nilai pajanan">nilai pajanan</a>, <a href="/wiki/Luminans" class="mw-redirect" title="Luminans">tingkatan cahaya</a>, <a href="/wiki/Kecepatan_rana" title="Kecepatan rana">waktu eksposur</a>, <a href="/wiki/Tingkap" title="Tingkap">tingkap</a>, dan <a href="/wiki/Kecepatan_film" title="Kecepatan film">kecepatan film</a> dalam "stop".<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>Tabel berikut memuat notasi-notasi umum mengenai bilangan pokok beserta bidang yang dipakai. Selain <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span>, adapula notasi logaritma lain yang ditulis sebagai <span class="texhtml" style="white-space: nowrap;">log<sub><i>b</i></sub> <i>x</i></span>, dan juga seperti <span class="texhtml" style="white-space: nowrap;">log <i>x</i></span>. Pada kolom "Notasi ISO" memuat penamaan yang disarankan <a href="/wiki/Organisasi_Standardisasi_Internasional" title="Organisasi Standardisasi Internasional">Organisasi Standardisasi Internasional</a>, yakni <a href="/w/index.php?title=ISO_80000-2&action=edit&redlink=1" class="new" title="ISO 80000-2 (halaman belum tersedia)">ISO 80000-2</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> Karena notasi <span class="texhtml" style="white-space: nowrap;">log <span class="texhtml mvar" style="font-style:italic;">x</span></span> telah dipakai untuk ketiga bilangan pokok di atas (atau ketika bilangan pokok belum ditentukan), bilangan pokok yang dimaksud harus sering diduga tergantung konteks atau bidangnya. Sebagai contoh, <span class="texhtml" style="white-space: nowrap;">log</span> biasanya mengacu pada <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log</span> dalam ilmu komputer, dan <span class="texhtml" style="white-space: nowrap;">log</span> mengacu pada <span class="texhtml" style="white-space: nowrap;"><sup><i>e</i></sup>log</span>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Dalam konteks lainnya, <span class="texhtml" style="white-space: nowrap;">log</span> seringkali mengacu pada <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log</span>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="text-align:center; margin:1em auto 1em auto;"> <tbody><tr> <th scope="col">Bilangan pokok <p><span class="texhtml mvar" style="font-style:italic;">b</span> </p> </th> <th scope="col">Nama <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> </th> <th scope="col">Notasi ISO </th> <th scope="col">Notasi lain </th> <th scope="col">Dipakai dalam bidang </th></tr> <tr> <th scope="row">2 </th> <td><a href="/wiki/Logaritma_biner" title="Logaritma biner">logaritma biner</a> </td> <td><span class="texhtml" style="white-space: nowrap;">lb <i>x</i></span><sup id="cite_ref-gullberg_14-0" class="reference"><a href="#cite_note-gullberg-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </td> <td><span class="texhtml" style="white-space: nowrap;">ld <i>x</i></span>, <span class="texhtml" style="white-space: nowrap;">log <i>x</i></span>, <span class="texhtml" style="white-space: nowrap;">lg <i>x</i></span>,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log <i>x</i></span> </td> <td><a href="/wiki/Ilmu_komputer" title="Ilmu komputer">ilmu komputer</a>, <a href="/wiki/Teori_informasi" title="Teori informasi">teori informasi</a>, <a href="/wiki/Bioinformatika" title="Bioinformatika">bioinformatika</a>, <a href="/wiki/Teori_musik" title="Teori musik">teori musik</a>, <a href="/wiki/Fotografi" title="Fotografi">fotografi</a> </td></tr> <tr> <th scope="row"><span class="texhtml mvar" style="font-style:italic;">e</span> </th> <td><a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a> </td> <td><span class="texhtml" style="white-space: nowrap;">ln <i>x</i></span><sup id="cite_ref-adaa_19-0" class="reference"><a href="#cite_note-adaa-19"><span class="cite-bracket">[</span>nb 2<span class="cite-bracket">]</span></a></sup> </td> <td><span class="texhtml" style="white-space: nowrap;">log <span class="texhtml mvar" style="font-style:italic;">x</span></span> (dipakai dalam matematika<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> dan beberapa <a href="/wiki/Bahasa_pemrograman" title="Bahasa pemrograman">bahasa pemrograman</a> lainnya<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>nb 3<span class="cite-bracket">]</span></a></sup>), <span class="texhtml" style="white-space: nowrap;"><sup><i>e</i></sup>log <i>x</i></span> </td> <td>matematika, fisika, kimia, <p><a href="/wiki/Statistik" title="Statistik">statistik</a>, <a href="/wiki/Ekonomi" title="Ekonomi">ekonomi</a>, teori informasi, dan rekayasa </p> </td></tr> <tr> <th scope="row">10 </th> <td><a href="/wiki/Logaritma_biasa" class="mw-redirect" title="Logaritma biasa">logaritma biasa</a> </td> <td><span class="texhtml" style="white-space: nowrap;">lg <i>x</i></span> </td> <td><span class="texhtml" style="white-space: nowrap;">log <i>x</i></span>, <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log <i>x</i></span> <p>(dipakai dalam rekayasa, biologi, dan astronomi) </p> </td> <td>bidang berbagai <a href="/wiki/Rekayasa" class="mw-redirect" title="Rekayasa">rekayasa</a> (lihat <a href="/wiki/Decibel" class="mw-redirect" title="Decibel">desibel</a> dan lihat di bawah), <p><a href="/wiki/Tabel" class="mw-redirect mw-disambig" title="Tabel">tabel</a> logaritma, <a href="/wiki/Kalkulator" class="mw-redirect" title="Kalkulator">kalkulator</a> genggam, <a href="/wiki/Spektroskopi" title="Spektroskopi">spektroskopi</a> </p> </td></tr> <tr> <th scope="row"><span class="texhtml mvar" style="font-style:italic;">b</span> </th> <td>logaritma dengan bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span> </td> <td><span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> </td> <td> </td> <td>matematika </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Sejarah">Sejarah</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=7" title="Sunting bagian: Sejarah" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=7" title="Sunting kode sumber bagian: Sejarah"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Sejarah_logaritma" title="Sejarah logaritma">Sejarah logaritma</a></div> <p><b>Sejarah logaritma</b> yang dimulai dari Eropa pada abad ketujuh belas merupakan penemuan <a href="/wiki/Fungsi_(matematika)" title="Fungsi (matematika)">fungsi</a> terbaru yang memperluas dunia analisis di luar keterbatasan metode aljabar. Metode logaritma dikemukakan secara terbuka oleh <a href="/wiki/John_Napier" title="John Napier">John Napier</a> pada tahun 1614, dalam bukunya yang berjudul <i><a href="/wiki/Mirifici_Logarithmorum_Canonis_Descriptio" title="Mirifici Logarithmorum Canonis Descriptio">Mirifici Logarithmorum Canonis Descriptio</a></i>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Namun, teknik-teknik lain sebelum penemuan Napier sudah ada dengan keterbatasan metode yang serupa, contohnya seperti <a href="/wiki/Prosthafaeresis" title="Prosthafaeresis">prosthafaeresis</a> atau penggunaan tabel barisan, yang dikembangkan dengan luas oleh <a href="/wiki/Jost_B%C3%BCrgi" title="Jost Bürgi">Jost Bürgi</a> sekitar tahun 1600.<sup id="cite_ref-folkerts_24-0" class="reference"><a href="#cite_note-folkerts-24"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Napier menciptakan istilah untuk logaritma dalam <a href="/wiki/Bahasa_Latin" title="Bahasa Latin">bahasa Latin</a> Tengah, “logaritmus”, yang berasal dari gabungan dua kata Yunani, <i>logos</i> “proporsi, rasio, kata” + <i>arithmos</i> “bilangan”. Secara harfiah, "logaritmus" berarti “bilangan rasio”. </p><p><a href="/wiki/Logaritma_umum" title="Logaritma umum">Logaritma umum</a> dari bilangan adalah indeks dari perpangkatan sepuluh yang sama dengan bilangan tersebut.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Bilangan yang sangat membutuhkan banyak angka merupakan kiasan kasar untuk logaritma umum, dan <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> menyebutnya sebagai “orde bilangan”.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Logaritma real pertama adalah metode heuristik yang mengubah perkalian menjadi penjumlahan, sehingga memudahkan perhitungan yang cepat. Ada beberapa metode yang menggunakan tabel yang diperoleh dari identitas trigonometri,<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> dan metode tersebut dinamakan <a href="/wiki/Prosthafaeresis" title="Prosthafaeresis">prosthafaeresis</a>. </p><p>Penemuan <a href="/wiki/Fungsi_(matematika)" title="Fungsi (matematika)">fungsi</a> yang dikenal saat ini sebagai <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a>, berawal dari saat <a href="/wiki/Gr%C3%A9goire_de_Saint-Vincent" title="Grégoire de Saint-Vincent">Grégoire de Saint-Vincent</a> mencoba menggambarkan <a href="/w/index.php?title=Kuadratur_(matematika)&action=edit&redlink=1" class="new" title="Kuadratur (matematika) (halaman belum tersedia)">kuadratur</a> <a href="/wiki/Hiperbola" title="Hiperbola">hiperbola</a> persegi panjang. Archimedes menulis risalah yang berjudul <i><a href="/wiki/Quadrature_of_the_Parabola" title="Quadrature of the Parabola">The Quadrature of the Parabola</a></i> pada abad ke-3 SM, tetapi kuadratur hiperbola menghindari semua upayanya hingga Saint-Vincent menerbitkan hasilnya pada tahun 1647. Logaritma yang mengaitkan <a href="/wiki/Barisan_dan_deret_geometri" title="Barisan dan deret geometri">barisan dan deret geometri</a> dalam <a href="/w/index.php?title=Argumen_dari_fungsi&action=edit&redlink=1" class="new" title="Argumen dari fungsi (halaman belum tersedia)">argumen</a> dan nilai <a href="/wiki/Barisan_dan_deret_aritmetika" title="Barisan dan deret aritmetika">barisan dan deret aritmetika</a>, meminta <a href="/wiki/A._A._de_Sarasa" class="mw-redirect" title="A. A. de Sarasa">Antonio de Sarasa</a> untuk mengaitkan kuadratur Saint-Vincent dan tradisi logaritma dalam <a href="/wiki/Prosthafaeresis" title="Prosthafaeresis">prosthafaeresis</a> sehingga mengarah ke sebuah persamaan kata untuk logaritma alami, yaitu "logaritma hiperbolik". <a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Christiaan Huygens</a> dan <a href="/wiki/James_Gregory_(matematikawan)" class="mw-redirect" title="James Gregory (matematikawan)">James Gregory</a> mulai mengenali fungsi baru tersebut. <a href="/wiki/Gottfried_Wilhelm_Leibniz" class="mw-redirect" title="Gottfried Wilhelm Leibniz">Leibniz</a> memakai notasi Log y pada tahun 1675,<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> dan tahun berikutnya ia mengaitkannya dengan <a href="/wiki/Kalkulus_integral" class="mw-redirect" title="Kalkulus integral">integral</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dy}{y}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mi>y</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dy}{y}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2507ed996fea98453b8d7bccdcd25cfc0295076" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:6.435ex; height:5.843ex;" alt="{\displaystyle \int {\frac {dy}{y}}.}"></span></dd></dl> <p>Sebelum Euler mengembangkan konsep modernnya tentang logaritma alami kompleks, <a href="/wiki/Roger_Cotes#Matematika" title="Roger Cotes">Roger Cotes</a> memperlihatkan hasil yang hampir sama pada tahun 1714 bahwa<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log(\cos \theta +i\sin \theta )=i\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log(\cos \theta +i\sin \theta )=i\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bce998fc2c1339694373e030f0ef02964dd7dc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.724ex; height:2.843ex;" alt="{\displaystyle \log(\cos \theta +i\sin \theta )=i\theta }"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Tabel_logaritma,_mistar_hitung,_dan_penerapan_bersejarah"><span id="Tabel_logaritma.2C_mistar_hitung.2C_dan_penerapan_bersejarah"></span>Tabel logaritma, mistar hitung, dan penerapan bersejarah</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=8" title="Sunting bagian: Tabel logaritma, mistar hitung, dan penerapan bersejarah" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=8" title="Sunting kode sumber bagian: Tabel logaritma, mistar hitung, dan penerapan bersejarah"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Logarithms_Britannica_1797.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Logarithms_Britannica_1797.png/360px-Logarithms_Britannica_1797.png" decoding="async" width="360" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Logarithms_Britannica_1797.png/540px-Logarithms_Britannica_1797.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/82/Logarithms_Britannica_1797.png/720px-Logarithms_Britannica_1797.png 2x" data-file-width="997" data-file-height="354" /></a><figcaption>Penjelasan logaritma dalam <i><a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a></i> pada tahun 1797.</figcaption></figure> <p>Dengan menyederhanakan perhitungan yang rumit sebelum adanya mesin hitung komputer, logaritma berkontribusi pada kemajuan pengetahuan, khususnya <a href="/wiki/Astronomi" title="Astronomi">astronomi</a>. Logaritma sangat penting terhadap kemajuan dalam <a href="/wiki/Ilmu_ukur_wilayah" title="Ilmu ukur wilayah">survei</a>, <a href="/wiki/Navigasi_benda_langit" title="Navigasi benda langit">navigasi benda langit</a>, dan cabang lainnya. <a href="/wiki/Pierre-Simon_Laplace" class="mw-redirect" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> menyebut logaritma sebagai </p> <dl><dd><dl><dd>"...kecerdasan yang mengagumkan, [sebuah alat] yang mengurangi pekerjaan berbulan-bulan menjadi beberapa hari, menggandakan kehidupan astronom, dan menghindarinya dari kesalahan dan rasa jijik yang tak terpisahkan dari perhitungan yang panjang."<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></dd></dl></dd></dl> <p><span id="Antilogaritma"></span>Karena fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup><i>x</i></sup></span> adalah fungsi invers dari <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span>, maka fungsi tersebut disebut sebagai <b>antilogaritma</b>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Saat ini, antilogaritma lebih sering disebut <a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">fungsi eksponensial</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Tabel_logaritma">Tabel logaritma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=9" title="Sunting bagian: Tabel logaritma" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=9" title="Sunting kode sumber bagian: Tabel logaritma"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sebuah alat penting yang memungkinkan penggunaan logaritma adalah <a href="/wiki/Tabel_logaritma" class="mw-redirect" title="Tabel logaritma">tabel logaritma</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Tabel logaritma pertama kali disusun oleh <a href="/wiki/Henry_Briggs_(matematikawan)" title="Henry Briggs (matematikawan)">Henry Briggs</a> pada tahun 1617 setelah penemuan Napier, tetapi penemuannya menggunakan 10 sebagai bilangan pokok. Tabel pertamanya memuat <a href="/wiki/Logaritma_umum" title="Logaritma umum">logaritma umum</a> dari semua bilangan bulat yang berkisar antara 1 dengan 1000, dengan ketepatan yang dimiliki 14 digit, dan kemudian ia membuat tabel dengan kisaran yang besar. Tabel tersebut mencantumkan nilai <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{10}\!\log x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{10}\!\log x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/802977eb401f38616d7885ca853c5c2cc89b2dc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.565ex; height:3.009ex;" alt="{\displaystyle ^{10}\!\log x}"></span> untuk setiap bilangan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> dalam kisaran dan ketepatan tertentu. Karena bilangan yang berbeda dengan faktor 10 memiliki logaritma yang berbeda dengan bilangan bulat, logaritma dengan bilangan pokok 10 digunakan secara universal untuk perhitungan, sehingga disebut logaritma umum. Logaritma umum dari <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> dipisahkan menjadi <a href="/wiki/Fungsi_bilangan_bulat_terbesar_dan_terkecil" title="Fungsi bilangan bulat terbesar dan terkecil">bagian bilangan bulat</a> yang dikenal sebagai karakteristik, dan <a href="/wiki/Bagian_pecahan" title="Bagian pecahan">bagian pecahan</a> (<a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a>: <span lang="en"><i>fractional part</i></span>) yang dikenal sebagai <a href="/wiki/Logaritma_umum#Mantissa_dan_karakteristiknya" title="Logaritma umum">mantissa</a>. Tabel logaritma hanya perlu menyertakan mantissa, karena karakteristik logaritma umum dapat dengan mudah ditentukan dengan menghitung angka dari titik desimal.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> Karakteristik logaritma umum dari <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10\cdot x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10\cdot x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8fa3f94271366f77c0dd17d8074260b749a5799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.334ex; height:2.176ex;" alt="{\displaystyle 10\cdot x}"></span> sama dengan satu ditambah karakteristik <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, dan mantissanya sama. Dengan menggunakan tabel logartima dengan tiga digit, nilai logaritma dari 3542 kira-kira sama dengan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{10}\!\log 3542=\,^{10}\!\log(1000\cdot 3,542)=3+\,^{10}\!\log 3,542\approx 3+\,^{10}\!\log 3,54}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3542</mn> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1000</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>,</mo> <mn>542</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3</mn> <mo>,</mo> <mn>542</mn> <mo>≈<!-- ≈ --></mo> <mn>3</mn> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3</mn> <mo>,</mo> <mn>54</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{10}\!\log 3542=\,^{10}\!\log(1000\cdot 3,542)=3+\,^{10}\!\log 3,542\approx 3+\,^{10}\!\log 3,54}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb1d0975b2e2376db520c16d04baccaa1de6bf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:67.692ex; height:3.176ex;" alt="{\displaystyle ^{10}\!\log 3542=\,^{10}\!\log(1000\cdot 3,542)=3+\,^{10}\!\log 3,542\approx 3+\,^{10}\!\log 3,54}"></span></dd></dl> <p>Nilainya dengan ketepatan yang sangat tinggi dapat diperoleh melalui <a href="/wiki/Interpolasi" class="mw-disambig" title="Interpolasi">interpolasi</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{10}\!\log 3542\approx 3+^{10}\!\log 3,54+0,2\cdot (\,^{10}\!\log 3,55-\,^{10}\!\log 3,54)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3542</mn> <mo>≈<!-- ≈ --></mo> <mn>3</mn> <msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3</mn> <mo>,</mo> <mn>54</mn> <mo>+</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3</mn> <mo>,</mo> <mn>55</mn> <mo>−<!-- − --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>3</mn> <mo>,</mo> <mn>54</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{10}\!\log 3542\approx 3+^{10}\!\log 3,54+0,2\cdot (\,^{10}\!\log 3,55-\,^{10}\!\log 3,54)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b05b164ba56940967f0698f9a0f0b6cff840c01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.17ex; height:3.176ex;" alt="{\displaystyle ^{10}\!\log 3542\approx 3+^{10}\!\log 3,54+0,2\cdot (\,^{10}\!\log 3,55-\,^{10}\!\log 3,54)}"></span></dd></dl> <p>Nilai <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f9a6c2de625bd03ffd20e1fa89dad13da52eaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.497ex; height:2.343ex;" alt="{\displaystyle 10^{x}}"></span> dapat ditentukan dengan pencarian terbalik pada tabel yang sama, karena logaritma merupakan <a href="/wiki/Fungsi_monoton" title="Fungsi monoton">fungsi monoton</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Perhitungan">Perhitungan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=10" title="Sunting bagian: Perhitungan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=10" title="Sunting kode sumber bagian: Perhitungan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hasil kali atau hasil bagi dari dua bilangan positif <span class="texhtml mvar" style="font-style:italic;">c</span> dan <i><span class="texhtml mvar" style="font-style:italic;">d</span></i> biasanya dihitung sebagai penambahan dan pengurangan logaritma. Hasil kali <span class="texhtml" style="white-space: nowrap;"><i>cd</i></span> berasal dari antilogaritma dari penambahan dan hasil bagi <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;"><i>c</i></span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>d</i></span></span></span> berasal dari antilogaritma dari pengurangan, melalui tabel yang sama: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle cd=10^{\,^{10}\!\log c}\,10^{\,^{10}\!\log d}=10^{\,^{10}\!\log c\,+\,^{10}\!\log d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>d</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>d</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>c</mi> <mspace width="thinmathspace" /> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle cd=10^{\,^{10}\!\log c}\,10^{\,^{10}\!\log d}=10^{\,^{10}\!\log c\,+\,^{10}\!\log d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a2f41a5f4ad0ab5c5c0601e332d11283d4eaecb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:38.785ex; height:3.009ex;" alt="{\displaystyle cd=10^{\,^{10}\!\log c}\,10^{\,^{10}\!\log d}=10^{\,^{10}\!\log c\,+\,^{10}\!\log d}}"></span></dd></dl> <p>dan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c}{d}}=cd^{-1}=10^{\,^{10}\!\log c\,-\,^{10}\!\log d}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>d</mi> </mfrac> </mrow> <mo>=</mo> <mi>c</mi> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>c</mi> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>d</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c}{d}}=cd^{-1}=10^{\,^{10}\!\log c\,-\,^{10}\!\log d}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/762963139558dcd41a87e55771d55125591dfef1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.997ex; height:4.843ex;" alt="{\displaystyle {\frac {c}{d}}=cd^{-1}=10^{\,^{10}\!\log c\,-\,^{10}\!\log d}.}"></span></dd></dl> <p>Untuk perhitungan manual yang meminta ketelitian yang cukup besar, melakukan pencarian kedua logaritma, menghitung jumlah atau selisihnya, dan mencari antilogaritma jauh lebih cepat daripada menghitung perkalian dengan metode sebelumnya seperti <a href="/wiki/Prosthafaeresis" title="Prosthafaeresis">prosthafaeresis</a>, yang mengandalkan <a href="/wiki/Identitas_trigonometri" class="mw-redirect" title="Identitas trigonometri">identitas trigonometri</a>. </p><p>Perhitungan pangkat direduksi menjadi perkalian, dan sedangkan perhitungan <a href="/wiki/Akar_ke-n" class="mw-redirect" title="Akar ke-n">akar</a> direduksi menjadi pembagian. Pernyataan ini dapat dilihat sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{d}=\left(10^{\,^{10}\!\log c}\right)^{d}=10^{\,d\,^{10}\!\log c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{d}=\left(10^{\,^{10}\!\log c}\right)^{d}=10^{\,d\,^{10}\!\log c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ca24b60d8c2e2e228133cc80765d8ee9e33cef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.697ex; height:5.343ex;" alt="{\displaystyle c^{d}=\left(10^{\,^{10}\!\log c}\right)^{d}=10^{\,d\,^{10}\!\log c}}"></span></dd></dl> <p>dan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{d}]{c}}=c^{\frac {1}{d}}=10^{{\frac {1}{d}}\,^{10}\!\log c}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{d}]{c}}=c^{\frac {1}{d}}=10^{{\frac {1}{d}}\,^{10}\!\log c}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e30502b2965ed055a829e5a3eddbcb4afb79ef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.737ex; height:4.176ex;" alt="{\displaystyle {\sqrt[{d}]{c}}=c^{\frac {1}{d}}=10^{{\frac {1}{d}}\,^{10}\!\log c}.}"></span></dd></dl> <p>Perhitungan trigonometri dilengkapi dengan tabel-tabel yang memuat logaritma umum dari <a href="/wiki/Fungsi_trigonometri" title="Fungsi trigonometri">fungsi trigonometri</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Mistar_hitung">Mistar hitung</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=11" title="Sunting bagian: Mistar hitung" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=11" title="Sunting kode sumber bagian: Mistar hitung"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Penerapan penting lainnya adalah <a href="/wiki/Mistar_hitung" title="Mistar hitung">mistar hitung</a>, sepasang skala yang dibagi secara logaritmik yang digunakan dalam perhitungan. Adapun skala logaritmik yang tidak memiliki sorong, <a href="/wiki/Mistar_Gunter" class="mw-redirect" title="Mistar Gunter">mistar Gunter</a>, ditemukan tak lama setelah penemuan Napier dan disempurnakan oleh <a href="/wiki/William_Oughtred" title="William Oughtred">William Oughtred</a> untuk menciptakan sepasang skala logaritmik yang dapat dipindahkan terhadap satu sama lain, yaitu mistar hitung. Angka yang ditempatkan pada skala hitung pada jarak sebanding dengan selisih antara logaritmanya. Menggeser skala atas dengan tepat berarti menambahkan logaritma secara mekanis, seperti yang diilustrasikan berikut ini: </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Slide_rule_example2_with_labels.svg" class="mw-file-description"><img alt="alt=A slide rule: two rectangles with logarithmically ticked axes, arrangement to add the distance from 1 to 2 to the distance from 1 to 3, indicating the product 6." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Slide_rule_example2_with_labels.svg/550px-Slide_rule_example2_with_labels.svg.png" decoding="async" width="550" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Slide_rule_example2_with_labels.svg/825px-Slide_rule_example2_with_labels.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Slide_rule_example2_with_labels.svg/1100px-Slide_rule_example2_with_labels.svg.png 2x" data-file-width="512" data-file-height="119" /></a><figcaption>Penggambaran skema mengenai mistar hitung. Dimulai dari 2 pada skala di bawah, lalu tambahkan dengan jarak ke 3 pada skala atas agar mencapai hasil kali 6. Mistar hitung bekerja karena ditandai sedemikian rupa sehingga jarak dari 1 ke <span class="texhtml" style="white-space: nowrap;"><i>x</i></span> sebanding dengan logaritma <span class="texhtml" style="white-space: nowrap;"><i>x</i></span>.</figcaption></figure> <p>Sebagai contoh, dengan menambahkan jarak dari 1 ke 2 pada skala di bagian bawah ke jarak dari 1 ke 3 pada skala di bagian atas menghasilkan hasil kali 6, yang dibacakan di bagian bawah. Mistar hitung adalah sebuah alat menghitung yang penting bagi para insinyur dan ilmuwan hingga tahun 1970-an, karena dengan mengorbankan ketepatan nilai memungkinkan perhitungan yang jauh lebih cepat daripada teknik berdasarkan tabel.<sup id="cite_ref-ReferenceA2_35-0" class="reference"><a href="#cite_note-ReferenceA2-35"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Sifat_analitik">Sifat analitik</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=12" title="Sunting bagian: Sifat analitik" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=12" title="Sunting kode sumber bagian: Sifat analitik"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kajian yang lebih dalam mengenai logaritma memerlukan sebuah konsep yang disebut <i><a href="/wiki/Fungsi_(matematika)" title="Fungsi (matematika)">fungsi</a></i>. Fungsi merupakan sebuah kaidah yang dipetakan suatu bilangan akan menghasilkan bilangan lain.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> Contohnya seperti fungsi yang menghasilkan bilangan konstan <span class="texhtml mvar" style="font-style:italic;">b</span>, yang dipangkatkan setiap bilangan real <span class="texhtml mvar" style="font-style:italic;">x</span>. Fungsi ini secara matematis ditulis sebagai <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup> <i>x</i></sup></span>. Ketika <span class="texhtml mvar" style="font-style:italic;">b</span> positif dan tak sama dengan 1, maka <span class="texhtml mvar" style="font-style:italic;">f</span> adalah fungsi terbalikkan ketika dianggap sebagai fungsi dengan interval dari bilangan real ke bilangan real positif. </p> <div class="mw-heading mw-heading3"><h3 id="Keberadaan">Keberadaan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=13" title="Sunting bagian: Keberadaan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=13" title="Sunting kode sumber bagian: Keberadaan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Misalkan <span class="texhtml mvar" style="font-style:italic;">b</span> adalah bilangan real positif yang tidak sama dengan 1 dan misalkan <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup> <i>x</i></sup></span>. Pernyataan yang diikuti dari <a href="/wiki/Teorema_nilai_antara" title="Teorema nilai antara">teorema nilai antara</a> ini,<sup id="cite_ref-LangIII.3_37-0" class="reference"><a href="#cite_note-LangIII.3-37"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> merupakan hasil standar dalam analisis real yang mengatakan bahwa setiap fungsi monoton sempurna dan kontinu merupakan fungsi bijektif antara ranah (<a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a>: <span lang="en"><i>domain</i></span>) dan kisarannya (<a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a>: <span lang="en"><i>range</i></span>). Pernyataan saat ini mengatakan bahwa <span class="texhtml mvar" style="font-style:italic;">f</span> yang <a href="/wiki/Fungsi_monoton" title="Fungsi monoton">menaik sempurna</a> (untuk <span class="texhtml" style="white-space: nowrap;"><i>b</i> > 1</span>), atau menurun sempurna (untuk <span class="texhtml" style="white-space: nowrap;">0 < <span class="texhtml mvar" style="font-style:italic;">b</span> < 1</span>)<sup id="cite_ref-LangIV.2_38-0" class="reference"><a href="#cite_note-LangIV.2-38"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> merupakan <a href="/wiki/Fungsi_kontinu" title="Fungsi kontinu">fungsi kontinu</a>, memiliki ranah <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> dan memiliki kisaran <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{>0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{>0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/731b0a191e1eb70161af731d0d567b236457074f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.011ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{>0}}"></span>. Oleh karena itu, <span class="texhtml mvar" style="font-style:italic;">f</span> adalah fungsi bijeksi dari <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> ke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{>0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{>0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/731b0a191e1eb70161af731d0d567b236457074f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.011ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{>0}}"></span>. Dengan kata lain, untuk setiap bilangan real positif <span class="texhtml mvar" style="font-style:italic;">y</span>, terdapat setidaknya satu bilangan real <span class="texhtml mvar" style="font-style:italic;">x</span> sehingga <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{x}=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{x}=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711753605e98f4d42b75fe61254c3b8f311a5fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.424ex; height:2.676ex;" alt="{\displaystyle b^{x}=y}"></span>. </p><p>Misalkan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log \colon \mathbb {R} _{>0}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>:<!-- : --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>></mo> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log \colon \mathbb {R} _{>0}\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31746391b5062e64d57274565c0222a75f19d1bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.246ex; height:3.009ex;" alt="{\displaystyle ^{b}\!\log \colon \mathbb {R} _{>0}\to \mathbb {R} }"></span> yang menyatakan invers dari fungsi <span class="texhtml mvar" style="font-style:italic;">f</span>. Dalam artian, <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>y</i></span> adalah bilangan real tunggal <span class="texhtml mvar" style="font-style:italic;">x</span> sehingga <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{x}=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{x}=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711753605e98f4d42b75fe61254c3b8f311a5fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.424ex; height:2.676ex;" alt="{\displaystyle b^{x}=y}"></span>. Fungsi ini disebut <i>fungsi logaritma</i> dengan bilangan pokok-<span class="texhtml mvar" style="font-style:italic;">b</span> atau <i>fungsi logaritmik</i> (atau <i>logaritma</i> saja). </p> <div class="mw-heading mw-heading3"><h3 id="Karakterisasi_melalui_rumus_hasil_kali">Karakterisasi melalui rumus hasil kali</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=14" title="Sunting bagian: Karakterisasi melalui rumus hasil kali" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=14" title="Sunting kode sumber bagian: Karakterisasi melalui rumus hasil kali"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pada dasarnya, fungsi <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> juga dapat dikarakterisasikan melalui rumus hasil kali </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ef6ca6c34ac8d98ecd0191a3e7d080011ad3b94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.642ex; height:3.176ex;" alt="{\displaystyle ^{b}\!\log(xy)=\,^{b}\!\log x+\,^{b}\!\log y.}"></span></dd></dl> <p>Lebih tepatnya, logaritma untuk setiap bilangan pokok <span class="texhtml" style="white-space: nowrap;"><i>b</i> > 1</span> yang hanya merupakan <a href="/wiki/Fungsi_menaik" class="mw-redirect" title="Fungsi menaik">fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i></span> naik</a> dari bilangan real positif ke bilangan real memenuhi sifat bahwa <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>b</i>) = 1</span> dan<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(xy)=f(x)+f(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(xy)=f(x)+f(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee6f0eb6e355d16f673a0d4a21705e24a227008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.82ex; height:2.843ex;" alt="{\displaystyle f(xy)=f(x)+f(y).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Grafik_fungsi_logaritma">Grafik fungsi logaritma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=15" title="Sunting bagian: Grafik fungsi logaritma" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=15" title="Sunting kode sumber bagian: Grafik fungsi logaritma"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Logarithm_inversefunctiontoexp.svg" class="mw-file-description"><img alt="The graphs of two functions." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/220px-Logarithm_inversefunctiontoexp.svg.png" decoding="async" width="220" height="256" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/330px-Logarithm_inversefunctiontoexp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/440px-Logarithm_inversefunctiontoexp.svg.png 2x" data-file-width="240" data-file-height="279" /></a><figcaption>Grafik fungsi logaritma <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log (<i>x</i>)</span> (berwarna biru) diperoleh dengan <a href="/w/index.php?title=Refleksi_(matematika)&action=edit&redlink=1" class="new" title="Refleksi (matematika) (halaman belum tersedia)">mencerminkan</a> grafik fungsi <span class="texhtml" style="white-space: nowrap;"><i>b</i><sup><i>x</i></sup></span> (berwarna merah) di garis diagonal(<span class="texhtml" style="white-space: nowrap;"><i>x</i> = <span class="texhtml mvar" style="font-style:italic;">y</span></span>).</figcaption></figure> <p>Seperti yang dibahas sebelumnya, fungsi <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log</span> invers terhadap fungsi eksponensial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto b^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto b^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/873987f9618fe2c30ce4e72cbd1a967ff759c1d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.114ex; height:2.343ex;" alt="{\displaystyle x\mapsto b^{x}}"></span>. Karena itu, <a href="/wiki/Grafik_fungsi" title="Grafik fungsi">grafiknya</a> berkorespondensi dengan satu sama lain saat menukar koordinat-<span class="texhtml mvar" style="font-style:italic;">x</span> dan koordinat-<span class="texhtml mvar" style="font-style:italic;">y</span> (atau saat melakukan pencerminan di garis diagonal <span class="texhtml" style="white-space: nowrap;"><i>x</i> = <i>y</i></span>), seperti yang diperlihatkan sebagai berikut: sebuah titik <span class="texhtml" style="white-space: nowrap;">(<i>t</i>, <i>u</i> = <span class="texhtml mvar" style="font-style:italic;">b</span><sup><i>t</i></sup>)</span> pada grafik dari <span class="texhtml mvar" style="font-style:italic;">f</span> menghasilkan sebuah titik <span class="texhtml" style="white-space: nowrap;">(<i>u</i>, <i>t</i> = <sup><i>b</i></sup>log <i>u</i>)</span> pada grafik logaritma dan sebaliknya. Akibatnya, <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log (<i>x</i>)</span> <a href="/wiki/Limit_barisan" title="Limit barisan">divergen menuju takhingga</a> (dalam artian semakin besar dari setiap bilangan yang diberikan) jika <span class="texhtml mvar" style="font-style:italic;">x</span> naik menuju takhingga, asalkan <span class="texhtml mvar" style="font-style:italic;">b</span> lebih besar dari satu. Pada kasus tersebut, <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log(<i>x</i>)</span> merupakan <a href="/wiki/Fungsi_menaik" class="mw-redirect" title="Fungsi menaik">fungsi menaik</a>. Sedangkan untuk kasus <span class="texhtml" style="white-space: nowrap;"><i>b</i> < 1</span>, <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log (<i>x</i>)</span> cenderung menuju ke negatif takhingga. Ketika <span class="texhtml mvar" style="font-style:italic;">x</span> mendekati nol, <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> menuju ke negatif takhingga untuk <span class="texhtml" style="white-space: nowrap;"><i>b</i> > 1</span> dan menuju ke plus takhingga untuk <span class="texhtml" style="white-space: nowrap;"><i>b</i> < 1</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Turunan_dan_antiturunan">Turunan dan antiturunan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=16" title="Sunting bagian: Turunan dan antiturunan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=16" title="Sunting kode sumber bagian: Turunan dan antiturunan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Logarithm_derivative.svg" class="mw-file-description"><img alt="Sebuah grafik fungsi logaritma dan sebuah garis yang menyinggungnya di sebuah titik." src="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/Logarithm_derivative.svg/220px-Logarithm_derivative.svg.png" decoding="async" width="220" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/Logarithm_derivative.svg/330px-Logarithm_derivative.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/57/Logarithm_derivative.svg/440px-Logarithm_derivative.svg.png 2x" data-file-width="375" data-file-height="243" /></a><figcaption>Grafik fungsi <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a> (berwarna hijau) beserta garis singgungnya di <span class="texhtml" style="white-space: nowrap;"><i>x</i> = 1,5</span> (berwarna hitam)</figcaption></figure> <p>Sifat analitik tentang fungsi adalah melalui fungsi inversnya.<sup id="cite_ref-LangIII.3_37-1" class="reference"><a href="#cite_note-LangIII.3-37"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> Jadi, ketika <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup><i>x</i></sup></span> adalah fungsi kontinu dan <a href="/wiki/Fungsi_terdiferensialkan" title="Fungsi terdiferensialkan">terdiferensialkan</a>, maka <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>y</i></span> fungsi kontinu dan terdiferensialkan juga. Penjelasan kasarnya, sebuah fungsi kontinu adalah terdiferensialkan jika grafiknya tidak mempunyai "ujung" yang tajam. Lebih lanjut, ketika <a href="/wiki/Turunan" title="Turunan">turunan</a> dari <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>)</span> menghitung nilai <span class="texhtml" style="white-space: nowrap;">ln(<i>b</i>) <i>b</i><sup><i>x</i></sup></span> melalui sifat-sifat <a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">fungsi eksponensial</a>, <a href="/wiki/Aturan_rantai" class="mw-redirect" title="Aturan rantai">aturan rantai</a> menyiratkan bahwa turunan dari <span class="texhtml" style="white-space: nowrap;"><sup><i>b</i></sup>log <i>x</i></span> dirumuskan sebagai <sup id="cite_ref-LangIV.2_38-1" class="reference"><a href="#cite_note-LangIV.2-38"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\,^{b}\!\log x={\frac {1}{x\ln b}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\,^{b}\!\log x={\frac {1}{x\ln b}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01f9134d7ac023399f1a19b2ac1c37e308d07125" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.017ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\,^{b}\!\log x={\frac {1}{x\ln b}}.}"></span></dd></dl> <p>Artinya, <a href="/wiki/Kemiringan" title="Kemiringan">kemiringan</a> dari <a href="/wiki/Garis_singgung" title="Garis singgung">garis singgung</a> yang menyinggung grafik logaritma dengan bilangan pokok <span class="texhtml" style="white-space: nowrap;"><i>b</i></span> di titik <span class="texhtml" style="white-space: nowrap;">(<i>x</i>, <sup><i>b</i></sup>log (<i>x</i>))</span> sama dengan <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i> ln(<i>b</i>)</span></span></span>. </p><p>Turunan dari <span class="texhtml" style="white-space: nowrap;">ln(<i>x</i>)</span> adalah <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span>, yang berarti ini menyiratkan bahwa <span class="texhtml" style="white-space: nowrap;">ln(<i>x</i>)</span> adalah <a href="/wiki/Integral" title="Integral">integral</a> tunggal dari <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span> yang mempunyai nilai 0 untuk <span class="texhtml" style="white-space: nowrap;"><i>x</i> = 1</span>. Hal ini merupakan rumus paling sederhana yang mendorong sifat "alami" pada logaritma alami, dan hal ini juga merupakan salah satu alasan pentingnya konstanta <a href="/wiki/E_(konstanta_matematika)" title="E (konstanta matematika)"><span class="texhtml mvar" style="font-style:italic;">e</span></a>. </p><p>Turunan dengan argumen fungsional rampat <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>)</span> dirumuskan sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\ln f(x)={\frac {f'(x)}{f(x)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\ln f(x)={\frac {f'(x)}{f(x)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06fb9da0538b2a1eefa892ebbfbc3fffdc98bc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.238ex; height:6.509ex;" alt="{\displaystyle {\frac {d}{dx}}\ln f(x)={\frac {f'(x)}{f(x)}}.}"></span></dd></dl> <p>Hasil bagi pada ruas kanan disebut <a href="/wiki/Turunan_logaritmik" title="Turunan logaritmik">turunan logaritmik</a> dari <i><span class="texhtml mvar" style="font-style:italic;">f</span></i> dan menghitung <span class="texhtml" style="white-space: nowrap;"><i>f'</i>(<i>x</i>)</span> melalui turunan dari <span class="texhtml" style="white-space: nowrap;">ln(<i>f</i>(<i>x</i>))</span> dikenal sebagai <a href="/wiki/Pendiferensialan_logaritmik" title="Pendiferensialan logaritmik">pendiferensialan logaritmik</a>.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> Antiturunan dari <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a> <span class="texhtml" style="white-space: nowrap;">ln(<i>x</i>)</span> dirumuskan sebagai:<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo>+</mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffcaf5c8b14b232de9ff79e9ae0960ea4966bd10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.909ex; height:5.676ex;" alt="{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C.}"></span></dd></dl> <p>Terdapat <a href="/wiki/Daftar_integral_dari_fungsi_logaritmik" title="Daftar integral dari fungsi logaritmik">rumus yang berkaitan</a>, seperti antiturunan dari logaritma dengan bilangan pokok lainnya dapat diperoleh dari persamaan ini dengan mengubah bilangan pokoknya.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Representasi_integral_mengenai_fungsi_logaritma">Representasi integral mengenai fungsi logaritma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=17" title="Sunting bagian: Representasi integral mengenai fungsi logaritma" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=17" title="Sunting kode sumber bagian: Representasi integral mengenai fungsi logaritma"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Natural_logarithm_integral.svg" class="mw-file-description"><img alt="A hyperbola with part of the area underneath shaded in grey." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Natural_logarithm_integral.svg/220px-Natural_logarithm_integral.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Natural_logarithm_integral.svg/330px-Natural_logarithm_integral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Natural_logarithm_integral.svg/440px-Natural_logarithm_integral.svg.png 2x" data-file-width="601" data-file-height="301" /></a><figcaption><a href="/wiki/Logaritma_alami" title="Logaritma alami">Logaritma natural</a> dari <i><span class="texhtml mvar" style="font-style:italic;">t</span></i> adalah luas yang diwarnai di bawah grafik fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span>.</figcaption></figure> <p><a href="/wiki/Logaritma_alami" title="Logaritma alami">Logaritma alami</a> dari <span class="texhtml mvar" style="font-style:italic;">t</span> dapat didefinisikan sebagai <a href="/wiki/Integral_tentu" class="mw-redirect" title="Integral tentu">integral tentu</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>t</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab90a884aa3cc91d3cdcfb9b39992598131621e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.687ex; height:6.176ex;" alt="{\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.}"></span></dd></dl> <p>Definisi ini menguntungkan karena tidak bergantung pada fungsi eksponensial atau fungsi trigonometri apapun, dan definisi ini merupakan sebuah integral dari fungsi timbal balik sederhana. Penjelasan dalam integral, <span class="texhtml" style="white-space: nowrap;">ln(<i>t</i>)</span> sama dengan luas antara sumbu-<span class="texhtml mvar" style="font-style:italic;">x</span> dan grafik fungsi <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span>, yang berkisar dari <span class="texhtml" style="white-space: nowrap;"><i>x</i> = 1</span> ke <span class="texhtml" style="white-space: nowrap;"><i>x</i> = <i>t</i></span>. Penjelasan ini juga merupakan akibat dari <a href="/wiki/Teorema_dasar_kalkulus" title="Teorema dasar kalkulus">teorema dasar kalkulus</a>, dan bahkan turunan dari <span class="texhtml" style="white-space: nowrap;">ln(<i>x</i>)</span> sama dengan <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span>. Rumus logaritma hasil kali dan pangkat dapat diperoleh melalui definisi ini.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Sebagai contoh, rumus hasil kali <span class="texhtml" style="white-space: nowrap;">ln(<i>tu</i>) = ln(<i>t</i>) + ln(<i>u</i>)</span> dapat disimpulkan sebagai: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(tu)=\int _{1}^{tu}{\frac {1}{x}}\,dx\ {\stackrel {(1)}{=}}\int _{1}^{t}{\frac {1}{x}}\,dx+\int _{t}^{tu}{\frac {1}{x}}\,dx\ {\stackrel {(2)}{=}}\ln(t)+\int _{1}^{u}{\frac {1}{w}}\,dw=\ln(t)+\ln(u).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>u</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mover> </mrow> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>u</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mover> </mrow> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(tu)=\int _{1}^{tu}{\frac {1}{x}}\,dx\ {\stackrel {(1)}{=}}\int _{1}^{t}{\frac {1}{x}}\,dx+\int _{t}^{tu}{\frac {1}{x}}\,dx\ {\stackrel {(2)}{=}}\ln(t)+\int _{1}^{u}{\frac {1}{w}}\,dw=\ln(t)+\ln(u).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1752da5c3291c5b9e267118dc1b96d89c863c458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:79.675ex; height:6.176ex;" alt="{\displaystyle \ln(tu)=\int _{1}^{tu}{\frac {1}{x}}\,dx\ {\stackrel {(1)}{=}}\int _{1}^{t}{\frac {1}{x}}\,dx+\int _{t}^{tu}{\frac {1}{x}}\,dx\ {\stackrel {(2)}{=}}\ln(t)+\int _{1}^{u}{\frac {1}{w}}\,dw=\ln(t)+\ln(u).}"></span></dd></dl> <p>Persamaan (1) membagi integral menjadi dua bagian, sementara (2) mengubah variabel <span class="texhtml" style="white-space: nowrap;"><i>w</i></span> menjadi <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;"><i>x</i></span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>t</i></span></span></span>. Pada ilustrasi dibawah, pembagian integral tersebut dapat disamakan dengan pembagian luasnya menjadi bagian berwarna kuning dan biru. Dengan mengukur luas berwarna biru kembali secara vertikal melalui faktor <span class="texhtml mvar" style="font-style:italic;">t</span> dan menyusutnya melalui faktor yang sama secara horizontal tidak mengubah ukuran luasnya. Dengan memindahkan daerah biru ke daerah kuning, luasnya menyesuaikan grafik fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span> lagi. Oleh karena itu, luas biru di sebelah kiri, yang merupakan integral dari fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>)</span> dengan interval dari <span class="texhtml mvar" style="font-style:italic;">t</span> hingga <span class="texhtml mvar" style="font-style:italic;">tu</span> sama dengan integral dari fungsi yang sama dengan interval 1 hingga <span class="texhtml mvar" style="font-style:italic;">u</span>. Hal ini membenarkan persamaan  (2) melalui bukti geometri lainnya. </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Natural_logarithm_product_formula_proven_geometrically.svg" class="mw-file-description"><img alt="Fungsi hiperbola digambarkan dua kali. Luas di bawah fungsi dibagi menjadi bagian yang berbeda." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Natural_logarithm_product_formula_proven_geometrically.svg/500px-Natural_logarithm_product_formula_proven_geometrically.svg.png" decoding="async" width="500" height="112" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Natural_logarithm_product_formula_proven_geometrically.svg/750px-Natural_logarithm_product_formula_proven_geometrically.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Natural_logarithm_product_formula_proven_geometrically.svg/1000px-Natural_logarithm_product_formula_proven_geometrically.svg.png 2x" data-file-width="1353" data-file-height="304" /></a><figcaption>Sebuah bukti visual tentang rumus hasil kali dari logaritma natural</figcaption></figure> <p>Rumus pangkat <span class="texhtml" style="white-space: nowrap;">ln(<i>t</i><sup><i>r</i></sup>) = <i>r</i> ln(<i>t</i>)</span> dapat real dalam cara yang serupa: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(t^{r})=\int _{1}^{t^{r}}{\frac {1}{x}}dx=\int _{1}^{t}{\frac {1}{w^{r}}}\left(rw^{r-1}\,dw\right)=r\int _{1}^{t}{\frac {1}{w}}\,dw=r\ln(t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> <mo>=</mo> <mi>r</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(t^{r})=\int _{1}^{t^{r}}{\frac {1}{x}}dx=\int _{1}^{t}{\frac {1}{w^{r}}}\left(rw^{r-1}\,dw\right)=r\int _{1}^{t}{\frac {1}{w}}\,dw=r\ln(t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34505f1f7592f516126015296fdf4889f5235f68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:63.384ex; height:6.343ex;" alt="{\displaystyle \ln(t^{r})=\int _{1}^{t^{r}}{\frac {1}{x}}dx=\int _{1}^{t}{\frac {1}{w^{r}}}\left(rw^{r-1}\,dw\right)=r\int _{1}^{t}{\frac {1}{w}}\,dw=r\ln(t).}"></span></dd></dl> <p>Persamaan kedua menggunakan perubahan variabel <span class="texhtml" style="white-space: nowrap;"><i>w</i> = <span class="texhtml mvar" style="font-style:italic;">x</span><sup><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>r</i></span></span></sup></span> melalui <a href="/wiki/Integral_substitusi" title="Integral substitusi">integral substitusi</a>. </p><p>Jumlah keseluruhan timbal balik dari bilangan asli yang dirumuskan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12f50a7390e77e5beed851612314d2d03991d564" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.01ex; height:6.843ex;" alt="{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}},}"></span></dd></dl> <p>disebut <a href="/wiki/Deret_harmonik_(matematika)" title="Deret harmonik (matematika)">deret harmonik</a>. Deret ini sangat terkait erat dengan <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a>, yang dinyatakan melalui pernyataan berikut: ketika <span class="texhtml mvar" style="font-style:italic;">n</span> cenderung menuju <a href="/wiki/Tak_hingga" class="mw-redirect" title="Tak hingga">takhingga</a>, selisih dari </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}-\ln(n),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}-\ln(n),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f1edf2104b89524c509d6cb9ea1a667251d3ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.42ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}-\ln(n),}"></span></dd></dl> <p><a href="/wiki/Limit_barisan" title="Limit barisan">konvergen</a> (yakni mendekati dengan sembarang) ke sebuah bilangan yang dikenal sebagai <a href="/wiki/Konstanta_Euler%E2%80%93Mascheroni" title="Konstanta Euler–Mascheroni">konstanta Euler–Mascheroni</a> <span class="texhtml" style="white-space: nowrap;"><i>γ</i> = 0,5772...</span>. Kaitan antara deret harmonik dan logaritma natural membantu dalam menganalisis kinerja algoritma seperti <i><a href="/wiki/Quicksort" title="Quicksort">quicksort</a></i>.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transendensi_logaritma">Transendensi logaritma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=18" title="Sunting bagian: Transendensi logaritma" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=18" title="Sunting kode sumber bagian: Transendensi logaritma"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bilangan real yang bukan merupakan <a href="/wiki/Bilangan_aljabar" title="Bilangan aljabar">bilangan aljabar</a> disebut bilangan transendental<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup>. Sebagai contoh, <span class="texhtml" style="white-space: nowrap;"><a href="/wiki/Pi" title="Pi"><i><span class="texhtml">π</span></i></a></span> dan <span class="texhtml" style="white-space: nowrap;"><i><a href="/wiki/E_(konstanta_matematika)" title="E (konstanta matematika)">e</a></i></span> adalah bilangan transendental, sedangkan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2-{\sqrt {3}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2-{\sqrt {3}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75b2a724c326f7f59f71baa9788cf455a0609bdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.425ex; height:4.843ex;" alt="{\displaystyle {\sqrt {2-{\sqrt {3}}}}}"></span> bukan. Hampir semua <a href="/wiki/Bilangan_real" class="mw-redirect" title="Bilangan real">bilangan real</a> adalah <a href="/wiki/Bilangan_transendental" class="mw-redirect" title="Bilangan transendental">transendental</a>. Logaritma merupakan sebuah contoh <a href="/wiki/Fungsi_transendental" title="Fungsi transendental">fungsi transendental</a>. <a href="/wiki/Teorema_Gelfond%E2%80%93Schneider" title="Teorema Gelfond–Schneider">Teorema Gelfond–Schneider</a> mengatakan bahwa logaritma biasanya memberikan nilai transendental.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Perhitungan_2">Perhitungan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=19" title="Sunting bagian: Perhitungan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=19" title="Sunting kode sumber bagian: Perhitungan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Logarithm_keys.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logarithm_keys.jpg/220px-Logarithm_keys.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logarithm_keys.jpg/330px-Logarithm_keys.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logarithm_keys.jpg/440px-Logarithm_keys.jpg 2x" data-file-width="1882" data-file-height="1411" /></a><figcaption>Tombol logaritma (LOG sebagai bilangan pokok 10 dan LN sebagai bilangan pokok <span class="texhtml mvar" style="font-style:italic;">e</span>) pada sebuah kalkulator grafik <a href="/w/index.php?title=TI-83_series&action=edit&redlink=1" class="new" title="TI-83 series (halaman belum tersedia)">TI-83 Plus</a>.</figcaption></figure> <p>Logaritma merupakan alat hitung yang mudah pada beberapa kasus, seperti <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log 1000 = 3</span>. Logaritma pada umumnya dapat dihitung melalui <a href="/wiki/Deret_kuasa" class="mw-redirect" title="Deret kuasa">deret kuasa</a> atau <a href="/wiki/Rata-rata_aritmetika%E2%80%93geometrik" title="Rata-rata aritmetika–geometrik">rata-rata aritmetika–geometrik</a>, atau didapatkan kembali dari tabel logaritma (sebelum adanya perhitungan logaritma) yang menyediakan ketepatan nilai konstan.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Metode_Newton" title="Metode Newton">Metode Newton</a>, sebuah metode berulang yang menyelesaikan persamaan melalui hampiran, juga dapat dipakai untuk menghitung logaritma, karena fungsi inversnya (yaitu fungsi eksponensial), dapat dihitung dengan cepat.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> Dengan melihat tabel logaritma, metode yang mirip dengan <a href="/wiki/CORDIC" title="CORDIC">CORDIC</a> dapat dipakai untuk menghitung logaritma hanya dengan menggunakan operasi penambahan dan <a href="/w/index.php?title=Geseran_aritmetika&action=edit&redlink=1" class="new" title="Geseran aritmetika (halaman belum tersedia)">geseran bit</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> Terlebih lagi, <a href="/wiki/Logaritma_biner#Algoritma" title="Logaritma biner">algoritma dari logaritma biner</a> menghitung <span class="texhtml" style="white-space: nowrap;">lb(<i>x</i>)</span> <a href="/wiki/Rekursi" title="Rekursi">secara berulang</a> berdasarkan penguadratan <span class="texhtml mvar" style="font-style:italic;">x</span> yang berulang dan menggunakan ekspresi </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{2}\!\log \left(x^{2}\right)=2\cdot \,^{2}\!\log |x|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{2}\!\log \left(x^{2}\right)=2\cdot \,^{2}\!\log |x|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/554c8616e494d5f8dcc42209ed93c12a4d0c4125" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.55ex; height:3.343ex;" alt="{\displaystyle ^{2}\!\log \left(x^{2}\right)=2\cdot \,^{2}\!\log |x|.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Deret_pangkat">Deret pangkat</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=20" title="Sunting bagian: Deret pangkat" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=20" title="Sunting kode sumber bagian: Deret pangkat"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Deret_Taylor">Deret Taylor</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=21" title="Sunting bagian: Deret Taylor" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=21" title="Sunting kode sumber bagian: Deret Taylor"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Taylor_approximation_of_natural_logarithm.gif" class="mw-file-description"><img alt="An animation showing increasingly good approximations of the logarithm graph." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Taylor_approximation_of_natural_logarithm.gif/220px-Taylor_approximation_of_natural_logarithm.gif" decoding="async" width="220" height="136" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/0/02/Taylor_approximation_of_natural_logarithm.gif 1.5x" data-file-width="300" data-file-height="185" /></a><figcaption>Deret Taylor dari <span class="texhtml" style="white-space: nowrap;">ln(<i>z</i>)</span> berpusat di <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 1</span>. Animasi berikut memperlihatkan 10 hampiran pertama beserta dengan hampiran yang ke-99 dan yang ke-100. Hampiran tersebut tidak konvergen karena melebihi jarak 1 dari pusatnya.</figcaption></figure> <p>Untuk setiap bilangan <span class="texhtml mvar" style="font-style:italic;">z</span> yang memenuhi sifat <span class="texhtml" style="white-space: nowrap;">0 < <i>z</i> ≤ 2</span>, maka berlaku rumus:<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>nb 4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AbramowitzStegunp.68_54-0" class="reference"><a href="#cite_note-AbramowitzStegunp.68-54"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln(z)&={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots \\&=\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {(z-1)^{k}}{k}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> <mn>1</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln(z)&={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots \\&=\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {(z-1)^{k}}{k}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2e5784315dae9de565eb85c06255111aa4cfb49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.765ex; margin-bottom: -0.24ex; width:57.934ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\ln(z)&={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots \\&=\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {(z-1)^{k}}{k}}\end{aligned}}}"></span></dd></dl> <p>Pernyataan di atas merupakan tulisan singkat untuk mengatakan bahwa <span class="texhtml" style="white-space: nowrap;">ln(<i>z</i>)</span> dapat diaproksimasi sebagai bilangan yang lebih-lebih akurat lagi melalui ekspresi berikut: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{lllll}(z-1)&&\\(z-1)&-&{\frac {(z-1)^{2}}{2}}&\\(z-1)&-&{\frac {(z-1)^{2}}{2}}&+&{\frac {(z-1)^{3}}{3}}\\\vdots &\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left left left left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd /> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd /> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{lllll}(z-1)&&\\(z-1)&-&{\frac {(z-1)^{2}}{2}}&\\(z-1)&-&{\frac {(z-1)^{2}}{2}}&+&{\frac {(z-1)^{3}}{3}}\\\vdots &\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ee42affec068dac4ef60dc45a26bf227eb66d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:32.192ex; height:17.176ex;" alt="{\displaystyle {\begin{array}{lllll}(z-1)&&\\(z-1)&-&{\frac {(z-1)^{2}}{2}}&\\(z-1)&-&{\frac {(z-1)^{2}}{2}}&+&{\frac {(z-1)^{3}}{3}}\\\vdots &\end{array}}}"></span></dd></dl> <p>Sebagai contoh, pendekatan ketiga saat <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 1,5</span> memberikan nilai 0,4167. Nilai tersebut kira-kira 0,011 lebih besar dari <span class="texhtml" style="white-space: nowrap;">ln(1,5) = 0,405465</span>. <a href="/wiki/Deret_(matematika)" title="Deret (matematika)">Deret</a> ini yang mengaproksimasi <span class="texhtml" style="white-space: nowrap;">ln(<i>z</i>)</span> dengan ketepatan nilai sembarang, menyediakan jumlah dari nilai yang dijumlahkan cukup besar. Dalam kalkulus elementer, <span class="texhtml" style="white-space: nowrap;">ln(<i>z</i>)</span> adalah <a href="/wiki/Limit" class="mw-disambig" title="Limit">limit</a> dari deret ini dan juga merupakan <a href="/wiki/Deret_Taylor" title="Deret Taylor">deret Taylor</a> dari <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a> di <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 1</span>. Deret Taylor dari <span class="texhtml" style="white-space: nowrap;">ln(<i>z</i>)</span> khususnya menyediakan alat yang berguna untuk mengaproksimasi <span class="texhtml" style="white-space: nowrap;">ln(1 + <i>z</i>)</span> ketika <span class="texhtml mvar" style="font-style:italic;">z</span> bernilai kecil, <span class="texhtml" style="white-space: nowrap;">|<i>z</i>| < 1</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(1+z)=z-{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}\cdots \approx z.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>⋯<!-- ⋯ --></mo> <mo>≈<!-- ≈ --></mo> <mi>z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(1+z)=z-{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}\cdots \approx z.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e89327f36f52ef490f4bf487c232afc707e4bfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.612ex; height:5.676ex;" alt="{\displaystyle \ln(1+z)=z-{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}\cdots \approx z.}"></span></dd></dl> <p>Sebagai contoh, hampiran orde pertama memberikan nilai hampiran <span class="texhtml" style="white-space: nowrap;">ln(1,1) ≈ 0,1</span> ketika <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 0,1</span>, yang galatnya 5% lebih kecil dari nilai eksak 0,0953. </p> <div class="mw-heading mw-heading4"><h4 id="Deret_lebih_efisien">Deret lebih efisien</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=22" title="Sunting bagian: Deret lebih efisien" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=22" title="Sunting kode sumber bagian: Deret lebih efisien"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deret lainnya berasal dari <a href="/wiki/Fungsi_hiperbolik_invers#Fungsi_tangen_hiperbolik_invers" title="Fungsi hiperbolik invers">fungsi tangen hiperbolik invers</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=2\cdot \operatorname {artanh} \,{\frac {z-1}{z+1}}=2\left({\frac {z-1}{z+1}}+{\frac {1}{3}}{\left({\frac {z-1}{z+1}}\right)}^{3}+{\frac {1}{5}}{\left({\frac {z-1}{z+1}}\right)}^{5}+\cdots \right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mi>artanh</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=2\cdot \operatorname {artanh} \,{\frac {z-1}{z+1}}=2\left({\frac {z-1}{z+1}}+{\frac {1}{3}}{\left({\frac {z-1}{z+1}}\right)}^{3}+{\frac {1}{5}}{\left({\frac {z-1}{z+1}}\right)}^{5}+\cdots \right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4774ed055db87556b991ffc8dcf5bd795f823c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:75.541ex; height:7.509ex;" alt="{\displaystyle \ln(z)=2\cdot \operatorname {artanh} \,{\frac {z-1}{z+1}}=2\left({\frac {z-1}{z+1}}+{\frac {1}{3}}{\left({\frac {z-1}{z+1}}\right)}^{3}+{\frac {1}{5}}{\left({\frac {z-1}{z+1}}\right)}^{5}+\cdots \right),}"></span></dd></dl> <p>untuk setiap bilangan real <span class="texhtml" style="white-space: nowrap;"><i>z</i> > 0</span>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>nb 5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AbramowitzStegunp.68_54-1" class="reference"><a href="#cite_note-AbramowitzStegunp.68-54"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Dengan menggunakan <a href="/wiki/Notasi_Sigma" title="Notasi Sigma">notasi Sigma</a>, ruas kanan pada rumus di atas juga dapat ditulis sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {z-1}{z+1}}\right)^{2k+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {z-1}{z+1}}\right)^{2k+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d9729501b26eb85764942cb112cc9885b1a6cca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.446ex; height:7.343ex;" alt="{\displaystyle \ln(z)=2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {z-1}{z+1}}\right)^{2k+1}.}"></span></dd></dl> <p>Deret ini dapat diturunkan dari deret Taylor di atas, yang konvergen lebih cepat daripada deret Taylor, khususnya jika <span class="texhtml mvar" style="font-style:italic;">z</span> mendekati 1. Sebagai contoh, untuk <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 1,5</span>, tiga suku pertama dari deret kedua memberikan nilai hampiran <span class="texhtml" style="white-space: nowrap;">ln(1,5)</span> dengan galatnya sekitar <span class="nowrap"><span data-sort-value="6994300000000000000♠"></span>3<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−6</sup></span>. Kekonvergenan cepat untuk <span class="texhtml mvar" style="font-style:italic;">z</span> yang mendekati 1 dapat dimanfaatkan sebagai berikut: diberikan sebuah hampiran dengan tingkat akurat yang rendah <span class="texhtml" style="white-space: nowrap;"><i>y</i> ≈ ln(<i>z</i>)</span> dan memasukkan ke rumus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {z}{\exp(y)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {z}{\exp(y)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70dc2d5fb51bc065e7662ba91fe25996896dfa2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:12.842ex; height:5.509ex;" alt="{\displaystyle A={\frac {z}{\exp(y)}},}"></span></dd></dl> <p>maka logaritma dari <span class="texhtml mvar" style="font-style:italic;">z</span> dirumuskan: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=y+\ln(A).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=y+\ln(A).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea935537fad8ed9632a4e0eaa453c172906606c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.07ex; height:2.843ex;" alt="{\displaystyle \ln(z)=y+\ln(A).}"></span></dd></dl> <p>Hampiran awalan <span class="texhtml mvar" style="font-style:italic;">y</span> yang lebih baik adalah dengan membuat nilai <span class="texhtml mvar" style="font-style:italic;">A</span> mendekati ke 1, sehingga nilai logaritma dapat dihitung lebih efisien. Nilai <span class="texhtml mvar" style="font-style:italic;">A</span> dapat dihitung melalui <a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">deret eksponensial</a> sehingga nilainya konvergen dengan cepat, asalkan nilai <span class="texhtml mvar" style="font-style:italic;">y</span> tidak terlalu besar. Dengan menghitung logaritma dari <span class="texhtml mvar" style="font-style:italic;">z</span> yang lebih besar dapat direduksi menjadi nilai <span class="texhtml mvar" style="font-style:italic;">z</span> yang lebih kecil dengan menulis <span class="texhtml" style="white-space: nowrap;"><i>z</i> = <i>a</i> · 10<sup><i>b</i></sup></span>, sehingga <span class="texhtml" style="white-space: nowrap;">ln(<i>z</i>) = ln(<i>a</i>) + <span class="texhtml mvar" style="font-style:italic;">b</span> · ln(10)</span>. </p><p>Terdapat metode yang sangat berkaitan dengannya dapat dipakai untuk menghitung logaritma dari bilangan bulat. Dengan memasukkan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle z={\frac {n+1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle z={\frac {n+1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4197236e535dc6467df2570a52e72ec095f7fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.109ex; height:3.509ex;" alt="{\displaystyle \textstyle z={\frac {n+1}{n}}}"></span> pada deret di atas, maka deret tersebut dapat ditulis sebagai berikut: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(n+1)=\ln(n)+2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {1}{2n+1}}\right)^{2k+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(n+1)=\ln(n)+2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {1}{2n+1}}\right)^{2k+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/306cedcb8ef32fe57d535b3c27b2ae6af9b13326" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.208ex; height:7.343ex;" alt="{\displaystyle \ln(n+1)=\ln(n)+2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {1}{2n+1}}\right)^{2k+1}.}"></span></dd></dl> <p>Jika diketahui logaritma dari suatu bilangan bulat  <span class="texhtml mvar" style="font-style:italic;">n</span> yang lebih besar, maka deret tersebut menghasilkan sebauah deret yang konvergen dengan cepat untuk <span class="texhtml" style="white-space: nowrap;">log(<i>n</i>+1)</span>, dengan <a href="/wiki/Laju_konvergensi" title="Laju konvergensi">laju konvergensi</a> dari <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\frac {1}{2n+1}}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\frac {1}{2n+1}}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6c094c1c61f349b1216928c33fe29aa61860626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.575ex; height:5.176ex;" alt="{\textstyle \left({\frac {1}{2n+1}}\right)^{2}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Hampiran_purata_aritmetika-geometrik">Hampiran purata aritmetika-geometrik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=23" title="Sunting bagian: Hampiran purata aritmetika-geometrik" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=23" title="Sunting kode sumber bagian: Hampiran purata aritmetika-geometrik"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Purata_aritmetika%E2%80%93geometrik" class="mw-redirect" title="Purata aritmetika–geometrik">Purata aritmetika–geometrik</a> atau <a href="/wiki/Rata-rata_aritmetika%E2%80%93geometrik" title="Rata-rata aritmetika–geometrik">rata-rata aritmetika–geometrik</a> menghasilkan hampiran dari <a href="/wiki/Logaritma_natural" class="mw-redirect" title="Logaritma natural">logaritma natural</a> dengan tingkatan ketepatan yang tinggi. Pada tahun 1982, Sasaki dan Kanada memperlihatkan bahwa purata ini sangat cepat untuk ketepatan di antara 400 dan 1000 letak desimal, sementara metode deret Taylor biasanya lebih cepat ketika membutuhkan nilai yang kurang akurat. Dalam karyanya, <span class="texhtml" style="white-space: nowrap;">ln(<i>x</i>)</span> kira-kira sama dengan ketepatan dari <span class="texhtml" style="white-space: nowrap;">2<sup>−<i>p</i></sup></span> (atau <span class="texhtml mvar" style="font-style:italic;">p</span> bit yang tepat) melalui rumus berikut (karena <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a>):<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(x)\approx {\frac {\pi }{2\,\mathrm {M} \!\left(1,2^{2-m}/x\right)}}-m\ln(2).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>−<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>m</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(x)\approx {\frac {\pi }{2\,\mathrm {M} \!\left(1,2^{2-m}/x\right)}}-m\ln(2).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec803ea11552f9cdfd17caf1b39cf8e7a8e84184" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.276ex; height:6.009ex;" alt="{\displaystyle \ln(x)\approx {\frac {\pi }{2\,\mathrm {M} \!\left(1,2^{2-m}/x\right)}}-m\ln(2).}"></span></dd></dl> <p>Notasi <span class="texhtml" style="white-space: nowrap;">M(<i>x</i>, <i>y</i>)</span> menyatakan <a href="/wiki/Rata-rata_aritmetika%E2%80%93geometrik" title="Rata-rata aritmetika–geometrik">rata-rata aritmetika–geometrik</a> dari <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">y</span>. Purata ini didapatkan dengan menghitung rerata <span class="texhtml" style="white-space: nowrap;">(<i>x</i> + <i>y</i>)/2</span> (<a href="/wiki/Purata_aritmetika" class="mw-redirect" title="Purata aritmetika">purata aritmetika</a>) dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {xy}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mi>y</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {xy}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/966df76a5bc207e11606ad5c8ea6788d6a838c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.421ex; height:3.009ex;" alt="{\textstyle {\sqrt {xy}}}"></span> (<a href="/wiki/Purata_geometrik" class="mw-redirect" title="Purata geometrik">purata geometrik</a>) dari <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">y</span> secara berulang, lalu misalkan kedua bilangan tersebut merupakan bilangan <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">y</span> selanjutnya. Kedua bilangan tersebut konvergen dengan cepat menuju ke limit yang sama, yaitu <span class="texhtml" style="white-space: nowrap;">M(<i>x</i>, <i>y</i>)</span>. Agar pasti bahwa nilai yang diperlukan tepat, maka pilih <span class="texhtml mvar" style="font-style:italic;">m</span> sehingga </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\,2^{m}>2^{p/2}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mspace width="thinmathspace" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\,2^{m}>2^{p/2}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80443424cc40c061dba53d32f86d2d8169aa1983" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.552ex; height:2.843ex;" alt="{\displaystyle x\,2^{m}>2^{p/2}.\,}"></span></dd></dl> <p>Bilangan <span class="texhtml mvar" style="font-style:italic;">m</span> yang lebih besar membuat perhitungan <span class="texhtml" style="white-space: nowrap;">M(<i>x</i>, <i>y</i>)</span>, dengan nilai awal <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">y</span> yang merupakan nilai yang sangat jauh, mengambil langkah lebih lanjut agar nilainya konvergen, tetapi memberikan nilai yang lebih tepat. Konstanta seperti <span class="texhtml" style="white-space: nowrap;"><span class="texhtml">π</span></span> dan <span class="texhtml" style="white-space: nowrap;">ln(2)</span> dapat dihitung melalui deret yang konvergen dengan cepat. </p> <div class="mw-heading mw-heading3"><h3 id="Algoritma_Feynman">Algoritma Feynman</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=24" title="Sunting bagian: Algoritma Feynman" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=24" title="Sunting kode sumber bagian: Algoritma Feynman"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a>, yang mengerjakan <a href="/wiki/Proyek_Manhattan" title="Proyek Manhattan">proyek Manhattan</a> di <a href="/wiki/Los_Alamos_National_Laboratory" class="mw-redirect" title="Los Alamos National Laboratory">Los Alamos National Laboratory</a>, mengembangkan sebuah algoritma pengolahan bit untuk menghitung nilai logaritma. Algoritma tersebut menyerupai pembagian panjang, dan kemudian dipakai dalam sebuah anggota dari rangkaian subkomputer, <a href="/wiki/Connection_Machine" title="Connection Machine">Connection Machine</a>. Bahkan bahwa setiap bilangan real <span class="texhtml" style="white-space: nowrap;">1 < <i>x</i> < 2</span> yang dapat direpresentasikan sebagai hasil kali dari faktor yang berbeda dari bentuk <span class="texhtml" style="white-space: nowrap;">1 + 2<sup>−<i>k</i></sup></span>, dipakai dalam algoritma ini. Algoritma ini dibangun secara berurutan bahwa hasil kali <span class="texhtml mvar" style="font-style:italic;">P</span>, yang dimulai dengan <span class="texhtml" style="white-space: nowrap;"><i>P</i> = 1</span> dan <span class="texhtml" style="white-space: nowrap;"><i>k</i> = 1</span>, mengatakan bahwa jika <span class="texhtml" style="white-space: nowrap;"><i>P</i> · (1 + 2<sup>−<i>k</i></sup>) < <i>x</i></span>, maka <span class="texhtml mvar" style="font-style:italic;">P</span> berubah menjadi <span class="texhtml" style="white-space: nowrap;"><i>P</i> · (1 + 2<sup>−<i>k</i></sup>)</span>, sehingga membuat nilai <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> menaik. Algoritma tersebut berhenti ketika <span class="texhtml mvar" style="font-style:italic;">k</span> cukup besar memberikan nilai akurat yang diinginkan. Karena <span class="texhtml" style="white-space: nowrap;">log(<i>x</i>)</span> adalah jumlah dari suku berbentuk <span class="texhtml" style="white-space: nowrap;">log(1 + 2<sup>−<i>k</i></sup>)</span> yang berpadanan dengan nilai <span class="texhtml mvar" style="font-style:italic;">k</span> dan faktor <span class="texhtml" style="white-space: nowrap;">1 + 2<sup>−<i>k</i></sup></span> adalah hasil kali dari  <span class="texhtml mvar" style="font-style:italic;">P</span>, maka <span class="texhtml" style="white-space: nowrap;">log(<i>x</i>)</span> dapat dihitung melalui operasi penambahan yang sederhana, yaitu menggunakan tabel dari <span class="texhtml" style="white-space: nowrap;">log(1 + 2<sup>−<i>k</i></sup>)</span> untuk semua <span class="texhtml mvar" style="font-style:italic;">k</span>. Setiap bilangan pokok dapat dipakai untuk tabel logaritma.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Penerapan">Penerapan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=25" title="Sunting bagian: Penerapan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=25" title="Sunting kode sumber bagian: Penerapan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:NautilusCutawayLogarithmicSpiral.jpg" class="mw-file-description"><img alt="A photograph of a nautilus' shell." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/220px-NautilusCutawayLogarithmicSpiral.jpg" decoding="async" width="220" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/330px-NautilusCutawayLogarithmicSpiral.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/440px-NautilusCutawayLogarithmicSpiral.jpg 2x" data-file-width="2240" data-file-height="1693" /></a><figcaption>Sebuah cangkang <a href="/wiki/Nautilus" class="mw-redirect" title="Nautilus">nautilus</a> yang menampilkan bentuk spiral logaritmik.</figcaption></figure> <p>Logaritma memiliki banyak penerapan di dalam maupun di luar matematika. Ada beberapa kejadian penerapan logaritma yang berkaitan dengan gagasan <a href="/w/index.php?title=Kekararan_skala&action=edit&redlink=1" class="new" title="Kekararan skala (halaman belum tersedia)">kekararan skala</a>. Sebagai contoh, setiap ruangan yang terdapat di dalam sebuah cangkang <a href="/wiki/Nautilus" class="mw-redirect" title="Nautilus">nautilus</a> memiliki kira-kira sama dengan jumlah salinan dari ruang selanjutnya, yang ditimbang melalui faktor konstanta. Contoh tersebut menyerupai bentuk <a href="/wiki/Spiral_logaritmik" title="Spiral logaritmik">spiral logaritmik</a>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Hukum_Benford" title="Hukum Benford">Hukum Benford</a> mengenai distribusi dari angka yang ditunjuk juga dapat dijelaskan melalui kekeraran skala.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> Logaritma juga berkaitan dengan benda yang memiliki <a href="/wiki/Kemiripan_diri_sendiri" title="Kemiripan diri sendiri">kemiripan terhadap diri sendiri</a>. Sebagai contoh, logaritma muncul dalam analisis tentang algoritma yang menyelesaikan masalah dengan membaginya menjadi dua masalah lebih kecil yang serupa dan memotong kecil penyelesaiannya.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> Dimensi dari bentuk geometrik menyerupai diri sendiri, dalam artian bahwa bentuk yang bagiannya menyerupai gambarnya secara keseluruhan juga dirumuskan melalui logaritma. <a href="/wiki/Skala_logaritmik" title="Skala logaritmik">Skala logaritmik</a> berguna untuk mengukur perubahan relatif nilai daripada selisih mutlaknya. Terlebih lagi, karena fungsi logaritmik <span class="texhtml" style="white-space: nowrap;">log(<i>x</i>)</span> menaik sangat lambat untuk nilai besar<span class="texhtml mvar" style="font-style:italic;">x</span>, skala logaritmik biasanya menekan data ilmiah yang berskala besar. Logaritma juga muncul dalam rumus ilmiah numerik, seperti <a href="/wiki/Persamaan_roket_Tsiolkovsky" title="Persamaan roket Tsiolkovsky">persamaan roket Tsiolkovsky</a>, <a href="/wiki/Persamaan_Fenske" title="Persamaan Fenske">persamaan Fenske</a>, atau <a href="/wiki/Persamaan_Nernst" title="Persamaan Nernst">persamaan Nernst</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_skala_logaritmik">Penerapannya dalam skala logaritmik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=26" title="Sunting bagian: Penerapannya dalam skala logaritmik" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=26" title="Sunting kode sumber bagian: Penerapannya dalam skala logaritmik"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Skala_logaritmik" title="Skala logaritmik">Skala logaritmik</a></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Germany_Hyperinflation.svg" class="mw-file-description"><img alt="Grafik yang menggambarkan nilai dari waktu ke waktu. Melalui skala logaritma, garis pada grafik memperlihatkan nilainya yang menaik dengan cepat." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Germany_Hyperinflation.svg/220px-Germany_Hyperinflation.svg.png" decoding="async" width="220" height="257" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Germany_Hyperinflation.svg/330px-Germany_Hyperinflation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Germany_Hyperinflation.svg/440px-Germany_Hyperinflation.svg.png 2x" data-file-width="509" data-file-height="594" /></a><figcaption>Grafik logaritma memperlihatkan kenaikan harga mata uang <a href="/wiki/Mark_Jerman" title="Mark Jerman"><i>goldmark</i></a> di <a href="/wiki/Papiermark_Jerman" title="Papiermark Jerman">Papiermark</a> selama berlangsungnya <a href="/wiki/Inflasi_di_Republik_Weimar" title="Inflasi di Republik Weimar">hiperinflasi di Jerman pada tahun 1920-an</a></figcaption></figure> <p>Satuan kuantitas dalam ilmiah seringkali dinyatakan sebagai logaritma dari kuantitas lain, dengan menggunakan <i>skala logaritmik</i>. Sebagai contoh, <a href="/wiki/Desibel" title="Desibel">desibel</a> merupakan <a href="/wiki/Satuan" title="Satuan">satuan pengukuran</a> yang dikaitkan dengan perhitungan dari <a href="/w/index.php?title=Tingkatan_(kuantitas_logaritma)&action=edit&redlink=1" class="new" title="Tingkatan (kuantitas logaritma) (halaman belum tersedia)">kuantitas</a> <a href="/wiki/Skala_logaritmik" title="Skala logaritmik">skala logaritmik</a>. Penguat desibel memberikan 10 kalinya logaritma biasa dari <a href="/wiki/Rasio" class="mw-redirect mw-disambig" title="Rasio">rasio</a> <a href="/wiki/Daya_(fisika)" class="mw-redirect" title="Daya (fisika)">daya</a> atau 20 kalinya logaritma biasa dari rasio <a href="/wiki/Tegangan_listrik" title="Tegangan listrik">tegangan</a>. Satuan inilah yang dipakai untuk mengukur rugi tingkatan ketegangan saat mentransmisi sinyal elektrik,<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> yang bertujuan untuk menjelaskan tingkatan kekuatan aras daya suara dalam <a href="/wiki/Akustik" class="mw-disambig" title="Akustik">akustik</a>,<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> serta mengukur <a href="/wiki/Absorbansi" title="Absorbansi">penyerapan</a> cahaya dalam bidang <a href="/wiki/Spektrometer" title="Spektrometer">spektrometri</a> dan <a href="/wiki/Optika" title="Optika">optika</a>. Selain itu, desibel juga dipakai dalam <a href="/wiki/Nisbah_sinyal-derau" class="mw-redirect" title="Nisbah sinyal-derau">nisbah sinyal-derau</a> yang menjelaskan seberapa banyak <a href="/wiki/Derau_(elektronik)" class="mw-redirect" title="Derau (elektronik)">derau</a> dibandingkan dengan <a href="/wiki/Sinyal_(elektrik)" class="mw-redirect" title="Sinyal (elektrik)">sinyal</a> yang berguna.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Mirip dengan tadi, <a href="/wiki/Nisbah_puncak_sinyal_terhadap_derau" title="Nisbah puncak sinyal terhadap derau">nisbah puncak sinyal-derau</a> biasanya dipakai menilai kualitas suara dan metode <a href="/wiki/Pemampatan_citra" title="Pemampatan citra">pemampatan citra</a> melalui logaritma.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>Kekuatan gempa bumi diukur dengan mengambil logaritma umum dari energi yang dipancarkan saat terjadinya gempa dalam satuan <a href="/wiki/Skala_magnitudo_momen" title="Skala magnitudo momen">skala magnitudo momen</a> atau <a href="/wiki/Skala_Richter" title="Skala Richter">skala magnitudo Ritcher</a>. Sebagai contoh, gempa berkekuatan 5,0 melepaskan 32 kali <span class="texhtml" style="white-space: nowrap;">(10<sup>1,5</sup>)</span> dan gempa berkekuatan 6,0 melepaskan 1000 kali<span class="texhtml" style="white-space: nowrap;">(10<sup>3</sup>)</span> energi berkekuatan 4,0.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> Skala logaritmik juga dipakai dalam <a href="/wiki/Magnitudo_semu" title="Magnitudo semu">magnitudo kentara</a> untuk mengukur kecerahan bintang.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> Dalam <a href="/wiki/Kimia" title="Kimia">kimia</a>, negatif dari logaritma desimal, yang disebut sebagai <b><span id="kologaritma">kologaritma</span></b> desimal, ditunjukkan dengan huruf "p".<sup id="cite_ref-Jens_68-0" class="reference"><a href="#cite_note-Jens-68"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> Sebagai contoh, <a href="/wiki/PH" title="PH">pH</a> merupakan kologaritma desimal dari <a href="/wiki/Aktivitas_termodinamika" title="Aktivitas termodinamika">keaktifan</a> dari <a href="/wiki/Ion" title="Ion">ion</a> berbentuk <a href="/wiki/Hidrogen" title="Hidrogen">hidrogen</a> <span class="chemf nowrap">H<sup>+</sup></span> yang terbentuk dari air, <a href="/wiki/Hidronium" title="Hidronium">hidronium</a>.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> Keaktifan dari ion hidronium dalam air yang netral bernilai 10<sup>−7</sup> <a href="/wiki/Molaritas" title="Molaritas">mol·L<sup>−1</sup></a>, sehingga nilai pH adalah 7. Contoh lainnya, nilai pH dari asam cuka biasanya sekitar 3. Perbedaan nilai sebesar 4 sesuai dengan rasio 10<sup>4</sup> berdasarkan aktivitasnya, yaitu nilai dari aktivitas ion hidronium cuka sekitar 10<sup>−3</sup> mol·L<sup>−1</sup>. </p><p>Konsep skala logaritmik dapat dipakai dalam grafik (log-linear) <a href="/w/index.php?title=Plot_semilog&action=edit&redlink=1" class="new" title="Plot semilog (halaman belum tersedia)">semilog</a> bertujuan untuk memberikan visual terkait satu sumbu, yang biasanya berupa sumbu vertikal, diukur menggunakan perhitungan logaritma. Contohnya seperti grafik disamping menjelaskan nilai yang menaik dengan tajam dari 1 juta hingga 1 triliun ke dalam ruang yang sama (pada sumbu vertikal) saat grafiknya menaik dari 1 hingga 1 juta. Pada grafik tersebut, <a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">fungsi eksponensial</a> <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <i>a</i> · <i>b</i><span style="padding-left:0.12em;"><sup><i>x</i></sup></span></span> muncul sebagai garis lurus dengan <a href="/wiki/Kemiringan" title="Kemiringan">kemiringan</a> yang sama dengan logaritma dari <span class="texhtml mvar" style="font-style:italic;">b</span>. Selain itu, skala logaritma yang dapat dipakai dalam <a href="/w/index.php?title=Grafik_log-log&action=edit&redlink=1" class="new" title="Grafik log-log (halaman belum tersedia)">grafik log-log</a> untuk mengukur sumbu vertikal dan horizontal, sehingga menyebabkan fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>) = <i>a</i> · <i>x</i><span style="padding-left:0.12em;"><sup><i>k</i></sup></span></span> digambarkan sebagai garis lurus yang mempunyai kemiringan yang sama dengan bilangan yang dipangkat dengan <span class="texhtml mvar" style="font-style:italic;">k</span>, diterapkan pada saat memberikan visual dan menganalisis <a href="/w/index.php?title=Hukum_pangkat&action=edit&redlink=1" class="new" title="Hukum pangkat (halaman belum tersedia)">hukum pangkat</a>.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_psikologi">Penerapannya dalam psikologi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=27" title="Sunting bagian: Penerapannya dalam psikologi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=27" title="Sunting kode sumber bagian: Penerapannya dalam psikologi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Penerapan logaritma juga terdapat dalam beberapa hukum yang menjelaskan tentang <a href="/wiki/Persepsi" title="Persepsi">persepsi manusia</a>.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> Sebagai contoh, <a href="/wiki/Hukum_Hick" title="Hukum Hick">hukum Hick</a> menjelaskan kaitan logaritmik antara waktu saat orang mengambil keputusan beserta jumlah keputusan yang dimiliki.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Hukum lainnya adalah <a href="/wiki/Hukum_Fitts" title="Hukum Fitts">hukum Fitts</a>, yang memprediksi bahwa waktu yang diperlukan saat bergerak ke daerah target dengan cepat sama dengan fungsi logaritmik dari jarak dan ukuran target.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> Dalam <a href="/wiki/Psikofisika" title="Psikofisika">psikofisika</a>, <a href="/wiki/Hukum_Weber%E2%80%93Fechner" title="Hukum Weber–Fechner">hukum Weber–Fechner</a> mengatakan kaitan logaritmik dengan <a href="/wiki/Stimulus_(psikologi)" title="Stimulus (psikologi)">stimulus</a> dan <a href="/wiki/Indra_(fisiologi)" title="Indra (fisiologi)">sensasi</a> yang dirasakan, contohnya seperti saat orang sedang membawa berat benda yang sesungguhnya dengan yang dirasakan.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> (Namun, "hukum" ini kurang realistis dengan model belakangan ini, seperti <a href="/wiki/Hukum_perpangkatan_Stevens" title="Hukum perpangkatan Stevens">hukum perpangkatan Stevens</a>.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup>) </p><p>Studi psikologi menemukan bahwa orang yang sedikit mempunyai pemahaman matematika cenderung mengestimasi nilai kuantitas dengan logaritma, atau dengan kata lain, bilangannya ditempatkan pada garis yang tidak ditandai berdasarkan perhitungan logaritma, sehingga 10 yang ditempatkan mendekati 100 dianggap sebagai 100 yang ditempatkan mendekati 1000. Orang yang memiliki pemahaman yang lebih tinggi memandang hal tersebut sebagai linear yang mengestimasi (letak angka 1000 yang berjarak 10 kali lebih jauh) pada beberapa kasus, namun logaritma dipakai pada saat memplot bilangan-bilangan yang sulit untuk diplotkan secara linear.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_teori_peluang_dan_statistika">Penerapannya dalam teori peluang dan statistika</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=28" title="Sunting bagian: Penerapannya dalam teori peluang dan statistika" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=28" title="Sunting kode sumber bagian: Penerapannya dalam teori peluang dan statistika"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r15025838/mw-parser-output/.tmulti">.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{text-align:left;background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .thumbcaption{text-align:center}}</style><div class="thumb tmulti tright"><div class="thumbinner" style="width:492px;max-width:492px"><div class="trow"><div class="tsingle" style="width:187px;max-width:187px"><div class="thumbimage" style="height:185px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/Berkas:PDF-log_normal_distributions.svg" class="mw-file-description"><img alt="Tiga kurva fungsi kepadatan probabilitas yang asimetrik" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/185px-PDF-log_normal_distributions.svg.png" decoding="async" width="185" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/278px-PDF-log_normal_distributions.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/370px-PDF-log_normal_distributions.svg.png 2x" data-file-width="390" data-file-height="390" /></a></span></div><div class="thumbcaption">Tiga <a href="/wiki/Fungsi_kepekatan_probabilitas" title="Fungsi kepekatan probabilitas">fungsi kepadatan probabilitas</a> (PDF) dari variabel acak dengan sebaran log-normal. Parameter lokasi  <span class="texhtml" style="white-space: nowrap;">μ</span> yang bernilai nol untuk semua tiga fungsi tersebut, merupakan purata logaritma dari variabel acak, bukan purata dari variabel tersendiri.</div></div><div class="tsingle" style="width:301px;max-width:301px"><div class="thumbimage" style="height:185px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/Berkas:Benfords_law_illustrated_by_world%27s_countries_population.png" class="mw-file-description"><img alt="A bar chart and a superimposed second chart. The two differ slightly, but both decrease in a similar fashion" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Benfords_law_illustrated_by_world%27s_countries_population.png/299px-Benfords_law_illustrated_by_world%27s_countries_population.png" decoding="async" width="299" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/0/0b/Benfords_law_illustrated_by_world%27s_countries_population.png 1.5x" data-file-width="425" data-file-height="263" /></a></span></div><div class="thumbcaption">Sebaran digit pertama (dalam bentuk persentase, dengan batang berwarna merah) dalam <a href="/wiki/Daftar_negara_menurut_jumlah_penduduk" title="Daftar negara menurut jumlah penduduk">jumlah populasi dari 237 negara</a> di dunia. Titik berwarna hitam menunjukkan sebaran yang diprediksi menurut hukum Benford.</div></div></div></div></div> <p>Dalam <a href="/wiki/Teori_probabilitas" class="mw-redirect" title="Teori probabilitas">teori probabilitas</a>, <a href="/w/index.php?title=Hukum_bilangan_besar&action=edit&redlink=1" class="new" title="Hukum bilangan besar (halaman belum tersedia)">hukum bilangan besar</a> mengatakan bahwa, untuk sebuah <a href="/wiki/Mata_uang_seimbang" class="mw-redirect" title="Mata uang seimbang">mata uang seimbang</a>, ketika jumlah pelemparan koin naik menuju takhingga, maka kesebandingan dari gambar kepala (atau ekor) yang diamati <a href="/wiki/Distribusi_binomial" title="Distribusi binomial">mendekati satu setengah</a>. Fluktuasi dari nilai kesebandingan yang bernilai satu setengah dijelaskan melalui hukum yang menggunakan logaritma, yaitu <a href="/w/index.php?title=Hukum_logaritma_teriterasi&action=edit&redlink=1" class="new" title="Hukum logaritma teriterasi (halaman belum tersedia)">hukum logaritma teriterasi</a>.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> </p><p>Logaritma muncul pula dalam <a href="/w/index.php?title=Sebaran_log-normal&action=edit&redlink=1" class="new" title="Sebaran log-normal (halaman belum tersedia)">sebaran log-normal</a>. Ketika logaritma dari <a href="/wiki/Variabel_acak" title="Variabel acak">variabel acak</a> mempunyai <a href="/wiki/Distribusi_normal" title="Distribusi normal">sebaran normal</a>, maka variabel dikatakan mempunyai sebaran log-normal.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> Sebaran log-normal ditemukan dalam banyak bidang, dengan suatu variabel dibentuk sebagai hasil kali dari banyaknya variabel acak indenpenden bernilai positif. Contohnya seperti dalam mempelajari turbulensi.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p>Logaritma dipakai untuk menghitung <a href="/w/index.php?title=Pendugaan_kemungkinan_maksimum&action=edit&redlink=1" class="new" title="Pendugaan kemungkinan maksimum (halaman belum tersedia)">estimasi kemungkinan maksimum</a> dari <a href="/w/index.php?title=Model_statistika&action=edit&redlink=1" class="new" title="Model statistika (halaman belum tersedia)">model statistika</a> parametrik. <a href="/w/index.php?title=Fungsi_kemungkinan&action=edit&redlink=1" class="new" title="Fungsi kemungkinan (halaman belum tersedia)">Fungsi kemungkinan</a> pada model tersebut bergantung setidaknya satu <a href="/w/index.php?title=Model_parametrik&action=edit&redlink=1" class="new" title="Model parametrik (halaman belum tersedia)">parameter</a> yang harus diestimasi. Nilai maksimum dari fungsi kemungkinan muncul di nilai parameter yang sama sebagai nilai maksimum logaritma kemungkinan (atau disebut <i>log likelihood</i>), karena logaritma merupakan fungsi menaik. <i>Log-likelihood</i> adalah teknik yang memaksimumkan fungsi dengan mudah, khususnya untuk kemungkinan yang dikali mengenai variabel acak <a href="/w/index.php?title=Independen_(peluang)&action=edit&redlink=1" class="new" title="Independen (peluang) (halaman belum tersedia)">independen</a>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Hukum_Benford" title="Hukum Benford">Hukum Benford</a> menjelaskan kemungkinan digit dalam <a href="/w/index.php?title=Himpunan_data&action=edit&redlink=1" class="new" title="Himpunan data (halaman belum tersedia)">himpunan data</a> yang banyak, contohnya seperti tinggi bangunan. Menurut hukum Benford, kemungkinan bahwa digit desimal pertama suatu item dalam sampel data adalah <span class="texhtml mvar" style="font-style:italic;">d</span> (yang berkisar dari 1 hingga 9) sama dengan <span class="texhtml" style="white-space: nowrap;"><sup>10</sup>log (<i>d</i> + 1) − <sup>10</sup>log (<i>d</i>)</span>, <i>tanpa memperhatikan</i> satuan pengukuran.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> Jadi, sekitar 30% data dapat diduga mempunyai 1 sebagai digit pertama, 18% dimulai dengan 2, dst. Penyimpangan dari hukum Benford dihitung oleh para akuntan untuk membantu mendeteksi penipuan data akuntansi.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_kompleksitas_perhitungan">Penerapannya dalam kompleksitas perhitungan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=29" title="Sunting bagian: Penerapannya dalam kompleksitas perhitungan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=29" title="Sunting kode sumber bagian: Penerapannya dalam kompleksitas perhitungan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Cabang dalam <a href="/wiki/Ilmu_komputer" title="Ilmu komputer">ilmu komputer</a> yang mempelajari <a href="/wiki/Kompleksitas_waktu" title="Kompleksitas waktu">performa</a> dari suatu <a href="/wiki/Algoritma" title="Algoritma">algoritma</a> dalam menyelesaikan persoalan atau masalah tertentu disebut <a href="/w/index.php?title=Analisis_algoritma&action=edit&redlink=1" class="new" title="Analisis algoritma (halaman belum tersedia)">analisis algoritma</a>.<sup id="cite_ref-Wegener_85-0" class="reference"><a href="#cite_note-Wegener-85"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> Logaritma sangat penting dalam menjelaskan algoritma tersebut dengan <a href="/wiki/Divide_and_Conquer" class="mw-redirect" title="Divide and Conquer">membagi suatu masalah</a> menjadi lebih kecil, serta menghubungkan penyelesaian dari submasalah.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> </p><p>Sebagai contoh, cara <a href="/wiki/Algoritma_pencarian_biner" title="Algoritma pencarian biner">algoritma pencarian biner</a> (<a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a>: <span lang="en"><i>binary searching algorithm</i></span>) dalam mencari bilangan dalam daftar yang tersortir adalah dengan memeriksa entri tengah dan meneruskannya di sebagian sebelum atau sesudah entri tengah jika tidak ditemukan bilangannya. Umumnya, algoritma ini memerlukan perbandingan <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log (<i>N</i>)</span>, dengan <span class="texhtml mvar" style="font-style:italic;">N</span> adalah panjang daftar.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> Mirip dengan sebelumnya, algoritma <a href="/wiki/Urut_gabung" title="Urut gabung">urut gabungan</a> menyortir daftar yang belum tersortir dengan membagi daftar menjadi setengah bagian dan mengurutkan daftar-daftar tersebut dahulu sebelum menggabungkan hasilnya. Algoritma urut gabungan biasanya memerlukan waktu yang <a href="/wiki/Notasi_O_besar" title="Notasi O besar">kira-kira sebanding dengan</a> <span class="texhtml" style="white-space: nowrap;"><i>N</i> · log(<i>N</i>)</span>.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> Bilangan pokok logaritma tidak dijelaskan secara spesifik, karena hasilnya hanya berubah oleh faktor konstanta saat ada bilangan pokok lain yang sedang dipakai. Faktor konstanta biasanya diabaikan dalam analisis algoritma dalam <a href="/w/index.php?title=Analisis_algoritma&action=edit&redlink=1" class="new" title="Analisis algoritma (halaman belum tersedia)">model biaya seragam</a> (<a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a>: <span lang="en"><i>uniform cost model</i></span>) yang standar.<sup id="cite_ref-Wegener20_89-0" class="reference"><a href="#cite_note-Wegener20-89"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p><p>Suatu fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>)</span> dikatakan <a href="/wiki/Pertumbuhan_logaritmik" title="Pertumbuhan logaritmik">bertumbuh secara logaritmik</a> jika <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>x</i>)</span> (setidaknya atau kira-kira) sebanding dengan logaritma dari <span class="texhtml mvar" style="font-style:italic;">x</span>, namun istilah ini dipakai sebagai fungsi eksponensial dalam menjelaskan pertumbuhan organisme secara biologis.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> Sebagai contoh, setiap <a href="/wiki/Bilangan_asli" title="Bilangan asli">bilangan asli</a> <span class="texhtml mvar" style="font-style:italic;">N</span> dapat direpresentasikan dalam <a href="/wiki/Sistem_bilangan_biner" title="Sistem bilangan biner">bentuk bilangan biner</a> yang tidak lebih dari <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log <i>N</i> + 1</span> <a href="/wiki/Bit" class="mw-disambig" title="Bit">bit</a>. Dengan kata lain, jumlah <a href="/wiki/Memori_(komputer)" title="Memori (komputer)">memori</a> diperlukan untuk menyimpan <span class="texhtml mvar" style="font-style:italic;">N</span> pertumbuhan secara logaritmik dengan <span class="texhtml mvar" style="font-style:italic;">N</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_entropi_dan_ketidakteraturan">Penerapannya dalam entropi dan ketidakteraturan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=30" title="Sunting bagian: Penerapannya dalam entropi dan ketidakteraturan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=30" title="Sunting kode sumber bagian: Penerapannya dalam entropi dan ketidakteraturan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Chaotic_Bunimovich_stadium.png" class="mw-file-description"><img alt="Trayektori dua partikel berbentuk oval" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Chaotic_Bunimovich_stadium.png/220px-Chaotic_Bunimovich_stadium.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Chaotic_Bunimovich_stadium.png/330px-Chaotic_Bunimovich_stadium.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Chaotic_Bunimovich_stadium.png/440px-Chaotic_Bunimovich_stadium.png 2x" data-file-width="758" data-file-height="379" /></a><figcaption><a href="/wiki/Biliar_dinamis" title="Biliar dinamis">Bola biliar</a> di atas meja biliar oval. Dua partikel yang bermula pada pusat meja dengan sudut luncur yang berbeda satu derajat, akan memiliki jalur yang amat berbeda karena <a href="/wiki/Refleksi" class="mw-redirect" title="Refleksi">pemantulan</a> pada pinggir meja biliar</figcaption></figure> <p><a href="/wiki/Entropi" title="Entropi">Entropi</a> secara umum adalah ukuran dari ketidakteraturan dari suatu sistem. Dalam <a href="/wiki/Termodinamika_statistik" title="Termodinamika statistik">termodinamika statistik</a>, sebuah entropi, disimbolkan dengan <span class="texhtml" style="white-space: nowrap;"><i>S</i></span>, dari sebuah sistem, didefinisikan dengan: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=-k\sum _{i}p_{i}\ln(p_{i}).\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>k</mi> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=-k\sum _{i}p_{i}\ln(p_{i}).\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4be67693caef12b846ed9cd173a0e7a340364d27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.854ex; height:5.509ex;" alt="{\displaystyle S=-k\sum _{i}p_{i}\ln(p_{i}).\,}"></span></dd></dl> <p>Hasilnya adalah seluruh kondisi <span class="texhtml mvar" style="font-style:italic;">i</span> yang mungkin dari sistem yang dimaksud, contoh posisi dari partikel gas di dalam sebuah tangki. Lebih lanjut lagi, <span class="texhtml" style="white-space: nowrap;"><i>p</i><sub><i>i</i></sub></span> adalah kemungkinan bahwa kondisi <span class="texhtml mvar" style="font-style:italic;">i</span> telah tercapai dan <span class="texhtml mvar" style="font-style:italic;">k</span> adalah <a href="/wiki/Konstanta_Boltzmann" title="Konstanta Boltzmann">konstanta Boltzmann</a>. Sama halnya dengan <a href="/wiki/Entropi_(teori_informasi)" title="Entropi (teori informasi)">entropi dalam teori informasi</a> yang mengukur kuantitas dari informasi. Jika penerima pesan mengharapkan sejumlah <span class="texhtml mvar" style="font-style:italic;">N</span> pesan yang mungkin diterima dengan besar kemungkinan masing-masing yang setara, maka sejumlah informasi yang tersampaikan oleh pesan tersebut dapat dikuantifikasi dengan bit <span class="texhtml" style="white-space: nowrap;"><sup>2</sup>log <i>N</i></span>.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p><p><a href="/w/index.php?title=Eksponen_Lyapunov&action=edit&redlink=1" class="new" title="Eksponen Lyapunov (halaman belum tersedia)">Eksponen Lyapunov</a> menggunakan logaritma untuk mengukur derajat ketidakteraturan dari sistem yang dinamis. Contoh partikel yang bergerak di meja biliar oval, di mana bahkan perubahan sekecil apapun dari kondisi awal dapat memberikan hasil, yaitu jalur yang dilalui, yang sangat berbeda. Sistem yang dimaksud disebut dengan <a href="/wiki/Teori_chaos" class="mw-redirect" title="Teori chaos">kekacauan</a> di dalam <a href="/wiki/Sistem_deterministik" title="Sistem deterministik">sistem deterministik</a> karena galat yang kecil namun terukur dari kondisi awal dapat diprediksi akan memberikan hasil akhir yang sangat berbeda.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> Setidaknya satu eksponen Lyapunov dari sistem kekacauan yang deterministik akan bernilai positif. </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_bangunan_fraktal">Penerapannya dalam bangunan fraktal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=31" title="Sunting bagian: Penerapannya dalam bangunan fraktal" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=31" title="Sunting kode sumber bagian: Penerapannya dalam bangunan fraktal"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Sierpinski_dimension.svg" class="mw-file-description"><img alt="Parts of a triangle are removed in an iterated way." src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Sierpinski_dimension.svg/400px-Sierpinski_dimension.svg.png" decoding="async" width="400" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Sierpinski_dimension.svg/600px-Sierpinski_dimension.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/Sierpinski_dimension.svg/800px-Sierpinski_dimension.svg.png 2x" data-file-width="745" data-file-height="108" /></a><figcaption>Segitiga Sierpinski (di sebelah kanan) dibangun dengan menggantikan <a href="/wiki/Segitiga_sama_sisi" title="Segitiga sama sisi">segitiga sama sisi</a> secara berulang dengan tiga salinan dirinya yang lebih kecil.</figcaption></figure> <p>Logaritma muncul dalam definiisi <a href="/wiki/Dimensi_fraktal" title="Dimensi fraktal">dimensi</a> <a href="/wiki/Fraktal" title="Fraktal">fraktal</a>.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> Fraktal merupakan benda-benda geometri yang menyerupai dirinya, dalam artian bahwa benda geometri tersebut mereproduksi dirinya lebih kecil, penjelasan kasarnya, di seluruh strukturnya. Contohnya seperti <a href="/wiki/Segitiga_Sierpi%C5%84ski" title="Segitiga Sierpiński">segitiga Sierpiński</a>, dengan <a href="/wiki/Dimensi_Hausdorff" title="Dimensi Hausdorff">dimensi Hausdorff</a>nya adalah <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">ln(3)</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">ln(2)</span></span> ≈ 1,58</span>, dapat diliputi dengan tiga salinan dirinya, masing-masing sisinya dibagi menjadi setengah dari panjang awalnya. Adapula gagasan dimensi fraktal berdasarkan logaritma lainnya diperoleh dengan <a href="/wiki/Dimensi_menghitung_kotak" class="mw-redirect" title="Dimensi menghitung kotak">menghitung jumlah kotak</a> yang diperlukan untuk meliputi frakal dalam himpunan. </p> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_musik">Penerapannya dalam musik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=32" title="Sunting bagian: Penerapannya dalam musik" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=32" title="Sunting kode sumber bagian: Penerapannya dalam musik"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r15025838/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner" style="width:354px;max-width:354px"><div class="trow"><div class="tsingle" style="width:352px;max-width:352px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/Berkas:4Octaves.and.Frequencies.svg" class="mw-file-description"><img alt="Empat oktaf yang berbeda diperlihatkan pada skala linear." src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/4Octaves.and.Frequencies.svg/350px-4Octaves.and.Frequencies.svg.png" decoding="async" width="350" height="38" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/4Octaves.and.Frequencies.svg/525px-4Octaves.and.Frequencies.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/4Octaves.and.Frequencies.svg/700px-4Octaves.and.Frequencies.svg.png 2x" data-file-width="670" data-file-height="72" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:352px;max-width:352px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/Berkas:4Octaves.and.Frequencies.Ears.svg" class="mw-file-description"><img alt="Empat oktaf yang berbeda diperlihatkan pada skala logaritmik." src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/4Octaves.and.Frequencies.Ears.svg/350px-4Octaves.and.Frequencies.Ears.svg.png" decoding="async" width="350" height="45" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/4Octaves.and.Frequencies.Ears.svg/525px-4Octaves.and.Frequencies.Ears.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/4Octaves.and.Frequencies.Ears.svg/700px-4Octaves.and.Frequencies.Ears.svg.png 2x" data-file-width="578" data-file-height="74" /></a></span></div></div></div><div class="trow"><div class="thumbcaption" style="text-align:left;background-color:transparent">Empat oktaf yang berbeda diperlihatkan pada skala linear, lalu diperlihatkan pada skala logaritmik (saat mendengarkannya dengan menggunakan telinga).</div></div></div></div> <p>Logaritma berkaitan dengan bunyi nada dan <a href="/wiki/Interval_(musik)" title="Interval (musik)">interval</a> dalam musik. Dalam <a href="/w/index.php?title=Temperamen_sama&action=edit&redlink=1" class="new" title="Temperamen sama (halaman belum tersedia)">temperamen sama</a>, perbandingan frekuensi bergantung pada interval di antara dua nada saja, bukan pada frekuensi yang spesifik atau <a href="/wiki/Tinggi_nada" class="mw-redirect" title="Tinggi nada">tinggi</a> dari nada tunggal. Sebagai contoh, nada <a href="/w/index.php?title=A_(not_musik)&action=edit&redlink=1" class="new" title="A (not musik) (halaman belum tersedia)"><i>A</i></a> mempunyai frekuensi 440 <a href="/wiki/Hertz" title="Hertz">Hz</a> dan <a href="/wiki/B%E2%99%AD_(not_musik)" title="B♭ (not musik)"><i>B-flat</i></a> mempunyai frekuensi 466 Hz. Interval antara nada <i>A</i> dengan <i>B-flat</i> ini digolongkan sebagai <a href="/w/index.php?title=Semi-nada&action=edit&redlink=1" class="new" title="Semi-nada (halaman belum tersedia)">semi-nada</a>, karena intervalnya berada di antara <i>B-flat</i> dan <a href="/wiki/B_(not_musik)" title="B (not musik)"><i>B</i></a> (yang mempunyai frekuensi 493 Hz). Maka, perbandingan frekuensinya adalah: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {466}{440}}\approx {\frac {493}{466}}\approx 1,059\approx {\sqrt[{12}]{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>466</mn> <mn>440</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>493</mn> <mn>466</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mn>1</mn> <mo>,</mo> <mn>059</mn> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {466}{440}}\approx {\frac {493}{466}}\approx 1,059\approx {\sqrt[{12}]{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4a4571d8dc6ff40e6042496a3a6393c6d4a8b99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.38ex; height:5.343ex;" alt="{\displaystyle {\frac {466}{440}}\approx {\frac {493}{466}}\approx 1,059\approx {\sqrt[{12}]{2}}.}"></span></dd></dl> <p>Peran logaritma dalam musik dapat dipakai untuk menjelaskan interval berikut: suatu interval diukur dalam semi-nada dengan mengambil logaritma dengan <span class="nowrap">bilangan pokok-<span class="texhtml" style="white-space: nowrap;">2<sup>1/12</sup></span></span> dari perbandingan <a href="/wiki/Frekuensi" title="Frekuensi">frekuensi</a>, sedangkan logaritma dengan <span class="nowrap">bilangan pokok-<span class="texhtml" style="white-space: nowrap;">2<sup>1/1200</sup></span></span> dari perbandingan frekuensi menyatakan interval dalam <a href="/wiki/Sen_(musik)" title="Sen (musik)">sen</a>, ratusan semi-nada. Logaritma yang terakhir dipakai untuk pengodean yang lebih halus, karena diperlukan untuk temperamen tak sama.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="text-align:center; margin:1em auto 1em auto;"> <tbody><tr> <td><b>Interval</b> (dua bunyi nada yang dimainkan dalam waktu yang sama) </td> <td><a href="/w/index.php?title=72_temperamen_sama&action=edit&redlink=1" class="new" title="72 temperamen sama (halaman belum tersedia)">Bunyi nada 1/12</a> <small><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-1" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/b8\/1_step_in_72-et_on_C.mid\/1_step_in_72-et_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"id","wikibase":"","file":"1 step in 72-et on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b8/1_step_in_72-et_on_C.mid/1_step_in_72-et_on_C.mid.mp3" rel="nofollow" aria-label="Putar audio" title="Putar audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/Berkas:1_step_in_72-et_on_C.mid" title="Berkas:1 step in 72-et on C.mid">ⓘ</a></sup></span></small> </td> <td><a href="/w/index.php?title=Semi-nada&action=edit&redlink=1" class="new" title="Semi-nada (halaman belum tersedia)">Semi-nada</a> <small><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-2" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/8a\/Minor_second_on_C.mid\/Minor_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"id","wikibase":"","file":"Minor second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/8a/Minor_second_on_C.mid/Minor_second_on_C.mid.mp3" rel="nofollow" aria-label="Putar audio" title="Putar audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/Berkas:Minor_second_on_C.mid" title="Berkas:Minor second on C.mid">ⓘ</a></sup></span></small> </td> <td><i><a href="/w/index.php?title=Just_major_third&action=edit&redlink=1" class="new" title="Just major third (halaman belum tersedia)">Just major third</a></i> <small><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-3" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/2a\/Just_major_third_on_C.mid\/Just_major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"id","wikibase":"","file":"Just major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/2a/Just_major_third_on_C.mid/Just_major_third_on_C.mid.mp3" rel="nofollow" aria-label="Putar audio" title="Putar audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/Berkas:Just_major_third_on_C.mid" title="Berkas:Just major third on C.mid">ⓘ</a></sup></span></small> </td> <td><i><a href="/w/index.php?title=Major_third&action=edit&redlink=1" class="new" title="Major third (halaman belum tersedia)">Major third</a></i> <small><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-4" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/91\/Major_third_on_C.mid\/Major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"id","wikibase":"","file":"Major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/91/Major_third_on_C.mid/Major_third_on_C.mid.mp3" rel="nofollow" aria-label="Putar audio" title="Putar audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/Berkas:Major_third_on_C.mid" title="Berkas:Major third on C.mid">ⓘ</a></sup></span></small> </td> <td><i><a href="/w/index.php?title=Tritone&action=edit&redlink=1" class="new" title="Tritone (halaman belum tersedia)">Tritone</a></i> <small><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-5" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/58\/Tritone_on_C.mid\/Tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"id","wikibase":"","file":"Tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/58/Tritone_on_C.mid/Tritone_on_C.mid.mp3" rel="nofollow" aria-label="Putar audio" title="Putar audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/Berkas:Tritone_on_C.mid" title="Berkas:Tritone on C.mid">ⓘ</a></sup></span></small> </td> <td><a href="/wiki/Oktaf" title="Oktaf">Oktaf</a> <small><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-6" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f0\/Perfect_octave_on_C.mid\/Perfect_octave_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"id","wikibase":"","file":"Perfect octave on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f0/Perfect_octave_on_C.mid/Perfect_octave_on_C.mid.mp3" rel="nofollow" aria-label="Putar audio" title="Putar audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/Berkas:Perfect_octave_on_C.mid" title="Berkas:Perfect octave on C.mid">ⓘ</a></sup></span></small> </td></tr> <tr> <td><b>Rasio frekuensi</b> <i>r</i> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {1}{72}}\approx 1.0097}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>72</mn> </mfrac> </mrow> </msup> <mo>≈<!-- ≈ --></mo> <mn>1.0097</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {1}{72}}\approx 1.0097}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcce5a9aa9e216fc208a597f74d2d2b6248663e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.123ex; height:3.509ex;" alt="{\displaystyle 2^{\frac {1}{72}}\approx 1.0097}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {1}{12}}\approx 1.0595}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> </msup> <mo>≈<!-- ≈ --></mo> <mn>1.0595</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {1}{12}}\approx 1.0595}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18664eeb9dbe129067dd89295c4928d54fda5f01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.123ex; height:3.509ex;" alt="{\displaystyle 2^{\frac {1}{12}}\approx 1.0595}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {5}{4}}=1.25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mn>1.25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {5}{4}}=1.25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84da6d3ba8b361f151624067f68d609526e6e47b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.891ex; height:3.509ex;" alt="{\displaystyle {\tfrac {5}{4}}=1.25}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}2^{\frac {4}{12}}&={\sqrt[{3}]{2}}\\&\approx 1.2599\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>12</mn> </mfrac> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>1.2599</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}2^{\frac {4}{12}}&={\sqrt[{3}]{2}}\\&\approx 1.2599\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76610ca7878ea438fa73bd50ac4df1fecce09b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:13.875ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}2^{\frac {4}{12}}&={\sqrt[{3}]{2}}\\&\approx 1.2599\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}2^{\frac {6}{12}}&={\sqrt {2}}\\&\approx 1.4142\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <mn>12</mn> </mfrac> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>1.4142</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}2^{\frac {6}{12}}&={\sqrt {2}}\\&\approx 1.4142\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa178821ca7a1554106bf2244d08577f6f5d17fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:13.875ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}2^{\frac {6}{12}}&={\sqrt {2}}\\&\approx 1.4142\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {12}{12}}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>12</mn> <mn>12</mn> </mfrac> </mrow> </msup> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {12}{12}}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0b7cc906bb2bc2787e32f7d1643b290d7b96766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.826ex; height:3.509ex;" alt="{\displaystyle 2^{\frac {12}{12}}=2}"></span> </td></tr> <tr> <td><b>Jumlah semi-nada yang sama</b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{\sqrt[{12}]{2}}\!\log r=12\,^{2}\!\log r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>r</mi> <mo>=</mo> <mn>12</mn> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{\sqrt[{12}]{2}}\!\log r=12\,^{2}\!\log r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbbff697ad50b2a11b9dd950a993569e9fbd687e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.48ex; height:3.676ex;" alt="{\displaystyle ^{\sqrt[{12}]{2}}\!\log r=12\,^{2}\!\log r}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bc02e655226b1a0e18922e932efff50531c48eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.658ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{6}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx 3,8631}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mn>3</mn> <mo>,</mo> <mn>8631</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx 3,8631}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47d544e184b32e3e948141684717e883e88b3d1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.3ex; height:2.509ex;" alt="{\displaystyle \approx 3,8631}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a522d3aa5812a136a69f06e1b909d809e849be39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 12}"></span> </td></tr> <tr> <td><b>Jumlah sen yang sama</b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{\sqrt[{1200}]{2}}\!\log r=1200\,^{2}\!\log r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1200</mn> </mrow> </mroot> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>r</mi> <mo>=</mo> <mn>1200</mn> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{\sqrt[{1200}]{2}}\!\log r=1200\,^{2}\!\log r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82119fb5a559f76705c1639cb63b2fb210e081a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.154ex; height:3.676ex;" alt="{\displaystyle ^{\sqrt[{1200}]{2}}\!\log r=1200\,^{2}\!\log r}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 16{\tfrac {2}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>16</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 16{\tfrac {2}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14ffb45717ec74dc340583a93d6a788f6179382" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.983ex; height:3.676ex;" alt="{\displaystyle 16{\tfrac {2}{3}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 100}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>100</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 100}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0572cd017c6d7936a12737c9d614a2f801f94a36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 100}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx 386,31}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mn>386</mn> <mo>,</mo> <mn>31</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx 386,31}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cf8005a33b653389a975c7888dd178d9a01ca36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.3ex; height:2.509ex;" alt="{\displaystyle \approx 386,31}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 400}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>400</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 400}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8540670f7baa60a08a5dd4b12916c16fe6faf200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 400}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 600}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>600</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 600}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed5fbc94ba594303754ec8efd3d552547a93043" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 600}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1200}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1200</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1200}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/973054497debca94837d3a844349fe9221727dbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.65ex; height:2.176ex;" alt="{\displaystyle 1200}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Penerapannya_dalam_teori_bilangan">Penerapannya dalam teori bilangan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=33" title="Sunting bagian: Penerapannya dalam teori bilangan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=33" title="Sunting kode sumber bagian: Penerapannya dalam teori bilangan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Logaritma_alami" title="Logaritma alami">Logaritma alami</a> sangat berkaitan dengan salah satu topik dalam <a href="/wiki/Teori_bilangan" title="Teori bilangan">teori bilangan</a>, yaitu <a href="/wiki/Fungsi_pencacahan_bilangan_prima" title="Fungsi pencacahan bilangan prima">menghitung bilangan prima</a>. Untuk setiap <a href="/wiki/Bilangan_bulat" title="Bilangan bulat">bilangan bulat</a> <span class="texhtml mvar" style="font-style:italic;">x</span>, jumlah <a href="/wiki/Bilangan_prima" title="Bilangan prima">bilangan prima</a> kurang dari sama dengan <span class="texhtml mvar" style="font-style:italic;">x</span> dinyatakan sebagai <span class="texhtml" style="white-space: nowrap;"><a href="/wiki/Fungsi_pencacahan_bilangan_prima" title="Fungsi pencacahan bilangan prima"><span class="texhtml">π</span>(<i>x</i>)</a></span>. <a href="/wiki/Teorema_bilangan_prima" title="Teorema bilangan prima">Teorema bilangan prima</a> mengatakan bahwa <span class="texhtml" style="white-space: nowrap;"><span class="texhtml">π</span>(<i>x</i>)</span> kira-kira sama dengan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x}{\ln(x)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x}{\ln(x)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e7c35556de976b4896475a163d924bb9f3d83eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:6.561ex; height:5.509ex;" alt="{\displaystyle {\frac {x}{\ln(x)}},}"></span></dd></dl> <p>yang berarti bahwa fungsi pencacahan bilangan prima kira-kira sama dengan perbandingan dari <span class="texhtml" style="white-space: nowrap;"><span class="texhtml">π</span>(<i>x</i>)</span> dan pecahan yang mendekati 1 ketika <span class="texhtml mvar" style="font-style:italic;">x</span> menuju ke takhingga.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> Akibatnya, peluang dari bilangan yang dipilih secara acak di antara 1 dan <span class="texhtml mvar" style="font-style:italic;">x</span> adalah bilangan prima <a href="/wiki/Kesebandingan_(matematika)" title="Kesebandingan (matematika)">berbanding</a> terbalik dengan jumlah digit desimal <span class="texhtml mvar" style="font-style:italic;">x</span>. Pendekatan <span class="texhtml" style="white-space: nowrap;"><span class="texhtml">π</span>(<i>x</i>)</span> yang lebih baik merupakan <a href="/wiki/Fungsi_integral_logaritmik" title="Fungsi integral logaritmik">fungsi integral Euler</a> <span class="texhtml" style="white-space: nowrap;">Li(<i>x</i>)</span>, yang didefinisikan sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {1}{\ln(t)}}\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">i</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {1}{\ln(t)}}\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da577950b8b4c4ef726a3065afcdafa378dbc3fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.875ex; height:6.176ex;" alt="{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {1}{\ln(t)}}\,dt.}"></span></dd></dl> <p><a href="/wiki/Hipotesis_Riemann" title="Hipotesis Riemann">Hipotesis Riemann</a>, yang merupakan salah satu <a href="/wiki/Konjektur" title="Konjektur">konjektur</a> matemtika terbuka yang paling terlama, dapat dinyatakan dalam bentuk perbandingan <span class="texhtml" style="white-space: nowrap;"><span class="texhtml">π</span>(<i>x</i>)</span> dan <span class="texhtml" style="white-space: nowrap;">Li(<i>x</i>)</span>.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Teorema_Erd%C5%91s%E2%80%93Kac" title="Teorema Erdős–Kac">Teorema Erdős–Kac</a> mengatakan bahwa jumlah <a href="/wiki/Bilangan_prima#Faktorisasi_unik" title="Bilangan prima">faktor bilangan prima</a> yang berbeda juga melibatkan <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a>. </p><p>Logaritma dari <i>n</i> <a href="/wiki/Faktorial" title="Faktorial">faktorial</a>, <span class="texhtml" style="white-space: nowrap;"><i>n</i>! = 1 · 2 · ... · <i>n</i></span>, dirumuskan sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(n!)=\ln(1)+\ln(2)+\cdots +\ln(n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(n!)=\ln(1)+\ln(2)+\cdots +\ln(n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/207af1498eca9a74c5e19ecab897d915d1052c95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.746ex; height:2.843ex;" alt="{\displaystyle \ln(n!)=\ln(1)+\ln(2)+\cdots +\ln(n).}"></span></dd></dl> <p>Rumus di atas dapat dipakai utnuk memperoleh sebuah hampiran dari <span class="texhtml" style="white-space: nowrap;"><i>n</i>!</span> untuk setiap bilangan <span class="texhtml mvar" style="font-style:italic;">n</span> yang lebih besar, yaitu <a href="/w/index.php?title=Rumus_Stirling&action=edit&redlink=1" class="new" title="Rumus Stirling (halaman belum tersedia)">rumus Stirling</a>.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Perumuman">Perumuman</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=34" title="Sunting bagian: Perumuman" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=34" title="Sunting kode sumber bagian: Perumuman"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Logaritma_kompleks">Logaritma kompleks</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=35" title="Sunting bagian: Logaritma kompleks" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=35" title="Sunting kode sumber bagian: Logaritma kompleks"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/w/index.php?title=Logaritma_kompleks&action=edit&redlink=1" class="new" title="Logaritma kompleks (halaman belum tersedia)">Logaritma kompleks</a></div> <p>Semua <a href="/wiki/Bilangan_kompleks" title="Bilangan kompleks">bilangan kompleks</a> <span class="texhtml mvar" style="font-style:italic;">a</span> yang menyelesaikan persamaan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{a}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{a}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dc3322ef38b06276c3bee59d656769b6edf531f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.372ex; height:2.343ex;" alt="{\displaystyle e^{a}=z}"></span></dd></dl><p> disebut <i>logaritma kompleks</i> dari <span class="texhtml mvar" style="font-style:italic;">z</span>, ketika <span class="texhtml mvar" style="font-style:italic;">z</span> (dianggap sebagai) bilangan kompleks. Bilangan kompleks biasanya dinyatakan sebagai <span class="texhtml" style="white-space: nowrap;"><i>z = x + iy</i></span>, dengan <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">y</span> adalah bilangan real dan <span class="texhtml mvar" style="font-style:italic;">i</span> adalah <a href="/wiki/Satuan_imajiner" class="mw-redirect" title="Satuan imajiner">satuan imajiner</a> (satuan yang dikuadratkan memberikan nilai −1). Bilangan kompleks dapat divisualisasikan melalui sebuah titik dalam <a href="/wiki/Bidang_kompleks" title="Bidang kompleks">bidang kompleks</a>, seperti yang diperlihatkan pada gambar berikut. <a href="/wiki/Bilangan_kompleks#Bidang_kompleks_polar" title="Bilangan kompleks">Bentuk polar</a> menulis bilangan kompleks tak-nol <span class="texhtml mvar" style="font-style:italic;">z</span> melalui titik <a href="/wiki/Nilai_mutlak" class="mw-redirect" title="Nilai mutlak">nilai mutlak</a>, yang berarti jarak yang berupa bilangan bernilai real dan positif <span class="texhtml mvar" style="font-style:italic;">r</span> sama dengan titik <span class="texhtml mvar" style="font-style:italic;">z</span> ke <a href="/wiki/Titik_nol" title="Titik nol">titik asalnya</a>. Bentuk polar juga menulis sebuah sudut antara bilangan real pada sumbu-<span class="texhtml" style="white-space: nowrap;">Re</span> (yakni sumbu-<span class="texhtml mvar" style="font-style:italic;">x</span>) <i> </i><span class="texhtml" style="white-space: nowrap;">Re</span> dan garis yang melalui titik asal dan titik <span class="texhtml mvar" style="font-style:italic;">z</span>. Sudut tersebut disebut sebagai <a href="/w/index.php?title=Argumen_(bilangan_kompleks)&action=edit&redlink=1" class="new" title="Argumen (bilangan kompleks) (halaman belum tersedia)">argumen</a> dari <span class="texhtml mvar" style="font-style:italic;">z</span>.</p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Complex_number_illustration_multiple_arguments.svg" class="mw-file-description"><img alt="Sebuah ilustrasi mengenai bentuk polar: sebuah titik yang dijelaskan melalui sebuah panah atau secara ekuivalen melalui panjang dan sudutnya ke sumbu-x." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Complex_number_illustration_multiple_arguments.svg/220px-Complex_number_illustration_multiple_arguments.svg.png" decoding="async" width="220" height="234" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Complex_number_illustration_multiple_arguments.svg/330px-Complex_number_illustration_multiple_arguments.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Complex_number_illustration_multiple_arguments.svg/440px-Complex_number_illustration_multiple_arguments.svg.png 2x" data-file-width="204" data-file-height="217" /></a><figcaption>Bentuk polar dari <span class="texhtml" style="white-space: nowrap;"><i>z = x + iy</i></span>. <span class="texhtml mvar" style="font-style:italic;">φ</span> dan <span class="texhtml mvar" style="font-style:italic;">φ'</span> adalah argumen dari <span class="texhtml mvar" style="font-style:italic;">z</span>.</figcaption></figure><p>Nilai mutlak <span class="texhtml mvar" style="font-style:italic;">r</span> dari <span class="texhtml mvar" style="font-style:italic;">z</span> dinyatakan sebagai </p><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle r={\sqrt {x^{2}+y^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle r={\sqrt {x^{2}+y^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c0606ea41983c11ed8e73fc1507ce58ad316ef0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.557ex; height:3.509ex;" alt="{\displaystyle \textstyle r={\sqrt {x^{2}+y^{2}}}.}"></span></dd></dl> <p>Dengan menggunakan pandangan geometris pada fungsi <a href="/wiki/Sinus_(trigonometri)" class="mw-redirect" title="Sinus (trigonometri)">sinus</a> dan <a href="/wiki/Kosinus" class="mw-redirect" title="Kosinus">kosinus</a> beserta periodisitasnya dalam <span class="texhtml" style="white-space: nowrap;">2<span class="texhtml">π</span></span>, setiap bilangan kompleks <span class="texhtml mvar" style="font-style:italic;">z</span> dapat dinyatakan sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=x+iy=r(\cos \varphi +i\sin \varphi )=r(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=x+iy=r(\cos \varphi +i\sin \varphi )=r(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d0927f8e12e74d5bc6aa939122acb09bd8a4c84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.433ex; height:2.843ex;" alt="{\displaystyle z=x+iy=r(\cos \varphi +i\sin \varphi )=r(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )),}"></span></dd></dl> <p>untuk setiap bilangan bulat <span class="texhtml mvar" style="font-style:italic;">k</span>. Nyatanya, argumen dari <span class="texhtml mvar" style="font-style:italic;">z</span> tidak dijelaskan secara unik, yakni: bilangan <span class="texhtml mvar" style="font-style:italic;">φ</span> dan <span class="texhtml" style="white-space: nowrap;"><i>φ'</i> = <i>φ</i> + 2<i>k</i><span class="texhtml">π</span></span> adalah argumen valid dari <span class="texhtml mvar" style="font-style:italic;">z</span> untuk semua bilangan bulat <span class="texhtml mvar" style="font-style:italic;">k</span>, karena menambahkan <span class="texhtml" style="white-space: nowrap;">2<i>k</i><span class="texhtml">π</span></span> <a href="/wiki/Radian" title="Radian">radian</a> atau <i>k</i>⋅360°<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>nb 6<span class="cite-bracket">]</span></a></sup> ke bilangan <span class="texhtml mvar" style="font-style:italic;">φ</span> berpadanan dengan "lilitan" di sekitar titik asal yang berputar berlawanan arah jarum jam sebanyak <span class="texhtml mvar" style="font-style:italic;">k</span> <a href="/wiki/Putaran_(geometri)" class="mw-redirect" title="Putaran (geometri)">putaran</a>. Hasil bilangan kompleks selalu <span class="texhtml mvar" style="font-style:italic;">z</span>, seperti yang diilustrasikan pada gambar untuk <span class="texhtml" style="white-space: nowrap;"><i>k</i> = 1</span>. Setidaknya ada salah satu dari argumen <span class="texhtml mvar" style="font-style:italic;">z</span> yang mungkin disebut sebagai <i>argumen prinsip</i>, yang dilambangkan <span class="texhtml" style="white-space: nowrap;">Arg(<i>z</i>)</span>, dipilih dengan memerlukan putaran <span class="texhtml mvar" style="font-style:italic;">φ</span> di <a href="/wiki/Selang_(matematika)" title="Selang (matematika)">selang</a> <span class="texhtml" style="white-space: nowrap;">(−π, π]</span><sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> atau <span class="texhtml" style="white-space: nowrap;">[0, 2<span class="texhtml">π</span>)</span>.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> Daerah-daerah tersebut, dengan argumen <span class="texhtml mvar" style="font-style:italic;">z</span> ditentukan sekali disebut <a href="/w/index.php?title=Cabang_prinsip&action=edit&redlink=1" class="new" title="Cabang prinsip (halaman belum tersedia)"><i>cabang</i></a> dari fungsi argumen. </p><p><a href="/wiki/Rumus_Euler" title="Rumus Euler">Rumus Euler</a> mengaitkan <a href="/wiki/Fungsi_trigonometri" title="Fungsi trigonometri">fungsi trigonometri</a> <a href="/wiki/Sinus_(trigonometri)" class="mw-redirect" title="Sinus (trigonometri)">sinus</a> dan <a href="/wiki/Kosinus" class="mw-redirect" title="Kosinus">kosinus</a> dengan <a href="/wiki/Rumus_Euler" title="Rumus Euler">eksponensial kompleks</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/396158ab1664889849843ce26a324ed8dbbf841e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.515ex; height:3.176ex;" alt="{\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi .}"></span></dd></dl> <p>Dengan menggunakan rumus di atas, dan periodisitasnya lagi, maka berlaku identitas berikut:<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{lll}z&=&r\left(\cos \varphi +i\sin \varphi \right)\\&=&r\left(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )\right)\\&=&re^{i(\varphi +2k\pi )}\\&=&e^{\ln(r)}e^{i(\varphi +2k\pi )}\\&=&e^{\ln(r)+i(\varphi +2k\pi )}=e^{a_{k}},\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{lll}z&=&r\left(\cos \varphi +i\sin \varphi \right)\\&=&r\left(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )\right)\\&=&re^{i(\varphi +2k\pi )}\\&=&e^{\ln(r)}e^{i(\varphi +2k\pi )}\\&=&e^{\ln(r)+i(\varphi +2k\pi )}=e^{a_{k}},\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e5cade11df0130b973bedde60077ac9569ef7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.838ex; width:41.286ex; height:16.843ex;" alt="{\displaystyle {\begin{array}{lll}z&=&r\left(\cos \varphi +i\sin \varphi \right)\\&=&r\left(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )\right)\\&=&re^{i(\varphi +2k\pi )}\\&=&e^{\ln(r)}e^{i(\varphi +2k\pi )}\\&=&e^{\ln(r)+i(\varphi +2k\pi )}=e^{a_{k}},\end{array}}}"></span></dd></dl> <p>dengan <span class="texhtml" style="white-space: nowrap;">ln(<i>r</i>)</span> adalah fungsi logaritma real tunggal, <span class="texhtml" style="white-space: nowrap;"><i>a</i><sub><i>k</i></sub></span> menyatakan logaritma kompleks dari <span class="texhtml mvar" style="font-style:italic;">z</span>, dan <span class="texhtml mvar" style="font-style:italic;">k</span> bilangan bulat sembarang. Karena itu, logaritma kompleks dari <span class="texhtml mvar" style="font-style:italic;">z</span>, yang semua bilangan kompleks <span class="texhtml" style="white-space: nowrap;"><i>a</i><sub><i>k</i></sub></span> untuk <span class="texhtml mvar" style="font-style:italic;">e</span> pangkat <span class="texhtml" style="white-space: nowrap;"><i>a</i><sub><i>k</i></sub></span> sama dengan <span class="texhtml mvar" style="font-style:italic;">z</span>, mempunyai tak berhingga banyaknya nilai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}=\ln(r)+i(\varphi +2k\pi ),\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}=\ln(r)+i(\varphi +2k\pi ),\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acd46f348b53d1c0fcf39cd11e990617844255c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.702ex; height:2.843ex;" alt="{\displaystyle a_{k}=\ln(r)+i(\varphi +2k\pi ),\quad }"></span> untuk bilangan bulat sembarang <span class="texhtml mvar" style="font-style:italic;">k</span>.</dd></dl> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Complex_log_domain.svg" class="mw-file-description"><img alt="A density plot. In the middle there is a black point, at the negative axis the hue jumps sharply and evolves smoothly otherwise." src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_log_domain.svg/220px-Complex_log_domain.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_log_domain.svg/330px-Complex_log_domain.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_log_domain.svg/440px-Complex_log_domain.svg.png 2x" data-file-width="569" data-file-height="426" /></a><figcaption>Cabang prinsip (-<span class="texhtml">π</span>, <span class="texhtml">π</span>) dari prinsip logaritma kompleks, <span class="texhtml" style="white-space: nowrap;">Log(<i>z</i>)</span>. Titik berwarna hitam di <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 1</span> berpadanan dengan nilai titik nol dan warna yang lebih cerah mengacu pada nilai mutlak lebih besar. <a href="/wiki/Rona" title="Rona">Rona</a> dari warna mengkodekan argumen dari <span class="texhtml" style="white-space: nowrap;">Log(<i>z</i>)</span>.</figcaption></figure> <p>Dengan mengambil <span class="texhtml mvar" style="font-style:italic;">k</span> sehingga <span class="texhtml" style="white-space: nowrap;"><i>φ</i> + 2<i>k</i><span class="texhtml">π</span></span> ada di dalam selang yang ditentukan untuk argumen prinsip, maka <span class="texhtml" style="white-space: nowrap;"><i>a</i><sub><i>k</i></sub></span> disebut <i>nilai prinsip</i> dari logaritma, dinotasikan sebagai <span class="texhtml" style="white-space: nowrap;">Log(<i>z</i>)</span>. Argumen prinsip setiap bilangan real positif  <span class="texhtml mvar" style="font-style:italic;">x</span> bernilai 0, jadi <span class="texhtml" style="white-space: nowrap;">Log(<i>x</i>)</span> adalah sebuah bilangan real yang sama dengan logaritma (alami). Akan tetapi, rumus logaritma tentang darab dan perpangkatan bilangan di atas <a href="/wiki/Eksponensiasi#Kegagalan_identitas_perpangkatan_dan_logaritma" title="Eksponensiasi">tidak memberikan perumuman</a> terkait nilai prinsip dari logaritma kompleks.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> </p><p>Ilustrasi tersebut menggambarkan <span class="texhtml" style="white-space: nowrap;">Log(<i>z</i>)</span>, membatasi argumen <span class="texhtml mvar" style="font-style:italic;">z</span> dengan interval <span class="texhtml" style="white-space: nowrap;">(−π, π]</span>. Cara memadankan cabang dari logaritma kompleks mempunyai ketakkontinuan di sepanjang sumbu-<span class="texhtml mvar" style="font-style:italic;">x</span> real negatif, seperti yang dapat dilihat pada lompatan hue di gambar. Saat melintasi batas, ketakkontinuan tersebut dimulai dari lompatan hingga batas lain yang ada di cabang yang sama, dalam artian bahwa tiada perubahan dengan nilai-<span class="texhtml mvar" style="font-style:italic;">k</span> dari cabang tetangga kontinu yang berpadanan. Lokus tersebut dinamakan <a href="/w/index.php?title=Potongan_cabang&action=edit&redlink=1" class="new" title="Potongan cabang (halaman belum tersedia)">potongan cabang</a>. Dengan menghapus perbatasan argumen, maka relasi "argumen dari <span class="texhtml mvar" style="font-style:italic;">z</span>" dan "logaritma dari <span class="texhtml mvar" style="font-style:italic;">z</span>" menjadi <a href="/w/index.php?title=Fungsi_bernilai_banyak&action=edit&redlink=1" class="new" title="Fungsi bernilai banyak (halaman belum tersedia)">fungsi bernilai banyak</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Kebalikan_dari_fungsi_eksponensial_lainnya">Kebalikan dari fungsi eksponensial lainnya</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=36" title="Sunting bagian: Kebalikan dari fungsi eksponensial lainnya" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=36" title="Sunting kode sumber bagian: Kebalikan dari fungsi eksponensial lainnya"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eksponensiasi muncul dalam cabang matematika dan fungsi inversnya seringkali mengacu pada logaritma. Sebagai contoh, <a href="/w/index.php?title=Logaritma_matriks&action=edit&redlink=1" class="new" title="Logaritma matriks (halaman belum tersedia)">logaritma matriks</a> merupakan fungsi invers (bernilai banyak) dari <a href="/w/index.php?title=Eksponensial_matriks&action=edit&redlink=1" class="new" title="Eksponensial matriks (halaman belum tersedia)">eksponensial matriks</a>.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> Contohnya lain seperti <a href="/w/index.php?title=Fungsi_logaritma_p-adic&action=edit&redlink=1" class="new" title="Fungsi logaritma p-adic (halaman belum tersedia)">fungsi logaritma <i>p</i>-adic</a>, fungsi invers dari <a href="/w/index.php?title=Fungsi_eksponensial_p-adic&action=edit&redlink=1" class="new" title="Fungsi eksponensial p-adic (halaman belum tersedia)">fungsi eksponensial <i>p</i>-adic</a>. Kedua fungsi tersebut didefinisikan melalui deret Taylor yang analog dengan kasus bilangan real.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> Dalam konteks <a href="/wiki/Geometri_diferensial" title="Geometri diferensial">geometri diferensial</a>, <a href="/w/index.php?title=Peta_eksponensial_(geometri_Riemann)&action=edit&redlink=1" class="new" title="Peta eksponensial (geometri Riemann) (halaman belum tersedia)">peta eksponensial</a> memetakan <a href="/w/index.php?title=Ruang_garis_singgung&action=edit&redlink=1" class="new" title="Ruang garis singgung (halaman belum tersedia)">ruang garis singgung</a> di sebuah titik <a href="/wiki/Lipatan_terdiferensialkan" title="Lipatan terdiferensialkan">lipatan</a> ke <a href="/wiki/Lingkungan_(matematika)" title="Lingkungan (matematika)">lingkungan</a> titik tersebut. Kebalikannya juga disebut peta logaritma.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p><p>Dalam konteks <a href="/wiki/Grup_hingga" title="Grup hingga">grup hingga</a>, eksponensiasi dinyatakan dengan mengalikan satu anggota grup <span class="texhtml mvar" style="font-style:italic;">b</span> dengan dirinya secara berulang. <a href="/wiki/Logaritma_diskret" title="Logaritma diskret">Logaritma diskret</a> merupakan bilangan bulat <i><span class="texhtml mvar" style="font-style:italic;">n</span></i> yang menyelesaikan persamaan </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n}=x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n}=x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f90e5e0851759d0490e085cf1888338465384143" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.291ex; height:2.676ex;" alt="{\displaystyle b^{n}=x,}"></span></dd></dl> <p>dengan <span class="texhtml mvar" style="font-style:italic;">x</span> adalah anggota dari grup. Mengerjakan solusi eksponensiasi dapat dilakukan dengan efisien, namun logaritma diskret dipercayai bahwa sangat sulit untuk menghitungnya dalam beberapa grup. Asimetri dari grup tersebut mempunyai penerapan penting dalam <a href="/wiki/Kriptografi_kunci_publik" title="Kriptografi kunci publik">kriptografi kunci publik</a>, contohnya seperti <a href="/wiki/Pertukaran_kunci_Diffie%E2%80%93Hellman" title="Pertukaran kunci Diffie–Hellman">pertukaran kunci Diffie–Hellman</a>, sebuah pertukaran kunci sehari-hari yang memungkinkan pertukaran kunci <a href="/wiki/Kriptografi" title="Kriptografi">kriptografi</a> terhadap saluran informasi yang tidak diamankan.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> <a href="/w/index.php?title=Logaritma_Zech&action=edit&redlink=1" class="new" title="Logaritma Zech (halaman belum tersedia)">Logaritma Zech</a> berkaitan dengan logaritma diskret dalam grup perkalian anggota taknol dari <a href="/wiki/Medan_hingga" title="Medan hingga">medan hingga</a>.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> </p><p><span id="double_logarithm"></span>Adapun fungsi invers berupa logaritma lainnya. Fungsi tersebut di antaranya: <i>logaritma ganda</i> <span class="texhtml" style="white-space: nowrap;">ln(ln(<i>x</i>))</span> yang merupakan kebalikan dari <a href="/wiki/Fungsi_eksponensial_ganda" title="Fungsi eksponensial ganda">fungsi eksponensial ganda</a>, <i><a href="/w/index.php?title=Superlogaritma&action=edit&redlink=1" class="new" title="Superlogaritma (halaman belum tersedia)">superlogaritma</a></i> yang merupakan kebalikan dari <a href="/wiki/Tetrasi" title="Tetrasi">tetrasi</a>, <a href="/wiki/Fungsi_Lambert_W" title="Fungsi Lambert W">fungsi Lambert W</a> yang merupakan kebalikan dari fungsi <span class="texhtml" style="white-space: nowrap;"><i>f</i>(<i>w</i>) = <i>we<sup>w</sup></i></span>,<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> dan <a href="/w/index.php?title=Logit&action=edit&redlink=1" class="new" title="Logit (halaman belum tersedia)">logit</a> yang merupakan kebalikan dari <a href="/w/index.php?title=Fungsi_logistik&action=edit&redlink=1" class="new" title="Fungsi logistik (halaman belum tersedia)">fungsi logistik</a>.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Konsep_yang_berkaitan">Konsep yang berkaitan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=37" title="Sunting bagian: Konsep yang berkaitan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=37" title="Sunting kode sumber bagian: Konsep yang berkaitan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Berdasarkan sudut pandang <a href="/wiki/Teori_grup" title="Teori grup">teori grup</a>, identitas <span class="texhtml" style="white-space: nowrap;">log(<i>cd</i>) = log(<i>c</i>) + log(<i>d</i>)</span> menyatakan <a href="/w/index.php?title=Isomorfisme_grup&action=edit&redlink=1" class="new" title="Isomorfisme grup (halaman belum tersedia)">isomorfisme grup</a> antara bilangan <a href="/wiki/Bilangan_riil" title="Bilangan riil">riil</a> positif terhadap perkalian bilangan riil positif terhadap penambahan. Fungsi logaritmik hanya isomorfisme kontinu antara grup.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> Berdasarkan pengertian isomorfisme tersebut, <a href="/w/index.php?title=Ukuran_Haar&action=edit&redlink=1" class="new" title="Ukuran Haar (halaman belum tersedia)">ukuran Haar</a> (<a href="/w/index.php?title=Ukuran_Lebesgue&action=edit&redlink=1" class="new" title="Ukuran Lebesgue (halaman belum tersedia)">ukuran Lebesgue</a>) <span class="texhtml" style="white-space: nowrap;"><i>dx</i></span> pada riil berpadanan dengan ukuran Haar <span class="texhtml" style="white-space: nowrap;"><span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;"><i>dx</i></span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;"><i>x</i></span></span></span> pada bilangan real positif.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> Bilangan riil taknegatif tidak hanya terhadap operasi perkalian, namun juga terhadap operasi penambahan, dan bilangan riil taknegatif membentuk <a href="/wiki/Semigelanggang" title="Semigelanggang">semigelanggang</a>, yang disebut sebagai <a href="/wiki/Semigelanggang#Probabilitas_semigelanggang" title="Semigelanggang">semigelanggang probabilitas</a>, bahkan membentuk <a href="/wiki/Semigelanggang" title="Semigelanggang">semigelanggang</a>. Maka logaritma yang mengambil perkalian dengan penambahan (perkalian logaritma), dan mengambil penambahan dengan penambahan logaritma, memberikan <a href="/wiki/Isomorfisme" title="Isomorfisme">isomorfisme</a> semigelanggang di antara semigelanggang probabilitas dan <a href="/w/index.php?title=Semigelanggang_logaritma&action=edit&redlink=1" class="new" title="Semigelanggang logaritma (halaman belum tersedia)">semigelanggang logaritma</a>. </p><p>Konsep ini juga terdapat di dalam <a href="/wiki/Analisis_kompleks" title="Analisis kompleks">analisis kompleks</a> dan <a href="/wiki/Geometri_aljabar" title="Geometri aljabar">geometri aljabar</a>, yang <a href="/w/index.php?title=Bentuk_logaritmik&action=edit&redlink=1" class="new" title="Bentuk logaritmik (halaman belum tersedia)">logaritmik satu bentuk </a><span class="texhtml" style="white-space: nowrap;"><i>df</i>/<i>f</i></span> adalah <a href="/w/index.php?title=Bentuk_diferensial&action=edit&redlink=1" class="new" title="Bentuk diferensial (halaman belum tersedia)">bentuk diferensial</a> dengan <a href="/w/index.php?title=Pole_(analisis_kompleks)&action=edit&redlink=1" class="new" title="Pole (analisis kompleks) (halaman belum tersedia)">pole</a> logaritmik.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> </p><p>Selain itu, terdapat <a href="/w/index.php?title=Polilogaritma&action=edit&redlink=1" class="new" title="Polilogaritma (halaman belum tersedia)">polilogaritma</a>, sebuah fungsi yang didefinisikan sebagai </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Li</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c16a216f9168ba23df2d07ceb32c6929a70c4e1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.538ex; height:6.843ex;" alt="{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}.}"></span></dd></dl> <p>Fungsi ini mempunyai kaitan dengan <a href="/wiki/Logaritma_alami" title="Logaritma alami">logaritma alami</a> dengan <span class="texhtml" style="white-space: nowrap;">Li<sub>1</sub> (<i>z</i>) = −ln(1 − <i>z</i>)</span>. Terlebih lagi, ketika <span class="texhtml" style="white-space: nowrap;"><i>z</i> = 1</span>, nilai dari <span class="texhtml" style="white-space: nowrap;">Li<sub><i>s</i></sub> (1)</span> sama dengan <a href="/wiki/Fungsi_zeta_Riemann" title="Fungsi zeta Riemann">fungsi zeta Riemann</a>, yang dinyatakan sebagai <span class="texhtml" style="white-space: nowrap;">ζ(<i>s</i>)</span>.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Lihat_pula">Lihat pula</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=38" title="Sunting bagian: Lihat pula" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=38" title="Sunting kode sumber bagian: Lihat pula"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Logaritma_umum" title="Logaritma umum">Eksponen desimal</a> (dex)</li> <li><a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">Fungsi eksponensial</a></li> <li><a href="/wiki/Indeks_artikel_logaritma" title="Indeks artikel logaritma">Indeks artikel logaritma</a></li> <li><a href="/wiki/Notasi_ilmiah#Notasi_yang_dinormalisasi" title="Notasi ilmiah">Notasi logaritmik</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Catatan">Catatan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=39" title="Sunting bagian: Catatan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=39" title="Sunting kode sumber bagian: Catatan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r18833634">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Perbatasan <span class="texhtml mvar" style="font-style:italic;">x</span> dan <span class="texhtml mvar" style="font-style:italic;">b</span> dijelaskan pada bagian <a href="#Sifat_analitik">"Sifat analitik"</a>.</span> </li> <li id="cite_note-adaa-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-adaa_19-0">^</a></b></span> <span class="reference-text">Beberapa para matematikawan menolak notasi ini. Dalam otobiografinya pada tahun 1985, <a href="/w/index.php?title=Paul_Halmos&action=edit&redlink=1" class="new" title="Paul Halmos (halaman belum tersedia)">Paul Halmos</a> mengkritik bahwa "notasi ln bersifat kekanak-kanakan", karena menurutnya para matematikawan menggunakan notasi tersebut.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Notasi tersebut ditemukan oleh seorang matematikawan bernama <a href="/w/index.php?title=Irving_Stringham&action=edit&redlink=1" class="new" title="Irving Stringham (halaman belum tersedia)">Irving Stringham</a>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Contohnya seperti <a href="/wiki/C_(bahasa_pemrograman)" title="C (bahasa pemrograman)">C</a>, <a href="/wiki/Java_(bahasa_pemrograman)" class="mw-redirect" title="Java (bahasa pemrograman)">Java</a>, <a href="/wiki/Haskell_(bahasa_pemrograman)" class="mw-redirect" title="Haskell (bahasa pemrograman)">Haskell</a>, and <a href="/wiki/Bahasa_pemrograman_BASIC" class="mw-redirect" title="Bahasa pemrograman BASIC">BASIC</a>.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Deret yang sama berlaku untuk nilai utama dari logaritma kompleks untuk bilangan kompleks <span class="texhtml mvar" style="font-style:italic;">z</span> yang memenuhi <span class="texhtml" style="white-space: nowrap;">|<i>z</i> − 1| < 1</span>.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">Deret yang sama berlaku untuk nilai utama dari logaritma kompleks untuk bilangan kompleks <span class="texhtml mvar" style="font-style:italic;">z</span> dengan bagian real positif.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">Lihat <a href="/wiki/Radian" title="Radian">radian</a> untuk konversi antara 2<a href="/wiki/Pi" title="Pi"><span class="texhtml">π</span></a> dengan 360 <a href="/wiki/Derajat_(sudut)" class="mw-redirect" title="Derajat (sudut)">derajat</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Referensi">Referensi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=40" title="Sunting bagian: Referensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=40" title="Sunting kode sumber bagian: Referensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18833634"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><cite id="CITEREFHobson1914" class="citation">Hobson, Ernest William (1914), <a rel="nofollow" class="external text" href="http://archive.org/details/johnnapierinvent00hobsiala"><i>John Napier and the invention of logarithms, 1614; a lecture</i></a>, University of California Libraries, Cambridge : University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=John+Napier+and+the+invention+of+logarithms%2C+1614%3B+a+lecture&rft.pub=Cambridge+%3A+University+Press&rft.date=1914&rft.aulast=Hobson&rft.aufirst=Ernest+William&rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fjohnnapierinvent00hobsiala&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite id="CITEREFRemmert,_Reinhold.1991" class="citation">Remmert, Reinhold. (1991), <i>Theory of complex functions</i>, New York: Springer-Verlag, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/0387971955" title="Istimewa:Sumber buku/0387971955">0387971955</a>, <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/21118309">21118309</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theory+of+complex+functions&rft.place=New+York&rft.pub=Springer-Verlag&rft.date=1991&rft_id=info%3Aoclcnum%2F21118309&rft.isbn=0387971955&rft.au=Remmert%2C+Reinhold.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><cite id="CITEREFKateBhapkar2009" class="citation">Kate, S.K.; Bhapkar, H.R. (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v4R0GSJtEQ4C&pg=PA1"><i>Basics Of Mathematics</i></a>, Pune: Technical Publications, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-81-8431-755-8" title="Istimewa:Sumber buku/978-81-8431-755-8">978-81-8431-755-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basics+Of+Mathematics&rft.place=Pune&rft.pub=Technical+Publications&rft.date=2009&rft.isbn=978-81-8431-755-8&rft.aulast=Kate&rft.aufirst=S.K.&rft.au=Bhapkar%2C+H.R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv4R0GSJtEQ4C%26pg%3DPA1&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Pranala_mati" title="Wikipedia:Pranala mati"><span title=" pranala nonaktif sejak Februari 2023">pranala nonaktif permanen</span></a></i>]</span></sup>, chapter 1</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Semua pernyataan di bagian ini dapat ditemukan pada Shailesh Shirali <a href="#CITEREFShirali2002">2002</a>, bagian 4. Sebagai contoh, (Douglas Downing <a href="#CITEREFDowning2003">2003</a>, hlm. 275), atau Kate & Bhapkar <a href="#CITEREFKateBhapkar2009">2009</a>, hlm. 1-1.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><cite id="CITEREFBernsteinBernstein1999" class="citation">Bernstein, Stephen; Bernstein, Ruth (1999), <a rel="nofollow" class="external text" href="https://archive.org/details/schaumsoutlineof00bern"><i>Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability</i></a>, Schaum's outline series, New York: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-07-005023-5" title="Istimewa:Sumber buku/978-0-07-005023-5">978-0-07-005023-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schaum%27s+outline+of+theory+and+problems+of+elements+of+statistics.+I%2C+Descriptive+statistics+and+probability&rft.place=New+York&rft.series=Schaum%27s+outline+series&rft.pub=McGraw-Hill&rft.date=1999&rft.isbn=978-0-07-005023-5&rft.aulast=Bernstein&rft.aufirst=Stephen&rft.au=Bernstein%2C+Ruth&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fschaumsoutlineof00bern&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 21</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><cite id="CITEREFDowning2003" class="citation">Downing, Douglas (2003), <a rel="nofollow" class="external text" href="https://archive.org/details/algebraeasyway00down_0"><i>Algebra the Easy Way</i></a>, Barron's Educational Series, Hauppauge, NY: Barron's, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-7641-1972-9" title="Istimewa:Sumber buku/978-0-7641-1972-9">978-0-7641-1972-9</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra+the+Easy+Way&rft.place=Hauppauge%2C+NY&rft.series=Barron%27s+Educational+Series&rft.pub=Barron%27s&rft.date=2003&rft.isbn=978-0-7641-1972-9&rft.aulast=Downing&rft.aufirst=Douglas&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebraeasyway00down_0&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, chapter 17, hlm. 275</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><cite id="CITEREFWegener2005" class="citation">Wegener, Ingo (2005), <i>Complexity theory: exploring the limits of efficient algorithms</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-21045-0" title="Istimewa:Sumber buku/978-3-540-21045-0">978-3-540-21045-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complexity+theory%3A+exploring+the+limits+of+efficient+algorithms&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=978-3-540-21045-0&rft.aulast=Wegener&rft.aufirst=Ingo&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 20</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><cite id="CITEREFVan_der_Lubbe1997" class="citation">Van der Lubbe, Jan C. A. (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tBuI_6MQTcwC&pg=PA3"><i>Information Theory</i></a>, Cambridge University Press, hlm. 3, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-46760-5" title="Istimewa:Sumber buku/978-0-521-46760-5">978-0-521-46760-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Information+Theory&rft.pages=3&rft.pub=Cambridge+University+Press&rft.date=1997&rft.isbn=978-0-521-46760-5&rft.aulast=Van+der+Lubbe&rft.aufirst=Jan+C.+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtBuI_6MQTcwC%26pg%3DPA3&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><cite id="CITEREFAllenTriantaphillidou2011" class="citation">Allen, Elizabeth; Triantaphillidou, Sophie (2011), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IfWivY3mIgAC&pg=PA228"><i>The Manual of Photography</i></a>, Taylor & Francis, hlm. 228, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-240-52037-7" title="Istimewa:Sumber buku/978-0-240-52037-7">978-0-240-52037-7</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Manual+of+Photography&rft.pages=228&rft.pub=Taylor+%26+Francis&rft.date=2011&rft.isbn=978-0-240-52037-7&rft.aulast=Allen&rft.aufirst=Elizabeth&rft.au=Triantaphillidou%2C+Sophie&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIfWivY3mIgAC%26pg%3DPA228&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Quantities and units–Part 2: Mathematics (ISO 80000-2:2019); EN ISO 80000-2</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><cite id="CITEREFGoodrichTamassia2002" class="citation"><a href="/w/index.php?title=Michael_T._Goodrich&action=edit&redlink=1" class="new" title="Michael T. Goodrich (halaman belum tersedia)">Goodrich, Michael T.</a>; <a href="/w/index.php?title=Roberto_Tamassia&action=edit&redlink=1" class="new" title="Roberto Tamassia (halaman belum tersedia)">Tamassia, Roberto</a> (2002), <i>Algorithm Design: Foundations, Analysis, and Internet Examples</i>, John Wiley & Sons, hlm. 23</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algorithm+Design%3A+Foundations%2C+Analysis%2C+and+Internet+Examples&rft.pages=23&rft.pub=John+Wiley+%26+Sons&rft.date=2002&rft.aulast=Goodrich&rft.aufirst=Michael+T.&rft.au=Tamassia%2C+Roberto&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span><style data-mw-deduplicate="TemplateStyles:r21477316">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0}</style><blockquote class="templatequote"><p>One of the interesting and sometimes even surprising aspects of the analysis of data structures and algorithms is the ubiquitous presence of logarithms ... As is the custom in the computing literature, we omit writing the base <span class="texhtml mvar" style="font-style:italic;">b</span> of the logarithm when <span class="texhtml" style="white-space: nowrap;"><i>b</i> = 2</span>.</p></blockquote>Terjemahan:<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r21477316"><blockquote class="templatequote"><p>Salah satu hal yang menarik dan terkadang yang paling mengejutkan dalam aspek dari analisis struktur data beserta algoritma adalah bahwa keberadaan logaritma ada dimana-mana ... Menjadi kebiasaan dalam literatur komputer, kita menghilangkan penulisan bilangan pokok <span class="texhtml mvar" style="font-style:italic;">b</span> dari logaritma ketika <span class="texhtml" style="white-space: nowrap;"><i>b</i> = 2</span>.</p></blockquote></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><cite id="CITEREFParkhurst2007" class="citation">Parkhurst, David F. (2007), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h6yq_lOr8Z4C&pg=PA288"><i>Introduction to Applied Mathematics for Environmental Science</i></a> (edisi ke-illustrated), Springer Science & Business Media, hlm. 288, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-387-34228-3" title="Istimewa:Sumber buku/978-0-387-34228-3">978-0-387-34228-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Applied+Mathematics+for+Environmental+Science&rft.pages=288&rft.edition=illustrated&rft.pub=Springer+Science+%26+Business+Media&rft.date=2007&rft.isbn=978-0-387-34228-3&rft.aulast=Parkhurst&rft.aufirst=David+F.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh6yq_lOr8Z4C%26pg%3DPA288&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-gullberg-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-gullberg_14-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFGullberg,_Jan1997" class="citation">Gullberg, Jan (1997), <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsfromb1997gull"><i>Mathematics: from the birth of numbers.</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>, New York: W. W. Norton & Co, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-393-04002-9" title="Istimewa:Sumber buku/978-0-393-04002-9">978-0-393-04002-9</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics%3A+from+the+birth+of+numbers.&rft.place=New+York&rft.pub=W.+W.+Norton+%26+Co&rft.date=1997&rft.isbn=978-0-393-04002-9&rft.au=Gullberg%2C+Jan&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsfromb1997gull&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">See footnote 1 in <cite id="CITEREFPerlReingold1977" class="citation">Perl, Yehoshua; Reingold, Edward M. (December 1977), "Understanding the complexity of interpolation search", <i>Information Processing Letters</i>, <b>6</b> (6): 219–22, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0020-0190%2877%2990072-2">10.1016/0020-0190(77)90072-2</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Information+Processing+Letters&rft.atitle=Understanding+the+complexity+of+interpolation+search&rft.volume=6&rft.issue=6&rft.pages=219-22&rft.date=1977-12&rft_id=info%3Adoi%2F10.1016%2F0020-0190%2877%2990072-2&rft.aulast=Perl&rft.aufirst=Yehoshua&rft.au=Reingold%2C+Edward+M.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"> <cite id="CITEREFPaul_Halmos1985" class="citation">Paul Halmos (1985), <i>I Want to Be a Mathematician: An Automathography</i>, Berlin, New York: Springer-Verlag, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-387-96078-4" title="Istimewa:Sumber buku/978-0-387-96078-4">978-0-387-96078-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=I+Want+to+Be+a+Mathematician%3A+An+Automathography&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=1985&rft.isbn=978-0-387-96078-4&rft.au=Paul+Halmos&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"> <cite id="CITEREFIrving_Stringham1893" class="citation">Irving Stringham (1893), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hPEKAQAAIAAJ&pg=PA13"><i>Uniplanar algebra: being part I of a propædeutic to the higher mathematical analysis</i></a>, The Berkeley Press, hlm. xiii</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Uniplanar+algebra%3A+being+part+I+of+a+prop%C3%A6deutic+to+the+higher+mathematical+analysis&rft.pages=xiii&rft.pub=The+Berkeley+Press&rft.date=1893&rft.au=Irving+Stringham&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhPEKAQAAIAAJ%26pg%3DPA13&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"> <cite id="CITEREFRoy_S._Freedman2006" class="citation">Roy S. Freedman (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=APJ7QeR_XPkC&pg=PA5"><i>Introduction to Financial Technology</i></a>, Amsterdam: Academic Press, hlm. 59, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-12-370478-8" title="Istimewa:Sumber buku/978-0-12-370478-8">978-0-12-370478-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Financial+Technology&rft.place=Amsterdam&rft.pages=59&rft.pub=Academic+Press&rft.date=2006&rft.isbn=978-0-12-370478-8&rft.au=Roy+S.+Freedman&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAPJ7QeR_XPkC%26pg%3DPA5&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Lihat Teorema 3.29 di <cite id="CITEREFRudin1984" class="citation">Rudin, Walter (1984), <a rel="nofollow" class="external text" href="https://archive.org/details/principlesofmath00rudi"><i>Principles of mathematical analysis</i></a> (edisi ke-3rd ed., International student), Auckland: McGraw-Hill International, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-07-085613-4" title="Istimewa:Sumber buku/978-0-07-085613-4">978-0-07-085613-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+mathematical+analysis&rft.place=Auckland&rft.edition=3rd+ed.%2C+International+student&rft.pub=McGraw-Hill+International&rft.date=1984&rft.isbn=978-0-07-085613-4&rft.aulast=Rudin&rft.aufirst=Walter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprinciplesofmath00rudi&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><cite id="CITEREFNapier1614" class="citation"><a href="/wiki/John_Napier" title="John Napier">Napier, John</a> (1614), <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN527914568&DMDID=DMDLOG_0001&LOGID=LOG_0001&PHYSID=PHYS_0001"><i>Mirifici Logarithmorum Canonis Descriptio</i></a> [<i>The Description of the Wonderful Rule of Logarithms</i>] (dalam bahasa Latin), Edinburgh, Scotland: Andrew Hart</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mirifici+Logarithmorum+Canonis+Descriptio&rft.place=Edinburgh%2C+Scotland&rft.pub=Andrew+Hart&rft.date=1614&rft.aulast=Napier&rft.aufirst=John&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fdms%2Fload%2Fimg%2F%3FPPN%3DPPN527914568%26DMDID%3DDMDLOG_0001%26LOGID%3DLOG_0001%26PHYSID%3DPHYS_0001&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><cite id="CITEREFHobson1914" class="citation">Hobson, Ernest William (1914), <a rel="nofollow" class="external text" href="https://archive.org/details/johnnapierinvent00hobsiala"><i>John Napier and the invention of logarithms, 1614</i></a>, Cambridge: The University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=John+Napier+and+the+invention+of+logarithms%2C+1614&rft.place=Cambridge&rft.pub=The+University+Press&rft.date=1914&rft.aulast=Hobson&rft.aufirst=Ernest+William&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjohnnapierinvent00hobsiala&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-folkerts-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-folkerts_24-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFFolkertsLaunertThom2016" class="citation">Folkerts, Menso; Launert, Dieter; Thom, Andreas (2016), "Jost Bürgi's method for calculating sines", <i><a href="/w/index.php?title=Historia_Mathematica&action=edit&redlink=1" class="new" title="Historia Mathematica (halaman belum tersedia)">Historia Mathematica</a></i>, <b>43</b> (2): 133–147, <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/1510.03180">1510.03180</a> <span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2016.03.001">10.1016/j.hm.2016.03.001</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=3489006">3489006</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historia+Mathematica&rft.atitle=Jost+B%C3%BCrgi%27s+method+for+calculating+sines&rft.volume=43&rft.issue=2&rft.pages=133-147&rft.date=2016&rft_id=info%3Aarxiv%2F1510.03180&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D3489006&rft_id=info%3Adoi%2F10.1016%2Fj.hm.2016.03.001&rft.aulast=Folkerts&rft.aufirst=Menso&rft.au=Launert%2C+Dieter&rft.au=Thom%2C+Andreas&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|s2cid=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><cite class="citation"><a href="/w/index.php?title=John_J._O%27Connor_(matematikawan)&action=edit&redlink=1" class="new" title="John J. O'Connor (matematikawan) (halaman belum tersedia)">O'Connor, John J.</a>; <a href="/w/index.php?title=Edmund_F._Robertson&action=edit&redlink=1" class="new" title="Edmund F. Robertson (halaman belum tersedia)">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Burgi.html">"Jost Bürgi (1552–1632)"</a>, <i><a href="/w/index.php?title=Arsip_Sejarah_Matematika_MacTutor&action=edit&redlink=1" class="new" title="Arsip Sejarah Matematika MacTutor (halaman belum tersedia)">Arsip Sejarah Matematika MacTutor</a></i>, <a href="/wiki/Universitas_St_Andrews" title="Universitas St Andrews">Universitas St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Jost+B%C3%BCrgi+%281552%E2%80%931632%29&rft.btitle=Arsip+Sejarah+Matematika+MacTutor&rft.pub=Universitas+St+Andrews&rft.aulast=O%27Connor&rft.aufirst=John+J.&rft.au=Robertson%2C+Edmund+F.&rft_id=http%3A%2F%2Fwww-history.mcs.st-andrews.ac.uk%2FBiographies%2FBurgi.html&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">William Gardner (1742) <i>Tables of Logarithms</i></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><cite id="CITEREFPierce1977" class="citation">Pierce, R. C. Jr. (January 1977), "A brief history of logarithms", <i><a href="/w/index.php?title=The_Two-Year_College_Mathematics_Journal&action=edit&redlink=1" class="new" title="The Two-Year College Mathematics Journal (halaman belum tersedia)">The Two-Year College Mathematics Journal</a></i>, <b>8</b> (1): 22–26, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3026878">10.2307/3026878</a>, <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a> <a rel="nofollow" class="external text" href="//www.jstor.org/stable/3026878">3026878</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Two-Year+College+Mathematics+Journal&rft.atitle=A+brief+history+of+logarithms&rft.volume=8&rft.issue=1&rft.pages=22-26&rft.date=1977-01&rft_id=info%3Adoi%2F10.2307%2F3026878&rft_id=%2F%2Fwww.jstor.org%2Fstable%2F3026878&rft.aulast=Pierce&rft.aufirst=R.+C.+Jr.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">Enrique Gonzales-Velasco (2011) <i>Journey through Mathematics–Creative Episodes in its History</i>, §2.4 Hyperbolic logarithms, hlm. 117, Springer <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-387-92153-2" title="Istimewa:Sumber buku/978-0-387-92153-2">978-0-387-92153-2</a></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="/w/index.php?title=Florian_Cajori&action=edit&redlink=1" class="new" title="Florian Cajori (halaman belum tersedia)">Florian Cajori</a> (1913) "History of the exponential and logarithm concepts", <a href="/w/index.php?title=American_Mathematical_Monthly&action=edit&redlink=1" class="new" title="American Mathematical Monthly (halaman belum tersedia)">American Mathematical Monthly</a> 20: 5, 35, 75, 107, 148, 173, 205.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><cite id="CITEREFStillwell2010" class="citation">Stillwell, J. (2010), <i>Mathematics and Its History</i> (edisi ke-3), Springer</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+and+Its+History&rft.edition=3&rft.pub=Springer&rft.date=2010&rft.aulast=Stillwell&rft.aufirst=J.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><cite id="CITEREFBryant1907" class="citation">Bryant, Walter W. (1907), <a rel="nofollow" class="external text" href="https://archive.org/stream/ahistoryastrono01bryagoog#page/n72/mode/2up"><i>A History of Astronomy</i></a>, London: Methuen & Co</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+Astronomy&rft.place=London&rft.pub=Methuen+%26+Co&rft.date=1907&rft.aulast=Bryant&rft.aufirst=Walter+W.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fahistoryastrono01bryagoog%23page%2Fn72%2Fmode%2F2up&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 44<br />Teks asli:<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r21477316"><blockquote class="templatequote"><p>"...[a]n admirable artifice which, by reducing to a few days the labour of many months, doubles the life of the astronomer, and spares him the errors and disgust inseparable from long calculations."</p></blockquote></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><cite id="CITEREFAbramowitzStegun1972" class="citation"><a href="/w/index.php?title=Milton_Abramowitz&action=edit&redlink=1" class="new" title="Milton Abramowitz (halaman belum tersedia)">Abramowitz, Milton</a>; <a href="/w/index.php?title=Irene_Stegun&action=edit&redlink=1" class="new" title="Irene Stegun (halaman belum tersedia)">Stegun, Irene A.</a>, ed. (1972), <i><a href="/w/index.php?title=Handbook_of_Mathematical_Functions_with_Formulas,_Graphs,_and_Mathematical_Tables&action=edit&redlink=1" class="new" title="Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (halaman belum tersedia)">Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</a></i> (edisi ke-10th), New York: <a href="/w/index.php?title=Dover_Publications&action=edit&redlink=1" class="new" title="Dover Publications (halaman belum tersedia)">Dover Publications</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-486-61272-0" title="Istimewa:Sumber buku/978-0-486-61272-0">978-0-486-61272-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+Mathematical+Functions+with+Formulas%2C+Graphs%2C+and+Mathematical+Tables&rft.place=New+York&rft.edition=10th&rft.pub=Dover+Publications&rft.date=1972&rft.isbn=978-0-486-61272-0&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 4.7., hlm. 89</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><cite id="CITEREFCampbell-Kelly2003" class="citation">Campbell-Kelly, Martin (2003), <i><a href="/w/index.php?title=The_History_of_Mathematical_Tables&action=edit&redlink=1" class="new" title="The History of Mathematical Tables (halaman belum tersedia)">The history of mathematical tables: from Sumer to spreadsheets</a></i>, Oxford scholarship online, <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-19-850841-0" title="Istimewa:Sumber buku/978-0-19-850841-0">978-0-19-850841-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+history+of+mathematical+tables%3A+from+Sumer+to+spreadsheets&rft.series=Oxford+scholarship+online&rft.pub=Oxford+University+Press&rft.date=2003&rft.isbn=978-0-19-850841-0&rft.aulast=Campbell-Kelly&rft.aufirst=Martin&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 2</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><cite id="CITEREFSpiegelMoyer2006" class="citation">Spiegel, Murray R.; Moyer, R.E. (2006), <i>Schaum's outline of college algebra</i>, Schaum's outline series, New York: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-07-145227-4" title="Istimewa:Sumber buku/978-0-07-145227-4">978-0-07-145227-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schaum%27s+outline+of+college+algebra&rft.place=New+York&rft.series=Schaum%27s+outline+series&rft.pub=McGraw-Hill&rft.date=2006&rft.isbn=978-0-07-145227-4&rft.aulast=Spiegel&rft.aufirst=Murray+R.&rft.au=Moyer%2C+R.E.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 264</span> </li> <li id="cite_note-ReferenceA2-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-ReferenceA2_35-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFMaor2009" class="citation">Maor, Eli (2009), <i>E: The Story of a Number</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, bagian 1, 13, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-691-14134-3" title="Istimewa:Sumber buku/978-0-691-14134-3">978-0-691-14134-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=E%3A+The+Story+of+a+Number&rft.pages=bagian+1%2C+13&rft.pub=Princeton+University+Press&rft.date=2009&rft.isbn=978-0-691-14134-3&rft.aulast=Maor&rft.aufirst=Eli&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><cite id="CITEREFDevlin2004" class="citation"><a href="/w/index.php?title=Keith_Devlin&action=edit&redlink=1" class="new" title="Keith Devlin (halaman belum tersedia)">Devlin, Keith</a> (2004), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uQHF7bcm4k4C"><i>Sets, functions, and logic: an introduction to abstract mathematics</i></a>, Chapman & Hall/CRC mathematics (edisi ke-3rd), Boca Raton, Fla: Chapman & Hall/CRC, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-1-58488-449-1" title="Istimewa:Sumber buku/978-1-58488-449-1">978-1-58488-449-1</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sets%2C+functions%2C+and+logic%3A+an+introduction+to+abstract+mathematics&rft.place=Boca+Raton%2C+Fla&rft.series=Chapman+%26+Hall%2FCRC+mathematics&rft.edition=3rd&rft.pub=Chapman+%26+Hall%2FCRC&rft.date=2004&rft.isbn=978-1-58488-449-1&rft.aulast=Devlin&rft.aufirst=Keith&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuQHF7bcm4k4C&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, atau lihat referensinya di <a href="/wiki/Fungsi_(matematika)#Referensi" title="Fungsi (matematika)">fungsi</a>.</span> </li> <li id="cite_note-LangIII.3-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-LangIII.3_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LangIII.3_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite id="CITEREFLang1997" class="citation"><a href="/w/index.php?title=Serge_Lang&action=edit&redlink=1" class="new" title="Serge Lang (halaman belum tersedia)">Lang, Serge</a> (1997), <i>Undergraduate analysis</i>, <a href="/w/index.php?title=Undergraduate_Texts_in_Mathematics&action=edit&redlink=1" class="new" title="Undergraduate Texts in Mathematics (halaman belum tersedia)">Undergraduate Texts in Mathematics</a> (edisi ke-2nd), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-2698-5">10.1007/978-1-4757-2698-5</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-387-94841-6" title="Istimewa:Sumber buku/978-0-387-94841-6">978-0-387-94841-6</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1476913">1476913</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Undergraduate+analysis&rft.place=Berlin%2C+New+York&rft.series=Undergraduate+Texts+in+Mathematics&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1997&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1476913&rft_id=info%3Adoi%2F10.1007%2F978-1-4757-2698-5&rft.isbn=978-0-387-94841-6&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian III.3</span> </li> <li id="cite_note-LangIV.2-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-LangIV.2_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LangIV.2_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Lang <a href="#CITEREFLang1997">1997</a>, bagian IV.2</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><cite id="CITEREFDieudonné1969" class="citation">Dieudonné, Jean (1969), <i>Foundations of Modern Analysis</i>, <b>1</b>, Academic Press, hlm. 84</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Foundations+of+Modern+Analysis&rft.pages=84&rft.pub=Academic+Press&rft.date=1969&rft.aulast=Dieudonn%C3%A9&rft.aufirst=Jean&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> item (4.3.1)</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><cite class="citation"><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=d/dx(Log(b,x))">"Calculation of <i>d/dx(Log(b,x))</i>"</a>, <i>Wolfram Alpha</i>, <a href="/w/index.php?title=Wolfram_Research&action=edit&redlink=1" class="new" title="Wolfram Research (halaman belum tersedia)">Wolfram Research</a><span class="reference-accessdate">, diakses tanggal <span class="nowrap">15 Maret</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Alpha&rft.atitle=Calculation+of+d%2Fdx%28Log%28b%2Cx%29%29&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2Fdx%28Log%28b%2Cx%29%29&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><cite id="CITEREFKline1998" class="citation"><a href="/w/index.php?title=Morris_Kline&action=edit&redlink=1" class="new" title="Morris Kline (halaman belum tersedia)">Kline, Morris</a> (1998), <i>Calculus: an intuitive and physical approach</i>, Dover books on mathematics, New York: <a href="/w/index.php?title=Dover_Publications&action=edit&redlink=1" class="new" title="Dover Publications (halaman belum tersedia)">Dover Publications</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-486-40453-0" title="Istimewa:Sumber buku/978-0-486-40453-0">978-0-486-40453-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+an+intuitive+and+physical+approach&rft.place=New+York&rft.series=Dover+books+on+mathematics&rft.pub=Dover+Publications&rft.date=1998&rft.isbn=978-0-486-40453-0&rft.aulast=Kline&rft.aufirst=Morris&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 386</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><cite class="citation"><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=Integrate(ln(x))">"Calculation of <i>Integrate(ln(x))</i>"</a>, <i>Wolfram Alpha</i>, Wolfram Research<span class="reference-accessdate">, diakses tanggal <span class="nowrap">15 Maret</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Alpha&rft.atitle=Calculation+of+Integrate%28ln%28x%29%29&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3DIntegrate%28ln%28x%29%29&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">Abramowitz & Stegun, eds. <a href="#CITEREFAbramowitzStegun1972">1972</a>, hlm. 69</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><cite id="CITEREFCourant1988" class="citation">Courant, Richard (1988), <i>Differential and integral calculus. Vol. I</i>, Wiley Classics Library, New York: <a href="/wiki/John_Wiley_%26_Sons" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-471-60842-4" title="Istimewa:Sumber buku/978-0-471-60842-4">978-0-471-60842-4</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1009558">1009558</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Differential+and+integral+calculus.+Vol.+I&rft.place=New+York&rft.series=Wiley+Classics+Library&rft.pub=John+Wiley+%26+Sons&rft.date=1988&rft.isbn=978-0-471-60842-4&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1009558&rft.aulast=Courant&rft.aufirst=Richard&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian III.6</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><cite id="CITEREFHavil2003" class="citation">Havil, Julian (2003), <i>Gamma: Exploring Euler's Constant</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-691-09983-5" title="Istimewa:Sumber buku/978-0-691-09983-5">978-0-691-09983-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gamma%3A+Exploring+Euler%27s+Constant&rft.pub=Princeton+University+Press&rft.date=2003&rft.isbn=978-0-691-09983-5&rft.aulast=Havil&rft.aufirst=Julian&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 11.5 dan 13.8</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><cite id="CITEREFNomizu1996" class="citation">Nomizu, Katsumi (1996), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uDDxdu0lrWAC&pg=PA21"><i>Selected papers on number theory and algebraic geometry</i></a>, <b>172</b>, Providence, RI: AMS Bookstore, hlm. 21, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-8218-0445-2" title="Istimewa:Sumber buku/978-0-8218-0445-2">978-0-8218-0445-2</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Selected+papers+on+number+theory+and+algebraic+geometry&rft.place=Providence%2C+RI&rft.pages=21&rft.pub=AMS+Bookstore&rft.date=1996&rft.isbn=978-0-8218-0445-2&rft.aulast=Nomizu&rft.aufirst=Katsumi&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuDDxdu0lrWAC%26pg%3DPA21&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><cite id="CITEREFBaker1975" class="citation">Baker, Alan (1975), <i>Transcendental number theory</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-20461-3" title="Istimewa:Sumber buku/978-0-521-20461-3">978-0-521-20461-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transcendental+number+theory&rft.pub=Cambridge+University+Press&rft.date=1975&rft.isbn=978-0-521-20461-3&rft.aulast=Baker&rft.aufirst=Alan&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 10</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><cite id="CITEREFMuller2006" class="citation">Muller, Jean-Michel (2006), <i>Elementary functions</i> (edisi ke-2nd), Boston, MA: Birkhäuser Boston, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-8176-4372-0" title="Istimewa:Sumber buku/978-0-8176-4372-0">978-0-8176-4372-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+functions&rft.place=Boston%2C+MA&rft.edition=2nd&rft.pub=Birkh%C3%A4user+Boston&rft.date=2006&rft.isbn=978-0-8176-4372-0&rft.aulast=Muller&rft.aufirst=Jean-Michel&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 4.2.2 (hlm. 72) dan 5.5.2 (hlm. 95)</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><cite id="CITEREFHartCheneyLawson1968" class="citation">Hart; Cheney; Lawson; et al. (1968), <i>Computer Approximations</i>, SIAM Series in Applied Mathematics, New York: John Wiley</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Approximations&rft.place=New+York&rft.series=SIAM+Series+in+Applied+Mathematics&rft.pub=John+Wiley&rft.date=1968&rft.au=Hart&rft.au=Cheney&rft.au=Lawson&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 6.3, hlm. 105–11</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><cite id="CITEREFZhangDelgado-FriasVassiliadis1994" class="citation">Zhang, M.; Delgado-Frias, J.G.; Vassiliadis, S. (1994), "Table driven Newton scheme for high precision logarithm generation", <i>IEE Proceedings - Computers and Digital Techniques</i>, <b>141</b> (5): 281–92, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fip-cdt%3A19941268">10.1049/ip-cdt:19941268</a>, <a href="/wiki/International_Standard_Serial_Number" class="mw-redirect" title="International Standard Serial Number">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1350-2387">1350-2387</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEE+Proceedings+-+Computers+and+Digital+Techniques&rft.atitle=Table+driven+Newton+scheme+for+high+precision+logarithm+generation&rft.volume=141&rft.issue=5&rft.pages=281-92&rft.date=1994&rft_id=info%3Adoi%2F10.1049%2Fip-cdt%3A19941268&rft.issn=1350-2387&rft.aulast=Zhang&rft.aufirst=M.&rft.au=Delgado-Frias%2C+J.G.&rft.au=Vassiliadis%2C+S.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 1 for an overview</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><cite id="CITEREFMeggitt1962" class="citation">Meggitt, J.E. (April 1962), <a rel="nofollow" class="external text" href="https://semanticscholar.org/paper/b3741168ba25f23b694cf8f9c80fb4f2aabce513">"Pseudo Division and Pseudo Multiplication Processes"</a>, <i>IBM Journal of Research and Development</i>, <b>6</b> (2): 210–26, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1147%2Frd.62.0210">10.1147/rd.62.0210</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IBM+Journal+of+Research+and+Development&rft.atitle=Pseudo+Division+and+Pseudo+Multiplication+Processes&rft.volume=6&rft.issue=2&rft.pages=210-26&rft.date=1962-04&rft_id=info%3Adoi%2F10.1147%2Frd.62.0210&rft.aulast=Meggitt&rft.aufirst=J.E.&rft_id=https%3A%2F%2Fsemanticscholar.org%2Fpaper%2Fb3741168ba25f23b694cf8f9c80fb4f2aabce513&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|s2cid=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><cite id="CITEREFKahan2001" class="citation"><a href="/w/index.php?title=William_Kahan&action=edit&redlink=1" class="new" title="William Kahan (halaman belum tersedia)">Kahan, W.</a> (20 May 2001), <i>Pseudo-Division Algorithms for Floating-Point Logarithms and Exponentials</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Pseudo-Division+Algorithms+for+Floating-Point+Logarithms+and+Exponentials&rft.date=2001-05-20&rft.aulast=Kahan&rft.aufirst=W.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-AbramowitzStegunp.68-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-AbramowitzStegunp.68_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AbramowitzStegunp.68_54-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Abramowitz & Stegun, eds. <a href="#CITEREFAbramowitzStegun1972">1972</a>, hlm. 68</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><cite id="CITEREFSasakiKanada1982" class="citation">Sasaki, T.; Kanada, Y. (1982), <a rel="nofollow" class="external text" href="http://ci.nii.ac.jp/naid/110002673332">"Practically fast multiple-precision evaluation of log(x)"</a>, <i>Journal of Information Processing</i>, <b>5</b> (4): 247–50<span class="reference-accessdate">, diakses tanggal <span class="nowrap">30 Maret</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Information+Processing&rft.atitle=Practically+fast+multiple-precision+evaluation+of+log%28x%29&rft.volume=5&rft.issue=4&rft.pages=247-50&rft.date=1982&rft.aulast=Sasaki&rft.aufirst=T.&rft.au=Kanada%2C+Y.&rft_id=http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F110002673332&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><cite id="CITEREFAhrendt1999" class="citation">Ahrendt, Timm (1999), "Fast Computations of the Exponential Function", <i>Stacs 99</i>, Lecture notes in computer science, <b>1564</b>, Berlin, New York: Springer, hlm. 302–12, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-49116-3_28">10.1007/3-540-49116-3_28</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-65691-3" title="Istimewa:Sumber buku/978-3-540-65691-3">978-3-540-65691-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fast+Computations+of+the+Exponential+Function&rft.btitle=Stacs+99&rft.place=Berlin%2C+New+York&rft.series=Lecture+notes+in+computer+science&rft.pages=302-12&rft.pub=Springer&rft.date=1999&rft_id=info%3Adoi%2F10.1007%2F3-540-49116-3_28&rft.isbn=978-3-540-65691-3&rft.aulast=Ahrendt&rft.aufirst=Timm&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><cite id="CITEREFHillis1989" class="citation"><a href="/w/index.php?title=Danny_Hillis&action=edit&redlink=1" class="new" title="Danny Hillis (halaman belum tersedia)">Hillis, Danny</a> (15 January 1989), "Richard Feynman and The Connection Machine", <i>Physics Today</i>, <b>42</b> (2): 78, <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1989PhT....42b..78H">1989PhT....42b..78H</a>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.881196">10.1063/1.881196</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=Richard+Feynman+and+The+Connection+Machine&rft.volume=42&rft.issue=2&rft.pages=78&rft.date=1989-01-15&rft_id=info%3Adoi%2F10.1063%2F1.881196&rft_id=info%3Abibcode%2F1989PhT....42b..78H&rft.aulast=Hillis&rft.aufirst=Danny&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Maor <a href="#CITEREFMaor2009">2009</a>, hlm. 135</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><cite id="CITEREFFrey2006" class="citation">Frey, Bruce (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HOPyiNb9UqwC&pg=PA275"><i>Statistics hacks</i></a>, Hacks Series, Sebastopol, CA: <a href="/w/index.php?title=O%27Reilly_Media&action=edit&redlink=1" class="new" title="O'Reilly Media (halaman belum tersedia)">O'Reilly</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-596-10164-0" title="Istimewa:Sumber buku/978-0-596-10164-0">978-0-596-10164-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistics+hacks&rft.place=Sebastopol%2C+CA&rft.series=Hacks+Series&rft.pub=O%27Reilly&rft.date=2006&rft.isbn=978-0-596-10164-0&rft.aulast=Frey&rft.aufirst=Bruce&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHOPyiNb9UqwC%26pg%3DPA275&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bab 6, bagian 64</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><cite id="CITEREFRicciardi1990" class="citation">Ricciardi, Luigi M. (1990), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Cw4NAQAAIAAJ"><i>Lectures in applied mathematics and informatics</i></a>, Manchester: Manchester University Press, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-7190-2671-3" title="Istimewa:Sumber buku/978-0-7190-2671-3">978-0-7190-2671-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+in+applied+mathematics+and+informatics&rft.place=Manchester&rft.pub=Manchester+University+Press&rft.date=1990&rft.isbn=978-0-7190-2671-3&rft.aulast=Ricciardi&rft.aufirst=Luigi+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCw4NAQAAIAAJ&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 21, bagian 1.3.2</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><cite id="CITEREFBakshi2009" class="citation">Bakshi, U.A. (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EV4AF0XJO9wC&pg=PAA5"><i>Telecommunication Engineering</i></a>, Pune: Technical Publications, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-81-8431-725-1" title="Istimewa:Sumber buku/978-81-8431-725-1">978-81-8431-725-1</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Telecommunication+Engineering&rft.place=Pune&rft.pub=Technical+Publications&rft.date=2009&rft.isbn=978-81-8431-725-1&rft.aulast=Bakshi&rft.aufirst=U.A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEV4AF0XJO9wC%26pg%3DPAA5&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Pranala_mati" title="Wikipedia:Pranala mati"><span title=" pranala nonaktif sejak Februari 2023">pranala nonaktif permanen</span></a></i>]</span></sup>, bagian 5.2</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><cite id="CITEREFMaling2007" class="citation">Maling, George C. (2007), "Noise", dalam Rossing, Thomas D., <i>Springer handbook of acoustics</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-387-30446-5" title="Istimewa:Sumber buku/978-0-387-30446-5">978-0-387-30446-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Noise&rft.btitle=Springer+handbook+of+acoustics&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=2007&rft.isbn=978-0-387-30446-5&rft.aulast=Maling&rft.aufirst=George+C.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 23.0.2</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><cite id="CITEREFTashev2009" class="citation">Tashev, Ivan Jelev (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=plll9smnbOIC&pg=PA48"><i>Sound Capture and Processing: Practical Approaches</i></a>, New York: <a href="/wiki/John_Wiley_%26_Sons" title="John Wiley & Sons">John Wiley & Sons</a>, hlm. 98, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-470-31983-3" title="Istimewa:Sumber buku/978-0-470-31983-3">978-0-470-31983-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sound+Capture+and+Processing%3A+Practical+Approaches&rft.place=New+York&rft.pages=98&rft.pub=John+Wiley+%26+Sons&rft.date=2009&rft.isbn=978-0-470-31983-3&rft.aulast=Tashev&rft.aufirst=Ivan+Jelev&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dplll9smnbOIC%26pg%3DPA48&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><cite id="CITEREFChui1997" class="citation">Chui, C.K. (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=N06Gu433PawC&pg=PA180"><i>Wavelets: a mathematical tool for signal processing</i></a>, SIAM monographs on mathematical modeling and computation, Philadelphia: <a href="/w/index.php?title=Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1" class="new" title="Society for Industrial and Applied Mathematics (halaman belum tersedia)">Society for Industrial and Applied Mathematics</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-89871-384-8" title="Istimewa:Sumber buku/978-0-89871-384-8">978-0-89871-384-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Wavelets%3A+a+mathematical+tool+for+signal+processing&rft.place=Philadelphia&rft.series=SIAM+monographs+on+mathematical+modeling+and+computation&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=1997&rft.isbn=978-0-89871-384-8&rft.aulast=Chui&rft.aufirst=C.K.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DN06Gu433PawC%26pg%3DPA180&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><cite id="CITEREFCrauderEvansNoell2008" class="citation">Crauder, Bruce; Evans, Benny; Noell, Alan (2008), <i>Functions and Change: A Modeling Approach to College Algebra</i> (edisi ke-4th), Boston: Cengage Learning, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-547-15669-9" title="Istimewa:Sumber buku/978-0-547-15669-9">978-0-547-15669-9</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functions+and+Change%3A+A+Modeling+Approach+to+College+Algebra&rft.place=Boston&rft.edition=4th&rft.pub=Cengage+Learning&rft.date=2008&rft.isbn=978-0-547-15669-9&rft.aulast=Crauder&rft.aufirst=Bruce&rft.au=Evans%2C+Benny&rft.au=Noell%2C+Alan&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 4.4.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><cite id="CITEREFBradt2004" class="citation">Bradt, Hale (2004), <i>Astronomy methods: a physical approach to astronomical observations</i>, Cambridge Planetary Science, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-53551-9" title="Istimewa:Sumber buku/978-0-521-53551-9">978-0-521-53551-9</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Astronomy+methods%3A+a+physical+approach+to+astronomical+observations&rft.series=Cambridge+Planetary+Science&rft.pub=Cambridge+University+Press&rft.date=2004&rft.isbn=978-0-521-53551-9&rft.aulast=Bradt&rft.aufirst=Hale&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 8.3, hlm. 231</span> </li> <li id="cite_note-Jens-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jens_68-0">^</a></b></span> <span class="reference-text"><cite class="citation journal">Nørby, Jens (2000). "The origin and the meaning of the little p in pH". <i>Trends in Biochemical Sciences</i>. <b>25</b> (1): 36–37. <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0968-0004%2899%2901517-0">10.1016/S0968-0004(99)01517-0</a>. <a href="/wiki/PubMed_Identifier" class="mw-redirect" title="PubMed Identifier">PMID</a> <a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pubmed/10637613">10637613</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Trends+in+Biochemical+Sciences&rft.atitle=The+origin+and+the+meaning+of+the+little+p+in+pH&rft.volume=25&rft.issue=1&rft.pages=36-37&rft.date=2000&rft_id=info%3Adoi%2F10.1016%2FS0968-0004%2899%2901517-0&rft_id=info%3Apmid%2F10637613&rft.au=N%C3%B8rby%2C+Jens&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><cite id="CITEREFIUPAC1997" class="citation"><a href="/wiki/IUPAC" class="mw-redirect" title="IUPAC">IUPAC</a> (1997), A. D. McNaught, A. Wilkinson, ed., <a rel="nofollow" class="external text" href="http://goldbook.iupac.org/P04524.html"><i>Compendium of Chemical Terminology ("Gold Book")</i></a> (edisi ke-2nd), Oxford: Blackwell Scientific Publications, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<span class="plainlinks"><a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook">10.1351/goldbook</a> <span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-9678550-9-7" title="Istimewa:Sumber buku/978-0-9678550-9-7">978-0-9678550-9-7</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Compendium+of+Chemical+Terminology+%28%22Gold+Book%22%29&rft.place=Oxford&rft.edition=2nd&rft.pub=Blackwell+Scientific+Publications&rft.date=1997&rft_id=info%3Adoi%2F10.1351%2Fgoldbook&rft.isbn=978-0-9678550-9-7&rft.au=IUPAC&rft_id=http%3A%2F%2Fgoldbook.iupac.org%2FP04524.html&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><cite id="CITEREFBird2001" class="citation">Bird, J.O. (2001), <i>Newnes engineering mathematics pocket book</i> (edisi ke-3rd), Oxford: Newnes, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-7506-4992-6" title="Istimewa:Sumber buku/978-0-7506-4992-6">978-0-7506-4992-6</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Newnes+engineering+mathematics+pocket+book&rft.place=Oxford&rft.edition=3rd&rft.pub=Newnes&rft.date=2001&rft.isbn=978-0-7506-4992-6&rft.aulast=Bird&rft.aufirst=J.O.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 34</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><cite id="CITEREFGoldstein2009" class="citation">Goldstein, E. Bruce (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Y4TOEN4f5ZMC"><i>Encyclopedia of Perception</i></a>, Encyclopedia of Perception, Thousand Oaks, CA: Sage, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-1-4129-4081-8" title="Istimewa:Sumber buku/978-1-4129-4081-8">978-1-4129-4081-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+Perception&rft.place=Thousand+Oaks%2C+CA&rft.series=Encyclopedia+of+Perception&rft.pub=Sage&rft.date=2009&rft.isbn=978-1-4129-4081-8&rft.aulast=Goldstein&rft.aufirst=E.+Bruce&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DY4TOEN4f5ZMC&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 355–56</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><cite id="CITEREFMatthews2000" class="citation">Matthews, Gerald (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0XrpulSM1HUC"><i>Human Performance: Cognition, Stress, and Individual Differences</i></a>, Hove: Psychology Press, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-415-04406-6" title="Istimewa:Sumber buku/978-0-415-04406-6">978-0-415-04406-6</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Human+Performance%3A+Cognition%2C+Stress%2C+and+Individual+Differences&rft.place=Hove&rft.pub=Psychology+Press&rft.date=2000&rft.isbn=978-0-415-04406-6&rft.aulast=Matthews&rft.aufirst=Gerald&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0XrpulSM1HUC&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 48</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><cite id="CITEREFWelford1968" class="citation">Welford, A.T. (1968), <i>Fundamentals of skill</i>, London: Methuen, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-416-03000-6" title="Istimewa:Sumber buku/978-0-416-03000-6">978-0-416-03000-6</a>, <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/219156">219156</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+skill&rft.place=London&rft.pub=Methuen&rft.date=1968&rft_id=info%3Aoclcnum%2F219156&rft.isbn=978-0-416-03000-6&rft.aulast=Welford&rft.aufirst=A.T.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 61</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><cite id="CITEREFPaul_M._Fitts1954" class="citation">Paul M. Fitts (June 1954), <a rel="nofollow" class="external text" href="https://semanticscholar.org/paper/3087289229146fc344560478aac366e4977749c0">"The information capacity of the human motor system in controlling the amplitude of movement"</a>, <i>Journal of Experimental Psychology</i>, <b>47</b> (6): 381–91, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fh0055392">10.1037/h0055392</a>, <a href="/wiki/PubMed_Identifier" class="mw-redirect" title="PubMed Identifier">PMID</a> <a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pubmed/13174710">13174710</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+Psychology&rft.atitle=The+information+capacity+of+the+human+motor+system+in+controlling+the+amplitude+of+movement&rft.volume=47&rft.issue=6&rft.pages=381-91&rft.date=1954-06&rft_id=info%3Adoi%2F10.1037%2Fh0055392&rft_id=info%3Apmid%2F13174710&rft.au=Paul+M.+Fitts&rft_id=https%3A%2F%2Fsemanticscholar.org%2Fpaper%2F3087289229146fc344560478aac366e4977749c0&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|s2cid=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span>, reprinted in <cite id="CITEREFPaul_M._Fitts1992" class="citation">Paul M. Fitts (1992), <a rel="nofollow" class="external text" href="http://sing.stanford.edu/cs303-sp10/papers/1954-Fitts.pdf">"The information capacity of the human motor system in controlling the amplitude of movement"</a> <span style="font-size:85%;">(PDF)</span>, <i>Journal of Experimental Psychology: General</i>, <b>121</b> (3): 262–69, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2F0096-3445.121.3.262">10.1037/0096-3445.121.3.262</a>, <a href="/wiki/PubMed_Identifier" class="mw-redirect" title="PubMed Identifier">PMID</a> <a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pubmed/1402698">1402698</a><span class="reference-accessdate">, diakses tanggal <span class="nowrap">30 March</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+Psychology%3A+General&rft.atitle=The+information+capacity+of+the+human+motor+system+in+controlling+the+amplitude+of+movement&rft.volume=121&rft.issue=3&rft.pages=262-69&rft.date=1992&rft_id=info%3Adoi%2F10.1037%2F0096-3445.121.3.262&rft_id=info%3Apmid%2F1402698&rft.au=Paul+M.+Fitts&rft_id=http%3A%2F%2Fsing.stanford.edu%2Fcs303-sp10%2Fpapers%2F1954-Fitts.pdf&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><cite id="CITEREFBanerjee1994" class="citation">Banerjee, J.C. (1994), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Pwl5U2q5hfcC&pg=PA306"><i>Encyclopaedic dictionary of psychological terms</i></a>, New Delhi: M.D. Publications, hlm. 304, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-81-85880-28-0" title="Istimewa:Sumber buku/978-81-85880-28-0">978-81-85880-28-0</a>, <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/33860167">33860167</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopaedic+dictionary+of+psychological+terms&rft.place=New+Delhi&rft.pages=304&rft.pub=M.D.+Publications&rft.date=1994&rft_id=info%3Aoclcnum%2F33860167&rft.isbn=978-81-85880-28-0&rft.aulast=Banerjee&rft.aufirst=J.C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPwl5U2q5hfcC%26pg%3DPA306&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><cite id="CITEREFNadel2005" class="citation"><a href="/w/index.php?title=Lynn_Nadel&action=edit&redlink=1" class="new" title="Lynn Nadel (halaman belum tersedia)">Nadel, Lynn</a> (2005), <i>Encyclopedia of cognitive science</i>, New York: <a href="/wiki/John_Wiley_%26_Sons" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-470-01619-0" title="Istimewa:Sumber buku/978-0-470-01619-0">978-0-470-01619-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+cognitive+science&rft.place=New+York&rft.pub=John+Wiley+%26+Sons&rft.date=2005&rft.isbn=978-0-470-01619-0&rft.aulast=Nadel&rft.aufirst=Lynn&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, lemmas <i>Psychophysics</i> and <i>Perception: Overview</i></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><cite id="CITEREFSieglerOpfer2003" class="citation">Siegler, Robert S.; Opfer, John E. (2003), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110517002232/http://www.psy.cmu.edu/~siegler/sieglerbooth-cd04.pdf">"The Development of Numerical Estimation. Evidence for Multiple Representations of Numerical Quantity"</a> <span style="font-size:85%;">(PDF)</span>, <i>Psychological Science</i>, <b>14</b> (3): 237–43, <a href="/wiki/CiteSeerX" title="CiteSeerX">CiteSeerX</a> <span class="plainlinks"><a rel="nofollow" class="external text" href="//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.727.3696">10.1.1.727.3696</a> <span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2F1467-9280.02438">10.1111/1467-9280.02438</a>, <a href="/wiki/PubMed_Identifier" class="mw-redirect" title="PubMed Identifier">PMID</a> <a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pubmed/12741747">12741747</a>, diarsipkan dari <a rel="nofollow" class="external text" href="http://www.psy.cmu.edu/~siegler/sieglerbooth-cd04.pdf">versi asli</a> <span style="font-size:85%;">(PDF)</span> tanggal 17 May 2011<span class="reference-accessdate">, diakses tanggal <span class="nowrap">7 January</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Psychological+Science&rft.atitle=The+Development+of+Numerical+Estimation.+Evidence+for+Multiple+Representations+of+Numerical+Quantity&rft.volume=14&rft.issue=3&rft.pages=237-43&rft.date=2003&rft_id=%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.727.3696&rft_id=info%3Apmid%2F12741747&rft_id=info%3Adoi%2F10.1111%2F1467-9280.02438&rft.aulast=Siegler&rft.aufirst=Robert+S.&rft.au=Opfer%2C+John+E.&rft_id=http%3A%2F%2Fwww.psy.cmu.edu%2F~siegler%2Fsieglerbooth-cd04.pdf&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>); </span><span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|s2cid=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><cite id="CITEREFDehaeneIzardSpelkePica2008" class="citation">Dehaene, Stanislas; Izard, Véronique; Spelke, Elizabeth; Pica, Pierre (2008), "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures", <i>Science</i>, <b>320</b> (5880): 1217–20, <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2008Sci...320.1217D">2008Sci...320.1217D</a>, <a href="/wiki/CiteSeerX" title="CiteSeerX">CiteSeerX</a> <span class="plainlinks"><a rel="nofollow" class="external text" href="//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.362.2390">10.1.1.362.2390</a> <span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1156540">10.1126/science.1156540</a>, <a href="/wiki/PubMed_Central" title="PubMed Central">PMC</a> <span class="plainlinks"><a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pmc/articles/PMC2610411">2610411</a> <span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>, <a href="/wiki/PubMed_Identifier" class="mw-redirect" title="PubMed Identifier">PMID</a> <a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pubmed/18511690">18511690</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Log+or+Linear%3F+Distinct+Intuitions+of+the+Number+Scale+in+Western+and+Amazonian+Indigene+Cultures&rft.volume=320&rft.issue=5880&rft.pages=1217-20&rft.date=2008&rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2610411&rft_id=info%3Abibcode%2F2008Sci...320.1217D&rft_id=%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.362.2390&rft_id=info%3Apmid%2F18511690&rft_id=info%3Adoi%2F10.1126%2Fscience.1156540&rft.aulast=Dehaene&rft.aufirst=Stanislas&rft.au=Izard%2C+V%C3%A9ronique&rft.au=Spelke%2C+Elizabeth&rft.au=Pica%2C+Pierre&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><cite id="CITEREFBreiman1992" class="citation">Breiman, Leo (1992), <i>Probability</i>, Classics in applied mathematics, Philadelphia: <a href="/w/index.php?title=Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1" class="new" title="Society for Industrial and Applied Mathematics (halaman belum tersedia)">Society for Industrial and Applied Mathematics</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-89871-296-4" title="Istimewa:Sumber buku/978-0-89871-296-4">978-0-89871-296-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Probability&rft.place=Philadelphia&rft.series=Classics+in+applied+mathematics&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=1992&rft.isbn=978-0-89871-296-4&rft.aulast=Breiman&rft.aufirst=Leo&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 12.9</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><cite id="CITEREFAitchisonBrown1969" class="citation">Aitchison, J.; Brown, J.A.C. (1969), <i>The lognormal distribution</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-04011-2" title="Istimewa:Sumber buku/978-0-521-04011-2">978-0-521-04011-2</a>, <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/301100935">301100935</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+lognormal+distribution&rft.pub=Cambridge+University+Press&rft.date=1969&rft_id=info%3Aoclcnum%2F301100935&rft.isbn=978-0-521-04011-2&rft.aulast=Aitchison&rft.aufirst=J.&rft.au=Brown%2C+J.A.C.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><cite id="CITEREFJean_Mathieu_and_Julian_Scott2000" class="citation">Jean Mathieu and Julian Scott (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nVA53NEAx64C&pg=PA50"><i>An introduction to turbulent flow</i></a>, Cambridge University Press, hlm. 50, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-77538-0" title="Istimewa:Sumber buku/978-0-521-77538-0">978-0-521-77538-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+introduction+to+turbulent+flow&rft.pages=50&rft.pub=Cambridge+University+Press&rft.date=2000&rft.isbn=978-0-521-77538-0&rft.au=Jean+Mathieu+and+Julian+Scott&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnVA53NEAx64C%26pg%3DPA50&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><cite id="CITEREFRoseSmith2002" class="citation">Rose, Colin; Smith, Murray D. (2002), <i>Mathematical statistics with Mathematica</i>, Springer texts in statistics, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-387-95234-5" title="Istimewa:Sumber buku/978-0-387-95234-5">978-0-387-95234-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+statistics+with+Mathematica&rft.place=Berlin%2C+New+York&rft.series=Springer+texts+in+statistics&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=978-0-387-95234-5&rft.aulast=Rose&rft.aufirst=Colin&rft.au=Smith%2C+Murray+D.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 11.3</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><cite id="CITEREFTabachnikov2005" class="citation"><a href="/w/index.php?title=Sergei_Tabachnikov&action=edit&redlink=1" class="new" title="Sergei Tabachnikov (halaman belum tersedia)">Tabachnikov, Serge</a> (2005), <i>Geometry and Billiards</i>, Providence, RI: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, hlm. 36–40, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-8218-3919-5" title="Istimewa:Sumber buku/978-0-8218-3919-5">978-0-8218-3919-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry+and+Billiards&rft.place=Providence%2C+RI&rft.pages=36-40&rft.pub=American+Mathematical+Society&rft.date=2005&rft.isbn=978-0-8218-3919-5&rft.aulast=Tabachnikov&rft.aufirst=Serge&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 2.1</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><cite id="CITEREFDurtschiHillisonPacini2004" class="citation">Durtschi, Cindy; Hillison, William; Pacini, Carl (2004), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170829062510/http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf">"The Effective Use of Benford's Law in Detecting Fraud in Accounting Data"</a> <span style="font-size:85%;">(PDF)</span>, <i>Journal of Forensic Accounting</i>, <b>V</b>: 17–34, diarsipkan dari <a rel="nofollow" class="external text" href="http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf">versi asli</a> <span style="font-size:85%;">(PDF)</span> tanggal 29 Agustus 2017<span class="reference-accessdate">, diakses tanggal <span class="nowrap">28 Mei</span> 2018</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Forensic+Accounting&rft.atitle=The+Effective+Use+of+Benford%27s+Law+in+Detecting+Fraud+in+Accounting+Data&rft.volume=V&rft.pages=17-34&rft.date=2004&rft.aulast=Durtschi&rft.aufirst=Cindy&rft.au=Hillison%2C+William&rft.au=Pacini%2C+Carl&rft_id=http%3A%2F%2Ffaculty.usfsp.edu%2Fgkearns%2FArticles_Fraud%2FBenford%2520Analysis%2520Article.pdf&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Wegener-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wegener_85-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFWegener2005" class="citation">Wegener, Ingo (2005), <i>Complexity theory: exploring the limits of efficient algorithms</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-21045-0" title="Istimewa:Sumber buku/978-3-540-21045-0">978-3-540-21045-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complexity+theory%3A+exploring+the+limits+of+efficient+algorithms&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=978-3-540-21045-0&rft.aulast=Wegener&rft.aufirst=Ingo&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 1–2</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><cite id="CITEREFHarelFeldman2004" class="citation">Harel, David; Feldman, Yishai A. (2004), <i>Algorithmics: the spirit of computing</i>, New York: <a href="/w/index.php?title=Addison-Wesley&action=edit&redlink=1" class="new" title="Addison-Wesley (halaman belum tersedia)">Addison-Wesley</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-321-11784-7" title="Istimewa:Sumber buku/978-0-321-11784-7">978-0-321-11784-7</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algorithmics%3A+the+spirit+of+computing&rft.place=New+York&rft.pub=Addison-Wesley&rft.date=2004&rft.isbn=978-0-321-11784-7&rft.aulast=Harel&rft.aufirst=David&rft.au=Feldman%2C+Yishai+A.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 143</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><cite id="CITEREFKnuth1998" class="citation"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1998), <i><a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming">The Art of Computer Programming</a></i>, Reading, MA: Addison-Wesley, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-201-89685-5" title="Istimewa:Sumber buku/978-0-201-89685-5">978-0-201-89685-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Art+of+Computer+Programming&rft.place=Reading%2C+MA&rft.pub=Addison-Wesley&rft.date=1998&rft.isbn=978-0-201-89685-5&rft.aulast=Knuth&rft.aufirst=Donald&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 6.2.1, hlm. 409–26</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text">Donald Knuth <a href="#CITEREFKnuth1998">1998</a>, bagian 5.2.4, hlm. 158–68</span> </li> <li id="cite_note-Wegener20-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wegener20_89-0">^</a></b></span> <span class="reference-text"><cite id="CITEREFWegener2005" class="citation">Wegener, Ingo (2005), <i>Complexity theory: exploring the limits of efficient algorithms</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, hlm. 20, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-21045-0" title="Istimewa:Sumber buku/978-3-540-21045-0">978-3-540-21045-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complexity+theory%3A+exploring+the+limits+of+efficient+algorithms&rft.place=Berlin%2C+New+York&rft.pages=20&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=978-3-540-21045-0&rft.aulast=Wegener&rft.aufirst=Ingo&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><cite id="CITEREFMohrSchopfer1995" class="citation">Mohr, Hans; Schopfer, Peter (1995), <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/plantphysiology0000mohr"><i>Plant physiology</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>, Berlin, New York: Springer-Verlag, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-58016-4" title="Istimewa:Sumber buku/978-3-540-58016-4">978-3-540-58016-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Plant+physiology&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=1995&rft.isbn=978-3-540-58016-4&rft.aulast=Mohr&rft.aufirst=Hans&rft.au=Schopfer%2C+Peter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fplantphysiology0000mohr&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bab 19, hlm. 298</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><cite id="CITEREFEco1989" class="citation"><a href="/wiki/Umberto_Eco" title="Umberto Eco">Eco, Umberto</a> (1989), <i>The open work</i>, <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-674-63976-8" title="Istimewa:Sumber buku/978-0-674-63976-8">978-0-674-63976-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+open+work&rft.pub=Harvard+University+Press&rft.date=1989&rft.isbn=978-0-674-63976-8&rft.aulast=Eco&rft.aufirst=Umberto&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian III.I</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><cite id="CITEREFSprott2010" class="citation">Sprott, Julien Clinton (2010), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=buILBDre9S4C">"Elegant Chaos: Algebraically Simple Chaotic Flows"</a>, <i>Elegant Chaos: Algebraically Simple Chaotic Flows. Edited by Sprott Julien Clinton. Published by World Scientific Publishing Co. Pte. Ltd</i>, New Jersey: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>, <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2010ecas.book.....S">2010ecas.book.....S</a>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F7183">10.1142/7183</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-981-283-881-0" title="Istimewa:Sumber buku/978-981-283-881-0">978-981-283-881-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Elegant+Chaos%3A+Algebraically+Simple+Chaotic+Flows.+Edited+by+Sprott+Julien+Clinton.+Published+by+World+Scientific+Publishing+Co.+Pte.+Ltd&rft.atitle=Elegant+Chaos%3A+Algebraically+Simple+Chaotic+Flows&rft.date=2010&rft_id=info%3Adoi%2F10.1142%2F7183&rft_id=info%3Abibcode%2F2010ecas.book.....S&rft.isbn=978-981-283-881-0&rft.aulast=Sprott&rft.aufirst=Julien+Clinton&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbuILBDre9S4C&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 1.9</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><cite id="CITEREFHelmberg2007" class="citation">Helmberg, Gilbert (2007), <i>Getting acquainted with fractals</i>, De Gruyter Textbook, Berlin, New York: Walter de Gruyter, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-11-019092-2" title="Istimewa:Sumber buku/978-3-11-019092-2">978-3-11-019092-2</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Getting+acquainted+with+fractals&rft.place=Berlin%2C+New+York&rft.series=De+Gruyter+Textbook&rft.pub=Walter+de+Gruyter&rft.date=2007&rft.isbn=978-3-11-019092-2&rft.aulast=Helmberg&rft.aufirst=Gilbert&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><cite id="CITEREFWright2009" class="citation">Wright, David (2009), <i>Mathematics and music</i>, Providence, RI: AMS Bookstore, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-8218-4873-9" title="Istimewa:Sumber buku/978-0-8218-4873-9">978-0-8218-4873-9</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+and+music&rft.place=Providence%2C+RI&rft.pub=AMS+Bookstore&rft.date=2009&rft.isbn=978-0-8218-4873-9&rft.aulast=Wright&rft.aufirst=David&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bab 5</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><cite id="CITEREFBatemanDiamond2004" class="citation">Bateman, P.T.; Diamond, Harold G. (2004), <i>Analytic number theory: an introductory course</i>, New Jersey: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-981-256-080-3" title="Istimewa:Sumber buku/978-981-256-080-3">978-981-256-080-3</a>, <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/492669517">492669517</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analytic+number+theory%3A+an+introductory+course&rft.place=New+Jersey&rft.pub=World+Scientific&rft.date=2004&rft_id=info%3Aoclcnum%2F492669517&rft.isbn=978-981-256-080-3&rft.aulast=Bateman&rft.aufirst=P.T.&rft.au=Diamond%2C+Harold+G.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, teorema 4.1</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text">P. T. Bateman & Diamond <a href="#CITEREFBatemanDiamond2004">2004</a>, Teoerma 8.15</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><cite id="CITEREFSlomson1991" class="citation">Slomson, Alan B. (1991), <i>An introduction to combinatorics</i>, London: <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-412-35370-3" title="Istimewa:Sumber buku/978-0-412-35370-3">978-0-412-35370-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+introduction+to+combinatorics&rft.place=London&rft.pub=CRC+Press&rft.date=1991&rft.isbn=978-0-412-35370-3&rft.aulast=Slomson&rft.aufirst=Alan+B.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bab 4</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><cite id="CITEREFGanguly2005" class="citation">Ganguly, S. (2005), <i>Elements of Complex Analysis</i>, Kolkata: Academic Publishers, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-81-87504-86-3" title="Istimewa:Sumber buku/978-81-87504-86-3">978-81-87504-86-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+Complex+Analysis&rft.place=Kolkata&rft.pub=Academic+Publishers&rft.date=2005&rft.isbn=978-81-87504-86-3&rft.aulast=Ganguly&rft.aufirst=S.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, Definisi 1.6.3</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><cite id="CITEREFNevanlinnaPaatero2007" class="citation"><a href="/w/index.php?title=Rolf_Nevanlinna&action=edit&redlink=1" class="new" title="Rolf Nevanlinna (halaman belum tersedia)">Nevanlinna, Rolf Herman</a>; Paatero, Veikko (2007), "Introduction to complex analysis", <i>London: Hilger</i>, Providence, RI: AMS Bookstore, <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1974aitc.book.....W">1974aitc.book.....W</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-8218-4399-4" title="Istimewa:Sumber buku/978-0-8218-4399-4">978-0-8218-4399-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=London%3A+Hilger&rft.atitle=Introduction+to+complex+analysis&rft.date=2007&rft_id=info%3Abibcode%2F1974aitc.book.....W&rft.isbn=978-0-8218-4399-4&rft.aulast=Nevanlinna&rft.aufirst=Rolf+Herman&rft.au=Paatero%2C+Veikko&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 5.9</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><cite id="CITEREFMooreHadlock1991" class="citation">Moore, Theral Orvis; Hadlock, Edwin H. (1991), <i>Complex analysis</i>, Singapore: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-981-02-0246-0" title="Istimewa:Sumber buku/978-981-02-0246-0">978-981-02-0246-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complex+analysis&rft.place=Singapore&rft.pub=World+Scientific&rft.date=1991&rft.isbn=978-981-02-0246-0&rft.aulast=Moore&rft.aufirst=Theral+Orvis&rft.au=Hadlock%2C+Edwin+H.&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 1.2</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><cite id="CITEREFWilde2006" class="citation">Wilde, Ivan Francis (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vrWES2W6vG0C&q=complex+logarithm&pg=PA97"><i>Lecture notes on complex analysis</i></a>, London: Imperial College Press, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-1-86094-642-4" title="Istimewa:Sumber buku/978-1-86094-642-4">978-1-86094-642-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lecture+notes+on+complex+analysis&rft.place=London&rft.pub=Imperial+College+Press&rft.date=2006&rft.isbn=978-1-86094-642-4&rft.aulast=Wilde&rft.aufirst=Ivan+Francis&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DvrWES2W6vG0C%26q%3Dcomplex%2Blogarithm%26pg%3DPA97&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, teorema 6.1.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><cite id="CITEREFHigham2008" class="citation"><a href="/w/index.php?title=Nicholas_Higham&action=edit&redlink=1" class="new" title="Nicholas Higham (halaman belum tersedia)">Higham, Nicholas</a> (2008), <i>Functions of Matrices. Theory and Computation</i>, Philadelphia, PA: <a href="/w/index.php?title=Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1" class="new" title="Society for Industrial and Applied Mathematics (halaman belum tersedia)">SIAM</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-89871-646-7" title="Istimewa:Sumber buku/978-0-89871-646-7">978-0-89871-646-7</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functions+of+Matrices.+Theory+and+Computation&rft.place=Philadelphia%2C+PA&rft.pub=SIAM&rft.date=2008&rft.isbn=978-0-89871-646-7&rft.aulast=Higham&rft.aufirst=Nicholas&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bab 11.</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><cite id="CITEREFNeukirch1999" class="citation book"><a href="/wiki/J%C3%BCrgen_Neukirch" title="Jürgen Neukirch">Neukirch, Jürgen</a> (1999), <i>Algebraische Zahlentheorie</i>, <span lang="de">Grundlehren der mathematischen Wissenschaften</span>, <b>322</b>, Berlin: <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-65399-8" title="Istimewa:Sumber buku/978-3-540-65399-8">978-3-540-65399-8</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1697859">1697859</a>, <a href="/w/index.php?title=Zentralblatt_MATH&action=edit&redlink=1" class="new" title="Zentralblatt MATH (halaman belum tersedia)">Zbl</a> <a rel="nofollow" class="external text" href="//zbmath.org/?format=complete&q=an:0956.11021">0956.11021</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraische+Zahlentheorie&rft.place=Berlin&rft.series=%3Cspan+lang%3D%22de%22+xml%3Alang%3D%22de%22+%3EGrundlehren+der+mathematischen+Wissenschaften%3C%2Fspan%3EKategori%3AArtikel+mengandung+aksara+Jerman&rft.pub=Springer-Verlag&rft.date=1999&rft_id=%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0956.11021&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1697859&rft.isbn=978-3-540-65399-8&rft.aulast=Neukirch&rft.aufirst=J%C3%BCrgen&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian II.5.</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><cite id="CITEREFHancockMartinSabin2009" class="citation">Hancock, Edwin R.; Martin, Ralph R.; Sabin, Malcolm A. (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0cqCy9x7V_QC&pg=PA379"><i>Mathematics of Surfaces XIII: 13th IMA International Conference York, UK, September 7–9, 2009 Proceedings</i></a>, Springer, hlm. 379, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-642-03595-1" title="Istimewa:Sumber buku/978-3-642-03595-1">978-3-642-03595-1</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+of+Surfaces+XIII%3A+13th+IMA+International+Conference+York%2C+UK%2C+September+7%E2%80%939%2C+2009+Proceedings&rft.pages=379&rft.pub=Springer&rft.date=2009&rft.isbn=978-3-642-03595-1&rft.aulast=Hancock&rft.aufirst=Edwin+R.&rft.au=Martin%2C+Ralph+R.&rft.au=Sabin%2C+Malcolm+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0cqCy9x7V_QC%26pg%3DPA379&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><cite id="CITEREFStinson2006" class="citation">Stinson, Douglas Robert (2006), <i>Cryptography: Theory and Practice</i> (edisi ke-3rd), London: <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-1-58488-508-5" title="Istimewa:Sumber buku/978-1-58488-508-5">978-1-58488-508-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Cryptography%3A+Theory+and+Practice&rft.place=London&rft.edition=3rd&rft.pub=CRC+Press&rft.date=2006&rft.isbn=978-1-58488-508-5&rft.aulast=Stinson&rft.aufirst=Douglas+Robert&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><cite id="CITEREFLidlNiederreiter1997" class="citation">Lidl, Rudolf; <a href="/w/index.php?title=Harald_Niederreiter&action=edit&redlink=1" class="new" title="Harald Niederreiter (halaman belum tersedia)">Niederreiter, Harald</a> (1997), <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/finitefields0000lidl_a8r3"><i>Finite fields</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>, Cambridge University Press, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-39231-0" title="Istimewa:Sumber buku/978-0-521-39231-0">978-0-521-39231-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite+fields&rft.pub=Cambridge+University+Press&rft.date=1997&rft.isbn=978-0-521-39231-0&rft.aulast=Lidl&rft.aufirst=Rudolf&rft.au=Niederreiter%2C+Harald&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffinitefields0000lidl_a8r3&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><cite id="CITEREFCorlessGonnetHareJeffrey1996" class="citation">Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1996), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101214110615/http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf">"On the Lambert <i>W</i> function"</a> <span style="font-size:85%;">(PDF)</span>, <i>Advances in Computational Mathematics</i>, <b>5</b>: 329–59, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02124750">10.1007/BF02124750</a>, <a href="/wiki/International_Standard_Serial_Number" class="mw-redirect" title="International Standard Serial Number">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1019-7168">1019-7168</a>, diarsipkan dari <a rel="nofollow" class="external text" href="http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf">versi asli</a> <span style="font-size:85%;">(PDF)</span> tanggal 14 Desember 2010<span class="reference-accessdate">, diakses tanggal <span class="nowrap">13 Februari</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Computational+Mathematics&rft.atitle=On+the+Lambert+W+function&rft.volume=5&rft.pages=329-59&rft.date=1996&rft_id=info%3Adoi%2F10.1007%2FBF02124750&rft.issn=1019-7168&rft.aulast=Corless&rft.aufirst=R.&rft.au=Gonnet%2C+G.&rft.au=Hare%2C+D.&rft.au=Jeffrey%2C+D.&rft.au=Knuth%2C+Donald&rft_id=http%3A%2F%2Fwww.apmaths.uwo.ca%2F~djeffrey%2FOffprints%2FW-adv-cm.pdf&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>); </span><span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|s2cid=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><cite id="CITEREFCherkasskyCherkasskyMulier2007" class="citation">Cherkassky, Vladimir; Cherkassky, Vladimir S.; Mulier, Filip (2007), <i>Learning from data: concepts, theory, and methods</i>, Wiley series on adaptive and learning systems for signal processing, communications, and control, New York: <a href="/wiki/John_Wiley_%26_Sons" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-471-68182-3" title="Istimewa:Sumber buku/978-0-471-68182-3">978-0-471-68182-3</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Learning+from+data%3A+concepts%2C+theory%2C+and+methods&rft.place=New+York&rft.series=Wiley+series+on+adaptive+and+learning+systems+for+signal+processing%2C+communications%2C+and+control&rft.pub=John+Wiley+%26+Sons&rft.date=2007&rft.isbn=978-0-471-68182-3&rft.aulast=Cherkassky&rft.aufirst=Vladimir&rft.au=Cherkassky%2C+Vladimir+S.&rft.au=Mulier%2C+Filip&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, hlm. 357</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><cite id="CITEREFBourbaki1998" class="citation"><a href="/w/index.php?title=Nicolas_Bourbaki&action=edit&redlink=1" class="new" title="Nicolas Bourbaki (halaman belum tersedia)">Bourbaki, Nicolas</a> (1998), <i>General topology. Chapters 5–10</i>, Elements of Mathematics, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-540-64563-4" title="Istimewa:Sumber buku/978-3-540-64563-4">978-3-540-64563-4</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1726872">1726872</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=General+topology.+Chapters+5%E2%80%9310&rft.place=Berlin%2C+New+York&rft.series=Elements+of+Mathematics&rft.pub=Springer-Verlag&rft.date=1998&rft.isbn=978-3-540-64563-4&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1726872&rft.aulast=Bourbaki&rft.aufirst=Nicolas&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian V.4.1</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><cite id="CITEREFAmbartzumian1990" class="citation"><a href="/w/index.php?title=Rouben_V._Ambartzumian&action=edit&redlink=1" class="new" title="Rouben V. Ambartzumian (halaman belum tersedia)">Ambartzumian, R.V.</a> (1990), <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/factorizationcal0000amba"><i>Factorization calculus and geometric probability</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-34535-4" title="Istimewa:Sumber buku/978-0-521-34535-4">978-0-521-34535-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Factorization+calculus+and+geometric+probability&rft.pub=Cambridge+University+Press&rft.date=1990&rft.isbn=978-0-521-34535-4&rft.aulast=Ambartzumian&rft.aufirst=R.V.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffactorizationcal0000amba&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 1.4</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><cite id="CITEREFEsnaultViehweg1992" class="citation">Esnault, Hélène; Viehweg, Eckart (1992), <i>Lectures on vanishing theorems</i>, DMV Seminar, <b>20</b>, Basel, Boston: Birkhäuser Verlag, <a href="/wiki/CiteSeerX" title="CiteSeerX">CiteSeerX</a> <span class="plainlinks"><a rel="nofollow" class="external text" href="//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.3227">10.1.1.178.3227</a> <span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>, <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-0348-8600-0">10.1007/978-3-0348-8600-0</a>, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-3-7643-2822-1" title="Istimewa:Sumber buku/978-3-7643-2822-1">978-3-7643-2822-1</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1193913">1193913</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+vanishing+theorems&rft.place=Basel%2C+Boston&rft.series=DMV+Seminar&rft.pub=Birkh%C3%A4user+Verlag&rft.date=1992&rft_id=%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.178.3227&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1193913&rft_id=info%3Adoi%2F10.1007%2F978-3-0348-8600-0&rft.isbn=978-3-7643-2822-1&rft.aulast=Esnault&rft.aufirst=H%C3%A9l%C3%A8ne&rft.au=Viehweg%2C+Eckart&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span>, bagian 2</span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><cite id="CITEREFApostol2010" class="citation">Apostol, T.M. (2010), <a rel="nofollow" class="external text" href="http://dlmf.nist.gov/25.12">"Logaritma"</a>, dalam <a href="/w/index.php?title=Frank_W._J._Olver&action=edit&redlink=1" class="new" title="Frank W. J. Olver (halaman belum tersedia)">Olver, Frank W. J.</a>; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., <i><a href="/w/index.php?title=Digital_Library_of_Mathematical_Functions&action=edit&redlink=1" class="new" title="Digital Library of Mathematical Functions (halaman belum tersedia)">NIST Handbook of Mathematical Functions</a></i>, Cambridge University Press, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-521-19225-5" title="Istimewa:Sumber buku/978-0-521-19225-5">978-0-521-19225-5</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a> <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=2723248">2723248</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logaritma&rft.btitle=NIST+Handbook+of+Mathematical+Functions&rft.pub=Cambridge+University+Press&rft.date=2010&rft.isbn=978-0-521-19225-5&rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D2723248&rft.aulast=Apostol&rft.aufirst=T.M.&rft_id=http%3A%2F%2Fdlmf.nist.gov%2F25.12&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Pranala_luar">Pranala luar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logaritma&veaction=edit&section=41" title="Sunting bagian: Pranala luar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logaritma&action=edit&section=41" title="Sunting kode sumber bagian: Pranala luar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> Media tentang <a href="https://commons.wikimedia.org/wiki/Category:Logarithm" class="extiw" title="commons:Category:Logarithm">Logarithm</a> di Wikimedia Commons</li> <li><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/16px-Wiktionary-logo.svg.png" decoding="async" width="16" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/24px-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/32px-Wiktionary-logo.svg.png 2x" data-file-width="370" data-file-height="350" /></span></span> Definisi kamus <a href="https://id.wiktionary.org/wiki/Special:Search/logaritma" class="extiw" title="wikt:Special:Search/logaritma">logaritma</a> di Wikikamus</li> <li><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/16px-Wikiversity-logo.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/24px-Wikiversity-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Wikiversity-logo.svg/32px-Wikiversity-logo.svg.png 2x" data-file-width="1000" data-file-height="800" /></span></span> <a href="https://id.wikiversity.org/wiki/Speak_Math_Now!/Week_9:_Six_rules_of_Exponents/Logarithms" class="extiw" title="v:Speak Math Now!/Week 9: Six rules of Exponents/Logarithms">A lesson on logarithms can be found on Wikiversity</a></li> <li><span style="font-size:0.95em; font-weight:bold; color:#777; cursor:help;" title="Bahasa Inggris" lang="Inggris">(Inggris)</span> <span class="citation mathworld" id="Reference-Mathworld-Logarithm"><cite id="CITEREFWeisstein" class="citation web"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Logarithm.html">"Logarithm"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Logarithm&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLogarithm.html&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></span></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121218200616/http://www.khanacademy.org/math/algebra/logarithms-tutorial">Khan Academy: Logarithms, free online micro lectures</a></li> <li><cite id="CITEREFHazewinkel2001" class="citation"><a href="/wiki/Michiel_Hazewinkel" title="Michiel Hazewinkel">Hazewinkel, Michiel</a>, ed. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=p/l060600">"Logarithmic function"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, Springer Science+Business Media B.V. / Kluwer Academic Publishers, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-1-55608-010-4" title="Istimewa:Sumber buku/978-1-55608-010-4">978-1-55608-010-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logarithmic+function&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=Springer+Science%2BBusiness+Media+B.V.+%2F+Kluwer+Academic+Publishers&rft.date=2001&rft.isbn=978-1-55608-010-4&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3Dp%2Fl060600&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite id="CITEREFColin_Byfleet" class="citation">Colin Byfleet, <a rel="nofollow" class="external text" href="http://mediasite.oddl.fsu.edu/mediasite/Viewer/?peid=003298f9a02f468c8351c50488d6c479"><i>Educational video on logarithms</i></a><span class="reference-accessdate">, diakses tanggal <span class="nowrap">12 October</span> 2010</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Educational+video+on+logarithms&rft.au=Colin+Byfleet&rft_id=http%3A%2F%2Fmediasite.oddl.fsu.edu%2Fmediasite%2FViewer%2F%3Fpeid%3D003298f9a02f468c8351c50488d6c479&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite id="CITEREFEdward_Wright" class="citation">Edward Wright, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20021203005508/http://www.johnnapier.com/table_of_logarithms_001.htm"><i>Translation of Napier's work on logarithms</i></a>, diarsipkan dari <a rel="nofollow" class="external text" href="http://www.johnnapier.com/table_of_logarithms_001.htm">versi asli</a> tanggal 3 December 2002<span class="reference-accessdate">, diakses tanggal <span class="nowrap">12 October</span> 2010</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Translation+of+Napier%27s+work+on+logarithms&rft.au=Edward+Wright&rft_id=http%3A%2F%2Fwww.johnnapier.com%2Ftable_of_logarithms_001.htm&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></li> <li><span typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png" decoding="async" width="12" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/18px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/24px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span> <cite id="CITEREFGlaisher1911" class="citation encyclopaedia">Glaisher, James Whitbread Lee (1911), "<a href="https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Logarithm" class="extiw" title="wikisource:1911 Encyclopædia Britannica/Logarithm">Logarithm</a>", dalam Chisholm, Hugh, <i><a href="/wiki/Encyclop%C3%A6dia_Britannica_Eleventh_Edition" title="Encyclopædia Britannica Eleventh Edition">Encyclopædia Britannica</a></i>, <b>16</b> (edisi ke-11), Cambridge University Press, hlm. 868–77</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logarithm&rft.btitle=Encyclop%C3%A6dia+Britannica&rft.pages=868-77&rft.edition=11&rft.pub=Cambridge+University+Press&rft.date=1911&rft.aulast=Glaisher&rft.aufirst=James+Whitbread+Lee&rfr_id=info%3Asid%2Fid.wikipedia.org%3ALogaritma" class="Z3988"><span style="display:none;"> </span></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r23782733">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r25847331">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}</style></div><div role="navigation" class="navbox" aria-labelledby="Daftar_fungsi_matematika" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18590415"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-lihat"><a href="/wiki/Templat:Daftar_fungsi_matematika" title="Templat:Daftar fungsi matematika"><abbr title="Lihat templat ini">l</abbr></a></li><li class="nv-bicara"><a href="/wiki/Pembicaraan_Templat:Daftar_fungsi_matematika" title="Pembicaraan Templat:Daftar fungsi matematika"><abbr title="Diskusikan templat ini">b</abbr></a></li><li class="nv-sunting"><a class="external text" href="https://id.wikipedia.org/w/index.php?title=Templat:Daftar_fungsi_matematika&action=edit"><abbr title="Sunting templat ini">s</abbr></a></li></ul></div><div id="Daftar_fungsi_matematika" style="font-size:114%;margin:0 4em"><a href="/wiki/Daftar_fungsi_matematika" title="Daftar fungsi matematika">Daftar fungsi matematika</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi polinomial</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fungsi_konstan" title="Fungsi konstan">Fungsi konstan</a> (0)</li> <li><a href="/wiki/Fungsi_linear" class="mw-redirect" title="Fungsi linear">Fungsi linear</a> (1)</li> <li><a href="/wiki/Fungsi_kuadrat" title="Fungsi kuadrat">Fungsi kuadrat</a> (2)</li> <li><a href="/wiki/Fungsi_kubik" title="Fungsi kubik">Fungsi kubik</a> (3)</li> <li><a href="/wiki/Fungsi_kuartik" title="Fungsi kuartik">Fungsi kuartik</a> (4)</li> <li><a href="/wiki/Fungsi_kuintik" title="Fungsi kuintik">Fungsi kuintik</a> (5)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi aljabar</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fungsi_rasional" title="Fungsi rasional">Fungsi rasional</a></li> <li><a href="/wiki/Fungsi_eksponensial" title="Fungsi eksponensial">Fungsi eksponensial</a> <ul><li><a href="/wiki/Fungsi_Lambert_W" title="Fungsi Lambert W">Lambert W</a></li> <li><a href="/wiki/Superakar" class="mw-redirect" title="Superakar">Superakar</a></li></ul></li> <li><a href="/wiki/Fungsi_hiperbolik" title="Fungsi hiperbolik">Fungsi hiperbolik</a></li> <li><a href="/wiki/Fungsi_logaritma" class="mw-redirect" title="Fungsi logaritma">Fungsi logaritma</a> <ul><li>Berdasarkan basis <ul><li><a href="/wiki/Logaritma_biner" title="Logaritma biner">2</a></li> <li><a href="/wiki/Logaritma_natural" class="mw-redirect" title="Logaritma natural"><span class="texhtml mvar" style="font-style:italic;">e</span></a></li> <li><a href="/wiki/Logaritma_umum" title="Logaritma umum">10</a></li></ul></li> <li><a href="/w/index.php?title=Logaritma_teriterasi&action=edit&redlink=1" class="new" title="Logaritma teriterasi (halaman belum tersedia)">teriterasi</a></li> <li><a href="/w/index.php?title=Superlogaritma&action=edit&redlink=1" class="new" title="Superlogaritma (halaman belum tersedia)">Superlogaritma</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi dalam<br />teori bilangan</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fungsi_M%C3%B6bius" title="Fungsi Möbius">Fungsi Möbius</a></li> <li><a href="/w/index.php?title=Fungsi_partisi&action=edit&redlink=1" class="new" title="Fungsi partisi (halaman belum tersedia)">Fungsi partisi</a></li> <li><a href="/w/index.php?title=Fungsi_perhitungan_bilangan_prima&action=edit&redlink=1" class="new" title="Fungsi perhitungan bilangan prima (halaman belum tersedia)">Fungsi perhitungan bilangan prima</a></li> <li><a href="/wiki/Fungsi_phi_Euler" title="Fungsi phi Euler">Fungsi phi Euler</a></li> <li><a href="/w/index.php?title=Fungsi_sigma&action=edit&redlink=1" class="new" title="Fungsi sigma (halaman belum tersedia)">Fungsi sigma</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi trigonometri</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sinus_(trigonometri)" class="mw-redirect" title="Sinus (trigonometri)">Sinus</a></li> <li><a href="/wiki/Kosinus" class="mw-redirect" title="Kosinus">Kosinus</a></li> <li><a href="/wiki/Tangen" title="Tangen">Tangen</a></li> <li><a href="/wiki/Sekan" title="Sekan">Sekan</a></li> <li><a href="/wiki/Kosekan" title="Kosekan">Kosekan</a></li> <li><a href="/wiki/Kotangen" title="Kotangen">Kotangen</a></li> <li><a href="/w/index.php?title=Versinus&action=edit&redlink=1" class="new" title="Versinus (halaman belum tersedia)">Versinus</a></li> <li><a href="/w/index.php?title=Koversinus&action=edit&redlink=1" class="new" title="Koversinus (halaman belum tersedia)">Koversinus</a></li> <li><a href="/w/index.php?title=Verkosinus&action=edit&redlink=1" class="new" title="Verkosinus (halaman belum tersedia)">Verkosinus</a></li> <li><a href="/w/index.php?title=Koverkosinus&action=edit&redlink=1" class="new" title="Koverkosinus (halaman belum tersedia)">Koverkosinus</a></li> <li><a href="/w/index.php?title=Ekssekan&action=edit&redlink=1" class="new" title="Ekssekan (halaman belum tersedia)">Ekssekan</a></li> <li><a href="/w/index.php?title=Ekskosekan&action=edit&redlink=1" class="new" title="Ekskosekan (halaman belum tersedia)">Ekskosekan</a></li> <li><a href="/w/index.php?title=Haversinus&action=edit&redlink=1" class="new" title="Haversinus (halaman belum tersedia)">Haversinus</a></li> <li><a href="/w/index.php?title=Hakoversinus&action=edit&redlink=1" class="new" title="Hakoversinus (halaman belum tersedia)">Hakoversinus</a></li> <li><a href="/w/index.php?title=Haverkosinus&action=edit&redlink=1" class="new" title="Haverkosinus (halaman belum tersedia)">Haverkosinus</a></li> <li><a href="/w/index.php?title=Hakoverkosinus&action=edit&redlink=1" class="new" title="Hakoverkosinus (halaman belum tersedia)">Hakoverkosinus</a></li></ul> <p><br /> </p> <ul><li><a href="/w/index.php?title=Fungsi_Gudermann&action=edit&redlink=1" class="new" title="Fungsi Gudermann (halaman belum tersedia)">Gudermann</a></li> <li><a href="/w/index.php?title=Fungsi_sinc&action=edit&redlink=1" class="new" title="Fungsi sinc (halaman belum tersedia)">sinc</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi berdasarkan<br />huruf Yunani</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Fungsi_beta&action=edit&redlink=1" class="new" title="Fungsi beta (halaman belum tersedia)">Fungsi beta</a> <ul><li><a href="/w/index.php?title=Fungsi_beta_Dirichlet&action=edit&redlink=1" class="new" title="Fungsi beta Dirichlet (halaman belum tersedia)">Dirichlet</a></li> <li><a href="/w/index.php?title=Fungsi_beta_taklengkap&action=edit&redlink=1" class="new" title="Fungsi beta taklengkap (halaman belum tersedia)">taklengkap</a></li></ul></li> <li>Fungsi chi <ul><li><a href="/w/index.php?title=Fungsi_chi_Legendre&action=edit&redlink=1" class="new" title="Fungsi chi Legendre (halaman belum tersedia)">Legendre</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_delta&action=edit&redlink=1" class="new" title="Fungsi delta (halaman belum tersedia)">Fungsi delta</a> <ul><li><a href="/wiki/Fungsi_delta_Dirac" title="Fungsi delta Dirac">Fungsi delta Dirac</a></li> <li><a href="/wiki/Fungsi_delta_Kronecker" title="Fungsi delta Kronecker">Fungsi delta Kronecker</a></li> <li><a href="/w/index.php?title=Potensial_fungsi_delta&action=edit&redlink=1" class="new" title="Potensial fungsi delta (halaman belum tersedia)">potensial delta</a></li></ul></li> <li>Fungsi eta <ul><li><a href="/w/index.php?title=Fungsi_eta_Dirichlet&action=edit&redlink=1" class="new" title="Fungsi eta Dirichlet (halaman belum tersedia)">Dirichlet</a></li></ul></li> <li><a href="/wiki/Fungsi_gamma" title="Fungsi gamma">Fungsi gamma</a> <ul><li><a href="/w/index.php?title=Fungsi_digamma&action=edit&redlink=1" class="new" title="Fungsi digamma (halaman belum tersedia)">Fungsi digamma</a></li> <li><a href="/w/index.php?title=Fungsi-G_Barnes&action=edit&redlink=1" class="new" title="Fungsi-G Barnes (halaman belum tersedia)">Barnes</a></li> <li><a href="/w/index.php?title=Fungsi-G_Meijer&action=edit&redlink=1" class="new" title="Fungsi-G Meijer (halaman belum tersedia)">Meijer</a></li> <li><a href="/w/index.php?title=Fungsi_gamma_banyak&action=edit&redlink=1" class="new" title="Fungsi gamma banyak (halaman belum tersedia)">banyak</a></li> <li><a href="/w/index.php?title=Fungsi_gamma_eliptik&action=edit&redlink=1" class="new" title="Fungsi gamma eliptik (halaman belum tersedia)">eliptik</a></li> <li><a href="/w/index.php?title=Fungsi_gamma_Hadamard&action=edit&redlink=1" class="new" title="Fungsi gamma Hadamard (halaman belum tersedia)">Hadamard</a></li> <li><a href="/w/index.php?title=Fungsi_gamma_multivariabel&action=edit&redlink=1" class="new" title="Fungsi gamma multivariabel (halaman belum tersedia)">multivariabel</a></li> <li><a href="/w/index.php?title=Fungsi_gamma_p-adik&action=edit&redlink=1" class="new" title="Fungsi gamma p-adik (halaman belum tersedia)"><i>p</i>-adik</a></li> <li><a href="/w/index.php?title=Fungsi_gamma-q&action=edit&redlink=1" class="new" title="Fungsi gamma-q (halaman belum tersedia)"><i>q</i></a></li> <li><a href="/w/index.php?title=Fungsi_gamma_taklengkap&action=edit&redlink=1" class="new" title="Fungsi gamma taklengkap (halaman belum tersedia)">taklengkap</a></li> <li><a href="/wiki/Fungsi_poligamma" title="Fungsi poligamma">Fungsi poligamma</a></li> <li><a href="/w/index.php?title=Fungsi_trigamma&action=edit&redlink=1" class="new" title="Fungsi trigamma (halaman belum tersedia)">Fungsi trigamma</a></li></ul></li> <li>Fungsi lambda <ul><li><a href="/w/index.php?title=Fungsi_lambda_Dirchlet&action=edit&redlink=1" class="new" title="Fungsi lambda Dirchlet (halaman belum tersedia)">Dirchlet</a></li> <li><a href="/w/index.php?title=Fungsi_lambda_modular&action=edit&redlink=1" class="new" title="Fungsi lambda modular (halaman belum tersedia)">modular</a></li> <li><a href="/w/index.php?title=Fungsi_von_Mangoldt&action=edit&redlink=1" class="new" title="Fungsi von Mangoldt (halaman belum tersedia)">von Mangoldt</a></li></ul></li> <li>Fungsi mu <ul><li><a href="/w/index.php?title=Fungsi_%CE%BC_M%C3%B6bius&action=edit&redlink=1" class="new" title="Fungsi μ Möbius (halaman belum tersedia)">Möbius</a></li></ul></li> <li>Fungsi phi <ul><li><a href="/wiki/Fungsi_phi_Euler" title="Fungsi phi Euler">Euler</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_pi&action=edit&redlink=1" class="new" title="Fungsi pi (halaman belum tersedia)">Fungsi pi</a></li> <li><a href="/w/index.php?title=Fungsi_sigma&action=edit&redlink=1" class="new" title="Fungsi sigma (halaman belum tersedia)">Fungsi sigma</a> <ul><li><a href="/w/index.php?title=Fungsi_sigma_Weierstrass&action=edit&redlink=1" class="new" title="Fungsi sigma Weierstrass (halaman belum tersedia)">Weierstrass</a></li></ul></li> <li><a href="/wiki/Fungsi_theta" title="Fungsi theta">Fungsi theta</a></li> <li><a href="/w/index.php?title=Fungsi_zeta&action=edit&redlink=1" class="new" title="Fungsi zeta (halaman belum tersedia)">Fungsi zeta</a> <ul><li><a href="/w/index.php?title=Fungsi_zeta_Hurwitz&action=edit&redlink=1" class="new" title="Fungsi zeta Hurwitz (halaman belum tersedia)">Hurwitz</a></li> <li><a href="/wiki/Fungsi_zeta_Riemann" title="Fungsi zeta Riemann">Riemann</a></li> <li><a href="/w/index.php?title=Fungsi_zeta_Weierstrass&action=edit&redlink=1" class="new" title="Fungsi zeta Weierstrass (halaman belum tersedia)">Weierstrass</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi berdasarkan<br />nama matematikawan</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Fungsi_Airy&action=edit&redlink=1" class="new" title="Fungsi Airy (halaman belum tersedia)">Airy</a></li> <li><a href="/w/index.php?title=Fungsi_Ackermann&action=edit&redlink=1" class="new" title="Fungsi Ackermann (halaman belum tersedia)">Ackermann</a></li> <li><a href="/w/index.php?title=Fungsi_Bessel&action=edit&redlink=1" class="new" title="Fungsi Bessel (halaman belum tersedia)">Bessel</a></li> <li><a href="/w/index.php?title=Fungsi_Bessel%E2%80%93Clifford&action=edit&redlink=1" class="new" title="Fungsi Bessel–Clifford (halaman belum tersedia)">Bessel–Clifford</a></li> <li><a href="/w/index.php?title=Fungsi_Bottcher&action=edit&redlink=1" class="new" title="Fungsi Bottcher (halaman belum tersedia)">Bottcher</a></li> <li><a href="/w/index.php?title=Polinomial_Chebyshev&action=edit&redlink=1" class="new" title="Polinomial Chebyshev (halaman belum tersedia)">Chebyshev</a></li> <li><a href="/w/index.php?title=Fungsi_Clausen&action=edit&redlink=1" class="new" title="Fungsi Clausen (halaman belum tersedia)">Clausen</a></li> <li><a href="/w/index.php?title=Fungsi_Dawson&action=edit&redlink=1" class="new" title="Fungsi Dawson (halaman belum tersedia)">Dawson</a></li> <li><a href="/w/index.php?title=Fungsi_Dirichlet&action=edit&redlink=1" class="new" title="Fungsi Dirichlet (halaman belum tersedia)">Dirichlet</a> <ul><li><a href="/w/index.php?title=Fungsi_beta_Dirichlet&action=edit&redlink=1" class="new" title="Fungsi beta Dirichlet (halaman belum tersedia)">beta</a></li> <li><a href="/w/index.php?title=Fungsi_eta_Dirichlet&action=edit&redlink=1" class="new" title="Fungsi eta Dirichlet (halaman belum tersedia)">eta</a></li> <li><a href="/w/index.php?title=Fungsi-L_Dirichlet&action=edit&redlink=1" class="new" title="Fungsi-L Dirichlet (halaman belum tersedia)">L</a></li> <li><a href="/w/index.php?title=Fungsi_lambda_Dirchlet&action=edit&redlink=1" class="new" title="Fungsi lambda Dirchlet (halaman belum tersedia)">lambda</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_Faddeeva&action=edit&redlink=1" class="new" title="Fungsi Faddeeva (halaman belum tersedia)">Faddeeva</a></li> <li>Fermi–Dirac <ul><li><a href="/w/index.php?title=Integral_Fermi%E2%80%93Dirac_lengkap&action=edit&redlink=1" class="new" title="Integral Fermi–Dirac lengkap (halaman belum tersedia)">lengkap</a></li> <li><a href="/w/index.php?title=Integral_Fermi%E2%80%93Dirac_taklengkap&action=edit&redlink=1" class="new" title="Integral Fermi–Dirac taklengkap (halaman belum tersedia)">taklengkap</a></li></ul></li> <li><a href="/wiki/Integral_Fresnel" title="Integral Fresnel">Fresnel</a></li> <li><a href="/wiki/Fungsi-H_Fox" title="Fungsi-H Fox">Fox</a></li> <li><a href="/w/index.php?title=Fungsi_Gudermann&action=edit&redlink=1" class="new" title="Fungsi Gudermann (halaman belum tersedia)">Gudermann</a></li> <li><a href="/wiki/Polinomial_Hermite" title="Polinomial Hermite">Hermite</a></li> <li><a href="/w/index.php?title=Fungsi_Jacob&action=edit&redlink=1" class="new" title="Fungsi Jacob (halaman belum tersedia)">Fungsi Jacob</a> <ul><li><a href="/w/index.php?title=Fungsi_eliptik_Jacobi&action=edit&redlink=1" class="new" title="Fungsi eliptik Jacobi (halaman belum tersedia)">eliptik Jacobi</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_Kelvin&action=edit&redlink=1" class="new" title="Fungsi Kelvin (halaman belum tersedia)">Kelvin</a></li> <li><a href="/w/index.php?title=Fungsi_Kummer&action=edit&redlink=1" class="new" title="Fungsi Kummer (halaman belum tersedia)">Fungsi Kummer</a></li> <li>Fungsi Lambert <ul><li><a href="/wiki/Fungsi_Lambert_W" title="Fungsi Lambert W">W</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_Lam%C3%A9&action=edit&redlink=1" class="new" title="Fungsi Lamé (halaman belum tersedia)">Lamé</a></li> <li><a href="/w/index.php?title=Polinomial_Laguerre&action=edit&redlink=1" class="new" title="Polinomial Laguerre (halaman belum tersedia)">Laguerre</a></li> <li><a href="/w/index.php?title=Fungsi_Legendre&action=edit&redlink=1" class="new" title="Fungsi Legendre (halaman belum tersedia)">Legendre</a> <ul><li><a href="/w/index.php?title=Fungsi_chi_Legendre&action=edit&redlink=1" class="new" title="Fungsi chi Legendre (halaman belum tersedia)">chi</a></li> <li><a href="/w/index.php?title=Fungsi_Legendre_iring&action=edit&redlink=1" class="new" title="Fungsi Legendre iring (halaman belum tersedia)">iring</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_Liouville&action=edit&redlink=1" class="new" title="Fungsi Liouville (halaman belum tersedia)">Liouville</a></li> <li><a href="/w/index.php?title=Fungsi_Mathieu&action=edit&redlink=1" class="new" title="Fungsi Mathieu (halaman belum tersedia)">Mathieu</a></li> <li><a href="/w/index.php?title=Fungsi-G_Meijer&action=edit&redlink=1" class="new" title="Fungsi-G Meijer (halaman belum tersedia)">Meijer</a></li> <li><a href="/w/index.php?title=Fungsi_Mittag-Leffler&action=edit&redlink=1" class="new" title="Fungsi Mittag-Leffler (halaman belum tersedia)">Mittag-Leffler</a></li> <li><a href="/w/index.php?title=Transenden_Painlev%C3%A9&action=edit&redlink=1" class="new" title="Transenden Painlevé (halaman belum tersedia)">Painlevé</a></li> <li><a href="/w/index.php?title=Fungsi_Riemann&action=edit&redlink=1" class="new" title="Fungsi Riemann (halaman belum tersedia)">Riemann</a> <ul><li><a href="/w/index.php?title=Fungsi_xi_Riemann&action=edit&redlink=1" class="new" title="Fungsi xi Riemann (halaman belum tersedia)">xi</a></li> <li><a href="/wiki/Fungsi_zeta_Riemann" title="Fungsi zeta Riemann">zeta</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_Riesz&action=edit&redlink=1" class="new" title="Fungsi Riesz (halaman belum tersedia)">Riesz</a></li> <li><a href="/w/index.php?title=Fungsi_Scorer&action=edit&redlink=1" class="new" title="Fungsi Scorer (halaman belum tersedia)">Scorer</a></li> <li><a href="/w/index.php?title=Fungsi_Spence&action=edit&redlink=1" class="new" title="Fungsi Spence (halaman belum tersedia)">Spence</a></li> <li><a href="/w/index.php?title=Fungsi_von_Mangoldt&action=edit&redlink=1" class="new" title="Fungsi von Mangoldt (halaman belum tersedia)">von Mangoldt</a></li> <li><a href="/wiki/Fungsi_Weierstrass" title="Fungsi Weierstrass">Weierstrass</a> <ul><li><a href="/w/index.php?title=Fungsi_eliptik_Weierstrass&action=edit&redlink=1" class="new" title="Fungsi eliptik Weierstrass (halaman belum tersedia)">eliptik</a></li> <li><a href="/w/index.php?title=Fungsi_eta_Weierstrass&action=edit&redlink=1" class="new" title="Fungsi eta Weierstrass (halaman belum tersedia)">eta</a></li> <li><a href="/w/index.php?title=Fungsi_sigma_Weierstrass&action=edit&redlink=1" class="new" title="Fungsi sigma Weierstrass (halaman belum tersedia)">sigma</a></li> <li><a href="/w/index.php?title=Fungsi_zeta_Weierstrass&action=edit&redlink=1" class="new" title="Fungsi zeta Weierstrass (halaman belum tersedia)">zeta</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi khusus</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fungsi_bagian_bilangan_bulat" class="mw-redirect" title="Fungsi bagian bilangan bulat">Fungsi bagian bilangan bulat</a> <ul><li><a href="/wiki/Fungsi_bilangan_bulat_terbesar" class="mw-redirect" title="Fungsi bilangan bulat terbesar">Fungsi bilangan bulat terbesar</a></li> <li><a href="/wiki/Fungsi_bilangan_bulat_terkecil" class="mw-redirect" title="Fungsi bilangan bulat terkecil">Fungsi bilangan bulat terkecil</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_gergaji&action=edit&redlink=1" class="new" title="Fungsi gergaji (halaman belum tersedia)">Fungsi gergaji</a></li> <li><a href="/wiki/Fungsi_indikator" title="Fungsi indikator">Fungsi indikator</a></li> <li><a href="/wiki/Nilai_mutlak" class="mw-redirect" title="Nilai mutlak">Fungsi nilai mutlak</a></li> <li><a href="/w/index.php?title=Fungsi_persegi&action=edit&redlink=1" class="new" title="Fungsi persegi (halaman belum tersedia)">Fungsi persegi</a></li> <li><a href="/w/index.php?title=Fungsi_segitiga&action=edit&redlink=1" class="new" title="Fungsi segitiga (halaman belum tersedia)">Fungsi segitiga</a></li> <li><a href="/wiki/Fungsi_tanda" title="Fungsi tanda">Fungsi tanda</a></li> <li><a href="/w/index.php?title=Fungsi_tangga&action=edit&redlink=1" class="new" title="Fungsi tangga (halaman belum tersedia)">Fungsi tangga</a> <ul><li><a href="/wiki/Fungsi_tangga_Heaviside" title="Fungsi tangga Heaviside">Fungsi tangga Heaviside</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fungsi lainnya</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Purata_aritmetik-geometrik&action=edit&redlink=1" class="new" title="Purata aritmetik-geometrik (halaman belum tersedia)">Aritmetik-geometrik</a></li> <li><a href="/w/index.php?title=Fungsi_eliptik&action=edit&redlink=1" class="new" title="Fungsi eliptik (halaman belum tersedia)">eliptik</a></li> <li><a href="/wiki/Fungsi_hiperbolik" title="Fungsi hiperbolik">Fungsi hiperbolik</a> <ul><li><a href="/w/index.php?title=Fungsi_hiperbolik_konfluen&action=edit&redlink=1" class="new" title="Fungsi hiperbolik konfluen (halaman belum tersedia)">konfluen</a></li></ul></li> <li><a href="/w/index.php?title=Fungsi_K&action=edit&redlink=1" class="new" title="Fungsi K (halaman belum tersedia)">K</a></li> <li><a href="/w/index.php?title=Fungsi_sinkrotron&action=edit&redlink=1" class="new" title="Fungsi sinkrotron (halaman belum tersedia)">sinkrotron</a></li> <li><a href="/w/index.php?title=Fungsi_tabung_parabolik&action=edit&redlink=1" class="new" title="Fungsi tabung parabolik (halaman belum tersedia)">tabung parabolik</a></li> <li><a href="/w/index.php?title=Fungsi_tanda_tanya_Minkowski&action=edit&redlink=1" class="new" title="Fungsi tanda tanya Minkowski (halaman belum tersedia)">tanda tanya Minkowski</a></li> <li><a href="/w/index.php?title=Pentasi&action=edit&redlink=1" class="new" title="Pentasi (halaman belum tersedia)">Pentasi</a></li> <li><a href="/w/index.php?title=Distribusi-t_Student&action=edit&redlink=1" class="new" title="Distribusi-t Student (halaman belum tersedia)">Student</a></li> <li><a href="/wiki/Tetrasi" title="Tetrasi">Tetrasi</a></li></ul> </div></td></tr></tbody></table></div><div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23782733"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25847331"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Pengawasan_otoritas_frameless_&#124;text-top_&#124;10px_&#124;alt=Sunting_ini_di_Wikidata_&#124;link=https&#58;//www.wikidata.org/wiki/Q11197#identifiers&#124;Sunting_ini_di_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Pengawasan_otoritas_frameless_&#124;text-top_&#124;10px_&#124;alt=Sunting_ini_di_Wikidata_&#124;link=https&#58;//www.wikidata.org/wiki/Q11197#identifiers&#124;Sunting_ini_di_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Bantuan:Pengawasan_otoritas" title="Bantuan:Pengawasan otoritas">Pengawasan otoritas</a> <span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11197#identifiers" title="Sunting ini di Wikidata"><img alt="Sunting ini di Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Umum</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4168047-9">Integrated Authority File (Jerman)</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Perpustakaan nasional</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX527539">Spanyol</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11941516p">Prancis</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11941516p">(data)</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85078091">Amerika Serikat</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00572566">Jepang</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lain-lain</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://academic.microsoft.com/v2/detail/39927690">Microsoft Academic</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7f58d5dcf5‐m9r6h Cached time: 20241111015117 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 1.737 seconds Real time usage: 2.322 seconds Preprocessor visited node count: 16550/1000000 Post‐expand include size: 383199/2097152 bytes Template argument size: 17794/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 14/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 170618/5000000 bytes Lua time usage: 0.576/10.000 seconds Lua memory usage: 6396983/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1869.241 1 -total 30.23% 565.059 6 Templat:Audio 30.06% 561.950 2 Templat:Reflist 21.72% 405.959 98 Templat:Citation 6.50% 121.534 1 Templat:Operasi_aritmetika 6.24% 116.663 1 Templat:Sidebar 4.56% 85.296 248 Templat:Math 3.68% 68.832 1 Templat:Daftar_fungsi_matematika 3.46% 64.653 1 Templat:Navbox 3.03% 56.726 1 Templat:Commons_category-inline --> <!-- Saved in parser cache with key idwiki:pcache:idhash:61028-0!canonical and timestamp 20241111015117 and revision id 25603332. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Diperoleh dari "<a dir="ltr" href="https://id.wikipedia.org/w/index.php?title=Logaritma&oldid=25603332">https://id.wikipedia.org/w/index.php?title=Logaritma&oldid=25603332</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Istimewa:Daftar_kategori" title="Istimewa:Daftar kategori">Kategori</a>: <ul><li><a href="/wiki/Kategori:Matematika" title="Kategori:Matematika">Matematika</a></li><li><a href="/wiki/Kategori:Persamaan_diferensial" title="Kategori:Persamaan diferensial">Persamaan diferensial</a></li><li><a href="/wiki/Kategori:Persamaan_matematika" title="Kategori:Persamaan matematika">Persamaan matematika</a></li><li><a href="/wiki/Kategori:Persamaan" title="Kategori:Persamaan">Persamaan</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Kategori tersembunyi: <ul><li><a href="/wiki/Kategori:Halaman_yang_menggunakan_ekstensi_Phonos" title="Kategori:Halaman yang menggunakan ekstensi Phonos">Halaman yang menggunakan ekstensi Phonos</a></li><li><a href="/wiki/Kategori:Artikel_dengan_pranala_luar_nonaktif" title="Kategori:Artikel dengan pranala luar nonaktif">Artikel dengan pranala luar nonaktif</a></li><li><a href="/wiki/Kategori:Artikel_dengan_pranala_luar_nonaktif_permanen" title="Kategori:Artikel dengan pranala luar nonaktif permanen">Artikel dengan pranala luar nonaktif permanen</a></li><li><a href="/wiki/Kategori:CS1_sumber_berbahasa_Latin_(la)" title="Kategori:CS1 sumber berbahasa Latin (la)">CS1 sumber berbahasa Latin (la)</a></li><li><a href="/wiki/Kategori:Halaman_dengan_rujukan_yang_menggunakan_parameter_yang_tidak_didukung" title="Kategori:Halaman dengan rujukan yang menggunakan parameter yang tidak didukung">Halaman dengan rujukan yang menggunakan parameter yang tidak didukung</a></li><li><a href="/wiki/Kategori:Artikel_mengandung_aksara_Jerman" title="Kategori:Artikel mengandung aksara Jerman">Artikel mengandung aksara Jerman</a></li><li><a href="/wiki/Kategori:Halaman_yang_menggunakan_multiple_image_dengan_pengubahan_ukuran_gambar_otomatis" title="Kategori:Halaman yang menggunakan multiple image dengan pengubahan ukuran gambar otomatis">Halaman yang menggunakan multiple image dengan pengubahan ukuran gambar otomatis</a></li><li><a href="/wiki/Kategori:Pranala_kategori_Commons_dari_Wikidata" title="Kategori:Pranala kategori Commons dari Wikidata">Pranala kategori Commons dari Wikidata</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_yang_memuat_kutipan_dari_Encyclopaedia_Britannica_1911_dengan_rujukan_Wikisource" title="Kategori:Artikel Wikipedia yang memuat kutipan dari Encyclopaedia Britannica 1911 dengan rujukan Wikisource">Artikel Wikipedia yang memuat kutipan dari Encyclopaedia Britannica 1911 dengan rujukan Wikisource</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_GND" title="Kategori:Artikel Wikipedia dengan penanda GND">Artikel Wikipedia dengan penanda GND</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_BNE" title="Kategori:Artikel Wikipedia dengan penanda BNE">Artikel Wikipedia dengan penanda BNE</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_BNF" title="Kategori:Artikel Wikipedia dengan penanda BNF">Artikel Wikipedia dengan penanda BNF</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_LCCN" title="Kategori:Artikel Wikipedia dengan penanda LCCN">Artikel Wikipedia dengan penanda LCCN</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_NDL" title="Kategori:Artikel Wikipedia dengan penanda NDL">Artikel Wikipedia dengan penanda NDL</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_MA" title="Kategori:Artikel Wikipedia dengan penanda MA">Artikel Wikipedia dengan penanda MA</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Halaman ini terakhir diubah pada 22 April 2024, pukul 02.06.</li> <li id="footer-info-copyright">Teks tersedia di bawah <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">Lisensi Atribusi-BerbagiSerupa Creative Commons</a>; ketentuan tambahan mungkin berlaku. Lihat <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Ketentuan Penggunaan</a> untuk rincian lebih lanjut.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Kebijakan privasi</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Tentang">Tentang Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Penyangkalan_umum">Penyangkalan</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kode Etik</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Pengembang</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/id.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Pernyataan kuki</a></li> <li id="footer-places-mobileview"><a href="//id.m.wikipedia.org/w/index.php?title=Logaritma&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Tampilan seluler</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7d89b5d4c4-9p42g","wgBackendResponseTime":212,"wgPageParseReport":{"limitreport":{"cputime":"1.737","walltime":"2.322","ppvisitednodes":{"value":16550,"limit":1000000},"postexpandincludesize":{"value":383199,"limit":2097152},"templateargumentsize":{"value":17794,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":14,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":170618,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1869.241 1 -total"," 30.23% 565.059 6 Templat:Audio"," 30.06% 561.950 2 Templat:Reflist"," 21.72% 405.959 98 Templat:Citation"," 6.50% 121.534 1 Templat:Operasi_aritmetika"," 6.24% 116.663 1 Templat:Sidebar"," 4.56% 85.296 248 Templat:Math"," 3.68% 68.832 1 Templat:Daftar_fungsi_matematika"," 3.46% 64.653 1 Templat:Navbox"," 3.03% 56.726 1 Templat:Commons_category-inline"]},"scribunto":{"limitreport-timeusage":{"value":"0.576","limit":"10.000"},"limitreport-memusage":{"value":6396983,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7f58d5dcf5-m9r6h","timestamp":"20241111015117","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Logaritma","url":"https:\/\/id.wikipedia.org\/wiki\/Logaritma","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11197","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11197","author":{"@type":"Organization","name":"Kontributor dari proyek Wikimedia."},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-05-01T13:54:27Z","dateModified":"2024-04-22T02:06:11Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/81\/Logarithm_plots.png","headline":"Invers fungsi eksponensial"}</script> </body> </html>