CINXE.COM

Alexander polynomial (changes) in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Alexander polynomial (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Alexander polynomial (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/10870/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #14 to #15: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='knot_theory'>Knot theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/knot'>knot theory</a></strong></p> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/knot'>knot</a></strong>, <strong><a class='existingWikiWord' href='/nlab/show/diff/link'>link</a></strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/isotopy'>isotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/knot+complement'>knot complement</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/link+diagram'>knot diagrams</a>, <a class='existingWikiWord' href='/nlab/show/diff/chord+diagram'>chord diagram</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Reidemeister+move'>Reidemeister move</a></p> </li> </ul> <p><strong>Examples/classes:</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/trefoil+knot'>trefoil knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/torus+knot'>torus knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/singular+knot'>singular knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hyperbolic+link'>hyperbolic knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Borromean+link'>Borromean link</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Whitehead+link'>Whitehead link</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hopf+link'>Hopf link</a></p> </li> </ul> <p><strong>Types</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/prime+knot'>prime knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/mutant+knot'>mutant knot</a></p> </li> </ul> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/knot+invariant'>knot invariants</a></strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/crossing+number'>crossing number</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/bridge+number'>bridge number</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/unknotting+number'>unknotting number</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/colorable+knot'>colorability</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/knot+group'>knot group</a></p> </li> <li> <p><span class='newWikiWord'>knot genus<a href='/nlab/new/knot+genus'>?</a></span></p> </li> <li> <p>polynomial knot invariants</p> <p>(<a class='existingWikiWord' href='/nlab/show/diff/quantum+observable'>observables</a> of <a class='existingWikiWord' href='/nlab/show/diff/non-perturbative+quantum+field+theory'>non-perturbative</a> <a class='existingWikiWord' href='/nlab/show/diff/Chern-Simons+theory'>Chern-Simons theory</a>)</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Jones+polynomial'>Jones polynomial</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/HOMFLY-PT+polynomial'>HOMFLY polynomial</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Alexander+polynomial'>Alexander polynomial</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Reshetikhin-Turaev+construction'>Reshetikhin-Turaev invariants</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Vassiliev+invariant'>Vassiliev knot invariants</a></p> <p>(<a class='existingWikiWord' href='/nlab/show/diff/quantum+observable'>observables</a> of <a class='existingWikiWord' href='/nlab/show/diff/perturbative+quantum+field+theory'>pertrubative</a> <a class='existingWikiWord' href='/nlab/show/diff/Chern-Simons+theory'>Chern-Simons theory</a>)</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Khovanov+homology'>Khovanov homology</a></p> </li> <li> <p><span class='newWikiWord'>Kauffman bracket<a href='/nlab/new/Kauffman+bracket'>?</a></span></p> </li> </ul> <p><a class='existingWikiWord' href='/nlab/show/diff/link+invariant'>link invariants</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Milnor+mu-bar+invariant'>Milnor mu-bar invariants</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/linking+number'>linking number</a></p> </li> </ul> <p><strong>Related concepts:</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Vassiliev+skein+relation'>Vassiliev skein relation</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Seifert+surface'>Seifert surface</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/virtual+knot+theory'>virtual knot theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Dehn+surgery'>Dehn surgery</a>, <a class='existingWikiWord' href='/nlab/show/diff/Kirby+calculus'>Kirby calculus</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/volume+conjecture'>volume conjecture</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/arithmetic+topology'>arithmetic topology</a></p> </li> </ul> </div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#analogue_in_number_theory'>Analogue in number theory</a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>The <em>Alexander polynomial</em> (<a href='#Alexander28'>Alexander 1928</a>) is a <a class='existingWikiWord' href='/nlab/show/diff/polynomial'>polynomial</a> <a class='existingWikiWord' href='/nlab/show/diff/knot+invariant'>invariant</a> related to <a class='existingWikiWord' href='/nlab/show/diff/braid+representation'>braid representation</a>-theory (cf. the <em><a class='existingWikiWord' href='/nlab/show/diff/Burau+representation'>Burau representation</a></em>).</p> <p>There are several ways to look at thid invariant, some of these use the <a class='existingWikiWord' href='/nlab/show/diff/knot+group'>knot group</a> previously defined by <a class='existingWikiWord' href='/nlab/show/diff/Max+Dehn'>Max Dehn</a>, but there are also various combinatorial methods derived from Alexander’s original one. One of the best known methods is via <a class='existingWikiWord' href='/nlab/show/diff/Fox+derivative'>Fox derivatives</a> and is described in the classical text by <a class='existingWikiWord' href='/nlab/show/diff/Richard+Crowell'>Richard Crowell</a> and <a class='existingWikiWord' href='/nlab/show/diff/Ralph+Fox'>Ralph Fox</a>.</p> <p>(…)</p> <p>Consider some 3-manifold given as a <a class='existingWikiWord' href='/nlab/show/diff/surface'>surface</a> <a class='existingWikiWord' href='/nlab/show/diff/fiber+bundle'>fiber bundle</a> over the circle (notice the <em><a class='existingWikiWord' href='/nlab/show/diff/virtually+fibered+conjecture'>virtually fibered conjecture</a></em>). For a <a class='existingWikiWord' href='/nlab/show/diff/fiber'>fiber</a> surface <math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math>, the translation of the fibre around the base-space circle determines an element in the mapping-class group of <math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math>, a homeomorphism <math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>h</mi><mo lspace='verythinmathspace'>:</mo><mi>T</mi><mo>→</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>h\colon T \to T</annotation></semantics></math> well defined up to isotopy; this element is called the <em>holonomy</em> of the fiber surface; the <em>Alexander polynomial</em> is the <a class='existingWikiWord' href='/nlab/show/diff/characteristic+polynomial'>characteristic polynomial</a> of the map the holonomy induces on <math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy='false'>(</mo><mi>T</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>H_1(T)</annotation></semantics></math>.</p> <p>(<a href='#Stallings87'>Stallings 87</a>)</p> <h2 id='properties'>Properties</h2> <h3 id='analogue_in_number_theory'>Analogue in number theory</h3> <p>See <a href='#Sikora01'>Sikora 01, analogy 2.2 (10)</a>) for the comparison in <a class='existingWikiWord' href='/nlab/show/diff/arithmetic+topology'>arithmetic topology</a>, where Alexander-Fox theory is the analog of <a class='existingWikiWord' href='/nlab/show/diff/Iwasawa+theory'>Iwasawa theory</a> (<a href='#Morishita'>Morishita, section 7</a>).</p> <p>In <a href='#Sugiyama04'>Remark 3.3 of Sugiyama 04</a>, the Alexander polynomial is described as the L-function of the knot complement, taken there with the trivial represenation. As such it resembles the local zeta function of a curve.</p> <h2 id='related_concepts'>Related concepts</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Burau+representation'>Burau representation</a></li><ins class='diffins'> </ins><ins class='diffins'><li><a class='existingWikiWord' href='/nlab/show/diff/Fox+derivative'>Fox derivative</a></li></ins> </ul> <h2 id='references'>References</h2> <p>The original article:</p> <ul> <li id='Alexander28'><a class='existingWikiWord' href='/nlab/show/diff/James+W.+Alexander'>James W. Alexander</a>, <em>Topological invariants of knots and links</em>, Trans. Amer. Math. Soc. <strong>30</strong><span> (1928)<del class='diffmod'> 275-306</del><ins class='diffmod'> 275–306</ins></span><math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo></mrow><annotation encoding='application/x-tex'>[</annotation></semantics></math><a href='https://doi.org/10.1090/S0002-9947-1928-1501429-1'>doi:10.1090/S0002-9947-1928-1501429-1</a><math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>]</annotation></semantics></math></li> </ul> <p>Textbook accounts:</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Richard+Crowell'>R. H. Crowell</a> and <a class='existingWikiWord' href='/nlab/show/diff/Ralph+Fox'>R. H. Fox</a>, <em>Introduction to Knot Theory</em> Springer, Graduate Texts <strong>57</strong> (1963)</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Nick+Gilbert'>Nick Gilbert</a>, <a class='existingWikiWord' href='/nlab/show/diff/Tim+Porter'>Tim Porter</a>, <em>Knots and surfaces</em>, Oxford University Press (1994) [[ISBN:9780198514909](https://global.oup.com/academic/product/knots-and-surfaces-9780198514909?cc=de&amp;lang=en&amp;)]</p> </li> </ul> <p>See also:</p> <ul> <li id='Stallings87'> <p><a class='existingWikiWord' href='/nlab/show/diff/John+Stallings'>John Stallings</a>, <em>Constructions of fibered knots and links</em>, Proceedings of Symposia in Pure Mathematics <strong>32</strong> (1987) <math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo></mrow><annotation encoding='application/x-tex'>[</annotation></semantics></math><a href='http://www.maths.ed.ac.uk/~aar/papers/stallfib2.pdf'>pdf</a><math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>]</annotation></semantics></math></p> </li> <li> <p>Wikipedia, <em><a href='https://en.m.wikipedia.org/wiki/Alexander_polynomial'>Alexander polynomial</a></em></p> </li> </ul> <p>An analogue in number theory is the <em>Iwasawa polynomial</em>. Cf. for number theoretic analogies</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Barry+Mazur'>Barry Mazur</a>, <em>Remarks on the Alexander polynomial</em>, <a href='http://www.math.harvard.edu/~mazur/papers/alexander_polynomial.pdf'>pdf</a></p> </li> <li id='Morishita'> <p>Masanori Morishita, <em><span> Analogies between<del class='diffmod'> Knots</del><ins class='diffmod'> knots</ins> and<del class='diffmod'> Primes,</del><ins class='diffmod'> primes,</ins><del class='diffmod'> 3-Manifolds</del><ins class='diffmod'> 3-manifolds</ins> and<del class='diffmod'> Number</del><ins class='diffmod'> number</ins><del class='diffmod'> Rings</del><ins class='diffmod'> rings</ins></span></em>, (<a href='http://arxiv.org/abs/0904.3399'><span><del class='diffmod'> arxiv</del><ins class='diffmod'> arXiv:0904.3399</ins></span></a>)</p> </li> <li> <p>Masanori Morishita, Knots and primes: an introduction to arithmetic topology, Springer 2012, chapter 12</p> </li> <li> <p>Ken-ichi Sugiyama, <em>The properties of an L-function from a geometric point of view</em>, 2007 <a href='http://geoquant2007.mi.ras.ru/sugiyama.pdf'>pdf</a></p> </li> <li id='Sugiyama04'> <p>Ken-ichi Sugiyama, <em>A topological <math class='maruku-mathml' display='inline' id='mathml_018365952d6d52e66fcb35b5262d2f7e494378bf_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi mathvariant='normal'>L</mi></mrow><annotation encoding='application/x-tex'>\mathrm{L}</annotation></semantics></math> -function for a threefold</em>, 2004 <a href='http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1376-12.pdf'>pdf</a>;</p> </li> <li id='Sugiyama06'> <p>Ken-ichi Sugiyama <em>An analog of the Iwasawa conjecture for a compact hyperbolic threefold</em>, <a href='http://arxiv.org/abs/math/0606010'>math.GT/0606010</a></p> </li> <li id='Sikora01'> <p>Adam S. Sikora, <em>Analogies between group actions on 3-manifolds and number fields</em>, <a href='http://arxiv.org/abs/math/0107210'>arXiv:0107210</a></p> </li> </ul> <p>Other works</p> <ul> <li> <p>Takefumi Nosaka, <em>Twisted cohomology pairings of knots I; diagrammatic computation</em>, <a href='http://arxiv.org/abs/1602.01129'><span><del class='diffmod'> arxiv/1602.01129</del><ins class='diffmod'> arXiv:1602.01129</ins></span></a>; <em>Twisted cohomology pairings of knots II; to classical invariants</em>, <a href='http://arxiv.org/abs/1602.01131'><span><del class='diffmod'> arxivs/1602.01131</del><ins class='diffmod'> arXiv:1602.01131</ins></span></a></p> </li> <li> <p>V. Mishnyakov, A. Sleptsov, N. Tselousov, <em>A new symmetry of the colored Alexander polynomial</em><span><del class='diffmod'> </del><ins class='diffmod'> ,</ins><ins class='diffins'> Ann.</ins><ins class='diffins'> Henri</ins><ins class='diffins'> Poincaré</ins><ins class='diffins'> 22</ins><ins class='diffins'> (2021)</ins><ins class='diffins'> 1235–1265</ins> (</span><ins class='diffins'><a href='https://doi.org/10.1007/s00023-020-00980-8'>doi</a></ins><ins class='diffins'> </ins><a href='https://arxiv.org/abs/2001.10596'>arXiv:2001.10596</a>)</p> </li> </ul> <p> </p> <p><div class='property'> category: <a class='category_link' href='/nlab/list/knot+theory'>knot theory</a></div></p> </div> <div class="revisedby"> <p> Last revised on July 24, 2024 at 16:10:31. See the <a href="/nlab/history/Alexander+polynomial" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Alexander+polynomial" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/10870/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/Alexander+polynomial/14" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/Alexander+polynomial" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/Alexander+polynomial" accesskey="S" class="navlink" id="history" rel="nofollow">History (14 revisions)</a> <a href="/nlab/show/Alexander+polynomial/cite" style="color: black">Cite</a> <a href="/nlab/print/Alexander+polynomial" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Alexander+polynomial" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10