CINXE.COM
graphene in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> graphene in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> graphene </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/12324/#Item_6" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="solid_state_physics">Solid state physics</h4> <div class="hide"><div> <ul> <li> <p>basics</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Slater+determinant">Slater determinant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/degeneracy+pressure">degeneracy pressure</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystal">crystal</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/crystallographic+group">crystallographic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bravais+lattice">Bravais lattice</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bloch+theory">Bloch theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/electronic+band+structure">electronic band structure</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/valence+bundle">valence bundle</a>, <a class="existingWikiWord" href="/nlab/show/conduction+bundle">conduction bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/valence+band">valence band</a>, <a class="existingWikiWord" href="/nlab/show/conduction+band">conduction band</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Berry+connection">Berry connection</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Berry+phase">Berry phase</a>, <a class="existingWikiWord" href="/nlab/show/Zak+phase">Zak phase</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/phase+of+matter">phase of matter</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/insulator">insulator</a>, <a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metal">metal</a>/<a class="existingWikiWord" href="/nlab/show/conductor">conductor</a>, <a class="existingWikiWord" href="/nlab/show/semi-conductor">semi-conductor</a>, <a class="existingWikiWord" href="/nlab/show/semi-metal">semi-metal</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/superconductor">superconductor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strange+metal">strange metal</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+phase+of+matter">topological phase of matter</a>, <a class="existingWikiWord" href="/nlab/show/topological+state+of+matter">topological state of matter</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetry+protected+topological+phase">symmetry protected topological phase</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory+classification+of+topological+phases+of+matter">K-theory classification of topological phases of matter</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+order">topological order</a></p> <p><a class="existingWikiWord" href="/nlab/show/anyons">anyons</a></p> </li> <li> <p>Examples</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/graphene">graphene</a>, <a class="existingWikiWord" href="/nlab/show/Haldane+model">Haldane model</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+Hall+effect">quantum Hall effect</a>)</p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/AdS-CFT+in+condensed+matter+physics">AdS-CFT in condensed matter physics</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/tensor+network+state">tensor network state</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Levin-Wen+model">Levin-Wen model</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Josephson+effect">Josephson effect</a></p> </li> </ul> </div></div> <h4 id="topological_physics">Topological physics</h4> <div class="hide"><div> <p><strong>Topological Physics</strong> – Phenomena in <a class="existingWikiWord" href="/nlab/show/physics">physics</a> controlled by the <a class="existingWikiWord" href="/nlab/show/topology">topology</a> (often: the <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>) of the <a class="existingWikiWord" href="/nlab/show/physical+system">physical system</a>.</p> <p>General theory:</p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/extended+topological+field+theory">extended</a>) <a class="existingWikiWord" href="/nlab/show/topological+field+theory">topological field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a></p> </li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/solid+state+physics">solid state physics</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+state+of+matter">topological state of matter</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+material">quantum material</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gapped+Hamiltonian">gapped Hamiltonian</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+order">topological order</a>, <a class="existingWikiWord" href="/nlab/show/symmetry+protected+trivial+order">symmetry protected trivial order</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+Hall+effect">quantum Hall effect</a>, <a class="existingWikiWord" href="/nlab/show/quantum+spin+Hall+effect">quantum spin Hall effect</a></p> <p><a class="existingWikiWord" href="/nlab/show/anyons">anyons</a>, <a class="existingWikiWord" href="/nlab/show/braid+group+statistics">braid group statistics</a></p> </li> </ul> </li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/metamaterials">metamaterials</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+photonics">topological photonics</a> (<a class="existingWikiWord" href="/nlab/show/light+waves">light waves</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+phononics">topological phononics</a> (<span class="newWikiWord">sound waves<a href="/nlab/new/sound+waves">?</a></span>)</p> </li> </ul> <p>For <a class="existingWikiWord" href="/nlab/show/quantum+computation">quantum computation</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/topological+quantum+computation">topological quantum computation</a></li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/quantum+hadrodynamics">quantum hadrodynamics</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Skyrmion">Skyrmion</a></li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/quantum+chromodynamics">quantum chromodynamics</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/instanton">instanton</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#berry_connection'>Berry connection</a></li> <li><a href='#ReferencesMovementOfDiracPoints'>Movement of Dirac points</a></li> <li><a href='#holographic_description'>Holographic description</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>Graphene is one of the <a class="existingWikiWord" href="/nlab/show/solid">solid</a> <a class="existingWikiWord" href="/nlab/show/phase+of+matter">phases</a> of <a class="existingWikiWord" href="/nlab/show/carbon">carbon</a>, appearing as a single-layer honeycomb lattice. This may be planar or tubular, etc.</p> <p id="PrimeExampleOfTopologicalPhase"> Graphene is a prime example (and among the first to be discovered) of a <a class="existingWikiWord" href="/nlab/show/topological+phase+of+matter">topological phase of matter</a>. Specifically:</p> <ol> <li> <p>at coarse resolution (currently accessible to <a class="existingWikiWord" href="/nlab/show/experiment">experiment</a>) it appears as a (<a class="existingWikiWord" href="/nlab/show/time-reversal+symmetry">time-reversal</a> and space inversion-symmetric) <a class="existingWikiWord" href="/nlab/show/topological+semi-metal">topological semi-metal</a>, due to a gap between its <a class="existingWikiWord" href="/nlab/show/valence+band">valence band</a> and <a class="existingWikiWord" href="/nlab/show/conduction+band">conduction band</a> which closes only over two <a class="existingWikiWord" href="/nlab/show/Dirac+points">Dirac points</a> in its <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a>;</p> </li> <li> <p>at finer resolution – namely when the <a class="existingWikiWord" href="/nlab/show/spin-orbit+coupling">spin-orbit coupling</a> of the <a class="existingWikiWord" href="/nlab/show/electrons">electrons</a> is resolved (thought to be <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∼</mo><msup><mn>10</mn> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>3</mn></mrow></msup><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\sim10^{-3}\,</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/meV">meV</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="#MHSSKM06">MHSSKM06</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math> and hence too small for <a class="existingWikiWord" href="/nlab/show/experiment">experimental</a> observation, currently), which reveals a small energy gap opening at the two would-be Dirac points – graphene appears as a (<a class="existingWikiWord" href="/nlab/show/time-reversal+symmetry">time-reversal symmetric</a>) <a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a> (<a href="#KaneMele05a">Kane & Mele 05a</a>), whose non-trivial <a class="existingWikiWord" href="/nlab/show/topological+phase+of+matter">topological phase</a> is witnessed by the non-trivial <a class="existingWikiWord" href="/nlab/show/Kane-Mele+invariant">Kane-Mele invariant</a> in <a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+two"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>ℤ</mi> <mo stretchy="false">/</mo> <mn>2</mn> </mrow> <annotation encoding="application/x-tex">\mathbb{Z}/2</annotation> </semantics> </math></a> (<a href="#KaneMele05b">Kane & Mele 05b</a>).</p> </li> </ol> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/goldene">goldene</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+material">quantum material</a></p> </li> </ul> <h2 id="references">References</h2> <h3 id="general">General</h3> <p>The <a class="existingWikiWord" href="/nlab/show/electronic+band+structure">electronic band structure</a> of graphene (reviewed in <a href="#WZLLJHD12">WZLLJHD 12</a>) was predicted (long before the term was coined) already in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Philip+Russel+Wallace">Philip Russel Wallace</a>, <em>The Band Theory of Graphite</em>, Phys. Rev. <strong>71</strong> (1947) 622 (<a href="https://doi.org/10.1103/PhysRev.71.622">doi:10.1103/PhysRev.71.622</a>)</li> </ul> <p>The synthesis/detection of graphene is due to</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Konstantin+Novoselov">Konstantin Novoselov</a>, <a class="existingWikiWord" href="/nlab/show/Andre+Geim">Andre Geim</a>, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, <em>Electric field effect in atomically thin carbon films</em>, Science <strong>306</strong>, no. 5696, pp. 666-669 (2004) (<a href="http://dx.doi.org/10.1126/science.1102896">doi:10.1126/science.1102896</a>, <a href="https://arxiv.org/abs/cond-mat/0410550">arXiv:cond-mat/0410550</a>)</li> </ul> <p>(The procedure, won a Nobel Prize and the authors made it freely available without patenting.)</p> <p>Further discussion of the <a class="existingWikiWord" href="/nlab/show/electron+band+structure">electron band structure</a> of graphene:</p> <ul> <li>A. H. Castro Neto, F. Guinea, N. M. R. Peres, <a class="existingWikiWord" href="/nlab/show/Konstantin+S.+Novoselov">Konstantin S. Novoselov</a>, and <a class="existingWikiWord" href="/nlab/show/Andre+K.+Geim">Andre K. Geim</a>, <em>The electronic properties of graphene</em>, Rev. Mod. Phys. <strong>81</strong> (2009) 109 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/RevModPhys.81.109">doi:10.1103/RevModPhys.81.109</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <p>Computation of the (tiny) <a class="existingWikiWord" href="/nlab/show/spin-orbit+coupling">spin-orbit coupling</a> in graphene:</p> <ul> <li id="MHSSKM06">Hongki Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, Leonard Kleinman, A. H. MacDonald, <em>Intrinsic and Rashba spin-orbit interactions in graphene sheets</em>, Phys. Rev. B <strong>74</strong> (2006) 165310 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/PhysRevB.74.165310">doi:10.1103/PhysRevB.74.165310</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <p>Observation that the <a class="existingWikiWord" href="/nlab/show/spin-orbit+coupling">spin-orbit coupling</a> in graphene should open the gap at the <a class="existingWikiWord" href="/nlab/show/Dirac+points">Dirac points</a> revealing a <a class="existingWikiWord" href="/nlab/show/quantum+spin+Hall+effect">quantum spin Hall effect</a> in graphene:</p> <ul> <li id="KaneMele05a"> <p><a class="existingWikiWord" href="/nlab/show/Charles+Kane">Charles Kane</a>, <a class="existingWikiWord" href="/nlab/show/Eugene+Mele">Eugene Mele</a>, <em>Quantum Spin Hall Effect in Graphene</em>, Phys. Rev. Lett. 95, 226801 (2005) (<a href="https://arxiv.org/abs/cond-mat/0411737">arXiv:cond-mat/0411737</a>, <a href="https://doi.org/10.1103/PhysRevLett.95.226801">doi:10.1103/PhysRevLett.95.226801</a>)</p> </li> <li id="KaneMele05b"> <p><a class="existingWikiWord" href="/nlab/show/Charles+Kane">Charles Kane</a>, <a class="existingWikiWord" href="/nlab/show/Eugene+Mele">Eugene Mele</a>, <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Z</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">Z_2</annotation></semantics></math> Topological Order and the Quantum Spin Hall Effect</em>, Phys. Rev. Lett. <strong>95</strong> (2005) 146802 (<a href="https://doi.org/10.1103/PhysRevLett.95.146802">doi:10.1103/PhysRevLett.95.146802</a>)</p> </li> </ul> <p>Review:</p> <ul> <li id="WZLLJHD12"> <p>Nathan Weiss, Hailong Zhou, Lei Liao, Yuan Liu, Shan Jiang, Yu Huang, Xiangfeng Duan, <em>Graphene: an emerging electronic material</em>, Adv Mater. <strong>24</strong> (43) (2012) 5782-825 (<a href="https://doi.org/10.1002/adma.201201482">doi:10.1002/adma.201201482</a>)</p> </li> <li> <p>Wikipedia, <em><a href="https://en.wikipedia.org/wiki/Graphene">Graphene</a></em></p> </li> </ul> <p>Review in the context of <a class="existingWikiWord" href="/nlab/show/topological+phases+of+matter">topological phases of matter</a> and specifically topological <a class="existingWikiWord" href="/nlab/show/semi-metals">semi-metals</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/J%C3%A9r%C3%B4me+Cayssol">Jérôme Cayssol</a>, <a class="existingWikiWord" href="/nlab/show/Jean-No%C3%ABl+Fuchs">Jean-Noël Fuchs</a>, Section 6 of: <em>Topological and geometrical aspects of band theory</em>, J. Phys. Mater. <strong>4</strong> (2021) 034007 (<a href="https://arxiv.org/abs/2012.11941">arXiv:2012.11941</a>, <a href="https://doi.org/10.1088/2515-7639/abf0b5">doi:10.1088/2515-7639/abf0b5</a>)</li> </ul> <p>The 2+1 dim <a class="existingWikiWord" href="/nlab/show/Dirac+equation">Dirac equation</a> is used in modeling graphene:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Konstantin+Novoselov">Konstantin Novoselov</a>, <a class="existingWikiWord" href="/nlab/show/Andre+Geim">Andre Geim</a>, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, <em>Two-dimensional gas of massless Dirac fermions in graphene</em>, Nature <strong>438</strong>, 197-200 (2005) <a href="http://dx.doi.org/10.1038/nature04233">doi</a></p> </li> <li> <p>María A. H. Vozmediano, <em>Renormalization group aspects of graphene</em>, <a href="http://www.isis.stfc.ac.uk/groups/theory/downloads/the-strong-correlations-puzzle8120.pdf">pdf</a></p> </li> </ul> <p>On <a class="existingWikiWord" href="/nlab/show/non-perturbative+effects">non-perturbative effects</a> in graphene:</p> <ul> <li>Juan Angel Casimiro Olivares, Ana Julia Mizher, Alfredo Raya, <em>Non-perturbative field theoretical aspects of graphene and related systems</em> [<a href="https://arxiv.org/abs/2109.10420">arXi:2109.10420</a>]</li> </ul> <p>Discussion via <a class="existingWikiWord" href="/nlab/show/AdS-CFT+in+condensed+matter+physics">AdS-CFT in condensed matter physics</a>:</p> <ul> <li>Jeong-Won Seo, Taewon Yuk, Young-Kwon Han, Sang-Jin Sin, <em>ABC-stacked multilayer graphene in holography</em> [<a href="https://arxiv.org/abs/2208.14642">arXiv:2208.14642</a>]</li> </ul> <p>On fractional charges in graphene:</p> <ul> <li>Chang-Yu Hou, Claudio Chamon, Christopher Mudry, <em>Electron fractionalization in two-dimensional graphenelike structures</em>, Phys. Rev. Lett. <strong>98</strong> (2007) 186809 [<a href="https://arxiv.org/abs/cond-mat/0609740">arXiv:cond-mat/0609740</a>, <a href=" https://doi.org/10.1103/PhysRevLett.98.186809">doi:10.1103/PhysRevLett.98.186809</a>]</li> </ul> <h3 id="berry_connection">Berry connection</h3> <p>On “fictitious” contributions to the <a class="existingWikiWord" href="/nlab/show/Berry+connection">Berry connection</a> on the <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a> of graphene:</p> <ul> <li>Mircea Trif, Pramey Upadhyaya, Yaroslav Tserkovnyak, <em>Theory of electromechanical coupling in dynamical graphene</em>, Phys. Rev. B <strong>88</strong> 245423 (2013) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/PhysRevB.88.245423">doi:10.1103/PhysRevB.88.245423</a>, <a href="https://arxiv.org/abs/1210.7384">arXiv:1210.7384</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <h3 id="ReferencesMovementOfDiracPoints">Movement of Dirac points</h3> <p>Moving the nodal points in graphene(-variants) by changing external parameters such as lattice anisotropy or <a class="existingWikiWord" href="/nlab/show/strain">strain</a> (see also further discussion of external manipulation by strain <a href="topological+insulator#ReferencesOnExternalManipulationViaStrain">here</a>, and see the <a href="braid+group+statistics#ReferencesAnyonicBraidingInMomentumSpace">references on momentum-space braiding</a> of band nodes):</p> <ul> <li> <p>Cui-Lian Lia, <em>New position of Dirac points in the strained graphene reciprocal lattice</em>, AIP Advances <strong>4</strong> (2014) 087119 [<a href="https://doi.org/10.1063/1.4893239">doi:10.1063/1.4893239</a>]</p> </li> <li> <p>Marc Dvoraka, Zhigang Wu, <em>Dirac point movement and topological phase transition in patterned graphene</em>, Nanoscale <strong>7</strong> (2015) 3645-3650 [<a href="https://doi.org/10.1039/C4NR06454B">doi:10.1039/C4NR06454B</a>]</p> </li> <li> <p>Zhenzhu Li, Zhongfan Liu, Zhirong Liu: <em>Movement of Dirac points and band gaps in graphyne under rotating strain</em>, Nano Research <strong>10</strong> (2017) 2005–2020 [<a href="https://doi.org/10.1007/s12274-016-1388-z">doi:10.1007/s12274-016-1388-z</a>]</p> </li> <li> <p>Jian Kang, Oskar Vafek, <em>Non-Abelian Dirac node braiding and near-degeneracy of correlated phases at odd integer filling in magic angle twisted bilayer graphene</em>, Phys. Rev. B <strong>102</strong> (2020) 035161 [<a href="https://arxiv.org/abs/2002.10360">arXiv:2002.10360</a>, <a href="https://doi.org/10.1103/PhysRevB.102.035161">doi:10.1103/PhysRevB.102.035161</a>]</p> </li> </ul> <p>Movement of Dirac points in a cousin of the <a class="existingWikiWord" href="/nlab/show/Haldane+model">Haldane model</a>:</p> <ul> <li>Miguel Gonçalves, Pedro Ribeiro, Eduardo V. Castro, <em>Dirac points merging and wandering in a model Chern insulator</em>, Europhysics Letters <strong>124</strong> 6 (2018) [<a href="https://iopscience.iop.org/article/10.1209/0295-5075/124/67003">doi:10.1209/0295-5075/124/67003</a>]</li> </ul> <p>and in <a class="existingWikiWord" href="/nlab/show/photonic+crystal">photonic crystal</a>-analogs:</p> <ul> <li>Yong-Heng Lu et al., <em>Observing movement of Dirac cones from single-photon dynamics</em>, Phys. Rev. B <strong>103</strong> 064304 (2021) [<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.064304">doi:10.1103/PhysRevB.103.064304</a>]</li> </ul> <h3 id="holographic_description">Holographic description</h3> <p>On <a class="existingWikiWord" href="/nlab/show/AdS-CMT+duality">AdS-CMT duality</a> for graphene-like systems via full <a class="existingWikiWord" href="/nlab/show/supergravity">supergravity</a> (retaining the <a class="existingWikiWord" href="/nlab/show/gravitino">gravitino</a>):</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Laura+Andrianopoli">Laura Andrianopoli</a>, <a class="existingWikiWord" href="/nlab/show/Bianca+L.+Cerchiai">Bianca L. Cerchiai</a>, <a class="existingWikiWord" href="/nlab/show/Riccardo+D%27Auria">Riccardo D'Auria</a>, <a class="existingWikiWord" href="/nlab/show/Mario+Trigiante">Mario Trigiante</a>, <em>Unconventional Supersymmetry at the Boundary of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>AdS</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">AdS_4</annotation></semantics></math> Supergravity</em>, J. High Energ. Phys. <strong>2018</strong> 7 (2018) [<a href="https://arxiv.org/abs/1801.08081">arXiv:1801.08081</a>, <a href="https://doi.org/10.1007/JHEP04(2018)007">doi:10.1007/JHEP04(2018)007</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Laura+Andrianopoli">Laura Andrianopoli</a>, <a class="existingWikiWord" href="/nlab/show/Bianca+L.+Cerchiai">Bianca L. Cerchiai</a>, <a class="existingWikiWord" href="/nlab/show/Riccardo+D%27Auria">Riccardo D'Auria</a>, A. Gallerati, R. Noris, <a class="existingWikiWord" href="/nlab/show/Mario+Trigiante">Mario Trigiante</a>, <a class="existingWikiWord" href="/nlab/show/Jorge+Zanelli">Jorge Zanelli</a>, <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒩</mi></mrow><annotation encoding="application/x-tex">\mathcal{N}</annotation></semantics></math>-Extended <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>=</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">D=4</annotation></semantics></math> Supergravity, Unconventional SUSY and Graphene</em>, JHEP 01 (2020) 084 [<a href="https://arxiv.org/abs/1910.03508">arXiv:1910.03508</a>, <a href="https://doi.org/10.1007/JHEP01(2020)084">doi:10.1007/JHEP01(2020)084</a>]</p> </li> <li> <p>Antonio Gallerati, <em>Supersymmetric theories and graphene</em>, in <em>40th International Conference on High Energy physics</em> (ICHEP2020), PoS <strong>390</strong> (2021) [<a href="https://arxiv.org/abs/2104.07420">arXiv:2104.07420</a>, <a href="https://doi.org/10.22323/1.390.0662">doi:10.22323/1.390.0662</a>]</p> </li> </ul> <p>Exposition:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Bianca+L.+Cerchiai">Bianca L. Cerchiai</a>, <em>Supergravity in a pencil</em>, <a href="M-Theory+and+Mathematics#Cerchiai2020">talk at</a> <em><a class="existingWikiWord" href="/nlab/show/M-Theory+and+Mathematics">M-Theory and Mathematics</a> <a href="M-Theory+and+Mathematics#2020">2020</a></em>, NYU Abu Dhabi [<a class="existingWikiWord" href="/nlab/files/CerchiaiSlidesAtMTheoryAndMathematics2020.pdf" title="pdf slides">pdf slides</a>, video: <a href="https://youtu.be/xE7TmwyqqaU">YT</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bianca+L.+Cerchiai">Bianca L. Cerchiai</a>, <em>Holography, Supergravity and Graphene</em>, talk at <em>106th online SIF Congress</em> (2020) [<a href="https://agenda.infn.it/event/23656/contributions/120378/attachments/75347/96340/cerchiai_sif2020.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Cerciai-SIF2020.pdf" title="pdf">pdf</a>&r</p> </li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/physics">physics</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on June 9, 2024 at 20:11:54. See the <a href="/nlab/history/graphene" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/graphene" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/12324/#Item_6">Discuss</a><span class="backintime"><a href="/nlab/revision/graphene/19" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/graphene" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/graphene" accesskey="S" class="navlink" id="history" rel="nofollow">History (19 revisions)</a> <a href="/nlab/show/graphene/cite" style="color: black">Cite</a> <a href="/nlab/print/graphene" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/graphene" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>