CINXE.COM
Logarithm - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Logarithm - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"180ce021-79f7-497d-9831-ee4739466e67","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Logarithm","wgTitle":"Logarithm","wgCurRevisionId":1258168520,"wgRevisionId":1258168520,"wgArticleId":17860,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Pages using the Phonos extension","CS1 Latin-language sources (la)","Articles containing German-language text","Articles with short description","Short description is different from Wikidata","Featured articles","Use dmy dates from June 2020","Use American English from January 2024","All Wikipedia articles written in American English","Articles containing Latin-language text","Commons category link from Wikidata", "Wikipedia articles incorporating a citation from the 1911 Encyclopaedia Britannica with Wikisource reference","Logarithms","Elementary special functions","Scottish inventions","Additive functions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Logarithm","wgRelevantArticleId":17860,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Base_of_a_logarithm","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgInternalRedirectTargetUrl": "/wiki/Logarithm","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11197","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.phonos.styles":"ready","ext.phonos.icons":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready", "jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.phonos.init","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession", "wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.phonos.icons%2Cstyles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/1200px-Logarithm_plots.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="910"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/800px-Logarithm_plots.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="607"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/640px-Logarithm_plots.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="485"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Logarithm - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Logarithm"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Logarithm&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Logarithm"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Logarithm rootpage-Logarithm skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Logarithm" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Logarithm" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Logarithm" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Logarithm" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Motivation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Motivation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Motivation</span> </div> </a> <ul id="toc-Motivation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Logarithmic_identities" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Logarithmic_identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Logarithmic identities</span> </div> </a> <button aria-controls="toc-Logarithmic_identities-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Logarithmic identities subsection</span> </button> <ul id="toc-Logarithmic_identities-sublist" class="vector-toc-list"> <li id="toc-Product,_quotient,_power,_and_root" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Product,_quotient,_power,_and_root"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Product, quotient, power, and root</span> </div> </a> <ul id="toc-Product,_quotient,_power,_and_root-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Change_of_base" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Change_of_base"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Change of base</span> </div> </a> <ul id="toc-Change_of_base-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Particular_bases" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Particular_bases"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Particular bases</span> </div> </a> <ul id="toc-Particular_bases-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logarithm_tables,_slide_rules,_and_historical_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Logarithm_tables,_slide_rules,_and_historical_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Logarithm tables, slide rules, and historical applications</span> </div> </a> <button aria-controls="toc-Logarithm_tables,_slide_rules,_and_historical_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Logarithm tables, slide rules, and historical applications subsection</span> </button> <ul id="toc-Logarithm_tables,_slide_rules,_and_historical_applications-sublist" class="vector-toc-list"> <li id="toc-Log_tables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Log_tables"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Log tables</span> </div> </a> <ul id="toc-Log_tables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Computations</span> </div> </a> <ul id="toc-Computations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Slide_rules" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Slide_rules"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Slide rules</span> </div> </a> <ul id="toc-Slide_rules-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Analytic_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Analytic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Analytic properties</span> </div> </a> <button aria-controls="toc-Analytic_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Analytic properties subsection</span> </button> <ul id="toc-Analytic_properties-sublist" class="vector-toc-list"> <li id="toc-Existence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Existence"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Existence</span> </div> </a> <ul id="toc-Existence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characterization_by_the_product_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characterization_by_the_product_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Characterization by the product formula</span> </div> </a> <ul id="toc-Characterization_by_the_product_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Graph_of_the_logarithm_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graph_of_the_logarithm_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Graph of the logarithm function</span> </div> </a> <ul id="toc-Graph_of_the_logarithm_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivative_and_antiderivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivative_and_antiderivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Derivative and antiderivative</span> </div> </a> <ul id="toc-Derivative_and_antiderivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integral_representation_of_the_natural_logarithm" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integral_representation_of_the_natural_logarithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Integral representation of the natural logarithm</span> </div> </a> <ul id="toc-Integral_representation_of_the_natural_logarithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transcendence_of_the_logarithm" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transcendence_of_the_logarithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Transcendence of the logarithm</span> </div> </a> <ul id="toc-Transcendence_of_the_logarithm-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Calculation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Calculation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Calculation</span> </div> </a> <button aria-controls="toc-Calculation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Calculation subsection</span> </button> <ul id="toc-Calculation-sublist" class="vector-toc-list"> <li id="toc-Power_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Power_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Power series</span> </div> </a> <ul id="toc-Power_series-sublist" class="vector-toc-list"> <li id="toc-Taylor_series" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Taylor_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1.1</span> <span>Taylor series</span> </div> </a> <ul id="toc-Taylor_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_hyperbolic_tangent" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Inverse_hyperbolic_tangent"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1.2</span> <span>Inverse hyperbolic tangent</span> </div> </a> <ul id="toc-Inverse_hyperbolic_tangent-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Arithmetic–geometric_mean_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arithmetic–geometric_mean_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Arithmetic–geometric mean approximation</span> </div> </a> <ul id="toc-Arithmetic–geometric_mean_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Feynman's_algorithm" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Feynman's_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Feynman's algorithm</span> </div> </a> <ul id="toc-Feynman's_algorithm-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Logarithmic_scale" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logarithmic_scale"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Logarithmic scale</span> </div> </a> <ul id="toc-Logarithmic_scale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Psychology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Psychology"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Psychology</span> </div> </a> <ul id="toc-Psychology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_theory_and_statistics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_theory_and_statistics"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Probability theory and statistics</span> </div> </a> <ul id="toc-Probability_theory_and_statistics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computational_complexity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computational_complexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.4</span> <span>Computational complexity</span> </div> </a> <ul id="toc-Computational_complexity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Entropy_and_chaos" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Entropy_and_chaos"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.5</span> <span>Entropy and chaos</span> </div> </a> <ul id="toc-Entropy_and_chaos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fractals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fractals"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.6</span> <span>Fractals</span> </div> </a> <ul id="toc-Fractals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Music" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Music"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.7</span> <span>Music</span> </div> </a> <ul id="toc-Music-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Number_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.8</span> <span>Number theory</span> </div> </a> <ul id="toc-Number_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-Complex_logarithm" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_logarithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Complex logarithm</span> </div> </a> <ul id="toc-Complex_logarithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverses_of_other_exponential_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverses_of_other_exponential_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Inverses of other exponential functions</span> </div> </a> <ul id="toc-Inverses_of_other_exponential_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_concepts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Related_concepts"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Related concepts</span> </div> </a> <ul id="toc-Related_concepts-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Logarithm</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 109 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-109" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">109 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Logaritme" title="Logaritme – Afrikaans" lang="af" hreflang="af" data-title="Logaritme" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Alemannic" lang="gsw" hreflang="gsw" data-title="Logarithmus" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8E%E1%8C%8B%E1%88%AA%E1%8B%9D%E1%88%9D" title="ሎጋሪዝም – Amharic" lang="am" hreflang="am" data-title="ሎጋሪዝም" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%84%D9%88%D8%BA%D8%A7%D8%B1%D9%8A%D8%AA%D9%85" title="لوغاريتم – Arabic" lang="ar" hreflang="ar" data-title="لوغاريتم" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Aragonese" lang="an" hreflang="an" data-title="Logaritmo" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%98%E0%A6%BE%E0%A6%A4%E0%A6%BE%E0%A6%82%E0%A6%95" title="ঘাতাংক – Assamese" lang="as" hreflang="as" data-title="ঘাতাংক" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Logaritmu" title="Logaritmu – Asturian" lang="ast" hreflang="ast" data-title="Logaritmu" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Loqarifm" title="Loqarifm – Azerbaijani" lang="az" hreflang="az" data-title="Loqarifm" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B2%E0%A6%97%E0%A6%BE%E0%A6%B0%E0%A6%BF%E0%A6%A6%E0%A6%AE" title="লগারিদম – Bangla" lang="bn" hreflang="bn" data-title="লগারিদম" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bjn mw-list-item"><a href="https://bjn.wikipedia.org/wiki/Logaritma" title="Logaritma – Banjar" lang="bjn" hreflang="bjn" data-title="Logaritma" data-language-autonym="Banjar" data-language-local-name="Banjar" class="interlanguage-link-target"><span>Banjar</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/T%C3%B9i-s%C3%B2%CD%98" title="Tùi-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Tùi-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Bashkir" lang="ba" hreflang="ba" data-title="Логарифм" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B3%D0%B0%D1%80%D1%8B%D1%84%D0%BC" title="Лагарыфм – Belarusian" lang="be" hreflang="be" data-title="Лагарыфм" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9B%D1%8F%D0%B3%D0%B0%D1%80%D1%8B%D1%82%D0%BC" title="Лягарытм – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Лягарытм" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Central Bikol" lang="bcl" hreflang="bcl" data-title="Logaritmo" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D1%8A%D0%BC" title="Логаритъм – Bulgarian" lang="bg" hreflang="bg" data-title="Логаритъм" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Logaritam" title="Logaritam – Bosnian" lang="bs" hreflang="bs" data-title="Logaritam" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Logaritm" title="Logaritm – Breton" lang="br" hreflang="br" data-title="Logaritm" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Логарифм" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Logaritme" title="Logaritme – Catalan" lang="ca" hreflang="ca" data-title="Logaritme" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Chuvash" lang="cv" hreflang="cv" data-title="Логарифм" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Logaritmus" title="Logaritmus – Czech" lang="cs" hreflang="cs" data-title="Logaritmus" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Daraunene" title="Daraunene – Shona" lang="sn" hreflang="sn" data-title="Daraunene" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Logarithm" title="Logarithm – Welsh" lang="cy" hreflang="cy" data-title="Logarithm" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Logaritme" title="Logaritme – Danish" lang="da" hreflang="da" data-title="Logaritme" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D9%84%D9%88%DA%AD%D8%A7%D8%B1%D9%8A%D8%AA%D9%85" title="لوڭاريتم – Moroccan Arabic" lang="ary" hreflang="ary" data-title="لوڭاريتم" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Logarithmus" title="Logarithmus – German" lang="de" hreflang="de" data-title="Logarithmus" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Logaritm" title="Logaritm – Estonian" lang="et" hreflang="et" data-title="Logaritm" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%AC%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%82" title="Λογάριθμος – Greek" lang="el" hreflang="el" data-title="Λογάριθμος" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Logar%C3%ACtem" title="Logarìtem – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Logarìtem" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Spanish" lang="es" hreflang="es" data-title="Logaritmo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Esperanto" lang="eo" hreflang="eo" data-title="Logaritmo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Logaritmu" title="Logaritmu – Extremaduran" lang="ext" hreflang="ext" data-title="Logaritmu" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Basque" lang="eu" hreflang="eu" data-title="Logaritmo" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%84%DA%AF%D8%A7%D8%B1%DB%8C%D8%AA%D9%85" title="لگاریتم – Persian" lang="fa" hreflang="fa" data-title="لگاریتم" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Logarithm" title="Logarithm – Fiji Hindi" lang="hif" hreflang="hif" data-title="Logarithm" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Logaritma" title="Logaritma – Faroese" lang="fo" hreflang="fo" data-title="Logaritma" data-language-autonym="Føroyskt" data-language-local-name="Faroese" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Logarithme" title="Logarithme – French" lang="fr" hreflang="fr" data-title="Logarithme" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Logartam" title="Logartam – Irish" lang="ga" hreflang="ga" data-title="Logartam" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Galician" lang="gl" hreflang="gl" data-title="Logaritmo" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8" title="對數 – Gan" lang="gan" hreflang="gan" data-title="對數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A1%9C%EA%B7%B8_(%EC%88%98%ED%95%99)" title="로그 (수학) – Korean" lang="ko" hreflang="ko" data-title="로그 (수학)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BC%D5%B8%D5%A3%D5%A1%D6%80%D5%AB%D5%A9%D5%B4" title="Լոգարիթմ – Armenian" lang="hy" hreflang="hy" data-title="Լոգարիթմ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B2%E0%A4%98%E0%A5%81%E0%A4%97%E0%A4%A3%E0%A4%95" title="लघुगणक – Hindi" lang="hi" hreflang="hi" data-title="लघुगणक" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Logaritam" title="Logaritam – Croatian" lang="hr" hreflang="hr" data-title="Logaritam" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Ido" lang="io" hreflang="io" data-title="Logaritmo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Logaritma" title="Logaritma – Indonesian" lang="id" hreflang="id" data-title="Logaritma" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Logarithmo" title="Logarithmo – Interlingua" lang="ia" hreflang="ia" data-title="Logarithmo" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Logri" title="Logri – Icelandic" lang="is" hreflang="is" data-title="Logri" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Italian" lang="it" hreflang="it" data-title="Logaritmo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9C%D7%95%D7%92%D7%A8%D7%99%D7%AA%D7%9D" title="לוגריתם – Hebrew" lang="he" hreflang="he" data-title="לוגריתם" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9A%E1%83%9D%E1%83%92%E1%83%90%E1%83%A0%E1%83%98%E1%83%97%E1%83%9B%E1%83%98" title="ლოგარითმი – Georgian" lang="ka" hreflang="ka" data-title="ლოგარითმი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Kazakh" lang="kk" hreflang="kk" data-title="Логарифм" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Logi" title="Logi – Swahili" lang="sw" hreflang="sw" data-title="Logi" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Logaritm" title="Logaritm – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Logaritm" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Latin" lang="la" hreflang="la" data-title="Logarithmus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Logaritms" title="Logaritms – Latvian" lang="lv" hreflang="lv" data-title="Logaritms" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Logaritmas" title="Logaritmas – Lithuanian" lang="lt" hreflang="lt" data-title="Logaritmas" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Logaritmo" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Logaritm" title="Logaritm – Lombard" lang="lmo" hreflang="lmo" data-title="Logaritm" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://hu.wikipedia.org/wiki/Logaritmus" title="Logaritmus – Hungarian" lang="hu" hreflang="hu" data-title="Logaritmus" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – Macedonian" lang="mk" hreflang="mk" data-title="Логаритам" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Anisa" title="Anisa – Malagasy" lang="mg" hreflang="mg" data-title="Anisa" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B2%E0%B5%8B%E0%B4%97%E0%B4%B0%E0%B4%BF%E0%B4%A4%E0%B4%82" title="ലോഗരിതം – Malayalam" lang="ml" hreflang="ml" data-title="ലോഗരിതം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B2%E0%A5%89%E0%A4%97%E0%A5%85%E0%A4%B0%E0%A4%BF%E0%A4%A6%E0%A4%AE" title="लॉगॅरिदम – Marathi" lang="mr" hreflang="mr" data-title="लॉगॅरिदम" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Logaritma" title="Logaritma – Malay" lang="ms" hreflang="ms" data-title="Logaritma" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9C%E1%80%B1%E1%80%AC%E1%80%B7%E1%80%82%E1%80%9B%E1%80%85%E1%80%BA%E1%80%9E%E1%80%99%E1%80%BA" title="လော့ဂရစ်သမ် – Burmese" lang="my" hreflang="my" data-title="လော့ဂရစ်သမ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Logaritme" title="Logaritme – Dutch" lang="nl" hreflang="nl" data-title="Logaritme" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0" title="対数 – Japanese" lang="ja" hreflang="ja" data-title="対数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Logaritme" title="Logaritme – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Logaritme" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Logaritme" title="Logaritme – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Logaritme" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Logaritme" title="Logaritme – Occitan" lang="oc" hreflang="oc" data-title="Logaritme" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Loogarizimii" title="Loogarizimii – Oromo" lang="om" hreflang="om" data-title="Loogarizimii" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Logarifm" title="Logarifm – Uzbek" lang="uz" hreflang="uz" data-title="Logarifm" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B2%E0%A8%98%E0%A9%82%E0%A8%97%E0%A8%A3%E0%A8%95" title="ਲਘੂਗਣਕ – Punjabi" lang="pa" hreflang="pa" data-title="ਲਘੂਗਣਕ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%84%D8%A7%DA%AF%D8%B1%D8%AA%DA%BE%D9%85" title="لاگرتھم – Western Punjabi" lang="pnb" hreflang="pnb" data-title="لاگرتھم" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Lagaridim" title="Lagaridim – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Lagaridim" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Logarithmus" title="Logarithmus – Low German" lang="nds" hreflang="nds" data-title="Logarithmus" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Logarytm" title="Logarytm – Polish" lang="pl" hreflang="pl" data-title="Logarytm" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://pt.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Portuguese" lang="pt" hreflang="pt" data-title="Logaritmo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Logaritm" title="Logaritm – Romanian" lang="ro" hreflang="ro" data-title="Logaritm" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Russian" lang="ru" hreflang="ru" data-title="Логарифм" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Yakut" lang="sah" hreflang="sah" data-title="Логарифм" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Logaritmet" title="Logaritmet – Albanian" lang="sq" hreflang="sq" data-title="Logaritmet" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Logaritmu" title="Logaritmu – Sicilian" lang="scn" hreflang="scn" data-title="Logaritmu" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BD%E0%B6%9D%E0%B7%94_%E0%B6%9C%E0%B6%AB%E0%B6%9A" title="ලඝු ගණක – Sinhala" lang="si" hreflang="si" data-title="ලඝු ගණක" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Logarithm" title="Logarithm – Simple English" lang="en-simple" hreflang="en-simple" data-title="Logarithm" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Logaritmus" title="Logaritmus – Slovak" lang="sk" hreflang="sk" data-title="Logaritmus" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Logaritem" title="Logaritem – Slovenian" lang="sl" hreflang="sl" data-title="Logaritem" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%84%DB%86%DA%AF%D8%A7%D8%B1%DB%8C%D8%AA%D9%85" title="لۆگاریتم – Central Kurdish" lang="ckb" hreflang="ckb" data-title="لۆگاریتم" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – Serbian" lang="sr" hreflang="sr" data-title="Логаритам" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh badge-Q70893996 mw-list-item" title=""><a href="https://sh.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Логаритам" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Logaritmi" title="Logaritmi – Finnish" lang="fi" hreflang="fi" data-title="Logaritmi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Logaritm" title="Logaritm – Swedish" lang="sv" hreflang="sv" data-title="Logaritm" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Tagalog" lang="tl" hreflang="tl" data-title="Logaritmo" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%9F%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%88" title="மடக்கை – Tamil" lang="ta" hreflang="ta" data-title="மடக்கை" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Tatar" lang="tt" hreflang="tt" data-title="Логарифм" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A5%E0%B8%AD%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%B4%E0%B8%97%E0%B8%B6%E0%B8%A1" title="ลอการิทึม – Thai" lang="th" hreflang="th" data-title="ลอการิทึม" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Logaritma" title="Logaritma – Turkish" lang="tr" hreflang="tr" data-title="Logaritma" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Ukrainian" lang="uk" hreflang="uk" data-title="Логарифм" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%84%D8%A7%DA%AF%D8%B1%D8%AA%DA%BE%D9%85" title="لاگرتھم – Urdu" lang="ur" hreflang="ur" data-title="لاگرتھم" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://vi.wikipedia.org/wiki/Logarit" title="Logarit – Vietnamese" lang="vi" hreflang="vi" data-title="Logarit" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Waray" lang="war" hreflang="war" data-title="Logaritmo" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0" title="对数 – Wu" lang="wuu" hreflang="wuu" data-title="对数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%9C%D7%90%D7%92%D7%90%D7%A8%D7%99%D7%98%D7%9D" title="לאגאריטם – Yiddish" lang="yi" hreflang="yi" data-title="לאגאריטם" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8" title="對數 – Cantonese" lang="yue" hreflang="yue" data-title="對數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Logaritma" title="Logaritma – Zazaki" lang="diq" hreflang="diq" data-title="Logaritma" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Luogar%C4%97tmos" title="Luogarėtmos – Samogitian" lang="sgs" hreflang="sgs" data-title="Luogarėtmos" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0" title="对数 – Chinese" lang="zh" hreflang="zh" data-title="对数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11197#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logarithm" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Logarithm" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logarithm"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logarithm&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logarithm&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Logarithm"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logarithm&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logarithm&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Logarithm" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Logarithm" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Logarithm&oldid=1258168520" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Logarithm&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Logarithm&id=1258168520&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLogarithm"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLogarithm"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Logarithm&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Logarithm&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Logarithm" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11197" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-featured-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Featured_articles*" title="This is a featured article. Click here for more information."><img alt="Featured article" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e7/Cscr-featured.svg/20px-Cscr-featured.svg.png" decoding="async" width="20" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e7/Cscr-featured.svg/30px-Cscr-featured.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e7/Cscr-featured.svg/40px-Cscr-featured.svg.png 2x" data-file-width="466" data-file-height="443" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Base_of_a_logarithm&redirect=no" class="mw-redirect" title="Base of a logarithm">Base of a logarithm</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical function, inverse of an exponential function</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Logarithm_plots.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/300px-Logarithm_plots.png" decoding="async" width="300" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/450px-Logarithm_plots.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/600px-Logarithm_plots.png 2x" data-file-width="1706" data-file-height="1294" /></a><figcaption>Plots of logarithm functions, with three commonly used bases. The special points <span class="texhtml">log<sub><i>b</i></sub> <i>b</i> = 1</span> are indicated by dotted lines, and all curves intersect in <span class="texhtml">log<sub><i>b</i></sub> 1 = 0</span>.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><table class="sidebar nomobile nowraplinks"><tbody><tr><td class="sidebar-above" style="background:#efefef;"> <span style="font-size:130%;"><a href="/wiki/Arithmetic_operations" class="mw-redirect" title="Arithmetic operations">Arithmetic operations</a></span><div class="navbar plainlinks hlist navbar-mini" style="float:right"><ul><li class="nv-view"><a href="/wiki/Template:Arithmetic_operations" title="Template:Arithmetic operations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Arithmetic_operations" title="Template talk:Arithmetic operations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Arithmetic_operations" title="Special:EditPage/Template:Arithmetic operations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr><tr><td class="sidebar-content" style="font-size:130%;"> <table class="infobox-subbox infobox-3cols-child infobox-table"><tbody><tr><th colspan="4" class="infobox-header"><a href="/wiki/Addition" title="Addition">Addition</a> (+)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>summand</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>summand</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>addend</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>addend</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>augend</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>addend</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea99a27b5a763ef48889c450ac8157083ea97118" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:20.217ex; height:9.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{sum}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>sum</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{sum}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8609baca9fdbc4c529f5894884a08122d695dad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.931ex; height:1.343ex;" alt="{\displaystyle \scriptstyle {\text{sum}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Subtraction" title="Subtraction">Subtraction</a> (−)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,-\,{\text{term}}\\\scriptstyle {\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>minuend</mtext> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>subtrahend</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,-\,{\text{term}}\\\scriptstyle {\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2780b756445a5f8f95b16c33e3b924f976958ea0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.356ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,-\,{\text{term}}\\\scriptstyle {\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{difference}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>difference</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{difference}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac22c4e24eef2036cff5bfea924cc0dbb30c5d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.857ex; height:1.676ex;" alt="{\displaystyle \scriptstyle {\text{difference}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Multiplication" title="Multiplication">Multiplication</a> (×)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{factor}}\,\times \,{\text{factor}}\\\scriptstyle {\text{multiplier}}\,\times \,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>factor</mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>factor</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>multiplier</mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>multiplicand</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{factor}}\,\times \,{\text{factor}}\\\scriptstyle {\text{multiplier}}\,\times \,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93f7b476e32221c7b05d356289c8085aef54059b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.176ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{factor}}\,\times \,{\text{factor}}\\\scriptstyle {\text{multiplier}}\,\times \,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <a href="/wiki/Product_(mathematics)" title="Product (mathematics)"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{product}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>product</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{product}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5c8b7509b8be1043622cb7b1b9a36ca8bfc2616" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.578ex; height:1.843ex;" alt="{\displaystyle \scriptstyle {\text{product}}}"></span></a></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division</a> (÷)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividend}}}{\scriptstyle {\text{divisor}}}}\\[1ex]\scriptstyle {\frac {\scriptstyle {\text{numerator}}}{\scriptstyle {\text{denominator}}}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="0.83em 0.4em" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>dividend</mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>divisor</mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>numerator</mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>denominator</mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividend}}}{\scriptstyle {\text{divisor}}}}\\[1ex]\scriptstyle {\frac {\scriptstyle {\text{numerator}}}{\scriptstyle {\text{denominator}}}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d5d22ff59234f0d437be740306e8dd905991e1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:14.15ex; height:8.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividend}}}{\scriptstyle {\text{divisor}}}}\\[1ex]\scriptstyle {\frac {\scriptstyle {\text{numerator}}}{\scriptstyle {\text{denominator}}}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <a href="/wiki/Quotient" title="Quotient"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left\{{\begin{matrix}\scriptstyle {\text{fraction}}\\\scriptstyle {\text{quotient}}\\\scriptstyle {\text{ratio}}\end{matrix}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>fraction</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>quotient</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>ratio</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left\{{\begin{matrix}\scriptstyle {\text{fraction}}\\\scriptstyle {\text{quotient}}\\\scriptstyle {\text{ratio}}\end{matrix}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2359c3ca6e50e7ae8065baa710440b3c79895023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:8.197ex; height:7.176ex;" alt="{\displaystyle \scriptstyle \left\{{\begin{matrix}\scriptstyle {\text{fraction}}\\\scriptstyle {\text{quotient}}\\\scriptstyle {\text{ratio}}\end{matrix}}\right.}"></span></a></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Exponentiation" title="Exponentiation">Exponentiation</a> (^)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{base}}^{\text{exponent}}\\\scriptstyle {\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>exponent</mtext> </mrow> </msup> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>power</mtext> </mrow> </msup> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{base}}^{\text{exponent}}\\\scriptstyle {\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb107371002b62a60fcbd13e742f4d81f872b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.618ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{base}}^{\text{exponent}}\\\scriptstyle {\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{power}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>power</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{power}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0d0a9fbffb659c0055d5ee6fde3f7f28e96f45c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.297ex; height:1.509ex;" alt="{\displaystyle \scriptstyle {\text{power}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Nth_root" title="Nth root"><i>n</i>th root</a> (√)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt[{\text{degree}}]{\scriptstyle {\text{radicand}}}}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>radicand</mtext> </mrow> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mtext>degree</mtext> </mrow> </mroot> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt[{\text{degree}}]{\scriptstyle {\text{radicand}}}}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5582d567e7e7fbcdb728291770905e09beb0ea18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.422ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\sqrt[{\text{degree}}]{\scriptstyle {\text{radicand}}}}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{root}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>root</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{root}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a015c1122190da3f1f1732d88b8bb03a8d7eb91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.928ex; height:1.676ex;" alt="{\displaystyle \scriptstyle {\text{root}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a class="mw-selflink selflink">Logarithm</a> (log)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \log _{\text{base}}({\text{anti-logarithm}})\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>anti-logarithm</mtext> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \log _{\text{base}}({\text{anti-logarithm}})\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2435266fcae4aa91d3d70a74bb91b5b35ef52edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.454ex; height:2.176ex;" alt="{\displaystyle \scriptstyle \log _{\text{base}}({\text{anti-logarithm}})\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{logarithm}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>logarithm</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{logarithm}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe5d50baa86b950ff6d15760b7a38df1f8d8c868" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.948ex; height:2.009ex;" alt="{\displaystyle \scriptstyle {\text{logarithm}}}"></span></td></tr></tbody></table></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Arithmetic_operations" title="Template:Arithmetic operations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Arithmetic_operations" title="Template talk:Arithmetic operations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Arithmetic_operations" title="Special:EditPage/Template:Arithmetic operations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>logarithm</b> to <b>base</b> <span class="texhtml mvar" style="font-style:italic;">b</span> is the inverse function of <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a> with base <span class="texhtml mvar" style="font-style:italic;">b</span>. That means that the logarithm of a number <span class="texhtml mvar" style="font-style:italic;">x</span> to the <b>base</b> <span class="texhtml mvar" style="font-style:italic;">b</span> is the <a href="/wiki/Exponent" class="mw-redirect" title="Exponent">exponent</a> to which <span class="texhtml mvar" style="font-style:italic;">b</span> must be raised to produce <span class="texhtml mvar" style="font-style:italic;">x</span>. For example, since <span class="texhtml">1000 = 10<sup>3</sup></span>, the <i>logarithm base</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span> of <span class="texhtml">1000</span> is <span class="texhtml">3</span>, or <span class="texhtml">log<sub>10</sub> (1000) = 3</span>. The logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span> to <i>base</i> <span class="texhtml mvar" style="font-style:italic;">b</span> is denoted as <span class="texhtml">log<sub><i>b</i></sub> (<i>x</i>)</span>, or without parentheses, <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span>. When the base is clear from the context or is irrelevant it is sometimes written <span class="texhtml">log <i>x</i></span>. </p><p>The logarithm base <span class="texhtml">10</span> is called the <i>decimal</i> or <a href="/wiki/Common_logarithm" title="Common logarithm"><i>common</i> logarithm</a> and is commonly used in science and engineering. The <a href="/wiki/Natural_logarithm" title="Natural logarithm"><i>natural</i> logarithm</a> has the number <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)"><span class="texhtml"><i>e</i> ≈ 2.718</span></a> as its base; its use is widespread in mathematics and <a href="/wiki/Physics" title="Physics">physics</a> because of its very simple <a href="/wiki/Derivative" title="Derivative">derivative</a>. The <a href="/wiki/Binary_logarithm" title="Binary logarithm"><i>binary</i> logarithm</a> uses base <span class="texhtml">2</span> and is frequently used in <a href="/wiki/Computer_science" title="Computer science">computer science</a>. </p><p>Logarithms were introduced by <a href="/wiki/John_Napier" title="John Napier">John Napier</a> in 1614 as a means of simplifying calculations.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> They were rapidly adopted by <a href="/wiki/Navigator" title="Navigator">navigators</a>, scientists, engineers, <a href="/wiki/Surveying" title="Surveying">surveyors</a>, and others to perform high-accuracy computations more easily. Using <a href="/wiki/Logarithm_table" class="mw-redirect" title="Logarithm table">logarithm tables</a>, tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition. This is possible because the logarithm of a <a href="/wiki/Product_(mathematics)" title="Product (mathematics)">product</a> is the <a href="/wiki/Summation" title="Summation">sum</a> of the logarithms of the factors: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72599165912508b07108f2a840898022ed126148" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.868ex; height:2.843ex;" alt="{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}"></span> provided that <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> are all positive and <span class="texhtml"><i>b</i> ≠ 1</span>. The <a href="/wiki/Slide_rule" title="Slide rule">slide rule</a>, also based on logarithms, allows quick calculations without tables, but at lower precision. The present-day notion of logarithms comes from <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>, who connected them to the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> in the 18th century, and who also introduced the letter <span class="texhtml mvar" style="font-style:italic;">e</span> as the base of natural logarithms.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Logarithmic_scale" title="Logarithmic scale">Logarithmic scales</a> reduce wide-ranging quantities to smaller scopes. For example, the <a href="/wiki/Decibel" title="Decibel">decibel</a> (dB) is a <a href="/wiki/Units_of_measurement" class="mw-redirect" title="Units of measurement">unit</a> used to express <a href="/wiki/Level_(logarithmic_quantity)" title="Level (logarithmic quantity)">ratio as logarithms</a>, mostly for signal power and amplitude (of which <a href="/wiki/Sound_pressure" title="Sound pressure">sound pressure</a> is a common example). In chemistry, <a href="/wiki/PH" title="PH">pH</a> is a logarithmic measure for the <a href="/wiki/Acid" title="Acid">acidity</a> of an <a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous solution</a>. Logarithms are commonplace in scientific <a href="/wiki/Formula" title="Formula">formulae</a>, and in measurements of the <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">complexity of algorithms</a> and of geometric objects called <a href="/wiki/Fractal" title="Fractal">fractals</a>. They help to describe <a href="/wiki/Frequency" title="Frequency">frequency</a> ratios of <a href="/wiki/Interval_(music)" title="Interval (music)">musical intervals</a>, appear in formulas counting <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> or <a href="/wiki/Stirling%27s_approximation" title="Stirling's approximation">approximating</a> <a href="/wiki/Factorial" title="Factorial">factorials</a>, inform some models in <a href="/wiki/Psychophysics" title="Psychophysics">psychophysics</a>, and can aid in <a href="/wiki/Forensic_accounting" title="Forensic accounting">forensic accounting</a>. </p><p>The concept of logarithm as the inverse of exponentiation extends to other mathematical structures as well. However, in general settings, the logarithm tends to be a multi-valued function. For example, the <a href="/wiki/Complex_logarithm" title="Complex logarithm">complex logarithm</a> is the multi-valued <a href="/wiki/Inverse_function" title="Inverse function">inverse</a> of the complex exponential function. Similarly, the <a href="/wiki/Discrete_logarithm" title="Discrete logarithm">discrete logarithm</a> is the multi-valued inverse of the exponential function in finite groups; it has uses in <a href="/wiki/Public-key_cryptography" title="Public-key cryptography">public-key cryptography</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Motivation">Motivation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=1" title="Edit section: Motivation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Binary_logarithm_plot_with_grid.png" class="mw-file-description"><img alt="Graph showing a logarithmic curve, crossing the x-axis at x= 1 and approaching minus infinity along the y-axis." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Binary_logarithm_plot_with_grid.png/300px-Binary_logarithm_plot_with_grid.png" decoding="async" width="300" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Binary_logarithm_plot_with_grid.png/450px-Binary_logarithm_plot_with_grid.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Binary_logarithm_plot_with_grid.png/600px-Binary_logarithm_plot_with_grid.png 2x" data-file-width="1704" data-file-height="1292" /></a><figcaption>The <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of the logarithm base 2 crosses the <a href="/wiki/X_axis" class="mw-redirect" title="X axis"><i>x</i>-axis</a> at <span class="texhtml"><i>x</i> = 1</span> and passes through the points <span class="nowrap">(2, 1)</span>, <span class="nowrap">(4, 2)</span>, and <span class="nowrap">(8, 3)</span>, depicting, e.g., <span class="texhtml">log<sub>2</sub>(8) = 3</span> and <span class="texhtml">2<sup>3</sup> = 8</span>. The graph gets arbitrarily close to the <span class="texhtml mvar" style="font-style:italic;">y</span>-axis, but <a href="/wiki/Asymptotic" class="mw-redirect" title="Asymptotic">does not meet it</a>.</figcaption></figure> <p><a href="/wiki/Addition" title="Addition">Addition</a>, <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, and <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a> are three of the most fundamental arithmetic operations. The inverse of addition is <a href="/wiki/Subtraction" title="Subtraction">subtraction</a>, and the inverse of multiplication is <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a>. Similarly, a logarithm is the inverse operation of <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a>. Exponentiation is when a number <span class="texhtml mvar" style="font-style:italic;">b</span>, the <i>base</i>, is raised to a certain power <span class="texhtml mvar" style="font-style:italic;">y</span>, the <i>exponent</i>, to give a value <span class="texhtml mvar" style="font-style:italic;">x</span>; this is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{y}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{y}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32d862a261be92079096455ce1af882eb1c15f99" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.122ex; height:2.343ex;" alt="{\displaystyle b^{y}=x.}"></span> For example, raising <span class="texhtml">2</span> to the power of <span class="texhtml">3</span> gives <span class="texhtml">8</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{3}=8.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mn>8.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{3}=8.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c3f620a5eabedc8d4791da4f800c50e570212a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.124ex; height:2.676ex;" alt="{\displaystyle 2^{3}=8.}"></span> </p><p>The logarithm of base <span class="texhtml mvar" style="font-style:italic;">b</span> is the inverse operation, that provides the output <span class="texhtml mvar" style="font-style:italic;">y</span> from the input <span class="texhtml mvar" style="font-style:italic;">x</span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\log _{b}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\log _{b}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181577dca8c4b040c22f3a8a794a772496c5ba67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.88ex; height:2.676ex;" alt="{\displaystyle y=\log _{b}x}"></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=b^{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=b^{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed854c1c6aed9b31c9d1140d89cacb98c5229dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.475ex; height:2.343ex;" alt="{\displaystyle x=b^{y}}"></span> if <span class="texhtml mvar" style="font-style:italic;">b</span> is a positive <a href="/wiki/Real_number" title="Real number">real number</a>. (If <span class="texhtml mvar" style="font-style:italic;">b</span> is not a positive real number, both exponentiation and logarithm can be defined but may take several values, which makes definitions much more complicated.) </p><p>One of the main historical motivations of introducing logarithms is the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72599165912508b07108f2a840898022ed126148" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.868ex; height:2.843ex;" alt="{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}"></span> by which <a href="/wiki/Logarithm_table" class="mw-redirect" title="Logarithm table">tables of logarithms</a> allow multiplication and division to be reduced to addition and subtraction, a great aid to calculations before the invention of computers. </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a positive <a href="/wiki/Real_number" title="Real number">real number</a> <span class="texhtml mvar" style="font-style:italic;">b</span> such that <span class="texhtml"><i>b</i> ≠ 1</span>, the <i>logarithm</i> of a positive real number <span class="texhtml mvar" style="font-style:italic;">x</span> with respect to base <span class="texhtml mvar" style="font-style:italic;">b</span><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>nb 1<span class="cite-bracket">]</span></a></sup> is the exponent by which <span class="texhtml mvar" style="font-style:italic;">b</span> must be raised to yield <span class="texhtml mvar" style="font-style:italic;">x</span>. In other words, the logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span> to base <span class="texhtml mvar" style="font-style:italic;">b</span> is the unique real number <span class="texhtml mvar" style="font-style:italic;">y</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{y}=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{y}=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b51b8dcca3e64714e2f3aba12bb8c68812f77cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.475ex; height:2.343ex;" alt="{\displaystyle b^{y}=x}"></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>The logarithm is denoted "<span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span>" (pronounced as "the logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span> to base <span class="texhtml mvar" style="font-style:italic;">b</span>", "the <span class="nowrap">base-<span class="texhtml mvar" style="font-style:italic;">b</span></span> logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span>", or most commonly "the log, base <span class="texhtml mvar" style="font-style:italic;">b</span>, of <span class="texhtml mvar" style="font-style:italic;">x</span>"). </p><p>An equivalent and more succinct definition is that the function <span class="texhtml">log<sub><i>b</i></sub></span> is the <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a> to the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto b^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto b^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/873987f9618fe2c30ce4e72cbd1a967ff759c1d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.114ex; height:2.343ex;" alt="{\displaystyle x\mapsto b^{x}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="texhtml">log<sub>2</sub> 16 = 4</span>, since <span class="texhtml">2<sup>4</sup> = 2 × 2 × 2 × 2 = 16</span>.</li> <li>Logarithms can also be negative: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{2}\!{\frac {1}{2}}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{2}\!{\frac {1}{2}}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac8b94168610cb7ed4c84db6c07c952c86b090a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.753ex; height:3.509ex;" alt="{\textstyle \log _{2}\!{\frac {1}{2}}=-1}"></span> since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 2^{-1}={\frac {1}{2^{1}}}={\frac {1}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 2^{-1}={\frac {1}{2^{1}}}={\frac {1}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7133bdd52feadc28a28fe4080716ebd22c813d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:14.487ex; height:4.009ex;" alt="{\textstyle 2^{-1}={\frac {1}{2^{1}}}={\frac {1}{2}}.}"></span></li> <li><span class="texhtml">log<sub>10</sub> 150</span> is approximately 2.176, which lies between 2 and 3, just as 150 lies between <span class="texhtml">10<sup>2</sup> = 100</span> and <span class="texhtml">10<sup>3</sup> = 1000</span>.</li> <li>For any base <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml">log<sub><i>b</i></sub> <i>b</i> = 1</span> and <span class="texhtml">log<sub><i>b</i></sub> 1 = 0</span>, since <span class="texhtml"><i>b</i><sup>1</sup> = <span class="texhtml mvar" style="font-style:italic;">b</span></span> and <span class="texhtml"><i>b</i><sup>0</sup> = 1</span>, respectively.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Logarithmic_identities">Logarithmic identities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=4" title="Edit section: Logarithmic identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_logarithmic_identities" title="List of logarithmic identities">List of logarithmic identities</a></div> <p>Several important formulas, sometimes called <i>logarithmic identities</i> or <i>logarithmic laws</i>, relate logarithms to one another.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Product,_quotient,_power,_and_root"><span id="Product.2C_quotient.2C_power.2C_and_root"></span>Product, quotient, power, and root</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=5" title="Edit section: Product, quotient, power, and root"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the <span class="texhtml mvar" style="font-style:italic;">p</span>-th power of a number is <span class="texhtml mvar" style="font-style:italic;">p</span> times the logarithm of the number itself; the logarithm of a <span class="texhtml mvar" style="font-style:italic;">p</span>-th root is the logarithm of the number divided by <span class="texhtml mvar" style="font-style:italic;">p</span>. The following table lists these identities with examples. Each of the identities can be derived after substitution of the logarithm definitions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=b^{\,\log _{b}x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=b^{\,\log _{b}x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3f8b602ea0c566a881f48b98516fcd1535adfc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.211ex; height:2.676ex;" alt="{\displaystyle x=b^{\,\log _{b}x}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=b^{\,\log _{b}y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=b^{\,\log _{b}y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b45059aa4f1349f9b5fae86c0d31015b3f55e434" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.913ex; height:3.009ex;" alt="{\displaystyle y=b^{\,\log _{b}y}}"></span> in the left hand sides. </p> <table class="wikitable plainrowheaders"> <caption>Product, quotient, power, and root identities of logarithms </caption> <tbody><tr> <th scope="col">Identity </th> <th scope="col">Formula </th> <th scope="col">Example </th></tr> <tr> <th scope="row">Product </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{b}(xy)=\log _{b}x+\log _{b}y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{b}(xy)=\log _{b}x+\log _{b}y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e4f0c2d6cea945fa78f11152fe8127a0649d65a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.221ex; height:2.843ex;" alt="{\textstyle \log _{b}(xy)=\log _{b}x+\log _{b}y}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{3}243=\log _{3}(9\cdot 27)=\log _{3}9+\log _{3}27=2+3=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>243</mn> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mn>27</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>9</mn> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>27</mn> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{3}243=\log _{3}(9\cdot 27)=\log _{3}9+\log _{3}27=2+3=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5edf603416a8561c82c90c121aef2db207d385fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.778ex; height:2.843ex;" alt="{\textstyle \log _{3}243=\log _{3}(9\cdot 27)=\log _{3}9+\log _{3}27=2+3=5}"></span> </td></tr> <tr> <th scope="row">Quotient </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{b}\!{\frac {x}{y}}=\log _{b}x-\log _{b}y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{b}\!{\frac {x}{y}}=\log _{b}x-\log _{b}y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a87dae414cbad13958321eb275688c81afc52c3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:22.703ex; height:3.343ex;" alt="{\textstyle \log _{b}\!{\frac {x}{y}}=\log _{b}x-\log _{b}y}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{2}16=\log _{2}\!{\frac {64}{4}}=\log _{2}64-\log _{2}4=6-2=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>16</mn> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>64</mn> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>64</mn> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>4</mn> <mo>=</mo> <mn>6</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{2}16=\log _{2}\!{\frac {64}{4}}=\log _{2}64-\log _{2}4=6-2=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb8136de3357cf09002709aa2c608431aa819ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:47.12ex; height:3.676ex;" alt="{\textstyle \log _{2}16=\log _{2}\!{\frac {64}{4}}=\log _{2}64-\log _{2}4=6-2=4}"></span> </td></tr> <tr> <th scope="row">Power </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{b}\left(x^{p}\right)=p\log _{b}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>p</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{b}\left(x^{p}\right)=p\log _{b}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02c0ee92ecd37daeb1e8e8375a09fc073f61b529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.389ex; height:2.843ex;" alt="{\textstyle \log _{b}\left(x^{p}\right)=p\log _{b}x}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{2}64=\log _{2}\left(2^{6}\right)=6\log _{2}2=6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>64</mn> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>2</mn> <mo>=</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{2}64=\log _{2}\left(2^{6}\right)=6\log _{2}2=6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9999f9b43799c609893876c509df0d2c8f6c752f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.693ex; height:3.343ex;" alt="{\textstyle \log _{2}64=\log _{2}\left(2^{6}\right)=6\log _{2}2=6}"></span> </td></tr> <tr> <th scope="row">Root </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{b}{\sqrt[{p}]{x}}={\frac {\log _{b}x}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{b}{\sqrt[{p}]{x}}={\frac {\log _{b}x}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68ca3b6cc8ff1c0192fb0e9206d32b14aec60e02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.662ex; height:4.176ex;" alt="{\textstyle \log _{b}{\sqrt[{p}]{x}}={\frac {\log _{b}x}{p}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \log _{10}{\sqrt {1000}}={\frac {1}{2}}\log _{10}1000={\frac {3}{2}}=1.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1000</mn> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>1000</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mn>1.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \log _{10}{\sqrt {1000}}={\frac {1}{2}}\log _{10}1000={\frac {3}{2}}=1.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c3e999db5ec9dbc719770862d56466dcf2b4421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:37.676ex; height:3.509ex;" alt="{\textstyle \log _{10}{\sqrt {1000}}={\frac {1}{2}}\log _{10}1000={\frac {3}{2}}=1.5}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Change_of_base">Change of base</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=6" title="Edit section: Change of base"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The logarithm <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span> can be computed from the logarithms of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> with respect to an arbitrary base <span class="texhtml mvar" style="font-style:italic;">k</span> using the following formula:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>nb 2<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}x={\frac {\log _{k}x}{\log _{k}b}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}x={\frac {\log _{k}x}{\log _{k}b}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6575863d29b357a7ba1ce0a4c1bb93a53b19e671" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.985ex; height:6.176ex;" alt="{\displaystyle \log _{b}x={\frac {\log _{k}x}{\log _{k}b}}.}"></span> </p><p>Typical <a href="/wiki/Scientific_calculators" class="mw-redirect" title="Scientific calculators">scientific calculators</a> calculate the logarithms to bases 10 and <span class="texhtml mvar" style="font-style:italic;"><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e</a></span>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Logarithms with respect to any base <span class="texhtml mvar" style="font-style:italic;">b</span> can be determined using either of these two logarithms by the previous formula: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}x={\frac {\log _{10}x}{\log _{10}b}}={\frac {\log _{e}x}{\log _{e}b}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}x={\frac {\log _{10}x}{\log _{10}b}}={\frac {\log _{e}x}{\log _{e}b}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b69f8613162e2ae7c46c99bc72402644e16ef317" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.394ex; height:6.176ex;" alt="{\displaystyle \log _{b}x={\frac {\log _{10}x}{\log _{10}b}}={\frac {\log _{e}x}{\log _{e}b}}.}"></span> </p><p>Given a number <span class="texhtml mvar" style="font-style:italic;">x</span> and its logarithm <span class="texhtml"><i>y</i> = log<sub><i>b</i></sub> <i>x</i></span> to an unknown base <span class="texhtml mvar" style="font-style:italic;">b</span>, the base is given by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=x^{\frac {1}{y}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>y</mi> </mfrac> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=x^{\frac {1}{y}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3fd9660ce8c1b5ba4ef5d2f1f08a8ed5dde5a08" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.808ex; height:3.843ex;" alt="{\displaystyle b=x^{\frac {1}{y}},}"></span> </p><p>which can be seen from taking the defining equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=b^{\,\log _{b}x}=b^{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=b^{\,\log _{b}x}=b^{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311f2504e15b12a0209f669134985b6b7deac7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.356ex; height:2.676ex;" alt="{\displaystyle x=b^{\,\log _{b}x}=b^{y}}"></span> to the power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{y}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>y</mi> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{y}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ffe0bbb43942183114c150f227a11184b4c11e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.305ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{y}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Particular_bases">Particular bases<span class="anchor" id="log_base_anchor"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=7" title="Edit section: Particular bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Log4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Log4.svg/260px-Log4.svg.png" decoding="async" width="260" height="226" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Log4.svg/390px-Log4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Log4.svg/520px-Log4.svg.png 2x" data-file-width="575" data-file-height="500" /></a><figcaption>Overlaid graphs of the logarithm for bases <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num"> 1 </span><span class="sr-only">/</span><span class="den"> 2 </span></span>⁠</span>, 2, and <span class="texhtml mvar" style="font-style:italic;">e</span></figcaption></figure> <p>Among all choices for the base, three are particularly common. These are <span class="texhtml"> <i>b</i> = 10</span>, <span class="texhtml"> <i>b</i> = <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)"><i>e</i></a></span> (the <a href="/wiki/Irrational_number" title="Irrational number">irrational</a> mathematical constant <span class="nowrap"><span class="texhtml"><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)"><i>e</i></a> ≈ 2.71828183 </span> ),</span> and <span class="texhtml"> <i>b</i> = 2</span> (the <a href="/wiki/Binary_logarithm" title="Binary logarithm">binary logarithm</a>). In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, the logarithm base <span class="texhtml mvar" style="font-style:italic;">e</span> is widespread because of analytical properties explained below. On the other hand, <span class="nowrap">base 10</span> logarithms (the <a href="/wiki/Common_logarithm" title="Common logarithm">common logarithm</a>) are easy to use for manual calculations in the <a href="/wiki/Decimal" title="Decimal">decimal</a> number system:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{10}\,(\,10\,x\,)\ =\;\log _{10}10\ +\;\log _{10}x\ =\ 1\,+\,\log _{10}x\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mspace width="thinmathspace" /> <mn>10</mn> <mspace width="thinmathspace" /> <mi>x</mi> <mspace width="thinmathspace" /> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>=</mo> <mspace width="thickmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>10</mn> <mtext> </mtext> <mo>+</mo> <mspace width="thickmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mtext> </mtext> <mo>=</mo> <mtext> </mtext> <mn>1</mn> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{10}\,(\,10\,x\,)\ =\;\log _{10}10\ +\;\log _{10}x\ =\ 1\,+\,\log _{10}x\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfa604c3444753377b366fd0e105138d408338f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.011ex; height:2.843ex;" alt="{\displaystyle \log _{10}\,(\,10\,x\,)\ =\;\log _{10}10\ +\;\log _{10}x\ =\ 1\,+\,\log _{10}x\,.}"></span> </p><p>Thus, <span class="texhtml">log<sub>10</sub> (<i>x</i>)</span> is related to the number of <a href="/wiki/Decimal_digit" class="mw-redirect" title="Decimal digit">decimal digits</a> of a positive integer <span class="texhtml mvar" style="font-style:italic;">x</span>: The number of digits is the smallest <a href="/wiki/Integer" title="Integer">integer</a> strictly bigger than <span class="nowrap"> <span class="texhtml"> log<sub>10</sub> (<i>x</i>)</span> .</span><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> For example, <span class="texhtml">log<sub>10</sub>(5986)</span> is approximately 3.78 . The <a href="/wiki/Floor_and_ceiling_functions" title="Floor and ceiling functions">next integer above</a> it is 4, which is the number of digits of 5986. Both the natural logarithm and the binary logarithm are used in <a href="/wiki/Information_theory" title="Information theory">information theory</a>, corresponding to the use of <a href="/wiki/Nat_(unit)" title="Nat (unit)">nats</a> or <a href="/wiki/Bit" title="Bit">bits</a> as the fundamental units of information, respectively.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Binary logarithms are also used in <a href="/wiki/Computer_science" title="Computer science">computer science</a>, where the <a href="/wiki/Binary_numeral_system" class="mw-redirect" title="Binary numeral system">binary system</a> is ubiquitous; in <a href="/wiki/Music_theory" title="Music theory">music theory</a>, where a pitch ratio of two (the <a href="/wiki/Octave" title="Octave">octave</a>) is ubiquitous and the number of <a href="/wiki/Cent_(music)" title="Cent (music)">cents</a> between any two pitches is a scaled version of the binary logarithm, or log 2 times 1200, of the pitch ratio (that is, 100 cents per <a href="/wiki/Semitone" title="Semitone">semitone</a> in <a href="/wiki/12_tone_equal_temperament" class="mw-redirect" title="12 tone equal temperament">conventional equal temperament</a>), or equivalently the log base <span class="nowrap"> <span class="texhtml">2<sup>1/1200</sup> </span> ;</span> and in <a href="/wiki/Photography" title="Photography">photography</a> rescaled base 2 logarithms are used to measure <a href="/wiki/Exposure_value" title="Exposure value">exposure values</a>, <a href="/wiki/Luminance" title="Luminance">light levels</a>, <a href="/wiki/Exposure_time" class="mw-redirect" title="Exposure time">exposure times</a>, lens <a href="/wiki/Aperture" title="Aperture">apertures</a>, and <a href="/wiki/Film_speed" title="Film speed">film speeds</a> in "stops".<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The abbreviation <span class="texhtml">log <i>x</i></span> is often used when the intended base can be inferred based on the context or discipline, or when the base is indeterminate or immaterial. Common logarithms (base 10), historically used in logarithm tables and slide rules, are a basic tool for measurement and computation in many areas of science and engineering; in these contexts <span class="texhtml">log <i>x</i></span> still often means the base ten logarithm.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> In mathematics <span class="texhtml">log <i>x</i></span> usually means to the natural logarithm (base <span class="texhtml mvar" style="font-style:italic;">e</span>).<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> In computer science and information theory, <span class="texhtml">log</span> often refers to binary logarithms (base 2). The following table lists common notations for logarithms to these bases. The "ISO notation" column lists designations suggested by the <a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">International Organization for Standardization</a>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="text-align:center;"> <tbody><tr> <th scope="col">Base <span class="texhtml mvar" style="font-style:italic;">b</span> </th> <th scope="col">Name for log<sub><i>b</i></sub> <i>x</i> </th> <th scope="col">ISO notation </th> <th scope="col">Other notations </th></tr> <tr> <th scope="row">2 </th> <td><a href="/wiki/Binary_logarithm" title="Binary logarithm">binary logarithm</a> </td> <td><span class="texhtml">lb <i>x</i></span> <sup id="cite_ref-gullberg_16-0" class="reference"><a href="#cite_note-gullberg-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </td> <td><span class="texhtml">ld <i>x</i></span>, <span class="texhtml">log <i>x</i></span>, <span class="texhtml">lg <i>x</i></span>,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> <span class="texhtml">log<sub>2</sub> <i>x</i></span> </td></tr> <tr> <th scope="row"><span class="texhtml mvar" style="font-style:italic;">e</span> </th> <td><a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> </td> <td><span class="texhtml">ln <i>x</i></span> <sup id="cite_ref-adaa_21-0" class="reference"><a href="#cite_note-adaa-21"><span class="cite-bracket">[</span>nb 3<span class="cite-bracket">]</span></a></sup> </td> <td><span class="texhtml">log <span class="texhtml mvar" style="font-style:italic;">x</span></span>, <span class="texhtml">log<sub><i>e</i></sub> <i>x</i></span> </td></tr> <tr> <th scope="row">10 </th> <td><a href="/wiki/Common_logarithm" title="Common logarithm">common logarithm</a> </td> <td><span class="texhtml">lg <i>x</i></span> </td> <td><span class="texhtml">log <i>x</i></span>, <span class="texhtml">log<sub>10</sub> <i>x</i></span> </td></tr> <tr> <th scope="row"><span class="texhtml mvar" style="font-style:italic;">b</span> </th> <td>logarithm to base <span class="texhtml mvar" style="font-style:italic;">b</span> </td> <td><span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span> </td> <td> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=8" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/History_of_logarithms" title="History of logarithms">History of logarithms</a></div> <p>The history of logarithms in seventeenth-century Europe saw the discovery of a new <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> that extended the realm of analysis beyond the scope of algebraic methods. The method of logarithms was publicly propounded by <a href="/wiki/John_Napier" title="John Napier">John Napier</a> in 1614, in a book titled <i><a href="/wiki/Mirifici_Logarithmorum_Canonis_Descriptio" title="Mirifici Logarithmorum Canonis Descriptio">Mirifici Logarithmorum Canonis Descriptio</a></i> (<i>Description of the Wonderful Canon of Logarithms</i>).<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Prior to Napier's invention, there had been other techniques of similar scopes, such as the <a href="/wiki/Prosthaphaeresis" title="Prosthaphaeresis">prosthaphaeresis</a> or the use of tables of progressions, extensively developed by <a href="/wiki/Jost_B%C3%BCrgi" title="Jost Bürgi">Jost Bürgi</a> around 1600.<sup id="cite_ref-folkerts_24-0" class="reference"><a href="#cite_note-folkerts-24"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Napier coined the term for logarithm in Middle Latin, <span title="Latin-language text"><i lang="la">logarithmus</i></span>, literally meaning <span class="gloss-quot">'</span><span class="gloss-text">ratio-number</span><span class="gloss-quot">'</span>, derived from the Greek <span title="Ancient Greek (to 1453)-language romanization"><i lang="grc-Latn">logos</i></span> <span class="gloss-quot">'</span><span class="gloss-text">proportion, ratio, word</span><span class="gloss-quot">'</span> + <span title="Ancient Greek (to 1453)-language romanization"><i lang="grc-Latn">arithmos</i></span> <span class="gloss-quot">'</span><span class="gloss-text">number</span><span class="gloss-quot">'</span>. </p><p>The <a href="/wiki/Common_logarithm" title="Common logarithm">common logarithm</a> of a number is the index of that power of ten which equals the number.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Speaking of a number as requiring so many figures is a rough allusion to common logarithm, and was referred to by <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> as the "order of a number".<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> The first real logarithms were heuristic methods to turn multiplication into addition, thus facilitating rapid computation. Some of these methods used tables derived from trigonometric identities.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> Such methods are called <a href="/wiki/Prosthaphaeresis" title="Prosthaphaeresis">prosthaphaeresis</a>. </p><p>Invention of the <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> now known as the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> began as an attempt to perform a <a href="/wiki/Quadrature_(mathematics)" class="mw-redirect" title="Quadrature (mathematics)">quadrature</a> of a rectangular <a href="/wiki/Hyperbola" title="Hyperbola">hyperbola</a> by <a href="/wiki/Gr%C3%A9goire_de_Saint-Vincent" title="Grégoire de Saint-Vincent">Grégoire de Saint-Vincent</a>, a Belgian Jesuit residing in Prague. Archimedes had written <i><a href="/wiki/The_Quadrature_of_the_Parabola" class="mw-redirect" title="The Quadrature of the Parabola">The Quadrature of the Parabola</a></i> in the third century BC, but a quadrature for the hyperbola eluded all efforts until Saint-Vincent published his results in 1647. The relation that the logarithm provides between a <a href="/wiki/Geometric_progression" title="Geometric progression">geometric progression</a> in its <a href="/wiki/Argument_of_a_function" title="Argument of a function">argument</a> and an <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progression</a> of values, prompted <a href="/wiki/A._A._de_Sarasa" class="mw-redirect" title="A. A. de Sarasa">A. A. de Sarasa</a> to make the connection of Saint-Vincent's quadrature and the tradition of logarithms in <a href="/wiki/Prosthaphaeresis" title="Prosthaphaeresis">prosthaphaeresis</a>, leading to the term "hyperbolic logarithm", a synonym for natural logarithm. Soon the new function was appreciated by <a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Christiaan Huygens</a>, and <a href="/wiki/James_Gregory_(mathematician)" title="James Gregory (mathematician)">James Gregory</a>. The notation <span class="texhtml">Log <i>y</i></span> was adopted by <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Leibniz</a> in 1675,<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and the next year he connected it to the <a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">integral</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int {\frac {dy}{y}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mi>y</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int {\frac {dy}{y}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/520963f5a439ba8538bb12cfe16fd0345e641385" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.965ex; height:4.176ex;" alt="{\textstyle \int {\frac {dy}{y}}.}"></span> </p><p>Before Euler developed his modern conception of complex natural logarithms, <a href="/wiki/Roger_Cotes#Mathematics" title="Roger Cotes">Roger Cotes</a> had a nearly equivalent result when he showed in 1714 that<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log(\cos \theta +i\sin \theta )=i\theta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <mi>θ<!-- θ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log(\cos \theta +i\sin \theta )=i\theta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dea630241d3f7d3497fb2fcae4dacb2434cc2010" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.371ex; height:2.843ex;" alt="{\displaystyle \log(\cos \theta +i\sin \theta )=i\theta .}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Logarithm_tables,_slide_rules,_and_historical_applications"><span id="Logarithm_tables.2C_slide_rules.2C_and_historical_applications"></span>Logarithm tables, slide rules, and historical applications<span class="anchor" id="Antilogarithm"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=9" title="Edit section: Logarithm tables, slide rules, and historical applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Logarithms_Britannica_1797.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Logarithms_Britannica_1797.png/360px-Logarithms_Britannica_1797.png" decoding="async" width="360" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Logarithms_Britannica_1797.png/540px-Logarithms_Britannica_1797.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/82/Logarithms_Britannica_1797.png/720px-Logarithms_Britannica_1797.png 2x" data-file-width="997" data-file-height="354" /></a><figcaption>The 1797 <i><a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a></i> explanation of logarithms</figcaption></figure> <p>By simplifying difficult calculations before calculators and computers became available, logarithms contributed to the advance of science, especially <a href="/wiki/Astronomy" title="Astronomy">astronomy</a>. They were critical to advances in <a href="/wiki/Surveying" title="Surveying">surveying</a>, <a href="/wiki/Celestial_navigation" title="Celestial navigation">celestial navigation</a>, and other domains. <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> called logarithms </p> <dl><dd><dl><dd>"...[a]n admirable artifice which, by reducing to a few days the labour of many months, doubles the life of the astronomer, and spares him the errors and disgust inseparable from long calculations."<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></dd></dl></dd></dl> <p>As the function <span class="texhtml"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup><i>x</i></sup></span> is the inverse function of <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span>, it has been called an <b>antilogarithm</b>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Nowadays, this function is more commonly called an <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Log_tables">Log tables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=10" title="Edit section: Log tables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A key tool that enabled the practical use of logarithms was the <i><a href="/wiki/Log_table" class="mw-redirect" title="Log table">table of logarithms</a></i>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> The first such table was compiled by <a href="/wiki/Henry_Briggs_(mathematician)" title="Henry Briggs (mathematician)">Henry Briggs</a> in 1617, immediately after Napier's invention but with the innovation of using 10 as the base. Briggs' first table contained the <a href="/wiki/Common_logarithm" title="Common logarithm">common logarithms</a> of all integers in the range from 1 to 1000, with a precision of 14 digits. Subsequently, tables with increasing scope were written. These tables listed the values of <span class="texhtml">log<sub>10</sub> <i>x</i></span> for any number <span class="texhtml mvar" style="font-style:italic;">x</span> in a certain range, at a certain precision. Base-10 logarithms were universally used for computation, hence the name common logarithm, since numbers that differ by factors of 10 have logarithms that differ by integers. The common logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span> can be separated into an <a href="/wiki/Integer_part" class="mw-redirect" title="Integer part">integer part</a> and a <a href="/wiki/Fractional_part" title="Fractional part">fractional part</a>, known as the characteristic and <a href="/wiki/Mantissa_(logarithm)" class="mw-redirect" title="Mantissa (logarithm)">mantissa</a>. Tables of logarithms need only include the mantissa, as the characteristic can be easily determined by counting digits from the decimal point.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> The characteristic of <span class="texhtml">10 · <span class="texhtml mvar" style="font-style:italic;">x</span></span> is one plus the characteristic of <span class="texhtml mvar" style="font-style:italic;">x</span>, and their mantissas are the same. Thus using a three-digit log table, the logarithm of 3542 is approximated by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\log _{10}3542&=\log _{10}(1000\cdot 3.542)\\&=3+\log _{10}3.542\\&\approx 3+\log _{10}3.54\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3542</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1000</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3.542</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>3</mn> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3.542</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>3</mn> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3.54</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\log _{10}3542&=\log _{10}(1000\cdot 3.542)\\&=3+\log _{10}3.542\\&\approx 3+\log _{10}3.54\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d53c38f1bbb1969092aeb2a950a315212ee7f8b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:32.018ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}\log _{10}3542&=\log _{10}(1000\cdot 3.542)\\&=3+\log _{10}3.542\\&\approx 3+\log _{10}3.54\end{aligned}}}"></span> </p><p>Greater accuracy can be obtained by <a href="/wiki/Interpolation" title="Interpolation">interpolation</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{10}3542\approx {}3+\log _{10}3.54+0.2(\log _{10}3.55-\log _{10}3.54)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3542</mn> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mn>3</mn> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3.54</mn> <mo>+</mo> <mn>0.2</mn> <mo stretchy="false">(</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3.55</mn> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mn>3.54</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{10}3542\approx {}3+\log _{10}3.54+0.2(\log _{10}3.55-\log _{10}3.54)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2394d5653802e38bea193035e2ec105a2399de94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.556ex; height:2.843ex;" alt="{\displaystyle \log _{10}3542\approx {}3+\log _{10}3.54+0.2(\log _{10}3.55-\log _{10}3.54)}"></span> </p><p>The value of <span class="texhtml">10<sup><i>x</i></sup></span> can be determined by reverse look up in the same table, since the logarithm is a <a href="/wiki/Monotonic_function" title="Monotonic function">monotonic function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Computations">Computations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=11" title="Edit section: Computations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The product and quotient of two positive numbers <span class="texhtml mvar" style="font-style:italic;">c</span> and <i><span class="texhtml mvar" style="font-style:italic;">d</span></i> were routinely calculated as the sum and difference of their logarithms. The product <span class="texhtml"><i>cd</i></span> or quotient <span class="texhtml"><i>c</i>/<i>d</i></span> came from looking up the antilogarithm of the sum or difference, via the same table: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle cd=10^{\,\log _{10}c}\,10^{\,\log _{10}d}=10^{\,\log _{10}c\,+\,\log _{10}d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>d</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>d</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>c</mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle cd=10^{\,\log _{10}c}\,10^{\,\log _{10}d}=10^{\,\log _{10}c\,+\,\log _{10}d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961312f47e633d6119627a74dbbd40fd6b284b9a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:38.785ex; height:2.676ex;" alt="{\displaystyle cd=10^{\,\log _{10}c}\,10^{\,\log _{10}d}=10^{\,\log _{10}c\,+\,\log _{10}d}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c}{d}}=cd^{-1}=10^{\,\log _{10}c\,-\,\log _{10}d}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>d</mi> </mfrac> </mrow> <mo>=</mo> <mi>c</mi> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>c</mi> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>d</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c}{d}}=cd^{-1}=10^{\,\log _{10}c\,-\,\log _{10}d}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55c9e13cc3cd58305405feeae0eb07d73d26cde7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.997ex; height:4.843ex;" alt="{\displaystyle {\frac {c}{d}}=cd^{-1}=10^{\,\log _{10}c\,-\,\log _{10}d}.}"></span> </p><p>For manual calculations that demand any appreciable precision, performing the lookups of the two logarithms, calculating their sum or difference, and looking up the antilogarithm is much faster than performing the multiplication by earlier methods such as <a href="/wiki/Prosthaphaeresis" title="Prosthaphaeresis">prosthaphaeresis</a>, which relies on <a href="/wiki/Trigonometric_identities" class="mw-redirect" title="Trigonometric identities">trigonometric identities</a>. </p><p>Calculations of powers and <a href="/wiki/Nth_root" title="Nth root">roots</a> are reduced to multiplications or divisions and lookups by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{d}=\left(10^{\,\log _{10}c}\right)^{d}=10^{\,d\log _{10}c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{d}=\left(10^{\,\log _{10}c}\right)^{d}=10^{\,d\log _{10}c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a448af3e9527c481ac770c0d90dba4157a8aa99" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.052ex; height:3.843ex;" alt="{\displaystyle c^{d}=\left(10^{\,\log _{10}c}\right)^{d}=10^{\,d\log _{10}c}}"></span> </p><p>and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{d}]{c}}=c^{\frac {1}{d}}=10^{{\frac {1}{d}}\log _{10}c}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>d</mi> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>c</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{d}]{c}}=c^{\frac {1}{d}}=10^{{\frac {1}{d}}\log _{10}c}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cee4c3ee52a4b250c30c38836d4d58a006ce74c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.737ex; height:4.176ex;" alt="{\displaystyle {\sqrt[{d}]{c}}=c^{\frac {1}{d}}=10^{{\frac {1}{d}}\log _{10}c}.}"></span> </p><p>Trigonometric calculations were facilitated by tables that contained the common logarithms of <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric functions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Slide_rules">Slide rules</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=12" title="Edit section: Slide rules"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another critical application was the <a href="/wiki/Slide_rule" title="Slide rule">slide rule</a>, a pair of logarithmically divided scales used for calculation. The non-sliding logarithmic scale, <a href="/wiki/Gunter%27s_rule" class="mw-redirect" title="Gunter's rule">Gunter's rule</a>, was invented shortly after Napier's invention. <a href="/wiki/William_Oughtred" title="William Oughtred">William Oughtred</a> enhanced it to create the slide rule—a pair of logarithmic scales movable with respect to each other. Numbers are placed on sliding scales at distances proportional to the differences between their logarithms. Sliding the upper scale appropriately amounts to mechanically adding logarithms, as illustrated here: </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Slide_rule_example2_with_labels.svg" class="mw-file-description"><img alt="A slide rule: two rectangles with logarithmically ticked axes, arrangement to add the distance from 1 to 2 to the distance from 1 to 3, indicating the product 6." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Slide_rule_example2_with_labels.svg/550px-Slide_rule_example2_with_labels.svg.png" decoding="async" width="550" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Slide_rule_example2_with_labels.svg/825px-Slide_rule_example2_with_labels.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Slide_rule_example2_with_labels.svg/1100px-Slide_rule_example2_with_labels.svg.png 2x" data-file-width="512" data-file-height="119" /></a><figcaption>Schematic depiction of a slide rule. Starting from 2 on the lower scale, add the distance to 3 on the upper scale to reach the product 6. The slide rule works because it is marked such that the distance from 1 to <span class="texhtml mvar" style="font-style:italic;">x</span> is proportional to the logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span>.</figcaption></figure> <p>For example, adding the distance from 1 to 2 on the lower scale to the distance from 1 to 3 on the upper scale yields a product of 6, which is read off at the lower part. The slide rule was an essential calculating tool for engineers and scientists until the 1970s, because it allows, at the expense of precision, much faster computation than techniques based on tables.<sup id="cite_ref-ReferenceA_35-0" class="reference"><a href="#cite_note-ReferenceA-35"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Analytic_properties">Analytic properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=13" title="Edit section: Analytic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A deeper study of logarithms requires the concept of a <i><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a></i>. A function is a rule that, given one number, produces another number.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> An example is the function producing the <span class="texhtml mvar" style="font-style:italic;">x</span>-th power of <span class="texhtml mvar" style="font-style:italic;">b</span> from any real number <span class="texhtml mvar" style="font-style:italic;">x</span>, where the base <span class="texhtml mvar" style="font-style:italic;">b</span> is a fixed number. This function is written as <span class="texhtml"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup> <i>x</i></sup></span>. When <span class="texhtml mvar" style="font-style:italic;">b</span> is positive and unequal to 1, we show below that <span class="texhtml mvar" style="font-style:italic;">f</span> is invertible when considered as a function from the reals to the positive reals. </p> <div class="mw-heading mw-heading3"><h3 id="Existence">Existence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=14" title="Edit section: Existence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">b</span> be a positive real number not equal to 1 and let <span class="texhtml"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup> <i>x</i></sup></span>. </p><p>It is a standard result in real analysis that any continuous strictly monotonic function is bijective between its domain and range. This fact follows from the <a href="/wiki/Intermediate_value_theorem" title="Intermediate value theorem">intermediate value theorem</a>.<sup id="cite_ref-LangIII.3_37-0" class="reference"><a href="#cite_note-LangIII.3-37"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> Now, <span class="texhtml mvar" style="font-style:italic;">f</span> is <a href="/wiki/Monotonic_function" title="Monotonic function">strictly increasing</a> (for <span class="texhtml"><i>b</i> > 1</span>), or strictly decreasing (for <span class="texhtml">0 < <span class="texhtml mvar" style="font-style:italic;">b</span> < 1</span>),<sup id="cite_ref-LangIV.2_38-0" class="reference"><a href="#cite_note-LangIV.2-38"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> is continuous, has domain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, and has range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{>0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{>0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/731b0a191e1eb70161af731d0d567b236457074f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.011ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{>0}}"></span>. Therefore, <span class="texhtml mvar" style="font-style:italic;">f</span> is a bijection from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{>0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{>0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/731b0a191e1eb70161af731d0d567b236457074f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.011ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} _{>0}}"></span>. In other words, for each positive real number <span class="texhtml mvar" style="font-style:italic;">y</span>, there is exactly one real number <span class="texhtml mvar" style="font-style:italic;">x</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{x}=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{x}=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711753605e98f4d42b75fe61254c3b8f311a5fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.424ex; height:2.676ex;" alt="{\displaystyle b^{x}=y}"></span>. </p><p>We let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}\colon \mathbb {R} _{>0}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>:<!-- : --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>></mo> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}\colon \mathbb {R} _{>0}\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6e100b69edcf61555f7a41633c3c34c1a969a97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.246ex; height:2.676ex;" alt="{\displaystyle \log _{b}\colon \mathbb {R} _{>0}\to \mathbb {R} }"></span> denote the inverse of <span class="texhtml mvar" style="font-style:italic;">f</span>. That is, <span class="texhtml">log<sub><i>b</i></sub> <i>y</i></span> is the unique real number <span class="texhtml mvar" style="font-style:italic;">x</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{x}=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{x}=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711753605e98f4d42b75fe61254c3b8f311a5fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.424ex; height:2.676ex;" alt="{\displaystyle b^{x}=y}"></span>. This function is called the base-<span class="texhtml mvar" style="font-style:italic;">b</span> <i>logarithm function</i> or <i>logarithmic function</i> (or just <i>logarithm</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Characterization_by_the_product_formula">Characterization by the product formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=15" title="Edit section: Characterization by the product formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The function <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span> can also be essentially characterized by the product formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c1de92e0c333c4644f8866e417ea56e715324ec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.868ex; height:2.843ex;" alt="{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y.}"></span> More precisely, the logarithm to any base <span class="texhtml"><i>b</i> > 1</span> is the only <a href="/wiki/Increasing_function" class="mw-redirect" title="Increasing function">increasing function</a> <i>f</i> from the positive reals to the reals satisfying <span class="texhtml"><i>f</i>(<i>b</i>) = 1</span> and<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(xy)=f(x)+f(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(xy)=f(x)+f(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee6f0eb6e355d16f673a0d4a21705e24a227008" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.82ex; height:2.843ex;" alt="{\displaystyle f(xy)=f(x)+f(y).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Graph_of_the_logarithm_function">Graph of the logarithm function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=16" title="Edit section: Graph of the logarithm function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Logarithm_inversefunctiontoexp.svg" class="mw-file-description"><img alt="The graphs of two functions." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/220px-Logarithm_inversefunctiontoexp.svg.png" decoding="async" width="220" height="256" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/330px-Logarithm_inversefunctiontoexp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/440px-Logarithm_inversefunctiontoexp.svg.png 2x" data-file-width="240" data-file-height="279" /></a><figcaption>The graph of the logarithm function <span class="texhtml">log<sub><i>b</i></sub> (<i>x</i>)</span> (blue) is obtained by <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflecting</a> the graph of the function <span class="texhtml"><i>b</i><sup><i>x</i></sup></span> (red) at the diagonal line (<span class="texhtml"><i>x</i> = <span class="texhtml mvar" style="font-style:italic;">y</span></span>).</figcaption></figure> <p>As discussed above, the function <span class="texhtml">log<sub><i>b</i></sub></span> is the inverse to the exponential function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto b^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto b^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/873987f9618fe2c30ce4e72cbd1a967ff759c1d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.114ex; height:2.343ex;" alt="{\displaystyle x\mapsto b^{x}}"></span>. Therefore, their <a href="/wiki/Graph_of_a_function" title="Graph of a function">graphs</a> correspond to each other upon exchanging the <span class="texhtml mvar" style="font-style:italic;">x</span>- and the <span class="texhtml mvar" style="font-style:italic;">y</span>-coordinates (or upon reflection at the diagonal line <span class="texhtml"><i>x</i> = <i>y</i></span>), as shown at the right: a point <span class="texhtml">(<i>t</i>, <i>u</i> = <span class="texhtml mvar" style="font-style:italic;">b</span><sup><i>t</i></sup>)</span> on the graph of <span class="texhtml mvar" style="font-style:italic;">f</span> yields a point <span class="texhtml">(<i>u</i>, <i>t</i> = log<sub><i>b</i></sub> <i>u</i>)</span> on the graph of the logarithm and vice versa. As a consequence, <span class="texhtml">log<sub><i>b</i></sub> (<i>x</i>)</span> <a href="/wiki/Divergent_sequence" class="mw-redirect" title="Divergent sequence">diverges to infinity</a> (gets bigger than any given number) if <span class="texhtml mvar" style="font-style:italic;">x</span> grows to infinity, provided that <span class="texhtml mvar" style="font-style:italic;">b</span> is greater than one. In that case, <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span> is an <a href="/wiki/Increasing_function" class="mw-redirect" title="Increasing function">increasing function</a>. For <span class="texhtml"><i>b</i> < 1</span>, <span class="texhtml">log<sub><i>b</i></sub> (<i>x</i>)</span> tends to minus infinity instead. When <span class="texhtml mvar" style="font-style:italic;">x</span> approaches zero, <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span> goes to minus infinity for <span class="texhtml"><i>b</i> > 1</span> (plus infinity for <span class="texhtml"><i>b</i> < 1</span>, respectively). </p> <div class="mw-heading mw-heading3"><h3 id="Derivative_and_antiderivative">Derivative and antiderivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=17" title="Edit section: Derivative and antiderivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Logarithm_derivative.svg" class="mw-file-description"><img alt="A graph of the logarithm function and a line touching it in one point." src="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/Logarithm_derivative.svg/220px-Logarithm_derivative.svg.png" decoding="async" width="220" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/Logarithm_derivative.svg/330px-Logarithm_derivative.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/57/Logarithm_derivative.svg/440px-Logarithm_derivative.svg.png 2x" data-file-width="375" data-file-height="243" /></a><figcaption>The graph of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> (green) and its tangent at <span class="texhtml"><i>x</i> = 1.5</span> (black)</figcaption></figure> <p>Analytic properties of functions pass to their inverses.<sup id="cite_ref-LangIII.3_37-1" class="reference"><a href="#cite_note-LangIII.3-37"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> Thus, as <span class="texhtml"><i>f</i>(<i>x</i>) = <span class="texhtml mvar" style="font-style:italic;">b</span><sup><i>x</i></sup></span> is a continuous and <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable function</a>, so is <span class="texhtml">log<sub><i>b</i></sub> <i>y</i></span>. Roughly, a continuous function is differentiable if its graph has no sharp "corners". Moreover, as the <a href="/wiki/Derivative" title="Derivative">derivative</a> of <span class="texhtml"><i>f</i>(<i>x</i>)</span> evaluates to <span class="texhtml">ln(<i>b</i>) <i>b</i><sup><i>x</i></sup></span> by the properties of the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>, the <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a> implies that the derivative of <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span> is given by<sup id="cite_ref-LangIV.2_38-1" class="reference"><a href="#cite_note-LangIV.2-38"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\log _{b}x={\frac {1}{x\ln b}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\log _{b}x={\frac {1}{x\ln b}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c36ba5e891172556f0477a117831310bcd38869c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.017ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\log _{b}x={\frac {1}{x\ln b}}.}"></span> That is, the <a href="/wiki/Slope" title="Slope">slope</a> of the <a href="/wiki/Tangent" title="Tangent">tangent</a> touching the graph of the <span class="texhtml">base-<i>b</i></span> logarithm at the point <span class="texhtml">(<i>x</i>, log<sub><i>b</i></sub> (<i>x</i>))</span> equals <span class="texhtml">1/(<i>x</i> ln(<i>b</i>))</span>. </p><p>The derivative of <span class="texhtml">ln(<i>x</i>)</span> is <span class="texhtml">1/<i>x</i></span>; this implies that <span class="texhtml">ln(<i>x</i>)</span> is the unique <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> of <span class="texhtml">1/<i>x</i></span> that has the value 0 for <span class="texhtml"><i>x</i> = 1</span>. It is this very simple formula that motivated to qualify as "natural" the natural logarithm; this is also one of the main reasons of the importance of the <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">constant <span class="texhtml mvar" style="font-style:italic;">e</span></a>. </p><p>The derivative with a generalized functional argument <span class="texhtml"><i>f</i>(<i>x</i>)</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\ln f(x)={\frac {f'(x)}{f(x)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\ln f(x)={\frac {f'(x)}{f(x)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06fb9da0538b2a1eefa892ebbfbc3fffdc98bc0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.238ex; height:6.509ex;" alt="{\displaystyle {\frac {d}{dx}}\ln f(x)={\frac {f'(x)}{f(x)}}.}"></span> The quotient at the right hand side is called the <a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">logarithmic derivative</a> of <i><span class="texhtml mvar" style="font-style:italic;">f</span></i>. Computing <span class="texhtml"><i>f'</i>(<i>x</i>)</span> by means of the derivative of <span class="texhtml">ln(<i>f</i>(<i>x</i>))</span> is known as <a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">logarithmic differentiation</a>.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> The antiderivative of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> <span class="texhtml">ln(<i>x</i>)</span> is:<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo>+</mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffcaf5c8b14b232de9ff79e9ae0960ea4966bd10" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.909ex; height:5.676ex;" alt="{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C.}"></span> <a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">Related formulas</a>, such as antiderivatives of logarithms to other bases can be derived from this equation using the change of bases.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Integral_representation_of_the_natural_logarithm">Integral representation of the natural logarithm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=18" title="Edit section: Integral representation of the natural logarithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Natural_logarithm_integral.svg" class="mw-file-description"><img alt="A hyperbola with part of the area underneath shaded in grey." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Natural_logarithm_integral.svg/220px-Natural_logarithm_integral.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Natural_logarithm_integral.svg/330px-Natural_logarithm_integral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Natural_logarithm_integral.svg/440px-Natural_logarithm_integral.svg.png 2x" data-file-width="601" data-file-height="301" /></a><figcaption>The <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> of <i><span class="texhtml mvar" style="font-style:italic;">t</span></i> is the shaded area underneath the graph of the function <span class="texhtml"><i>f</i>(<i>x</i>) = 1/<i>x</i></span>.</figcaption></figure> <p>The <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> of <span class="texhtml mvar" style="font-style:italic;">t</span> can be defined as the <a href="/wiki/Definite_integral" class="mw-redirect" title="Definite integral">definite integral</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>t</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab90a884aa3cc91d3cdcfb9b39992598131621e1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.687ex; height:6.176ex;" alt="{\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.}"></span> This definition has the advantage that it does not rely on the exponential function or any trigonometric functions; the definition is in terms of an integral of a simple reciprocal. As an integral, <span class="texhtml">ln(<i>t</i>)</span> equals the area between the <span class="texhtml mvar" style="font-style:italic;">x</span>-axis and the graph of the function <span class="texhtml">1/<i>x</i></span>, ranging from <span class="texhtml"><i>x</i> = 1</span> to <span class="texhtml"><i>x</i> = <i>t</i></span>. This is a consequence of the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a> and the fact that the derivative of <span class="texhtml">ln(<i>x</i>)</span> is <span class="texhtml">1/<i>x</i></span>. Product and power logarithm formulas can be derived from this definition.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> For example, the product formula <span class="texhtml">ln(<i>tu</i>) = ln(<i>t</i>) + ln(<i>u</i>)</span> is deduced as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln(tu)&=\int _{1}^{tu}{\frac {1}{x}}\,dx\\&{\stackrel {(1)}{=}}\int _{1}^{t}{\frac {1}{x}}\,dx+\int _{t}^{tu}{\frac {1}{x}}\,dx\\&{\stackrel {(2)}{=}}\ln(t)+\int _{1}^{u}{\frac {1}{w}}\,dw\\&=\ln(t)+\ln(u).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mi>u</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>u</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mover> </mrow> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>u</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mover> </mrow> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln(tu)&=\int _{1}^{tu}{\frac {1}{x}}\,dx\\&{\stackrel {(1)}{=}}\int _{1}^{t}{\frac {1}{x}}\,dx+\int _{t}^{tu}{\frac {1}{x}}\,dx\\&{\stackrel {(2)}{=}}\ln(t)+\int _{1}^{u}{\frac {1}{w}}\,dw\\&=\ln(t)+\ln(u).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eed3e6eef0b8687b84a9776500c48a2793b25017" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:30.49ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}\ln(tu)&=\int _{1}^{tu}{\frac {1}{x}}\,dx\\&{\stackrel {(1)}{=}}\int _{1}^{t}{\frac {1}{x}}\,dx+\int _{t}^{tu}{\frac {1}{x}}\,dx\\&{\stackrel {(2)}{=}}\ln(t)+\int _{1}^{u}{\frac {1}{w}}\,dw\\&=\ln(t)+\ln(u).\end{aligned}}}"></span> </p><p>The equality (1) splits the integral into two parts, while the equality (2) is a change of variable (<span class="texhtml"><i>w</i> = <span class="texhtml mvar" style="font-style:italic;">x</span>/<i>t</i></span>). In the illustration below, the splitting corresponds to dividing the area into the yellow and blue parts. Rescaling the left hand blue area vertically by the factor <span class="texhtml mvar" style="font-style:italic;">t</span> and shrinking it by the same factor horizontally does not change its size. Moving it appropriately, the area fits the graph of the function <span class="texhtml"><i>f</i>(<i>x</i>) = 1/<i>x</i></span> again. Therefore, the left hand blue area, which is the integral of <span class="texhtml"><i>f</i>(<i>x</i>)</span> from <span class="texhtml mvar" style="font-style:italic;">t</span> to <span class="texhtml mvar" style="font-style:italic;">tu</span> is the same as the integral from 1 to <span class="texhtml mvar" style="font-style:italic;">u</span>. This justifies the equality (2) with a more geometric proof. </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Natural_logarithm_product_formula_proven_geometrically.svg" class="mw-file-description"><img alt="The hyperbola depicted twice. The area underneath is split into different parts." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Natural_logarithm_product_formula_proven_geometrically.svg/500px-Natural_logarithm_product_formula_proven_geometrically.svg.png" decoding="async" width="500" height="112" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Natural_logarithm_product_formula_proven_geometrically.svg/750px-Natural_logarithm_product_formula_proven_geometrically.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Natural_logarithm_product_formula_proven_geometrically.svg/1000px-Natural_logarithm_product_formula_proven_geometrically.svg.png 2x" data-file-width="1353" data-file-height="304" /></a><figcaption>A visual proof of the product formula of the natural logarithm</figcaption></figure> <p>The power formula <span class="texhtml">ln(<i>t</i><sup><i>r</i></sup>) = <i>r</i> ln(<i>t</i>)</span> may be derived in a similar way: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln(t^{r})&=\int _{1}^{t^{r}}{\frac {1}{x}}dx\\&=\int _{1}^{t}{\frac {1}{w^{r}}}\left(rw^{r-1}\,dw\right)\\&=r\int _{1}^{t}{\frac {1}{w}}\,dw\\&=r\ln(t).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>w</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln(t^{r})&=\int _{1}^{t^{r}}{\frac {1}{x}}dx\\&=\int _{1}^{t}{\frac {1}{w^{r}}}\left(rw^{r-1}\,dw\right)\\&=r\int _{1}^{t}{\frac {1}{w}}\,dw\\&=r\ln(t).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/863f225bdfee5e6256df66cc7b5c44ba2fde8e2e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:28.134ex; height:22.176ex;" alt="{\displaystyle {\begin{aligned}\ln(t^{r})&=\int _{1}^{t^{r}}{\frac {1}{x}}dx\\&=\int _{1}^{t}{\frac {1}{w^{r}}}\left(rw^{r-1}\,dw\right)\\&=r\int _{1}^{t}{\frac {1}{w}}\,dw\\&=r\ln(t).\end{aligned}}}"></span> The second equality uses a change of variables (<a href="/wiki/Integration_by_substitution" title="Integration by substitution">integration by substitution</a>), <span class="texhtml"><i>w</i> = <span class="texhtml mvar" style="font-style:italic;">x</span><sup>1/<i>r</i></sup></span>. </p><p>The sum over the reciprocals of natural numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12f50a7390e77e5beed851612314d2d03991d564" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.01ex; height:6.843ex;" alt="{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}},}"></span> is called the <a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">harmonic series</a>. It is closely tied to the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>: as <span class="texhtml mvar" style="font-style:italic;">n</span> tends to <a href="/wiki/Infinity" title="Infinity">infinity</a>, the difference, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}-\ln(n),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}-\ln(n),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f1edf2104b89524c509d6cb9ea1a667251d3ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.42ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}-\ln(n),}"></span> <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">converges</a> (i.e. gets arbitrarily close) to a number known as the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a> <span class="texhtml"><i>γ</i> = 0.5772...</span>. This relation aids in analyzing the performance of algorithms such as <a href="/wiki/Quicksort" title="Quicksort">quicksort</a>.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transcendence_of_the_logarithm">Transcendence of the logarithm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=19" title="Edit section: Transcendence of the logarithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Real_number" title="Real number">Real numbers</a> that are not <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic</a> are called <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a>;<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> for example, <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> and <i><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e</a></i> are such numbers, but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2-{\sqrt {3}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2-{\sqrt {3}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75b2a724c326f7f59f71baa9788cf455a0609bdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.425ex; height:4.843ex;" alt="{\displaystyle {\sqrt {2-{\sqrt {3}}}}}"></span> is not. <a href="/wiki/Almost_all" title="Almost all">Almost all</a> real numbers are transcendental. The logarithm is an example of a <a href="/wiki/Transcendental_function" title="Transcendental function">transcendental function</a>. The <a href="/wiki/Gelfond%E2%80%93Schneider_theorem" title="Gelfond–Schneider theorem">Gelfond–Schneider theorem</a> asserts that logarithms usually take transcendental, i.e. "difficult" values.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Calculation">Calculation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=20" title="Edit section: Calculation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Logarithm_keys.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logarithm_keys.jpg/220px-Logarithm_keys.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logarithm_keys.jpg/330px-Logarithm_keys.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logarithm_keys.jpg/440px-Logarithm_keys.jpg 2x" data-file-width="1882" data-file-height="1411" /></a><figcaption>The logarithm keys (LOG for base 10 and LN for base <span class="texhtml mvar" style="font-style:italic;">e</span>) on a <a href="/wiki/TI-83_series" title="TI-83 series">TI-83 Plus</a> graphing calculator</figcaption></figure> <p>Logarithms are easy to compute in some cases, such as <span class="texhtml">log<sub>10</sub> (1000) = 3</span>. In general, logarithms can be calculated using <a href="/wiki/Power_series" title="Power series">power series</a> or the <a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">arithmetic–geometric mean</a>, or be retrieved from a precalculated <a href="/wiki/Logarithm_table" class="mw-redirect" title="Logarithm table">logarithm table</a> that provides a fixed precision.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a>, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> Using look-up tables, <a href="/wiki/CORDIC" title="CORDIC">CORDIC</a>-like methods can be used to compute logarithms by using only the operations of addition and <a href="/wiki/Arithmetic_shift" title="Arithmetic shift">bit shifts</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> Moreover, the <a href="/wiki/Binary_logarithm#Algorithm" title="Binary logarithm">binary logarithm algorithm</a> calculates <span class="texhtml">lb(<i>x</i>)</span> <a href="/wiki/Recursion" title="Recursion">recursively</a>, based on repeated squarings of <span class="texhtml mvar" style="font-style:italic;">x</span>, taking advantage of the relation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{2}\left(x^{2}\right)=2\log _{2}|x|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{2}\left(x^{2}\right)=2\log _{2}|x|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d064349793d675f2707a5142e3530bd32facbdc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.871ex; height:3.343ex;" alt="{\displaystyle \log _{2}\left(x^{2}\right)=2\log _{2}|x|.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Power_series">Power series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=21" title="Edit section: Power series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Taylor_series">Taylor series</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=22" title="Edit section: Taylor series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Taylor_approximation_of_natural_logarithm.gif" class="mw-file-description"><img alt="An animation showing increasingly good approximations of the logarithm graph." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Taylor_approximation_of_natural_logarithm.gif/220px-Taylor_approximation_of_natural_logarithm.gif" decoding="async" width="220" height="136" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/0/02/Taylor_approximation_of_natural_logarithm.gif 1.5x" data-file-width="300" data-file-height="185" /></a><figcaption>The Taylor series of <span class="texhtml">ln(<i>z</i>)</span> centered at <span class="texhtml"><i>z</i> = 1</span>. The animation shows the first 10 approximations along with the 99th and 100th. The approximations do not converge beyond a distance of 1 from the center.</figcaption></figure> <p>For any real number <span class="texhtml mvar" style="font-style:italic;">z</span> that satisfies <span class="texhtml">0 < <i>z</i> ≤ 2</span>, the following formula holds:<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>nb 4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AbramowitzStegunp.68_54-0" class="reference"><a href="#cite_note-AbramowitzStegunp.68-54"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln(z)&={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots \\&=\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {(z-1)^{k}}{k}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> <mn>1</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln(z)&={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots \\&=\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {(z-1)^{k}}{k}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18c57a960210bc2a905785a5be6ba3d4ef2cfa62" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.765ex; margin-bottom: -0.24ex; width:57.934ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\ln(z)&={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots \\&=\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {(z-1)^{k}}{k}}.\end{aligned}}}"></span> </p><p>Equating the function <span class="texhtml">ln(<i>z</i>)</span> to this infinite sum (<a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a>) is shorthand for saying that the function can be approximated to a more and more accurate value by the following expressions (known as <a href="/wiki/Partial_sum" class="mw-redirect" title="Partial sum">partial sums</a>): </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z-1),\ \ (z-1)-{\frac {(z-1)^{2}}{2}},\ \ (z-1)-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}},\ \ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>,</mo> <mtext> </mtext> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z-1),\ \ (z-1)-{\frac {(z-1)^{2}}{2}},\ \ (z-1)-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}},\ \ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6741aff58f21f04c60cd1f9e7cc2ed895d990327" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:64.709ex; height:5.843ex;" alt="{\displaystyle (z-1),\ \ (z-1)-{\frac {(z-1)^{2}}{2}},\ \ (z-1)-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}},\ \ldots }"></span> </p><p>For example, with <span class="texhtml"><i>z</i> = 1.5</span> the third approximation yields <span class="texhtml">0.4167</span>, which is about <span class="texhtml">0.011</span> greater than <span class="texhtml">ln(1.5) = 0.405465</span>, and the ninth approximation yields <span class="texhtml">0.40553</span>, which is only about <span class="texhtml">0.0001</span> greater. The <span class="texhtml mvar" style="font-style:italic;">n</span>th partial sum can approximate <span class="texhtml">ln(<i>z</i>)</span> with arbitrary precision, provided the number of summands <span class="texhtml mvar" style="font-style:italic;">n</span> is large enough. </p><p>In elementary calculus, the series is said to <a href="/wiki/Convergent_series" title="Convergent series">converge</a> to the function <span class="texhtml">ln(<i>z</i>)</span>, and the function is the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> of the series. It is the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> at <span class="texhtml"><i>z</i> = 1</span>. The Taylor series of <span class="texhtml">ln(<i>z</i>)</span> provides a particularly useful approximation to <span class="texhtml">ln(1 + <i>z</i>)</span> when <span class="texhtml mvar" style="font-style:italic;">z</span> is small, <span class="texhtml">|<i>z</i>| < 1</span>, since then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(1+z)=z-{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}-\cdots \approx z.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>≈<!-- ≈ --></mo> <mi>z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(1+z)=z-{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}-\cdots \approx z.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6eb8f63f6959cb0e21a2ea79b0edd5d698f1528" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.066ex; height:5.676ex;" alt="{\displaystyle \ln(1+z)=z-{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}-\cdots \approx z.}"></span> </p><p>For example, with <span class="texhtml"><i>z</i> = 0.1</span> the first-order approximation gives <span class="texhtml">ln(1.1) ≈ 0.1</span>, which is less than <span class="texhtml">5%</span> off the correct value <span class="texhtml">0.0953</span>. </p> <div class="mw-heading mw-heading4"><h4 id="Inverse_hyperbolic_tangent">Inverse hyperbolic tangent</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=23" title="Edit section: Inverse hyperbolic tangent"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another series is based on the <a href="/wiki/Area_hyperbolic_tangent#Inverse_hyperbolic_tangent" class="mw-redirect" title="Area hyperbolic tangent">inverse hyperbolic tangent</a> function: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=2\cdot \operatorname {artanh} \,{\frac {z-1}{z+1}}=2\left({\frac {z-1}{z+1}}+{\frac {1}{3}}{\left({\frac {z-1}{z+1}}\right)}^{3}+{\frac {1}{5}}{\left({\frac {z-1}{z+1}}\right)}^{5}+\cdots \right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mi>artanh</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=2\cdot \operatorname {artanh} \,{\frac {z-1}{z+1}}=2\left({\frac {z-1}{z+1}}+{\frac {1}{3}}{\left({\frac {z-1}{z+1}}\right)}^{3}+{\frac {1}{5}}{\left({\frac {z-1}{z+1}}\right)}^{5}+\cdots \right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4774ed055db87556b991ffc8dcf5bd795f823c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:75.541ex; height:7.509ex;" alt="{\displaystyle \ln(z)=2\cdot \operatorname {artanh} \,{\frac {z-1}{z+1}}=2\left({\frac {z-1}{z+1}}+{\frac {1}{3}}{\left({\frac {z-1}{z+1}}\right)}^{3}+{\frac {1}{5}}{\left({\frac {z-1}{z+1}}\right)}^{5}+\cdots \right),}"></span> for any real number <span class="texhtml"><i>z</i> > 0</span>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>nb 5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AbramowitzStegunp.68_54-1" class="reference"><a href="#cite_note-AbramowitzStegunp.68-54"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Using <a href="/wiki/Sigma_notation" class="mw-redirect" title="Sigma notation">sigma notation</a>, this is also written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {z-1}{z+1}}\right)^{2k+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {z-1}{z+1}}\right)^{2k+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d9729501b26eb85764942cb112cc9885b1a6cca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.446ex; height:7.343ex;" alt="{\displaystyle \ln(z)=2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {z-1}{z+1}}\right)^{2k+1}.}"></span> This series can be derived from the above Taylor series. It converges quicker than the Taylor series, especially if <span class="texhtml mvar" style="font-style:italic;">z</span> is close to 1. For example, for <span class="texhtml"><i>z</i> = 1.5</span>, the first three terms of the second series approximate <span class="texhtml">ln(1.5)</span> with an error of about <span class="nowrap"><span data-sort-value="6994300000000000000♠"></span>3<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−6</sup></span>. The quick convergence for <span class="texhtml mvar" style="font-style:italic;">z</span> close to 1 can be taken advantage of in the following way: given a low-accuracy approximation <span class="texhtml"><i>y</i> ≈ ln(<i>z</i>)</span> and putting <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {z}{\exp(y)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {z}{\exp(y)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70dc2d5fb51bc065e7662ba91fe25996896dfa2e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:12.842ex; height:5.509ex;" alt="{\displaystyle A={\frac {z}{\exp(y)}},}"></span> the logarithm of <span class="texhtml mvar" style="font-style:italic;">z</span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=y+\ln(A).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=y+\ln(A).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea935537fad8ed9632a4e0eaa453c172906606c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.07ex; height:2.843ex;" alt="{\displaystyle \ln(z)=y+\ln(A).}"></span> The better the initial approximation <span class="texhtml mvar" style="font-style:italic;">y</span> is, the closer <span class="texhtml mvar" style="font-style:italic;">A</span> is to 1, so its logarithm can be calculated efficiently. <span class="texhtml mvar" style="font-style:italic;">A</span> can be calculated using the <a href="/wiki/Exponential_function" title="Exponential function">exponential series</a>, which converges quickly provided <span class="texhtml mvar" style="font-style:italic;">y</span> is not too large. Calculating the logarithm of larger <span class="texhtml mvar" style="font-style:italic;">z</span> can be reduced to smaller values of <span class="texhtml mvar" style="font-style:italic;">z</span> by writing <span class="texhtml"><i>z</i> = <i>a</i> · 10<sup><i>b</i></sup></span>, so that <span class="texhtml">ln(<i>z</i>) = ln(<i>a</i>) + <span class="texhtml mvar" style="font-style:italic;">b</span> · ln(10)</span>. </p><p>A closely related method can be used to compute the logarithm of integers. Putting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle z={\frac {n+1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle z={\frac {n+1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4197236e535dc6467df2570a52e72ec095f7fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.109ex; height:3.509ex;" alt="{\displaystyle \textstyle z={\frac {n+1}{n}}}"></span> in the above series, it follows that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(n+1)=\ln(n)+2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {1}{2n+1}}\right)^{2k+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(n+1)=\ln(n)+2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {1}{2n+1}}\right)^{2k+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/306cedcb8ef32fe57d535b3c27b2ae6af9b13326" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.208ex; height:7.343ex;" alt="{\displaystyle \ln(n+1)=\ln(n)+2\sum _{k=0}^{\infty }{\frac {1}{2k+1}}\left({\frac {1}{2n+1}}\right)^{2k+1}.}"></span> If the logarithm of a large integer <span class="texhtml mvar" style="font-style:italic;">n</span> is known, then this series yields a fast converging series for <span class="texhtml">log(<i>n</i>+1)</span>, with a <a href="/wiki/Rate_of_convergence" title="Rate of convergence">rate of convergence</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left({\frac {1}{2n+1}}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left({\frac {1}{2n+1}}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6c094c1c61f349b1216928c33fe29aa61860626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.575ex; height:5.176ex;" alt="{\textstyle \left({\frac {1}{2n+1}}\right)^{2}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Arithmetic–geometric_mean_approximation"><span id="Arithmetic.E2.80.93geometric_mean_approximation"></span>Arithmetic–geometric mean approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=24" title="Edit section: Arithmetic–geometric mean approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">arithmetic–geometric mean</a> yields high-precision approximations of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>. Sasaki and Kanada showed in 1982 that it was particularly fast for precisions between 400 and 1000 decimal places, while Taylor series methods were typically faster when less precision was needed. In their work <span class="texhtml">ln(<i>x</i>)</span> is approximated to a precision of <span class="texhtml">2<sup>−<i>p</i></sup></span> (or <span class="texhtml mvar" style="font-style:italic;">p</span> precise bits) by the following formula (due to <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a>):<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(x)\approx {\frac {\pi }{2\,\mathrm {M} \!\left(1,2^{2-m}/x\right)}}-m\ln(2).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>−<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>m</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(x)\approx {\frac {\pi }{2\,\mathrm {M} \!\left(1,2^{2-m}/x\right)}}-m\ln(2).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec803ea11552f9cdfd17caf1b39cf8e7a8e84184" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.276ex; height:6.009ex;" alt="{\displaystyle \ln(x)\approx {\frac {\pi }{2\,\mathrm {M} \!\left(1,2^{2-m}/x\right)}}-m\ln(2).}"></span> </p><p>Here <span class="texhtml">M(<i>x</i>, <i>y</i>)</span> denotes the <a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">arithmetic–geometric mean</a> of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. It is obtained by repeatedly calculating the average <span class="texhtml">(<i>x</i> + <i>y</i>)/2</span> (<a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a>) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {xy}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mi>y</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {xy}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/966df76a5bc207e11606ad5c8ea6788d6a838c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.421ex; height:3.009ex;" alt="{\textstyle {\sqrt {xy}}}"></span> (<a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a>) of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> then let those two numbers become the next <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. The two numbers quickly converge to a common limit which is the value of <span class="texhtml">M(<i>x</i>, <i>y</i>)</span>. <span class="texhtml mvar" style="font-style:italic;">m</span> is chosen such that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\,2^{m}>2^{p/2}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mspace width="thinmathspace" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\,2^{m}>2^{p/2}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80443424cc40c061dba53d32f86d2d8169aa1983" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.552ex; height:2.843ex;" alt="{\displaystyle x\,2^{m}>2^{p/2}.\,}"></span> </p><p>to ensure the required precision. A larger <span class="texhtml mvar" style="font-style:italic;">m</span> makes the <span class="texhtml">M(<i>x</i>, <i>y</i>)</span> calculation take more steps (the initial <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> are farther apart so it takes more steps to converge) but gives more precision. The constants <span class="texhtml"><span class="texhtml mvar" style="font-style:italic;">π</span></span> and <span class="texhtml">ln(2)</span> can be calculated with quickly converging series. </p> <div class="mw-heading mw-heading3"><h3 id="Feynman's_algorithm"><span id="Feynman.27s_algorithm"></span>Feynman's algorithm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=25" title="Edit section: Feynman's algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While at <a href="/wiki/Los_Alamos_National_Laboratory" title="Los Alamos National Laboratory">Los Alamos National Laboratory</a> working on the <a href="/wiki/Manhattan_Project" title="Manhattan Project">Manhattan Project</a>, <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> developed a bit-processing algorithm to compute the logarithm that is similar to long division and was later used in the <a href="/wiki/Connection_Machine" title="Connection Machine">Connection Machine</a>. The algorithm relies on the fact that every real number <span class="texhtml mvar" style="font-style:italic;">x</span> where <span class="texhtml">1 < <i>x</i> < 2</span> can be represented as a product of distinct factors of the form <span class="texhtml">1 + 2<sup>−<i>k</i></sup></span>. The algorithm sequentially builds that product <span class="texhtml mvar" style="font-style:italic;">P</span>, starting with <span class="texhtml"><i>P</i> = 1</span> and <span class="texhtml"><i>k</i> = 1</span>: if <span class="texhtml"><i>P</i> · (1 + 2<sup>−<i>k</i></sup>) < <i>x</i></span>, then it changes <span class="texhtml mvar" style="font-style:italic;">P</span> to <span class="texhtml"><i>P</i> · (1 + 2<sup>−<i>k</i></sup>)</span>. It then increases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> by one regardless. The algorithm stops when <span class="texhtml mvar" style="font-style:italic;">k</span> is large enough to give the desired accuracy. Because <span class="texhtml">log(<i>x</i>)</span> is the sum of the terms of the form <span class="texhtml">log(1 + 2<sup>−<i>k</i></sup>)</span> corresponding to those <span class="texhtml mvar" style="font-style:italic;">k</span> for which the factor <span class="texhtml">1 + 2<sup>−<i>k</i></sup></span> was included in the product <span class="texhtml mvar" style="font-style:italic;">P</span>, <span class="texhtml">log(<i>x</i>)</span> may be computed by simple addition, using a table of <span class="texhtml">log(1 + 2<sup>−<i>k</i></sup>)</span> for all <span class="texhtml mvar" style="font-style:italic;">k</span>. Any base may be used for the logarithm table.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=26" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NautilusCutawayLogarithmicSpiral.jpg" class="mw-file-description"><img alt="A photograph of a nautilus' shell." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/220px-NautilusCutawayLogarithmicSpiral.jpg" decoding="async" width="220" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/330px-NautilusCutawayLogarithmicSpiral.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/440px-NautilusCutawayLogarithmicSpiral.jpg 2x" data-file-width="2240" data-file-height="1693" /></a><figcaption>A <a href="/wiki/Nautilus" title="Nautilus">nautilus</a> shell displaying a logarithmic spiral</figcaption></figure> <p>Logarithms have many applications inside and outside mathematics. Some of these occurrences are related to the notion of <a href="/wiki/Scale_invariance" title="Scale invariance">scale invariance</a>. For example, each chamber of the shell of a <a href="/wiki/Nautilus" title="Nautilus">nautilus</a> is an approximate copy of the next one, scaled by a constant factor. This gives rise to a <a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">logarithmic spiral</a>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Benford%27s_law" title="Benford's law">Benford's law</a> on the distribution of leading digits can also be explained by scale invariance.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> Logarithms are also linked to <a href="/wiki/Self-similarity" title="Self-similarity">self-similarity</a>. For example, logarithms appear in the analysis of algorithms that solve a problem by dividing it into two similar smaller problems and patching their solutions.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> The dimensions of self-similar geometric shapes, that is, shapes whose parts resemble the overall picture are also based on logarithms. <a href="/wiki/Logarithmic_scale" title="Logarithmic scale">Logarithmic scales</a> are useful for quantifying the relative change of a value as opposed to its absolute difference. Moreover, because the logarithmic function <span class="texhtml">log(<i>x</i>)</span> grows very slowly for large <span class="texhtml mvar" style="font-style:italic;">x</span>, logarithmic scales are used to compress large-scale scientific data. Logarithms also occur in numerous scientific formulas, such as the <a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Tsiolkovsky rocket equation</a>, the <a href="/wiki/Fenske_equation" title="Fenske equation">Fenske equation</a>, or the <a href="/wiki/Nernst_equation" title="Nernst equation">Nernst equation</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Logarithmic_scale">Logarithmic scale</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=27" title="Edit section: Logarithmic scale"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Logarithmic_scale" title="Logarithmic scale">Logarithmic scale</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Germany_Hyperinflation.svg" class="mw-file-description"><img alt="A graph of the value of one mark over time. The line showing its value is increasing very quickly, even with logarithmic scale." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Germany_Hyperinflation.svg/220px-Germany_Hyperinflation.svg.png" decoding="async" width="220" height="257" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Germany_Hyperinflation.svg/330px-Germany_Hyperinflation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Germany_Hyperinflation.svg/440px-Germany_Hyperinflation.svg.png 2x" data-file-width="509" data-file-height="594" /></a><figcaption>A logarithmic chart depicting the value of one <a href="/wiki/German_gold_mark" class="mw-redirect" title="German gold mark">Goldmark</a> in <a href="/wiki/German_Papiermark" class="mw-redirect" title="German Papiermark">Papiermarks</a> during the <a href="/wiki/Inflation_in_the_Weimar_Republic" class="mw-redirect" title="Inflation in the Weimar Republic">German hyperinflation in the 1920s</a></figcaption></figure> <p>Scientific quantities are often expressed as logarithms of other quantities, using a <i>logarithmic scale</i>. For example, the <a href="/wiki/Decibel" title="Decibel">decibel</a> is a <a href="/wiki/Unit_of_measurement" title="Unit of measurement">unit of measurement</a> associated with <a href="/wiki/Logarithmic-scale" class="mw-redirect" title="Logarithmic-scale">logarithmic-scale</a> <a href="/wiki/Level_quantity" class="mw-redirect" title="Level quantity">quantities</a>. It is based on the common logarithm of <a href="/wiki/Ratio" title="Ratio">ratios</a>—10 times the common logarithm of a <a href="/wiki/Power_(physics)" title="Power (physics)">power</a> ratio or 20 times the common logarithm of a <a href="/wiki/Voltage" title="Voltage">voltage</a> ratio. It is used to quantify the attenuation or amplification of electrical signals,<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> to describe power levels of sounds in <a href="/wiki/Acoustics" title="Acoustics">acoustics</a>,<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> and the <a href="/wiki/Absorbance" title="Absorbance">absorbance</a> of light in the fields of <a href="/wiki/Spectrometer" title="Spectrometer">spectrometry</a> and <a href="/wiki/Optics" title="Optics">optics</a>. The <a href="/wiki/Signal-to-noise_ratio" title="Signal-to-noise ratio">signal-to-noise ratio</a> describing the amount of unwanted <a href="/wiki/Noise_(electronic)" class="mw-redirect" title="Noise (electronic)">noise</a> in relation to a (meaningful) <a href="/wiki/Signal_(information_theory)" class="mw-redirect" title="Signal (information theory)">signal</a> is also measured in decibels.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> In a similar vein, the <a href="/wiki/Peak_signal-to-noise_ratio" title="Peak signal-to-noise ratio">peak signal-to-noise ratio</a> is commonly used to assess the quality of sound and <a href="/wiki/Image_compression" title="Image compression">image compression</a> methods using the logarithm.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>The strength of an earthquake is measured by taking the common logarithm of the energy emitted at the quake. This is used in the <a href="/wiki/Moment_magnitude_scale" title="Moment magnitude scale">moment magnitude scale</a> or the <a href="/wiki/Richter_magnitude_scale" class="mw-redirect" title="Richter magnitude scale">Richter magnitude scale</a>. For example, a 5.0 earthquake releases 32 times <span class="texhtml">(10<sup>1.5</sup>)</span> and a 6.0 releases 1000 times <span class="texhtml">(10<sup>3</sup>)</span> the energy of a 4.0.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Apparent_magnitude" title="Apparent magnitude">Apparent magnitude</a> measures the brightness of stars logarithmically.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Chemistry" title="Chemistry">chemistry</a> the negative of the decimal logarithm, the decimal <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="cologarithm"></span><span class="vanchor-text">cologarithm</span></span></b>, is indicated by the letter p.<sup id="cite_ref-Jens_68-0" class="reference"><a href="#cite_note-Jens-68"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> For instance, <a href="/wiki/PH" title="PH">pH</a> is the decimal cologarithm of the <a href="/wiki/Activity_(chemistry)" class="mw-redirect" title="Activity (chemistry)">activity</a> of <a href="/wiki/Hydronium" title="Hydronium">hydronium</a> ions (the form <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> <a href="/wiki/Ion" title="Ion">ions</a> <span class="chemf nowrap">H<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> take in water).<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> The activity of hydronium ions in neutral water is 10<sup>−7</sup> <a href="/wiki/Molar_concentration" title="Molar concentration">mol·L<sup>−1</sup></a>, hence a pH of 7. Vinegar typically has a pH of about 3. The difference of 4 corresponds to a ratio of 10<sup>4</sup> of the activity, that is, vinegar's hydronium ion activity is about <span class="texhtml">10<sup>−3</sup> mol·L<sup>−1</sup></span>. </p><p><a href="/wiki/Semi-log_plot" title="Semi-log plot">Semilog</a> (log–linear) graphs use the logarithmic scale concept for visualization: one axis, typically the vertical one, is scaled logarithmically. For example, the chart at the right compresses the steep increase from 1 million to 1 trillion to the same space (on the vertical axis) as the increase from 1 to 1 million. In such graphs, <a href="/wiki/Exponential_function" title="Exponential function">exponential functions</a> of the form <span class="texhtml"><i>f</i>(<i>x</i>) = <i>a</i> · <i>b</i><span style="padding-left:0.12em;"><sup><i>x</i></sup></span></span> appear as straight lines with <a href="/wiki/Slope" title="Slope">slope</a> equal to the logarithm of <span class="texhtml mvar" style="font-style:italic;">b</span>. <a href="/wiki/Log-log_plot" class="mw-redirect" title="Log-log plot">Log-log</a> graphs scale both axes logarithmically, which causes functions of the form <span class="texhtml"><i>f</i>(<i>x</i>) = <i>a</i> · <i>x</i><span style="padding-left:0.12em;"><sup><i>k</i></sup></span></span> to be depicted as straight lines with slope equal to the exponent <span class="texhtml mvar" style="font-style:italic;">k</span>. This is applied in visualizing and analyzing <a href="/wiki/Power_law" title="Power law">power laws</a>.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Psychology">Psychology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=28" title="Edit section: Psychology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Logarithms occur in several laws describing <a href="/wiki/Human_perception" class="mw-redirect" title="Human perception">human perception</a>:<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Hick%27s_law" title="Hick's law">Hick's law</a> proposes a logarithmic relation between the time individuals take to choose an alternative and the number of choices they have.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Fitts%27s_law" title="Fitts's law">Fitts's law</a> predicts that the time required to rapidly move to a target area is a logarithmic function of the ratio between the distance to a target and the size of the target.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Psychophysics" title="Psychophysics">psychophysics</a>, the <a href="/wiki/Weber%E2%80%93Fechner_law" title="Weber–Fechner law">Weber–Fechner law</a> proposes a logarithmic relationship between <a href="/wiki/Stimulus_(psychology)" title="Stimulus (psychology)">stimulus</a> and <a href="/wiki/Sensation_(psychology)" class="mw-redirect" title="Sensation (psychology)">sensation</a> such as the actual vs. the perceived weight of an item a person is carrying.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> (This "law", however, is less realistic than more recent models, such as <a href="/wiki/Stevens%27s_power_law" title="Stevens's power law">Stevens's power law</a>.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup>) </p><p>Psychological studies found that individuals with little mathematics education tend to estimate quantities logarithmically, that is, they position a number on an unmarked line according to its logarithm, so that 10 is positioned as close to 100 as 100 is to 1000. Increasing education shifts this to a linear estimate (positioning 1000 10 times as far away) in some circumstances, while logarithms are used when the numbers to be plotted are difficult to plot linearly.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Probability_theory_and_statistics">Probability theory and statistics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=29" title="Edit section: Probability theory and statistics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:PDF-log_normal_distributions.svg" class="mw-file-description"><img alt="Three asymmetric PDF curves" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/220px-PDF-log_normal_distributions.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/330px-PDF-log_normal_distributions.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/PDF-log_normal_distributions.svg/440px-PDF-log_normal_distributions.svg.png 2x" data-file-width="390" data-file-height="390" /></a><figcaption>Three <a href="/wiki/Probability_density_function" title="Probability density function">probability density functions</a> (PDF) of random variables with log-normal distributions. The location parameter <span class="texhtml">μ</span>, which is zero for all three of the PDFs shown, is the mean of the logarithm of the random variable, not the mean of the variable itself.</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Benfords_law_illustrated_by_world%27s_countries_population.svg" class="mw-file-description"><img alt="A bar chart and a superimposed second chart. The two differ slightly, but both decrease in a similar fashion." src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Benfords_law_illustrated_by_world%27s_countries_population.svg/220px-Benfords_law_illustrated_by_world%27s_countries_population.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Benfords_law_illustrated_by_world%27s_countries_population.svg/330px-Benfords_law_illustrated_by_world%27s_countries_population.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Benfords_law_illustrated_by_world%27s_countries_population.svg/440px-Benfords_law_illustrated_by_world%27s_countries_population.svg.png 2x" data-file-width="768" data-file-height="576" /></a><figcaption>Distribution of first digits (in %, red bars) in the <a href="/wiki/List_of_countries_by_population" class="mw-redirect" title="List of countries by population">population of the 237 countries</a> of the world. Black dots indicate the distribution predicted by Benford's law.</figcaption></figure> <p>Logarithms arise in <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>: the <a href="/wiki/Law_of_large_numbers" title="Law of large numbers">law of large numbers</a> dictates that, for a <a href="/wiki/Fair_coin" title="Fair coin">fair coin</a>, as the number of coin-tosses increases to infinity, the observed proportion of heads <a href="/wiki/Binomial_distribution" title="Binomial distribution">approaches one-half</a>. The fluctuations of this proportion about one-half are described by the <a href="/wiki/Law_of_the_iterated_logarithm" title="Law of the iterated logarithm">law of the iterated logarithm</a>.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> </p><p>Logarithms also occur in <a href="/wiki/Log-normal_distribution" title="Log-normal distribution">log-normal distributions</a>. When the logarithm of a <a href="/wiki/Random_variable" title="Random variable">random variable</a> has a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>, the variable is said to have a log-normal distribution.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> Log-normal distributions are encountered in many fields, wherever a variable is formed as the product of many independent positive random variables, for example in the study of turbulence.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p>Logarithms are used for <a href="/wiki/Maximum-likelihood_estimation" class="mw-redirect" title="Maximum-likelihood estimation">maximum-likelihood estimation</a> of parametric <a href="/wiki/Statistical_model" title="Statistical model">statistical models</a>. For such a model, the <a href="/wiki/Likelihood_function" title="Likelihood function">likelihood function</a> depends on at least one <a href="/wiki/Parametric_model" title="Parametric model">parameter</a> that must be estimated. A maximum of the likelihood function occurs at the same parameter-value as a maximum of the logarithm of the likelihood (the "<i>log likelihood</i>"), because the logarithm is an increasing function. The log-likelihood is easier to maximize, especially for the multiplied likelihoods for <a href="/wiki/Independence_(probability)" class="mw-redirect" title="Independence (probability)">independent</a> random variables.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Benford%27s_law" title="Benford's law">Benford's law</a> describes the occurrence of digits in many <a href="/wiki/Data_set" title="Data set">data sets</a>, such as heights of buildings. According to Benford's law, the probability that the first decimal-digit of an item in the data sample is <span class="texhtml mvar" style="font-style:italic;">d</span> (from 1 to 9) equals <span class="texhtml">log<sub>10</sub> (<i>d</i> + 1) − log<sub>10</sub> (<i>d</i>)</span>, <i>regardless</i> of the unit of measurement.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> Thus, about 30% of the data can be expected to have 1 as first digit, 18% start with 2, etc. Auditors examine deviations from Benford's law to detect fraudulent accounting.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Logarithm_transformation" class="mw-redirect" title="Logarithm transformation">logarithm transformation</a> is a type of <a href="/wiki/Data_transformation_(statistics)" title="Data transformation (statistics)">data transformation</a> used to bring the empirical distribution closer to the assumed one. </p> <div class="mw-heading mw-heading3"><h3 id="Computational_complexity">Computational complexity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=30" title="Edit section: Computational complexity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Analysis_of_algorithms" title="Analysis of algorithms">Analysis of algorithms</a> is a branch of <a href="/wiki/Computer_science" title="Computer science">computer science</a> that studies the <a href="/wiki/Time_complexity" title="Time complexity">performance</a> of <a href="/wiki/Algorithm" title="Algorithm">algorithms</a> (computer programs solving a certain problem).<sup id="cite_ref-Wegener_85-0" class="reference"><a href="#cite_note-Wegener-85"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> Logarithms are valuable for describing algorithms that <a href="/wiki/Divide_and_conquer_algorithm" class="mw-redirect" title="Divide and conquer algorithm">divide a problem</a> into smaller ones, and join the solutions of the subproblems.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> </p><p>For example, to find a number in a sorted list, the <a href="/wiki/Binary_search_algorithm" class="mw-redirect" title="Binary search algorithm">binary search algorithm</a> checks the middle entry and proceeds with the half before or after the middle entry if the number is still not found. This algorithm requires, on average, <span class="texhtml">log<sub>2</sub> (<i>N</i>)</span> comparisons, where <span class="texhtml mvar" style="font-style:italic;">N</span> is the list's length.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> Similarly, the <a href="/wiki/Merge_sort" title="Merge sort">merge sort</a> algorithm sorts an unsorted list by dividing the list into halves and sorting these first before merging the results. Merge sort algorithms typically require a time <a href="/wiki/Big_O_notation" title="Big O notation">approximately proportional to</a> <span class="texhtml"><i>N</i> · log(<i>N</i>)</span>.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> The base of the logarithm is not specified here, because the result only changes by a constant factor when another base is used. A constant factor is usually disregarded in the analysis of algorithms under the standard <a href="/wiki/Uniform_cost_model" class="mw-redirect" title="Uniform cost model">uniform cost model</a>.<sup id="cite_ref-Wegener20_89-0" class="reference"><a href="#cite_note-Wegener20-89"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p><p>A function <span class="texhtml"><i>f</i>(<i>x</i>)</span> is said to <a href="/wiki/Logarithmic_growth" title="Logarithmic growth">grow logarithmically</a> if <span class="texhtml"><i>f</i>(<i>x</i>)</span> is (exactly or approximately) proportional to the logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span>. (Biological descriptions of organism growth, however, use this term for an exponential function.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup>) For example, any <a href="/wiki/Natural_number" title="Natural number">natural number</a> <span class="texhtml mvar" style="font-style:italic;">N</span> can be represented in <a href="/wiki/Binary_numeral_system" class="mw-redirect" title="Binary numeral system">binary form</a> in no more than <span class="texhtml">log<sub>2</sub> <i>N</i> + 1</span> <a href="/wiki/Bit" title="Bit">bits</a>. In other words, the amount of <a href="/wiki/Memory_(computing)" class="mw-redirect" title="Memory (computing)">memory</a> needed to store <span class="texhtml mvar" style="font-style:italic;">N</span> grows logarithmically with <span class="texhtml mvar" style="font-style:italic;">N</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Entropy_and_chaos">Entropy and chaos</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=31" title="Edit section: Entropy and chaos"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Chaotic_Bunimovich_stadium.svg" class="mw-file-description"><img alt="An oval shape with the trajectories of two particles." src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Chaotic_Bunimovich_stadium.svg/220px-Chaotic_Bunimovich_stadium.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Chaotic_Bunimovich_stadium.svg/330px-Chaotic_Bunimovich_stadium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Chaotic_Bunimovich_stadium.svg/440px-Chaotic_Bunimovich_stadium.svg.png 2x" data-file-width="758" data-file-height="379" /></a><figcaption><a href="/wiki/Dynamical_billiards" title="Dynamical billiards">Billiards</a> on an oval <a href="/wiki/Billiard_table" title="Billiard table">billiard table</a>. Two particles, starting at the center with an angle differing by one degree, take paths that diverge chaotically because of <a href="/wiki/Reflection_(physics)" title="Reflection (physics)">reflections</a> at the boundary.</figcaption></figure> <p><a href="/wiki/Entropy" title="Entropy">Entropy</a> is broadly a measure of the disorder of some system. In <a href="/wiki/Statistical_thermodynamics" class="mw-redirect" title="Statistical thermodynamics">statistical thermodynamics</a>, the entropy <span class="texhtml mvar" style="font-style:italic;">S</span> of some physical system is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=-k\sum _{i}p_{i}\ln(p_{i}).\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>k</mi> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=-k\sum _{i}p_{i}\ln(p_{i}).\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4be67693caef12b846ed9cd173a0e7a340364d27" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.854ex; height:5.509ex;" alt="{\displaystyle S=-k\sum _{i}p_{i}\ln(p_{i}).\,}"></span> The sum is over all possible states <span class="texhtml mvar" style="font-style:italic;">i</span> of the system in question, such as the positions of gas particles in a container. Moreover, <span class="texhtml"><i>p</i><sub><i>i</i></sub></span> is the probability that the state <span class="texhtml mvar" style="font-style:italic;">i</span> is attained and <span class="texhtml mvar" style="font-style:italic;">k</span> is the <a href="/wiki/Boltzmann_constant" title="Boltzmann constant">Boltzmann constant</a>. Similarly, <a href="/wiki/Entropy_(information_theory)" title="Entropy (information theory)">entropy in information theory</a> measures the quantity of information. If a message recipient may expect any one of <span class="texhtml mvar" style="font-style:italic;">N</span> possible messages with equal likelihood, then the amount of information conveyed by any one such message is quantified as <span class="texhtml">log<sub>2</sub> <i>N</i></span> bits.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Lyapunov_exponent" title="Lyapunov exponent">Lyapunov exponents</a> use logarithms to gauge the degree of chaoticity of a <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical system</a>. For example, for a particle moving on an oval billiard table, even small changes of the initial conditions result in very different paths of the particle. Such systems are <a href="/wiki/Chaos_theory" title="Chaos theory">chaotic</a> in a <a href="/wiki/Deterministic_system" title="Deterministic system">deterministic</a> way, because small measurement errors of the initial state predictably lead to largely different final states.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> At least one Lyapunov exponent of a deterministically chaotic system is positive. </p> <div class="mw-heading mw-heading3"><h3 id="Fractals">Fractals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=32" title="Edit section: Fractals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Sierpinski_dimension.svg" class="mw-file-description"><img alt="Parts of a triangle are removed in an iterated way." src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Sierpinski_dimension.svg/400px-Sierpinski_dimension.svg.png" decoding="async" width="400" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Sierpinski_dimension.svg/600px-Sierpinski_dimension.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/Sierpinski_dimension.svg/800px-Sierpinski_dimension.svg.png 2x" data-file-width="745" data-file-height="108" /></a><figcaption>The Sierpinski triangle (at the right) is constructed by repeatedly replacing <a href="/wiki/Equilateral_triangle" title="Equilateral triangle">equilateral triangles</a> by three smaller ones.</figcaption></figure> <p>Logarithms occur in definitions of the <a href="/wiki/Fractal_dimension" title="Fractal dimension">dimension</a> of <a href="/wiki/Fractal" title="Fractal">fractals</a>.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> Fractals are geometric objects that are self-similar in the sense that small parts reproduce, at least roughly, the entire global structure. The <a href="/wiki/Sierpinski_triangle" class="mw-redirect" title="Sierpinski triangle">Sierpinski triangle</a> (pictured) can be covered by three copies of itself, each having sides half the original length. This makes the <a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff dimension</a> of this structure <span class="texhtml">ln(3)/ln(2) ≈ 1.58</span>. Another logarithm-based notion of dimension is obtained by <a href="/wiki/Box-counting_dimension" class="mw-redirect" title="Box-counting dimension">counting the number of boxes</a> needed to cover the fractal in question. </p> <div class="mw-heading mw-heading3"><h3 id="Music">Music</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=33" title="Edit section: Music"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:354px;max-width:354px"><div class="trow"><div class="tsingle" style="width:352px;max-width:352px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:4Octaves.and.Frequencies.svg" class="mw-file-description"><img alt="Four different octaves shown on a linear scale." src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/4Octaves.and.Frequencies.svg/350px-4Octaves.and.Frequencies.svg.png" decoding="async" width="350" height="38" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/4Octaves.and.Frequencies.svg/525px-4Octaves.and.Frequencies.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/4Octaves.and.Frequencies.svg/700px-4Octaves.and.Frequencies.svg.png 2x" data-file-width="670" data-file-height="72" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:352px;max-width:352px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:4Octaves.and.Frequencies.Ears.svg" class="mw-file-description"><img alt="Four different octaves shown on a logarithmic scale" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/4Octaves.and.Frequencies.Ears.svg/350px-4Octaves.and.Frequencies.Ears.svg.png" decoding="async" width="350" height="45" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/4Octaves.and.Frequencies.Ears.svg/525px-4Octaves.and.Frequencies.Ears.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/4Octaves.and.Frequencies.Ears.svg/700px-4Octaves.and.Frequencies.Ears.svg.png 2x" data-file-width="578" data-file-height="74" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Four different octaves shown on a linear scale, then shown on a logarithmic scale (as the ear hears them)</div></div></div></div> <p>Logarithms are related to musical tones and <a href="/wiki/Interval_(music)" title="Interval (music)">intervals</a>. In <a href="/wiki/Equal_temperament" title="Equal temperament">equal temperament</a> tunings, the frequency ratio depends only on the interval between two tones, not on the specific frequency, or <a href="/wiki/Pitch_(music)" title="Pitch (music)">pitch</a>, of the individual tones. In the <a href="/wiki/12-tone_equal_temperament" class="mw-redirect" title="12-tone equal temperament">12-tone equal temperament</a> tuning common in modern Western music, each <a href="/wiki/Octave" title="Octave">octave</a> (doubling of frequency) is broken into twelve equally spaced intervals called <a href="/wiki/Semitone" title="Semitone">semitones</a>. For example, if the <a href="/wiki/A_(musical_note)" title="A (musical note)">note <i>A</i></a> has a frequency of 440 <a href="/wiki/Hertz" title="Hertz">Hz</a> then the note <a href="/wiki/B%E2%99%AD_(musical_note)" title="B♭ (musical note)"><i>B-flat</i></a> has a frequency of 466 Hz. The interval between <i>A</i> and <i>B-flat</i> is a <a href="/wiki/Semitone" title="Semitone">semitone</a>, as is the one between <i>B-flat</i> and <a href="/wiki/B_(musical_note)" title="B (musical note)"><i>B</i></a> (frequency 493 Hz). Accordingly, the frequency ratios agree: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {466}{440}}\approx {\frac {493}{466}}\approx 1.059\approx {\sqrt[{12}]{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>466</mn> <mn>440</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>493</mn> <mn>466</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mn>1.059</mn> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {466}{440}}\approx {\frac {493}{466}}\approx 1.059\approx {\sqrt[{12}]{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55acf246da64ba711e1717eb43ad81792220ab32" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.993ex; height:5.343ex;" alt="{\displaystyle {\frac {466}{440}}\approx {\frac {493}{466}}\approx 1.059\approx {\sqrt[{12}]{2}}.}"></span> </p><p>Intervals between arbitrary pitches can be measured in octaves by taking the <span class="nowrap">base-<span class="texhtml">2</span></span> logarithm of the <a href="/wiki/Frequency" title="Frequency">frequency</a> ratio, can be measured in equally tempered semitones by taking the <span class="nowrap">base-<span class="texhtml">2<sup>1/12</sup></span></span> logarithm (<span class="texhtml">12</span> times the <span class="nowrap">base-<span class="texhtml">2</span></span> logarithm), or can be measured in <a href="/wiki/Cent_(music)" title="Cent (music)">cents</a>, hundredths of a semitone, by taking the <span class="nowrap">base-<span class="texhtml">2<sup>1/1200</sup></span></span> logarithm (<span class="texhtml">1200</span> times the <span class="nowrap">base-<span class="texhtml">2</span></span> logarithm). The latter is used for finer encoding, as it is needed for finer measurements or non-equal temperaments.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="text-align:center;"> <tbody><tr> <th>Interval<br /> <span style="font-weight: normal">(the two tones are played<br /> at the same time)</span> </th> <td><a href="/wiki/72_tone_equal_temperament" class="mw-redirect" title="72 tone equal temperament">1/12 tone</a><br /> <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-1" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/b8\/1_step_in_72-et_on_C.mid\/1_step_in_72-et_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"1 step in 72-et on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b8/1_step_in_72-et_on_C.mid/1_step_in_72-et_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:1_step_in_72-et_on_C.mid" title="File:1 step in 72-et on C.mid">ⓘ</a></sup></span></span> </td> <td><a href="/wiki/Semitone" title="Semitone">Semitone</a><br /> <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-2" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/8a\/Minor_second_on_C.mid\/Minor_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Minor second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/8a/Minor_second_on_C.mid/Minor_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Minor_second_on_C.mid" title="File:Minor second on C.mid">ⓘ</a></sup></span></span> </td> <td><a href="/wiki/Just_major_third" class="mw-redirect" title="Just major third">Just major third</a><br /> <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-3" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/2a\/Just_major_third_on_C.mid\/Just_major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/2a/Just_major_third_on_C.mid/Just_major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_major_third_on_C.mid" title="File:Just major third on C.mid">ⓘ</a></sup></span></span> </td> <td><a href="/wiki/Major_third" title="Major third">Major third</a><br /> <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-4" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/91\/Major_third_on_C.mid\/Major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/91/Major_third_on_C.mid/Major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Major_third_on_C.mid" title="File:Major third on C.mid">ⓘ</a></sup></span></span> </td> <td><a href="/wiki/Tritone" title="Tritone">Tritone</a><br /> <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-5" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/58\/Tritone_on_C.mid\/Tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/58/Tritone_on_C.mid/Tritone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Tritone_on_C.mid" title="File:Tritone on C.mid">ⓘ</a></sup></span></span> </td> <td><a href="/wiki/Octave" title="Octave">Octave</a><br /> <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-6" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f0\/Perfect_octave_on_C.mid\/Perfect_octave_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Perfect octave on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f0/Perfect_octave_on_C.mid/Perfect_octave_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Perfect_octave_on_C.mid" title="File:Perfect octave on C.mid">ⓘ</a></sup></span></span> </td></tr> <tr> <th><b>Frequency ratio</b><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {1}{72}}\approx 1.0097}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>72</mn> </mfrac> </mrow> </msup> <mo>≈<!-- ≈ --></mo> <mn>1.0097</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {1}{72}}\approx 1.0097}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcce5a9aa9e216fc208a597f74d2d2b6248663e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.123ex; height:3.509ex;" alt="{\displaystyle 2^{\frac {1}{72}}\approx 1.0097}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {1}{12}}\approx 1.0595}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> </msup> <mo>≈<!-- ≈ --></mo> <mn>1.0595</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {1}{12}}\approx 1.0595}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18664eeb9dbe129067dd89295c4928d54fda5f01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.123ex; height:3.509ex;" alt="{\displaystyle 2^{\frac {1}{12}}\approx 1.0595}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {5}{4}}=1.25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mn>1.25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {5}{4}}=1.25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84da6d3ba8b361f151624067f68d609526e6e47b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.891ex; height:3.509ex;" alt="{\displaystyle {\tfrac {5}{4}}=1.25}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}2^{\frac {4}{12}}&={\sqrt[{3}]{2}}\\&\approx 1.2599\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>12</mn> </mfrac> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>1.2599</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}2^{\frac {4}{12}}&={\sqrt[{3}]{2}}\\&\approx 1.2599\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76610ca7878ea438fa73bd50ac4df1fecce09b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:13.875ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}2^{\frac {4}{12}}&={\sqrt[{3}]{2}}\\&\approx 1.2599\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}2^{\frac {6}{12}}&={\sqrt {2}}\\&\approx 1.4142\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <mn>12</mn> </mfrac> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>1.4142</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}2^{\frac {6}{12}}&={\sqrt {2}}\\&\approx 1.4142\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa178821ca7a1554106bf2244d08577f6f5d17fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:13.875ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}2^{\frac {6}{12}}&={\sqrt {2}}\\&\approx 1.4142\end{aligned}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\frac {12}{12}}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>12</mn> <mn>12</mn> </mfrac> </mrow> </msup> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\frac {12}{12}}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0b7cc906bb2bc2787e32f7d1643b290d7b96766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.826ex; height:3.509ex;" alt="{\displaystyle 2^{\frac {12}{12}}=2}"></span> </td></tr> <tr> <th><b>Number of semitones</b><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12\log _{2}r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12\log _{2}r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bf873a44ac093c185619b4fc8e9852d569eaf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.174ex; height:2.676ex;" alt="{\displaystyle 12\log _{2}r}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bc02e655226b1a0e18922e932efff50531c48eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.658ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{6}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx 3.8631}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mn>3.8631</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx 3.8631}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c58cbdc0681a74e9ebeb1b0ce4b25833bc75cee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.912ex; height:2.176ex;" alt="{\displaystyle \approx 3.8631}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a522d3aa5812a136a69f06e1b909d809e849be39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 12}"></span> </td></tr> <tr> <th><b>Number of cents</b><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1200\log _{2}r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1200</mn> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1200\log _{2}r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbcf502f2dd2fba6a0f6f6758ec0707c62484ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.499ex; height:2.676ex;" alt="{\displaystyle 1200\log _{2}r}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 16{\tfrac {2}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>16</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 16{\tfrac {2}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14ffb45717ec74dc340583a93d6a788f6179382" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.983ex; height:3.676ex;" alt="{\displaystyle 16{\tfrac {2}{3}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 100}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>100</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 100}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0572cd017c6d7936a12737c9d614a2f801f94a36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 100}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx 386.31}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mn>386.31</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx 386.31}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0309fcfcbe7d98188d148b01f6f41d15ea416d2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.912ex; height:2.176ex;" alt="{\displaystyle \approx 386.31}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 400}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>400</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 400}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8540670f7baa60a08a5dd4b12916c16fe6faf200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 400}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 600}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>600</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 600}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed5fbc94ba594303754ec8efd3d552547a93043" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 600}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1200}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1200</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1200}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/973054497debca94837d3a844349fe9221727dbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.65ex; height:2.176ex;" alt="{\displaystyle 1200}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Number_theory">Number theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=34" title="Edit section: Number theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithms</a> are closely linked to <a href="/wiki/Prime-counting_function" title="Prime-counting function">counting prime numbers</a> (2, 3, 5, 7, 11, ...), an important topic in <a href="/wiki/Number_theory" title="Number theory">number theory</a>. For any <a href="/wiki/Integer" title="Integer">integer</a> <span class="texhtml mvar" style="font-style:italic;">x</span>, the quantity of <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> less than or equal to <span class="texhtml mvar" style="font-style:italic;">x</span> is denoted <span class="texhtml"><a href="/wiki/Prime-counting_function" title="Prime-counting function"><span class="texhtml mvar" style="font-style:italic;">π</span>(<i>x</i>)</a></span>. The <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a> asserts that <span class="texhtml"><span class="texhtml mvar" style="font-style:italic;">π</span>(<i>x</i>)</span> is approximately given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x}{\ln(x)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x}{\ln(x)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e7c35556de976b4896475a163d924bb9f3d83eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:6.561ex; height:5.509ex;" alt="{\displaystyle {\frac {x}{\ln(x)}},}"></span> in the sense that the ratio of <span class="texhtml"><span class="texhtml mvar" style="font-style:italic;">π</span>(<i>x</i>)</span> and that fraction approaches 1 when <span class="texhtml mvar" style="font-style:italic;">x</span> tends to infinity.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> As a consequence, the probability that a randomly chosen number between 1 and <span class="texhtml mvar" style="font-style:italic;">x</span> is prime is inversely <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportional</a> to the number of decimal digits of <span class="texhtml mvar" style="font-style:italic;">x</span>. A far better estimate of <span class="texhtml"><span class="texhtml mvar" style="font-style:italic;">π</span>(<i>x</i>)</span> is given by the <a href="/wiki/Logarithmic_integral_function" title="Logarithmic integral function">offset logarithmic integral</a> function <span class="texhtml">Li(<i>x</i>)</span>, defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {1}{\ln(t)}}\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">i</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {1}{\ln(t)}}\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da577950b8b4c4ef726a3065afcdafa378dbc3fb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.875ex; height:6.176ex;" alt="{\displaystyle \mathrm {Li} (x)=\int _{2}^{x}{\frac {1}{\ln(t)}}\,dt.}"></span> The <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>, one of the oldest open mathematical <a href="/wiki/Conjecture" title="Conjecture">conjectures</a>, can be stated in terms of comparing <span class="texhtml"><span class="texhtml mvar" style="font-style:italic;">π</span>(<i>x</i>)</span> and <span class="texhtml">Li(<i>x</i>)</span>.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Erd%C5%91s%E2%80%93Kac_theorem" title="Erdős–Kac theorem">Erdős–Kac theorem</a> describing the number of distinct <a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">prime factors</a> also involves the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>. </p><p>The logarithm of <i>n</i> <a href="/wiki/Factorial" title="Factorial">factorial</a>, <span class="texhtml"><i>n</i>! = 1 · 2 · ... · <i>n</i></span>, is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(n!)=\ln(1)+\ln(2)+\cdots +\ln(n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(n!)=\ln(1)+\ln(2)+\cdots +\ln(n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/207af1498eca9a74c5e19ecab897d915d1052c95" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.746ex; height:2.843ex;" alt="{\displaystyle \ln(n!)=\ln(1)+\ln(2)+\cdots +\ln(n).}"></span> This can be used to obtain <a href="/wiki/Stirling%27s_formula" class="mw-redirect" title="Stirling's formula">Stirling's formula</a>, an approximation of <span class="texhtml"><i>n</i>!</span> for large <span class="texhtml mvar" style="font-style:italic;">n</span>.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=35" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Complex_logarithm">Complex logarithm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=36" title="Edit section: Complex logarithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Complex_logarithm" title="Complex logarithm">Complex logarithm</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Complex_number_illustration_multiple_arguments.svg" class="mw-file-description"><img alt="An illustration of the polar form: a point is described by an arrow or equivalently by its length and angle to the x-axis." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Complex_number_illustration_multiple_arguments.svg/220px-Complex_number_illustration_multiple_arguments.svg.png" decoding="async" width="220" height="234" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Complex_number_illustration_multiple_arguments.svg/330px-Complex_number_illustration_multiple_arguments.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Complex_number_illustration_multiple_arguments.svg/440px-Complex_number_illustration_multiple_arguments.svg.png 2x" data-file-width="204" data-file-height="217" /></a><figcaption>Polar form of <span class="texhtml"><i>z = x + iy</i></span>. Both <span class="texhtml mvar" style="font-style:italic;">φ</span> and <span class="texhtml mvar" style="font-style:italic;">φ'</span> are arguments of <span class="texhtml mvar" style="font-style:italic;">z</span>.</figcaption></figure> <p>All the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> <span class="texhtml mvar" style="font-style:italic;">a</span> that solve the equation </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{a}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{a}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dc3322ef38b06276c3bee59d656769b6edf531f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.372ex; height:2.343ex;" alt="{\displaystyle e^{a}=z}"></span> </p><p>are called <i>complex logarithms</i> of <span class="texhtml mvar" style="font-style:italic;">z</span>, when <span class="texhtml mvar" style="font-style:italic;">z</span> is (considered as) a complex number. A complex number is commonly represented as <span class="texhtml"><i>z = x + iy</i></span>, where <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> are real numbers and <span class="texhtml mvar" style="font-style:italic;">i</span> is an <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>, the square of which is −1. Such a number can be visualized by a point in the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>, as shown at the right. The <a href="/wiki/Polar_form" class="mw-redirect" title="Polar form">polar form</a> encodes a non-zero complex number <span class="texhtml mvar" style="font-style:italic;">z</span> by its <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a>, that is, the (positive, real) distance <span class="texhtml mvar" style="font-style:italic;">r</span> to the <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a>, and an angle between the real (<span class="texhtml mvar" style="font-style:italic;">x</span>) axis<i> </i><span class="texhtml">Re</span> and the line passing through both the origin and <span class="texhtml mvar" style="font-style:italic;">z</span>. This angle is called the <a href="/wiki/Argument_(complex_analysis)" title="Argument (complex analysis)">argument</a> of <span class="texhtml mvar" style="font-style:italic;">z</span>. </p><p>The absolute value <span class="texhtml mvar" style="font-style:italic;">r</span> of <span class="texhtml mvar" style="font-style:italic;">z</span> is given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle r={\sqrt {x^{2}+y^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle r={\sqrt {x^{2}+y^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c0606ea41983c11ed8e73fc1507ce58ad316ef0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.557ex; height:3.509ex;" alt="{\displaystyle \textstyle r={\sqrt {x^{2}+y^{2}}}.}"></span> </p><p>Using the geometrical interpretation of <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> and their periodicity in <span class="texhtml">2<span class="texhtml mvar" style="font-style:italic;">π</span></span>, any complex number <span class="texhtml mvar" style="font-style:italic;">z</span> may be denoted as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}z&=x+iy\\&=r(\cos \varphi +i\sin \varphi )\\&=r(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}z&=x+iy\\&=r(\cos \varphi +i\sin \varphi )\\&=r(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6851b66ce18570803cf1ffdc5b789016559b218" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:38.191ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}z&=x+iy\\&=r(\cos \varphi +i\sin \varphi )\\&=r(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )),\end{aligned}}}"></span> </p><p>for any integer number <span class="texhtml mvar" style="font-style:italic;">k</span>. Evidently the argument of <span class="texhtml mvar" style="font-style:italic;">z</span> is not uniquely specified: both <span class="texhtml mvar" style="font-style:italic;">φ</span> and <span class="texhtml"><i>φ'</i> = <i>φ</i> + 2<i>k</i><span class="texhtml mvar" style="font-style:italic;">π</span></span> are valid arguments of <span class="texhtml mvar" style="font-style:italic;">z</span> for all integers <span class="texhtml mvar" style="font-style:italic;">k</span>, because adding <span class="texhtml">2<i>k</i><span class="texhtml mvar" style="font-style:italic;">π</span></span> <a href="/wiki/Radian" title="Radian">radians</a> or <i>k</i>⋅360°<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>nb 6<span class="cite-bracket">]</span></a></sup> to <span class="texhtml mvar" style="font-style:italic;">φ</span> corresponds to "winding" around the origin counter-clock-wise by <span class="texhtml mvar" style="font-style:italic;">k</span> <a href="/wiki/Turn_(geometry)" class="mw-redirect" title="Turn (geometry)">turns</a>. The resulting complex number is always <span class="texhtml mvar" style="font-style:italic;">z</span>, as illustrated at the right for <span class="texhtml"><i>k</i> = 1</span>. One may select exactly one of the possible arguments of <span class="texhtml mvar" style="font-style:italic;">z</span> as the so-called <i>principal argument</i>, denoted <span class="texhtml">Arg(<i>z</i>)</span>, with a capital <span class="texhtml">A</span>, by requiring <span class="texhtml mvar" style="font-style:italic;">φ</span> to belong to one, conveniently selected turn, e.g. <span class="texhtml">−<span class="texhtml mvar" style="font-style:italic;">π</span> < <i>φ</i> ≤ <span class="texhtml mvar" style="font-style:italic;">π</span></span><sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> or <span class="texhtml">0 ≤ <i>φ</i> < 2<span class="texhtml mvar" style="font-style:italic;">π</span></span>.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> These regions, where the argument of <span class="texhtml mvar" style="font-style:italic;">z</span> is uniquely determined are called <a href="/wiki/Principal_branch" title="Principal branch"><i>branches</i></a> of the argument function. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Complex_log_domain.svg" class="mw-file-description"><img alt="A density plot. In the middle there is a black point, at the negative axis the hue jumps sharply and evolves smoothly otherwise." src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_log_domain.svg/220px-Complex_log_domain.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_log_domain.svg/330px-Complex_log_domain.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Complex_log_domain.svg/440px-Complex_log_domain.svg.png 2x" data-file-width="569" data-file-height="426" /></a><figcaption>The principal branch (-<span class="texhtml mvar" style="font-style:italic;">π</span>, <span class="texhtml mvar" style="font-style:italic;">π</span>) of the complex logarithm, <span class="texhtml">Log(<i>z</i>)</span>. The black point at <span class="texhtml"><i>z</i> = 1</span> corresponds to absolute value zero and brighter colors refer to bigger absolute values. The <a href="/wiki/Hue" title="Hue">hue</a> of the color encodes the argument of <span class="texhtml">Log(<i>z</i>)</span>.</figcaption></figure> <p><a href="/wiki/Euler%27s_formula" title="Euler's formula">Euler's formula</a> connects the <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a> <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> to the <a href="/wiki/Complex_exponential" class="mw-redirect" title="Complex exponential">complex exponential</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/396158ab1664889849843ce26a324ed8dbbf841e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.515ex; height:3.176ex;" alt="{\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi .}"></span> </p><p>Using this formula, and again the periodicity, the following identities hold:<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}z&=r\left(\cos \varphi +i\sin \varphi \right)\\&=r\left(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )\right)\\&=re^{i(\varphi +2k\pi )}\\&=e^{\ln(r)}e^{i(\varphi +2k\pi )}\\&=e^{\ln(r)+i(\varphi +2k\pi )}=e^{a_{k}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}z&=r\left(\cos \varphi +i\sin \varphi \right)\\&=r\left(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )\right)\\&=re^{i(\varphi +2k\pi )}\\&=e^{\ln(r)}e^{i(\varphi +2k\pi )}\\&=e^{\ln(r)+i(\varphi +2k\pi )}=e^{a_{k}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a7f91b7eb61729d49185f2c48d2eb32c40a11a3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:37.931ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}z&=r\left(\cos \varphi +i\sin \varphi \right)\\&=r\left(\cos(\varphi +2k\pi )+i\sin(\varphi +2k\pi )\right)\\&=re^{i(\varphi +2k\pi )}\\&=e^{\ln(r)}e^{i(\varphi +2k\pi )}\\&=e^{\ln(r)+i(\varphi +2k\pi )}=e^{a_{k}},\end{aligned}}}"></span> </p><p>where <span class="texhtml">ln(<i>r</i>)</span> is the unique real natural logarithm, <span class="texhtml"><i>a</i><sub><i>k</i></sub></span> denote the complex logarithms of <span class="texhtml mvar" style="font-style:italic;">z</span>, and <span class="texhtml mvar" style="font-style:italic;">k</span> is an arbitrary integer. Therefore, the complex logarithms of <span class="texhtml mvar" style="font-style:italic;">z</span>, which are all those complex values <span class="texhtml"><i>a</i><sub><i>k</i></sub></span> for which the <span class="texhtml"><i>a</i><sub><i>k</i></sub>-th</span> power of <span class="texhtml mvar" style="font-style:italic;">e</span> equals <span class="texhtml mvar" style="font-style:italic;">z</span>, are the infinitely many values <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}=\ln(r)+i(\varphi +2k\pi ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}=\ln(r)+i(\varphi +2k\pi ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22659f325d07ee703329595fc7cf9d372c4fb086" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.38ex; height:2.843ex;" alt="{\displaystyle a_{k}=\ln(r)+i(\varphi +2k\pi ),}"></span> for arbitrary integers <span class="texhtml mvar" style="font-style:italic;">k</span>. </p><p>Taking <span class="texhtml mvar" style="font-style:italic;">k</span> such that <span class="texhtml"><i>φ</i> + 2<i>k</i><span class="texhtml mvar" style="font-style:italic;">π</span></span> is within the defined interval for the principal arguments, then <span class="texhtml"><i>a</i><sub><i>k</i></sub></span> is called the <i>principal value</i> of the logarithm, denoted <span class="texhtml">Log(<i>z</i>)</span>, again with a capital <span class="texhtml">L</span>. The principal argument of any positive real number <span class="texhtml mvar" style="font-style:italic;">x</span> is 0; hence <span class="texhtml">Log(<i>x</i>)</span> is a real number and equals the real (natural) logarithm. However, the above formulas for logarithms of products and powers <a href="/wiki/Exponentiation#Failure_of_power_and_logarithm_identities" title="Exponentiation">do <em>not</em> generalize</a> to the principal value of the complex logarithm.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> </p><p>The illustration at the right depicts <span class="texhtml">Log(<i>z</i>)</span>, confining the arguments of <span class="texhtml mvar" style="font-style:italic;">z</span> to the interval <span class="texhtml">(−π, π]</span>. This way the corresponding branch of the complex logarithm has discontinuities all along the negative real <span class="texhtml mvar" style="font-style:italic;">x</span> axis, which can be seen in the jump in the hue there. This discontinuity arises from jumping to the other boundary in the same branch, when crossing a boundary, i.e. not changing to the corresponding <span class="texhtml mvar" style="font-style:italic;">k</span>-value of the continuously neighboring branch. Such a locus is called a <a href="/wiki/Branch_cut" class="mw-redirect" title="Branch cut">branch cut</a>. Dropping the range restrictions on the argument makes the relations "argument of <span class="texhtml mvar" style="font-style:italic;">z</span>", and consequently the "logarithm of <span class="texhtml mvar" style="font-style:italic;">z</span>", <a href="/wiki/Multi-valued_function" class="mw-redirect" title="Multi-valued function">multi-valued functions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Inverses_of_other_exponential_functions">Inverses of other exponential functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=37" title="Edit section: Inverses of other exponential functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the <a href="/wiki/Logarithm_of_a_matrix" title="Logarithm of a matrix">logarithm of a matrix</a> is the (multi-valued) inverse function of the <a href="/wiki/Matrix_exponential" title="Matrix exponential">matrix exponential</a>.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> Another example is the <a href="/wiki/P-adic_logarithm_function" class="mw-redirect" title="P-adic logarithm function"><i>p</i>-adic logarithm</a>, the inverse function of the <a href="/wiki/P-adic_exponential_function" title="P-adic exponential function"><i>p</i>-adic exponential</a>. Both are defined via Taylor series analogous to the real case.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> In the context of <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, the <a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">exponential map</a> maps the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> at a point of a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">manifold</a> to a <a href="/wiki/Neighborhood_(mathematics)" class="mw-redirect" title="Neighborhood (mathematics)">neighborhood</a> of that point. Its inverse is also called the logarithmic (or log) map.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p><p>In the context of <a href="/wiki/Finite_group" title="Finite group">finite groups</a> exponentiation is given by repeatedly multiplying one group element <span class="texhtml mvar" style="font-style:italic;">b</span> with itself. The <a href="/wiki/Discrete_logarithm" title="Discrete logarithm">discrete logarithm</a> is the integer <i><span class="texhtml mvar" style="font-style:italic;">n</span></i> solving the equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n}=x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n}=x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f90e5e0851759d0490e085cf1888338465384143" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.291ex; height:2.676ex;" alt="{\displaystyle b^{n}=x,}"></span> where <span class="texhtml mvar" style="font-style:italic;">x</span> is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups. This asymmetry has important applications in <a href="/wiki/Public_key_cryptography" class="mw-redirect" title="Public key cryptography">public key cryptography</a>, such as for example in the <a href="/wiki/Diffie%E2%80%93Hellman_key_exchange" title="Diffie–Hellman key exchange">Diffie–Hellman key exchange</a>, a routine that allows secure exchanges of <a href="/wiki/Cryptography" title="Cryptography">cryptographic</a> keys over unsecured information channels.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Zech%27s_logarithm" title="Zech's logarithm">Zech's logarithm</a> is related to the discrete logarithm in the multiplicative group of non-zero elements of a <a href="/wiki/Finite_field" title="Finite field">finite field</a>.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="double_logarithm"></span>Further logarithm-like inverse functions include the <i>double logarithm</i> <span class="texhtml">ln(ln(<i>x</i>))</span>, the <i><a href="/wiki/Super-logarithm" class="mw-redirect" title="Super-logarithm">super- or hyper-4-logarithm</a></i> (a slight variation of which is called <a href="/wiki/Iterated_logarithm" title="Iterated logarithm">iterated logarithm</a> in computer science), the <a href="/wiki/Lambert_W_function" title="Lambert W function">Lambert W function</a>, and the <a href="/wiki/Logit" title="Logit">logit</a>. They are the inverse functions of the <a href="/wiki/Double_exponential_function" title="Double exponential function">double exponential function</a>, <a href="/wiki/Tetration" title="Tetration">tetration</a>, of <span class="texhtml"><i>f</i>(<i>w</i>) = <i>we<sup>w</sup></i></span>,<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> and of the <a href="/wiki/Logistic_function" title="Logistic function">logistic function</a>, respectively.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Related_concepts">Related concepts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=38" title="Edit section: Related concepts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From the perspective of <a href="/wiki/Group_theory" title="Group theory">group theory</a>, the identity <span class="texhtml">log(<i>cd</i>) = log(<i>c</i>) + log(<i>d</i>)</span> expresses a <a href="/wiki/Group_isomorphism" title="Group isomorphism">group isomorphism</a> between positive <a href="/wiki/Real_number" title="Real number">reals</a> under multiplication and reals under addition. Logarithmic functions are the only continuous isomorphisms between these groups.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> By means of that isomorphism, the <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a> (<a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>) <span class="texhtml"><i>dx</i></span> on the reals corresponds to the Haar measure <span class="texhtml"><i>dx</i>/<i>x</i></span> on the positive reals.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> The non-negative reals not only have a multiplication, but also have addition, and form a <a href="/wiki/Semiring" title="Semiring">semiring</a>, called the <a href="/wiki/Probability_semiring" class="mw-redirect" title="Probability semiring">probability semiring</a>; this is in fact a <a href="/wiki/Semifield" title="Semifield">semifield</a>. The logarithm then takes multiplication to addition (log multiplication), and takes addition to log addition (<a href="/wiki/LogSumExp" title="LogSumExp">LogSumExp</a>), giving an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> of semirings between the probability semiring and the <a href="/wiki/Log_semiring" title="Log semiring">log semiring</a>. </p><p><a href="/wiki/Logarithmic_form" title="Logarithmic form">Logarithmic one-forms </a><span class="texhtml"><i>df</i>/<i>f</i></span> appear in <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a> and <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a> as <a href="/wiki/Differential_form" title="Differential form">differential forms</a> with logarithmic <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">poles</a>.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Polylogarithm" title="Polylogarithm">polylogarithm</a> is the function defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Li</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c16a216f9168ba23df2d07ceb32c6929a70c4e1b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.538ex; height:6.843ex;" alt="{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}.}"></span> It is related to the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> by <span class="texhtml">Li<sub>1</sub> (<i>z</i>) = −ln(1 − <i>z</i>)</span>. Moreover, <span class="texhtml">Li<sub><i>s</i></sub> (1)</span> equals the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> <span class="texhtml">ζ(<i>s</i>)</span>.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=39" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/28px-Arithmetic_symbols.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/42px-Arithmetic_symbols.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/56px-Arithmetic_symbols.svg.png 2x" data-file-width="210" data-file-height="210" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Arithmetic" title="Portal:Arithmetic">Arithmetic portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Papapishu-Lab-icon-6.svg/28px-Papapishu-Lab-icon-6.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Papapishu-Lab-icon-6.svg/42px-Papapishu-Lab-icon-6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Papapishu-Lab-icon-6.svg/56px-Papapishu-Lab-icon-6.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Chemistry" title="Portal:Chemistry">Chemistry portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Terra.png/28px-Terra.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Terra.png/42px-Terra.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Terra.png/56px-Terra.png 2x" data-file-width="600" data-file-height="600" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Geography" title="Portal:Geography">Geography portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kcmsystem.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Nuvola_apps_kcmsystem.svg/28px-Nuvola_apps_kcmsystem.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Nuvola_apps_kcmsystem.svg/42px-Nuvola_apps_kcmsystem.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Nuvola_apps_kcmsystem.svg/56px-Nuvola_apps_kcmsystem.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Engineering" title="Portal:Engineering">Engineering portal</a></span></li></ul> <ul><li><a href="/wiki/Decimal_exponent" class="mw-redirect" title="Decimal exponent">Decimal exponent</a> (dex)</li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Index_of_logarithm_articles" title="Index of logarithm articles">Index of logarithm articles</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=40" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">The restrictions on <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are explained in the section <a href="#Analytic_properties">"Analytic properties"</a>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><i>Proof:</i> Taking the logarithm to base <span class="texhtml mvar" style="font-style:italic;">k</span> of the defining identity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x=b^{\log _{b}x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x=b^{\log _{b}x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/361b01fa020a096dc96de0f7b07de6eadba74597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.47ex; height:2.843ex;" alt="{\textstyle x=b^{\log _{b}x},}"></span> one gets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{k}x=\log _{k}\left(b^{\log _{b}x}\right)=\log _{b}x\cdot \log _{k}b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{k}x=\log _{k}\left(b^{\log _{b}x}\right)=\log _{b}x\cdot \log _{k}b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9963d4106a92dfa004d0110b8415407fa52ce9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.957ex; height:3.343ex;" alt="{\displaystyle \log _{k}x=\log _{k}\left(b^{\log _{b}x}\right)=\log _{b}x\cdot \log _{k}b.}"></span> The formula follows by solving for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f58e6c48d751c89792f8c702a8a2537f1621d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.273ex; height:2.676ex;" alt="{\displaystyle \log _{b}x.}"></span></span> </li> <li id="cite_note-adaa-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-adaa_21-0">^</a></b></span> <span class="reference-text">z Some mathematicians disapprove of this notation. In his 1985 autobiography, <a href="/wiki/Paul_Halmos" title="Paul Halmos">Paul Halmos</a> criticized what he considered the "childish <span class="texhtml">ln</span> notation", which he said no mathematician had ever used.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> The notation was invented by the 19th century mathematician <a href="/wiki/Irving_Stringham" title="Irving Stringham">I. Stringham</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">The same series holds for the principal value of the complex logarithm for complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span> satisfying <span class="texhtml">|<i>z</i> − 1| < 1</span>.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">The same series holds for the principal value of the complex logarithm for complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span> with positive real part.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">See <a href="/wiki/Radian" title="Radian">radian</a> for the conversion between 2<a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> and 360 <a href="/wiki/Degree_(angle)" title="Degree (angle)">degree</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=41" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHobson1914" class="citation cs2">Hobson, Ernest William (1914), <a rel="nofollow" class="external text" href="http://archive.org/details/johnnapierinvent00hobsiala"><i>John Napier and the invention of logarithms, 1614; a lecture</i></a>, University of California Libraries, Cambridge : University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=John+Napier+and+the+invention+of+logarithms%2C+1614%3B+a+lecture&rft.pub=Cambridge+%3A+University+Press&rft.date=1914&rft.aulast=Hobson&rft.aufirst=Ernest+William&rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fjohnnapierinvent00hobsiala&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRemmert,_Reinhold.1991" class="citation cs2">Remmert, Reinhold. (1991), <i>Theory of complex functions</i>, New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0387971955" title="Special:BookSources/0387971955"><bdi>0387971955</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/21118309">21118309</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theory+of+complex+functions&rft.place=New+York&rft.pub=Springer-Verlag&rft.date=1991&rft_id=info%3Aoclcnum%2F21118309&rft.isbn=0387971955&rft.au=Remmert%2C+Reinhold.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKateBhapkar2009" class="citation cs2">Kate, S.K.; Bhapkar, H.R. (2009), <i>Basics Of Mathematics</i>, Pune: Technical Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-8431-755-8" title="Special:BookSources/978-81-8431-755-8"><bdi>978-81-8431-755-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basics+Of+Mathematics&rft.place=Pune&rft.pub=Technical+Publications&rft.date=2009&rft.isbn=978-81-8431-755-8&rft.aulast=Kate&rft.aufirst=S.K.&rft.au=Bhapkar%2C+H.R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, chapter 1</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">All statements in this section can be found in Douglas Downing <a href="#CITEREFDowning2003">2003</a>, p. 275 or Kate & Bhapkar <a href="#CITEREFKateBhapkar2009">2009</a>, p. 1-1, for example.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernsteinBernstein1999" class="citation cs2">Bernstein, Stephen; Bernstein, Ruth (1999), <a rel="nofollow" class="external text" href="https://archive.org/details/schaumsoutlineof00bern"><i>Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability</i></a>, Schaum's outline series, New York: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-005023-5" title="Special:BookSources/978-0-07-005023-5"><bdi>978-0-07-005023-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schaum%27s+outline+of+theory+and+problems+of+elements+of+statistics.+I%2C+Descriptive+statistics+and+probability&rft.place=New+York&rft.series=Schaum%27s+outline+series&rft.pub=McGraw-Hill&rft.date=1999&rft.isbn=978-0-07-005023-5&rft.aulast=Bernstein&rft.aufirst=Stephen&rft.au=Bernstein%2C+Ruth&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fschaumsoutlineof00bern&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 21</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDowning2003" class="citation book cs2">Downing, Douglas (2003), <a rel="nofollow" class="external text" href="https://archive.org/details/algebraeasyway00down_0"><i>Algebra the Easy Way</i></a>, Barron's Educational Series, Hauppauge, NY: Barron's, chapter 17, p. 275, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7641-1972-9" title="Special:BookSources/978-0-7641-1972-9"><bdi>978-0-7641-1972-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra+the+Easy+Way&rft.place=Hauppauge%2C+NY&rft.series=Barron%27s+Educational+Series&rft.pages=chapter-17%2C+p.-275&rft.pub=Barron%27s&rft.date=2003&rft.isbn=978-0-7641-1972-9&rft.aulast=Downing&rft.aufirst=Douglas&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebraeasyway00down_0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWegener2005" class="citation book cs2">Wegener, Ingo (2005), <i>Complexity Theory: Exploring the limits of efficient algorithms</i>, Berlin, DE / New York, NY: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, p. 20, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-21045-0" title="Special:BookSources/978-3-540-21045-0"><bdi>978-3-540-21045-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complexity+Theory%3A+Exploring+the+limits+of+efficient+algorithms&rft.place=Berlin%2C+DE+%2F+New+York%2C+NY&rft.pages=20&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=978-3-540-21045-0&rft.aulast=Wegener&rft.aufirst=Ingo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Lubbe1997" class="citation book cs2">van der Lubbe, Jan C.A. (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tBuI_6MQTcwC&pg=PA3"><i>Information Theory</i></a>, Cambridge University Press, p. 3, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-46760-5" title="Special:BookSources/978-0-521-46760-5"><bdi>978-0-521-46760-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Information+Theory&rft.pages=3&rft.pub=Cambridge+University+Press&rft.date=1997&rft.isbn=978-0-521-46760-5&rft.aulast=van+der+Lubbe&rft.aufirst=Jan+C.A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtBuI_6MQTcwC%26pg%3DPA3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllenTriantaphillidou2011" class="citation book cs2">Allen, Elizabeth; Triantaphillidou, Sophie (2011), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IfWivY3mIgAC&pg=PA228"><i>The Manual of Photography</i></a>, Taylor & Francis, p. 228, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-240-52037-7" title="Special:BookSources/978-0-240-52037-7"><bdi>978-0-240-52037-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Manual+of+Photography&rft.pages=228&rft.pub=Taylor+%26+Francis&rft.date=2011&rft.isbn=978-0-240-52037-7&rft.aulast=Allen&rft.aufirst=Elizabeth&rft.au=Triantaphillidou%2C+Sophie&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIfWivY3mIgAC%26pg%3DPA228&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkhurst2007" class="citation book cs2">Parkhurst, David F. (2007), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h6yq_lOr8Z4C&pg=PA288"><i>Introduction to Applied Mathematics for Environmental Science</i></a> (illustrated ed.), Springer Science & Business Media, p. 288, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-34228-3" title="Special:BookSources/978-0-387-34228-3"><bdi>978-0-387-34228-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Applied+Mathematics+for+Environmental+Science&rft.pages=288&rft.edition=illustrated&rft.pub=Springer+Science+%26+Business+Media&rft.date=2007&rft.isbn=978-0-387-34228-3&rft.aulast=Parkhurst&rft.aufirst=David+F.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh6yq_lOr8Z4C%26pg%3DPA288&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodrichTamassia2002" class="citation book cs2"><a href="/wiki/Michael_T._Goodrich" title="Michael T. Goodrich">Goodrich, Michael T.</a>; <a href="/wiki/Roberto_Tamassia" title="Roberto Tamassia">Tamassia, Roberto</a> (2002), <i>Algorithm Design: Foundations, analysis, and internet examples</i>, John Wiley & Sons, p. 23, <q>One of the interesting and sometimes even surprising aspects of the analysis of data structures and algorithms is the ubiquitous presence of logarithms ... As is the custom in the computing literature, we omit writing the base <span class="texhtml mvar" style="font-style:italic;">b</span> of the logarithm when <span class="nowrap"> <span class="texhtml"> <i>b</i> = 2</span> .</span></q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algorithm+Design%3A+Foundations%2C+analysis%2C+and+internet+examples&rft.pages=23&rft.pub=John+Wiley+%26+Sons&rft.date=2002&rft.aulast=Goodrich&rft.aufirst=Michael+T.&rft.au=Tamassia%2C+Roberto&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1984" class="citation book cs2">Rudin, Walter (1984), "Theorem 3.29", <a rel="nofollow" class="external text" href="https://archive.org/details/principlesofmath00rudi"><i>Principles of Mathematical Analysis</i></a> (3rd ed., International student ed.), Auckland, NZ: McGraw-Hill International, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-085613-4" title="Special:BookSources/978-0-07-085613-4"><bdi>978-0-07-085613-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Theorem+3.29&rft.btitle=Principles+of+Mathematical+Analysis&rft.place=Auckland%2C+NZ&rft.edition=3rd+ed.%2C+International+student&rft.pub=McGraw-Hill+International&rft.date=1984&rft.isbn=978-0-07-085613-4&rft.aulast=Rudin&rft.aufirst=Walter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprinciplesofmath00rudi&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation report cs2">"Part 2: Mathematics", <span style="color:gray">[title not cited]</span>, Quantities and units (Report), <a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">International Organization for Standardization</a>, 2019, <span class="nowrap"> <a href="/wiki/ISO_80000-2" class="mw-redirect" title="ISO 80000-2">ISO 80000-2</a>:2019 </span> / <span class="nowrap"> EN <a href="/wiki/ISO_80000-2" class="mw-redirect" title="ISO 80000-2">ISO 80000-2</a> </span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=%3Cspan+style%3D%22color%3Agray%22%3E%5Btitle+not+cited%5D%3C%2Fspan%3E&rft.pub=International+Organization+for+Standardization&rft.date=2019&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span> <dl><dd></dd></dl> <i>See also</i> <a href="/wiki/ISO_80000-2" class="mw-redirect" title="ISO 80000-2">ISO 80000-2</a> .</span> </li> <li id="cite_note-gullberg-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-gullberg_16-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGullberg1997" class="citation book cs2">Gullberg, Jan (1997), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsfromb1997gull"><i>Mathematics: From the birth of numbers</i></a></span>, New York, NY: W.W. Norton & Co, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-393-04002-9" title="Special:BookSources/978-0-393-04002-9"><bdi>978-0-393-04002-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics%3A+From+the+birth+of+numbers&rft.place=New+York%2C+NY&rft.pub=W.W.+Norton+%26+Co&rft.date=1997&rft.isbn=978-0-393-04002-9&rft.aulast=Gullberg&rft.aufirst=Jan&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsfromb1997gull&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a href="/wiki/The_Chicago_Manual_of_Style" title="The Chicago Manual of Style"><i>The Chicago Manual of Style</i></a> (25th ed.), University of Chicago Press, 2003, p. 530</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Chicago+Manual+of+Style&rft.pages=530&rft.edition=25th&rft.pub=University+of+Chicago+Press&rft.date=2003&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1985" class="citation book cs2"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, P.</a> (1985), <i>I Want to be a Mathematician: An automathography</i>, Berlin, DE / New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-96078-4" title="Special:BookSources/978-0-387-96078-4"><bdi>978-0-387-96078-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=I+Want+to+be+a+Mathematician%3A+An+automathography&rft.place=Berlin%2C+DE+%2F+New+York%2C+NY&rft.pub=Springer-Verlag&rft.date=1985&rft.isbn=978-0-387-96078-4&rft.aulast=Halmos&rft.aufirst=P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStringham1893" class="citation book cs2"><a href="/wiki/Irving_Stringham" title="Irving Stringham">Stringham, I.</a> (1893), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hPEKAQAAIAAJ&pg=PA13"><i>Uniplanar Algebra</i></a>, The Berkeley Press, p. <span class="texhtml mvar" style="font-style:italic;">xiii</span>, <q>Being part I of a propædeutic to the higher mathematical analysis</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Uniplanar+Algebra&rft.pages=%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Exiii%3C%2Fspan%3E&rft.pub=The+Berkeley+Press&rft.date=1893&rft.aulast=Stringham&rft.aufirst=I.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhPEKAQAAIAAJ%26pg%3DPA13&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreedman2006" class="citation book cs2">Freedman, Roy S. (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=APJ7QeR_XPkC&pg=PA5"><i>Introduction to Financial Technology</i></a>, Amsterdam: Academic Press, p. 59, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-370478-8" title="Special:BookSources/978-0-12-370478-8"><bdi>978-0-12-370478-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Financial+Technology&rft.place=Amsterdam&rft.pages=59&rft.pub=Academic+Press&rft.date=2006&rft.isbn=978-0-12-370478-8&rft.aulast=Freedman&rft.aufirst=Roy+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAPJ7QeR_XPkC%26pg%3DPA5&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNapier1614" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/John_Napier" title="John Napier">Napier, John</a> (1614), <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN527914568&DMDID=DMDLOG_0001&LOGID=LOG_0001&PHYSID=PHYS_0001"><i>Mirifici Logarithmorum Canonis Descriptio</i></a> [<i>The Description of the Wonderful Canon of Logarithms</i>] (in Latin), Edinburgh, Scotland: Andrew Hart</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mirifici+Logarithmorum+Canonis+Descriptio&rft.place=Edinburgh%2C+Scotland&rft.pub=Andrew+Hart&rft.date=1614&rft.aulast=Napier&rft.aufirst=John&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fdms%2Fload%2Fimg%2F%3FPPN%3DPPN527914568%26DMDID%3DDMDLOG_0001%26LOGID%3DLOG_0001%26PHYSID%3DPHYS_0001&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span> <div class="paragraphbreak" style="margin-top:0.5em"></div> The sequel <i>... Constructio</i> was published posthumously: <div class="paragraphbreak" style="margin-top:0.5em"></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNapier1619" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/John_Napier" title="John Napier">Napier, John</a> (1619), <i>Mirifici Logarithmorum Canonis Constructio</i> [<i>The Construction of the Wonderful Rule of Logarithms</i>] (in Latin), Edinburgh: Andrew Hart</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mirifici+Logarithmorum+Canonis+Constructio&rft.place=Edinburgh&rft.pub=Andrew+Hart&rft.date=1619&rft.aulast=Napier&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span> <div class="paragraphbreak" style="margin-top:0.5em"></div> Ian Bruce has made an <a rel="nofollow" class="external text" href="http://17centurymaths.com/contents/napiercontents.html">annotated translation of both books</a> (2012), available from 17centurymaths.com.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHobson1914" class="citation cs2">Hobson, Ernest William (1914), <a rel="nofollow" class="external text" href="https://archive.org/details/johnnapierinvent00hobsiala"><i>John Napier and the invention of logarithms, 1614</i></a>, Cambridge: The University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=John+Napier+and+the+invention+of+logarithms%2C+1614&rft.place=Cambridge&rft.pub=The+University+Press&rft.date=1914&rft.aulast=Hobson&rft.aufirst=Ernest+William&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjohnnapierinvent00hobsiala&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-folkerts-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-folkerts_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolkertsLaunertThom2016" class="citation cs2">Folkerts, Menso; Launert, Dieter; Thom, Andreas (2016), "Jost Bürgi's method for calculating sines", <i><a href="/wiki/Historia_Mathematica" title="Historia Mathematica">Historia Mathematica</a></i>, <b>43</b> (2): 133–147, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.03180">1510.03180</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2016.03.001">10.1016/j.hm.2016.03.001</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3489006">3489006</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119326088">119326088</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historia+Mathematica&rft.atitle=Jost+B%C3%BCrgi%27s+method+for+calculating+sines&rft.volume=43&rft.issue=2&rft.pages=133-147&rft.date=2016&rft_id=info%3Aarxiv%2F1510.03180&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3489006%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119326088%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.hm.2016.03.001&rft.aulast=Folkerts&rft.aufirst=Menso&rft.au=Launert%2C+Dieter&rft.au=Thom%2C+Andreas&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Burgi.html">"Jost Bürgi (1552 – 1632)"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Jost+B%C3%BCrgi+%281552+%E2%80%93+1632%29&rft.btitle=MacTutor+History+of+Mathematics+Archive&rft.pub=University+of+St+Andrews&rft.aulast=O%27Connor&rft.aufirst=John+J.&rft.au=Robertson%2C+Edmund+F.&rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FBurgi.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">William Gardner (1742) <i>Tables of Logarithms</i></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierce1977" class="citation cs2">Pierce, R. C. Jr. (January 1977), "A brief history of logarithms", <i><a href="/wiki/The_Two-Year_College_Mathematics_Journal" class="mw-redirect" title="The Two-Year College Mathematics Journal">The Two-Year College Mathematics Journal</a></i>, <b>8</b> (1): 22–26, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3026878">10.2307/3026878</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3026878">3026878</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Two-Year+College+Mathematics+Journal&rft.atitle=A+brief+history+of+logarithms&rft.volume=8&rft.issue=1&rft.pages=22-26&rft.date=1977-01&rft_id=info%3Adoi%2F10.2307%2F3026878&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3026878%23id-name%3DJSTOR&rft.aulast=Pierce&rft.aufirst=R.+C.+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">Enrique Gonzales-Velasco (2011) <i>Journey through Mathematics – Creative Episodes in its History</i>, §2.4 Hyperbolic logarithms, p. 117, Springer <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-92153-2" title="Special:BookSources/978-0-387-92153-2">978-0-387-92153-2</a></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Florian Cajori</a> (1913) "History of the exponential and logarithm concepts", <a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a> 20: 5, 35, 75, 107, 148, 173, 205</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStillwell2010" class="citation cs2">Stillwell, J. (2010), <i>Mathematics and Its History</i> (3rd ed.), Springer</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+and+Its+History&rft.edition=3rd&rft.pub=Springer&rft.date=2010&rft.aulast=Stillwell&rft.aufirst=J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBryant1907" class="citation cs2">Bryant, Walter W. (1907), <a rel="nofollow" class="external text" href="https://archive.org/stream/ahistoryastrono01bryagoog#page/n72/mode/2up"><i>A History of Astronomy</i></a>, London: Methuen & Co</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+Astronomy&rft.place=London&rft.pub=Methuen+%26+Co&rft.date=1907&rft.aulast=Bryant&rft.aufirst=Walter+W.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fahistoryastrono01bryagoog%23page%2Fn72%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 44</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbramowitzStegun1972" class="citation cs2"><a href="/wiki/Milton_Abramowitz" title="Milton Abramowitz">Abramowitz, Milton</a>; <a href="/wiki/Irene_Stegun" title="Irene Stegun">Stegun, Irene A.</a>, eds. (1972), <a href="/wiki/Handbook_of_Mathematical_Functions_with_Formulas,_Graphs,_and_Mathematical_Tables" class="mw-redirect" title="Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables"><i>Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</i></a> (10th ed.), New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-61272-0" title="Special:BookSources/978-0-486-61272-0"><bdi>978-0-486-61272-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+Mathematical+Functions+with+Formulas%2C+Graphs%2C+and+Mathematical+Tables&rft.place=New+York&rft.edition=10th&rft.pub=Dover+Publications&rft.date=1972&rft.isbn=978-0-486-61272-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 4.7., p. 89</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCampbell-Kelly2003" class="citation cs2">Campbell-Kelly, Martin (2003), <a href="/wiki/The_History_of_Mathematical_Tables" title="The History of Mathematical Tables"><i>The history of mathematical tables: from Sumer to spreadsheets</i></a>, Oxford scholarship online, <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-850841-0" title="Special:BookSources/978-0-19-850841-0"><bdi>978-0-19-850841-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+history+of+mathematical+tables%3A+from+Sumer+to+spreadsheets&rft.series=Oxford+scholarship+online&rft.pub=Oxford+University+Press&rft.date=2003&rft.isbn=978-0-19-850841-0&rft.aulast=Campbell-Kelly&rft.aufirst=Martin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 2</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpiegelMoyer2006" class="citation cs2">Spiegel, Murray R.; Moyer, R.E. (2006), <i>Schaum's outline of college algebra</i>, Schaum's outline series, New York: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-145227-4" title="Special:BookSources/978-0-07-145227-4"><bdi>978-0-07-145227-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schaum%27s+outline+of+college+algebra&rft.place=New+York&rft.series=Schaum%27s+outline+series&rft.pub=McGraw-Hill&rft.date=2006&rft.isbn=978-0-07-145227-4&rft.aulast=Spiegel&rft.aufirst=Murray+R.&rft.au=Moyer%2C+R.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 264</span> </li> <li id="cite_note-ReferenceA-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-ReferenceA_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaor2009" class="citation cs2">Maor, Eli (2009), <i>E: The Story of a Number</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, sections 1, 13, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-14134-3" title="Special:BookSources/978-0-691-14134-3"><bdi>978-0-691-14134-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=E%3A+The+Story+of+a+Number&rft.pages=sections+1%2C+13&rft.pub=Princeton+University+Press&rft.date=2009&rft.isbn=978-0-691-14134-3&rft.aulast=Maor&rft.aufirst=Eli&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevlin2004" class="citation cs2"><a href="/wiki/Keith_Devlin" title="Keith Devlin">Devlin, Keith</a> (2004), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uQHF7bcm4k4C"><i>Sets, functions, and logic: an introduction to abstract mathematics</i></a>, Chapman & Hall/CRC mathematics (3rd ed.), Boca Raton, Fla: Chapman & Hall/CRC, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58488-449-1" title="Special:BookSources/978-1-58488-449-1"><bdi>978-1-58488-449-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sets%2C+functions%2C+and+logic%3A+an+introduction+to+abstract+mathematics&rft.place=Boca+Raton%2C+Fla&rft.series=Chapman+%26+Hall%2FCRC+mathematics&rft.edition=3rd&rft.pub=Chapman+%26+Hall%2FCRC&rft.date=2004&rft.isbn=978-1-58488-449-1&rft.aulast=Devlin&rft.aufirst=Keith&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuQHF7bcm4k4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, or see the references in <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a></span> </li> <li id="cite_note-LangIII.3-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-LangIII.3_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LangIII.3_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1997" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (1997), <i>Undergraduate analysis</i>, <a href="/wiki/Undergraduate_Texts_in_Mathematics" title="Undergraduate Texts in Mathematics">Undergraduate Texts in Mathematics</a> (2nd ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-2698-5">10.1007/978-1-4757-2698-5</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-94841-6" title="Special:BookSources/978-0-387-94841-6"><bdi>978-0-387-94841-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1476913">1476913</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Undergraduate+analysis&rft.place=Berlin%2C+New+York&rft.series=Undergraduate+Texts+in+Mathematics&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1997&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1476913%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4757-2698-5&rft.isbn=978-0-387-94841-6&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section III.3</span> </li> <li id="cite_note-LangIV.2-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-LangIV.2_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LangIV.2_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Lang <a href="#CITEREFLang1997">1997</a>, section IV.2</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1969" class="citation cs2">Dieudonné, Jean (1969), <i>Foundations of Modern Analysis</i>, vol. 1, Academic Press, p. 84</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Foundations+of+Modern+Analysis&rft.pages=84&rft.pub=Academic+Press&rft.date=1969&rft.aulast=Dieudonn%C3%A9&rft.aufirst=Jean&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span> item (4.3.1)</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=d/dx(Log(b,x))">"Calculation of <i>d/dx(Log(b,x))</i>"</a>, <i>Wolfram Alpha</i>, <a href="/wiki/Wolfram_Research" title="Wolfram Research">Wolfram Research</a><span class="reference-accessdate">, retrieved <span class="nowrap">15 March</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Alpha&rft.atitle=Calculation+of+d%2Fdx%28Log%28b%2Cx%29%29&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2Fdx%28Log%28b%2Cx%29%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline1998" class="citation cs2"><a href="/wiki/Morris_Kline" title="Morris Kline">Kline, Morris</a> (1998), <i>Calculus: an intuitive and physical approach</i>, Dover books on mathematics, New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-40453-0" title="Special:BookSources/978-0-486-40453-0"><bdi>978-0-486-40453-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+an+intuitive+and+physical+approach&rft.place=New+York&rft.series=Dover+books+on+mathematics&rft.pub=Dover+Publications&rft.date=1998&rft.isbn=978-0-486-40453-0&rft.aulast=Kline&rft.aufirst=Morris&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 386</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=Integrate(ln(x))">"Calculation of <i>Integrate(ln(x))</i>"</a>, <i>Wolfram Alpha</i>, Wolfram Research<span class="reference-accessdate">, retrieved <span class="nowrap">15 March</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Alpha&rft.atitle=Calculation+of+Integrate%28ln%28x%29%29&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3DIntegrate%28ln%28x%29%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">Abramowitz & Stegun, eds. <a href="#CITEREFAbramowitzStegun1972">1972</a>, p. 69</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourant1988" class="citation cs2">Courant, Richard (1988), <i>Differential and integral calculus. Vol. I</i>, Wiley Classics Library, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-60842-4" title="Special:BookSources/978-0-471-60842-4"><bdi>978-0-471-60842-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1009558">1009558</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Differential+and+integral+calculus.+Vol.+I&rft.place=New+York&rft.series=Wiley+Classics+Library&rft.pub=John+Wiley+%26+Sons&rft.date=1988&rft.isbn=978-0-471-60842-4&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1009558%23id-name%3DMR&rft.aulast=Courant&rft.aufirst=Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section III.6</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHavil2003" class="citation cs2">Havil, Julian (2003), <i>Gamma: Exploring Euler's Constant</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-09983-5" title="Special:BookSources/978-0-691-09983-5"><bdi>978-0-691-09983-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gamma%3A+Exploring+Euler%27s+Constant&rft.pub=Princeton+University+Press&rft.date=2003&rft.isbn=978-0-691-09983-5&rft.aulast=Havil&rft.aufirst=Julian&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, sections 11.5 and 13.8</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNomizu1996" class="citation cs2"><a href="/wiki/Katsumi_Nomizu" title="Katsumi Nomizu">Nomizu, Katsumi</a> (1996), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uDDxdu0lrWAC&pg=PA21"><i>Selected papers on number theory and algebraic geometry</i></a>, vol. 172, Providence, RI: AMS Bookstore, p. 21, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-0445-2" title="Special:BookSources/978-0-8218-0445-2"><bdi>978-0-8218-0445-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Selected+papers+on+number+theory+and+algebraic+geometry&rft.place=Providence%2C+RI&rft.pages=21&rft.pub=AMS+Bookstore&rft.date=1996&rft.isbn=978-0-8218-0445-2&rft.aulast=Nomizu&rft.aufirst=Katsumi&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuDDxdu0lrWAC%26pg%3DPA21&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaker1975" class="citation cs2"><a href="/wiki/Alan_Baker_(mathematician)" title="Alan Baker (mathematician)">Baker, Alan</a> (1975), <i>Transcendental number theory</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-20461-3" title="Special:BookSources/978-0-521-20461-3"><bdi>978-0-521-20461-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transcendental+number+theory&rft.pub=Cambridge+University+Press&rft.date=1975&rft.isbn=978-0-521-20461-3&rft.aulast=Baker&rft.aufirst=Alan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 10</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuller2006" class="citation cs2">Muller, Jean-Michel (2006), <i>Elementary functions</i> (2nd ed.), Boston, MA: Birkhäuser Boston, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4372-0" title="Special:BookSources/978-0-8176-4372-0"><bdi>978-0-8176-4372-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+functions&rft.place=Boston%2C+MA&rft.edition=2nd&rft.pub=Birkh%C3%A4user+Boston&rft.date=2006&rft.isbn=978-0-8176-4372-0&rft.aulast=Muller&rft.aufirst=Jean-Michel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, sections 4.2.2 (p. 72) and 5.5.2 (p. 95)</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartCheneyLawson1968" class="citation cs2">Hart; Cheney; Lawson; et al. (1968), <i>Computer Approximations</i>, SIAM Series in Applied Mathematics, New York: John Wiley</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Approximations&rft.place=New+York&rft.series=SIAM+Series+in+Applied+Mathematics&rft.pub=John+Wiley&rft.date=1968&rft.au=Hart&rft.au=Cheney&rft.au=Lawson&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 6.3, pp. 105–11</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangDelgado-FriasVassiliadis1994" class="citation cs2">Zhang, M.; Delgado-Frias, J.G.; Vassiliadis, S. (1994), "Table driven Newton scheme for high precision logarithm generation", <i>IEE Proceedings - Computers and Digital Techniques</i>, <b>141</b> (5): 281–92, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fip-cdt%3A19941268">10.1049/ip-cdt:19941268</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1350-2387">1350-2387</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEE+Proceedings+-+Computers+and+Digital+Techniques&rft.atitle=Table+driven+Newton+scheme+for+high+precision+logarithm+generation&rft.volume=141&rft.issue=5&rft.pages=281-92&rft.date=1994&rft_id=info%3Adoi%2F10.1049%2Fip-cdt%3A19941268&rft.issn=1350-2387&rft.aulast=Zhang&rft.aufirst=M.&rft.au=Delgado-Frias%2C+J.G.&rft.au=Vassiliadis%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 1 for an overview</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeggitt1962" class="citation cs2">Meggitt, J.E. (April 1962), "Pseudo Division and Pseudo Multiplication Processes", <i>IBM Journal of Research and Development</i>, <b>6</b> (2): 210–26, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1147%2Frd.62.0210">10.1147/rd.62.0210</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19387286">19387286</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IBM+Journal+of+Research+and+Development&rft.atitle=Pseudo+Division+and+Pseudo+Multiplication+Processes&rft.volume=6&rft.issue=2&rft.pages=210-26&rft.date=1962-04&rft_id=info%3Adoi%2F10.1147%2Frd.62.0210&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19387286%23id-name%3DS2CID&rft.aulast=Meggitt&rft.aufirst=J.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKahan2001" class="citation cs2"><a href="/wiki/William_Kahan" title="William Kahan">Kahan, W.</a> (20 May 2001), <i>Pseudo-Division Algorithms for Floating-Point Logarithms and Exponentials</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Pseudo-Division+Algorithms+for+Floating-Point+Logarithms+and+Exponentials&rft.date=2001-05-20&rft.aulast=Kahan&rft.aufirst=W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-AbramowitzStegunp.68-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-AbramowitzStegunp.68_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AbramowitzStegunp.68_54-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Abramowitz & Stegun, eds. <a href="#CITEREFAbramowitzStegun1972">1972</a>, p. 68</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSasakiKanada1982" class="citation cs2">Sasaki, T.; Kanada, Y. (1982), <a rel="nofollow" class="external text" href="http://ci.nii.ac.jp/naid/110002673332">"Practically fast multiple-precision evaluation of log(x)"</a>, <i>Journal of Information Processing</i>, <b>5</b> (4): 247–50<span class="reference-accessdate">, retrieved <span class="nowrap">30 March</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Information+Processing&rft.atitle=Practically+fast+multiple-precision+evaluation+of+log%28x%29&rft.volume=5&rft.issue=4&rft.pages=247-50&rft.date=1982&rft.aulast=Sasaki&rft.aufirst=T.&rft.au=Kanada%2C+Y.&rft_id=http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F110002673332&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhrendt1999" class="citation cs2">Ahrendt, Timm (1999), "Fast Computations of the Exponential Function", <i>Stacs 99</i>, Lecture notes in computer science, vol. 1564, Berlin, New York: Springer, pp. 302–12, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-49116-3_28">10.1007/3-540-49116-3_28</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-65691-3" title="Special:BookSources/978-3-540-65691-3"><bdi>978-3-540-65691-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fast+Computations+of+the+Exponential+Function&rft.btitle=Stacs+99&rft.place=Berlin%2C+New+York&rft.series=Lecture+notes+in+computer+science&rft.pages=302-12&rft.pub=Springer&rft.date=1999&rft_id=info%3Adoi%2F10.1007%2F3-540-49116-3_28&rft.isbn=978-3-540-65691-3&rft.aulast=Ahrendt&rft.aufirst=Timm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHillis1989" class="citation cs2"><a href="/wiki/Danny_Hillis" title="Danny Hillis">Hillis, Danny</a> (15 January 1989), "Richard Feynman and The Connection Machine", <i>Physics Today</i>, <b>42</b> (2): 78, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989PhT....42b..78H">1989PhT....42b..78H</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.881196">10.1063/1.881196</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=Richard+Feynman+and+The+Connection+Machine&rft.volume=42&rft.issue=2&rft.pages=78&rft.date=1989-01-15&rft_id=info%3Adoi%2F10.1063%2F1.881196&rft_id=info%3Abibcode%2F1989PhT....42b..78H&rft.aulast=Hillis&rft.aufirst=Danny&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Maor <a href="#CITEREFMaor2009">2009</a>, p. 135</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrey2006" class="citation cs2">Frey, Bruce (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HOPyiNb9UqwC&pg=PA275"><i>Statistics hacks</i></a>, Hacks Series, Sebastopol, CA: <a href="/wiki/O%27Reilly_Media" title="O'Reilly Media">O'Reilly</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-596-10164-0" title="Special:BookSources/978-0-596-10164-0"><bdi>978-0-596-10164-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistics+hacks&rft.place=Sebastopol%2C+CA&rft.series=Hacks+Series&rft.pub=O%27Reilly&rft.date=2006&rft.isbn=978-0-596-10164-0&rft.aulast=Frey&rft.aufirst=Bruce&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHOPyiNb9UqwC%26pg%3DPA275&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, chapter 6, section 64</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRicciardi1990" class="citation cs2">Ricciardi, Luigi M. (1990), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Cw4NAQAAIAAJ"><i>Lectures in applied mathematics and informatics</i></a>, Manchester: Manchester University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7190-2671-3" title="Special:BookSources/978-0-7190-2671-3"><bdi>978-0-7190-2671-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+in+applied+mathematics+and+informatics&rft.place=Manchester&rft.pub=Manchester+University+Press&rft.date=1990&rft.isbn=978-0-7190-2671-3&rft.aulast=Ricciardi&rft.aufirst=Luigi+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCw4NAQAAIAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 21, section 1.3.2</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSankaran2001" class="citation book cs2">Sankaran, C. (2001), "7.5.1 Decibel (dB)", <i>Power Quality</i>, Taylor & Francis, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780849310409" title="Special:BookSources/9780849310409"><bdi>9780849310409</bdi></a>, <q>The decibel is used to express the ratio between two quantities. The quantities may be voltage, current, or power.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=7.5.1+Decibel+%28dB%29&rft.btitle=Power+Quality&rft.pub=Taylor+%26+Francis&rft.date=2001&rft.isbn=9780849310409&rft.aulast=Sankaran&rft.aufirst=C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaling2007" class="citation cs2">Maling, George C. (2007), "Noise", in Rossing, Thomas D. (ed.), <i>Springer handbook of acoustics</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-30446-5" title="Special:BookSources/978-0-387-30446-5"><bdi>978-0-387-30446-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Noise&rft.btitle=Springer+handbook+of+acoustics&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=2007&rft.isbn=978-0-387-30446-5&rft.aulast=Maling&rft.aufirst=George+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 23.0.2</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTashev2009" class="citation cs2">Tashev, Ivan Jelev (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=plll9smnbOIC&pg=PA48"><i>Sound Capture and Processing: Practical Approaches</i></a>, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>, p. 98, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-31983-3" title="Special:BookSources/978-0-470-31983-3"><bdi>978-0-470-31983-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sound+Capture+and+Processing%3A+Practical+Approaches&rft.place=New+York&rft.pages=98&rft.pub=John+Wiley+%26+Sons&rft.date=2009&rft.isbn=978-0-470-31983-3&rft.aulast=Tashev&rft.aufirst=Ivan+Jelev&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dplll9smnbOIC%26pg%3DPA48&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChui1997" class="citation cs2">Chui, C.K. (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=N06Gu433PawC&pg=PA180"><i>Wavelets: a mathematical tool for signal processing</i></a>, SIAM monographs on mathematical modeling and computation, Philadelphia: <a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">Society for Industrial and Applied Mathematics</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-384-8" title="Special:BookSources/978-0-89871-384-8"><bdi>978-0-89871-384-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Wavelets%3A+a+mathematical+tool+for+signal+processing&rft.place=Philadelphia&rft.series=SIAM+monographs+on+mathematical+modeling+and+computation&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=1997&rft.isbn=978-0-89871-384-8&rft.aulast=Chui&rft.aufirst=C.K.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DN06Gu433PawC%26pg%3DPA180&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrauderEvansNoell2008" class="citation cs2">Crauder, Bruce; Evans, Benny; Noell, Alan (2008), <i>Functions and Change: A Modeling Approach to College Algebra</i> (4th ed.), Boston: Cengage Learning, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-15669-9" title="Special:BookSources/978-0-547-15669-9"><bdi>978-0-547-15669-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functions+and+Change%3A+A+Modeling+Approach+to+College+Algebra&rft.place=Boston&rft.edition=4th&rft.pub=Cengage+Learning&rft.date=2008&rft.isbn=978-0-547-15669-9&rft.aulast=Crauder&rft.aufirst=Bruce&rft.au=Evans%2C+Benny&rft.au=Noell%2C+Alan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 4.4.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBradt2004" class="citation cs2">Bradt, Hale (2004), <i>Astronomy methods: a physical approach to astronomical observations</i>, Cambridge Planetary Science, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-53551-9" title="Special:BookSources/978-0-521-53551-9"><bdi>978-0-521-53551-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Astronomy+methods%3A+a+physical+approach+to+astronomical+observations&rft.series=Cambridge+Planetary+Science&rft.pub=Cambridge+University+Press&rft.date=2004&rft.isbn=978-0-521-53551-9&rft.aulast=Bradt&rft.aufirst=Hale&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 8.3, p. 231</span> </li> <li id="cite_note-Jens-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jens_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNørby,_Jens2000" class="citation journal cs2">Nørby, Jens (2000), "The origin and the meaning of the little p in pH", <i>Trends in Biochemical Sciences</i>, <b>25</b> (1): 36–37, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0968-0004%2899%2901517-0">10.1016/S0968-0004(99)01517-0</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10637613">10637613</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Trends+in+Biochemical+Sciences&rft.atitle=The+origin+and+the+meaning+of+the+little+p+in+pH&rft.volume=25&rft.issue=1&rft.pages=36-37&rft.date=2000&rft_id=info%3Adoi%2F10.1016%2FS0968-0004%2899%2901517-0&rft_id=info%3Apmid%2F10637613&rft.au=N%C3%B8rby%2C+Jens&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIUPAC1997" class="citation cs2"><a href="/wiki/IUPAC" class="mw-redirect" title="IUPAC">IUPAC</a> (1997), A. D. McNaught, A. Wilkinson (ed.), <a rel="nofollow" class="external text" href="http://goldbook.iupac.org/P04524.html"><i>Compendium of Chemical Terminology ("Gold Book")</i></a> (2nd ed.), Oxford: Blackwell Scientific Publications, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook">10.1351/goldbook</a></span>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9678550-9-7" title="Special:BookSources/978-0-9678550-9-7"><bdi>978-0-9678550-9-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Compendium+of+Chemical+Terminology+%28%22Gold+Book%22%29&rft.place=Oxford&rft.edition=2nd&rft.pub=Blackwell+Scientific+Publications&rft.date=1997&rft_id=info%3Adoi%2F10.1351%2Fgoldbook&rft.isbn=978-0-9678550-9-7&rft.au=IUPAC&rft_id=http%3A%2F%2Fgoldbook.iupac.org%2FP04524.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBird2001" class="citation cs2">Bird, J.O. (2001), <i>Newnes engineering mathematics pocket book</i> (3rd ed.), Oxford: Newnes, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7506-4992-6" title="Special:BookSources/978-0-7506-4992-6"><bdi>978-0-7506-4992-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Newnes+engineering+mathematics+pocket+book&rft.place=Oxford&rft.edition=3rd&rft.pub=Newnes&rft.date=2001&rft.isbn=978-0-7506-4992-6&rft.aulast=Bird&rft.aufirst=J.O.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 34</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstein2009" class="citation cs2">Goldstein, E. Bruce (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Y4TOEN4f5ZMC"><i>Encyclopedia of Perception</i></a>, Thousand Oaks, CA: Sage, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4129-4081-8" title="Special:BookSources/978-1-4129-4081-8"><bdi>978-1-4129-4081-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+Perception&rft.place=Thousand+Oaks%2C+CA&rft.pub=Sage&rft.date=2009&rft.isbn=978-1-4129-4081-8&rft.aulast=Goldstein&rft.aufirst=E.+Bruce&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DY4TOEN4f5ZMC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, pp. 355–56</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatthews2000" class="citation cs2">Matthews, Gerald (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0XrpulSM1HUC"><i>Human Performance: Cognition, Stress, and Individual Differences</i></a>, Hove: Psychology Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-04406-6" title="Special:BookSources/978-0-415-04406-6"><bdi>978-0-415-04406-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Human+Performance%3A+Cognition%2C+Stress%2C+and+Individual+Differences&rft.place=Hove&rft.pub=Psychology+Press&rft.date=2000&rft.isbn=978-0-415-04406-6&rft.aulast=Matthews&rft.aufirst=Gerald&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0XrpulSM1HUC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 48</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWelford1968" class="citation cs2">Welford, A.T. (1968), <i>Fundamentals of skill</i>, London: Methuen, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-416-03000-6" title="Special:BookSources/978-0-416-03000-6"><bdi>978-0-416-03000-6</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/219156">219156</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+skill&rft.place=London&rft.pub=Methuen&rft.date=1968&rft_id=info%3Aoclcnum%2F219156&rft.isbn=978-0-416-03000-6&rft.aulast=Welford&rft.aufirst=A.T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 61</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaul_M._Fitts1954" class="citation cs2">Paul M. Fitts (June 1954), "The information capacity of the human motor system in controlling the amplitude of movement", <i>Journal of Experimental Psychology</i>, <b>47</b> (6): 381–91, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fh0055392">10.1037/h0055392</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13174710">13174710</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:501599">501599</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+Psychology&rft.atitle=The+information+capacity+of+the+human+motor+system+in+controlling+the+amplitude+of+movement&rft.volume=47&rft.issue=6&rft.pages=381-91&rft.date=1954-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A501599%23id-name%3DS2CID&rft_id=info%3Apmid%2F13174710&rft_id=info%3Adoi%2F10.1037%2Fh0055392&rft.au=Paul+M.+Fitts&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, reprinted in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaul_M._Fitts1992" class="citation cs2">Paul M. Fitts (1992), <a rel="nofollow" class="external text" href="http://sing.stanford.edu/cs303-sp10/papers/1954-Fitts.pdf">"The information capacity of the human motor system in controlling the amplitude of movement"</a> <span class="cs1-format">(PDF)</span>, <i>Journal of Experimental Psychology: General</i>, <b>121</b> (3): 262–69, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2F0096-3445.121.3.262">10.1037/0096-3445.121.3.262</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1402698">1402698</a><span class="reference-accessdate">, retrieved <span class="nowrap">30 March</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+Psychology%3A+General&rft.atitle=The+information+capacity+of+the+human+motor+system+in+controlling+the+amplitude+of+movement&rft.volume=121&rft.issue=3&rft.pages=262-69&rft.date=1992&rft_id=info%3Adoi%2F10.1037%2F0096-3445.121.3.262&rft_id=info%3Apmid%2F1402698&rft.au=Paul+M.+Fitts&rft_id=http%3A%2F%2Fsing.stanford.edu%2Fcs303-sp10%2Fpapers%2F1954-Fitts.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanerjee1994" class="citation cs2">Banerjee, J.C. (1994), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Pwl5U2q5hfcC&pg=PA306"><i>Encyclopaedic dictionary of psychological terms</i></a>, New Delhi: M.D. Publications, p. 304, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-85880-28-0" title="Special:BookSources/978-81-85880-28-0"><bdi>978-81-85880-28-0</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/33860167">33860167</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopaedic+dictionary+of+psychological+terms&rft.place=New+Delhi&rft.pages=304&rft.pub=M.D.+Publications&rft.date=1994&rft_id=info%3Aoclcnum%2F33860167&rft.isbn=978-81-85880-28-0&rft.aulast=Banerjee&rft.aufirst=J.C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPwl5U2q5hfcC%26pg%3DPA306&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNadel2005" class="citation cs2"><a href="/wiki/Lynn_Nadel" title="Lynn Nadel">Nadel, Lynn</a> (2005), <i>Encyclopedia of cognitive science</i>, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-01619-0" title="Special:BookSources/978-0-470-01619-0"><bdi>978-0-470-01619-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+cognitive+science&rft.place=New+York&rft.pub=John+Wiley+%26+Sons&rft.date=2005&rft.isbn=978-0-470-01619-0&rft.aulast=Nadel&rft.aufirst=Lynn&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, lemmas <i>Psychophysics</i> and <i>Perception: Overview</i></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSieglerOpfer2003" class="citation cs2">Siegler, Robert S.; Opfer, John E. (2003), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110517002232/http://www.psy.cmu.edu/~siegler/sieglerbooth-cd04.pdf">"The Development of Numerical Estimation. Evidence for Multiple Representations of Numerical Quantity"</a> <span class="cs1-format">(PDF)</span>, <i>Psychological Science</i>, <b>14</b> (3): 237–43, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.727.3696">10.1.1.727.3696</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2F1467-9280.02438">10.1111/1467-9280.02438</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12741747">12741747</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9583202">9583202</a>, archived from <a rel="nofollow" class="external text" href="http://www.psy.cmu.edu/~siegler/sieglerbooth-cd04.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 17 May 2011<span class="reference-accessdate">, retrieved <span class="nowrap">7 January</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Psychological+Science&rft.atitle=The+Development+of+Numerical+Estimation.+Evidence+for+Multiple+Representations+of+Numerical+Quantity&rft.volume=14&rft.issue=3&rft.pages=237-43&rft.date=2003&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.727.3696%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9583202%23id-name%3DS2CID&rft_id=info%3Apmid%2F12741747&rft_id=info%3Adoi%2F10.1111%2F1467-9280.02438&rft.aulast=Siegler&rft.aufirst=Robert+S.&rft.au=Opfer%2C+John+E.&rft_id=http%3A%2F%2Fwww.psy.cmu.edu%2F~siegler%2Fsieglerbooth-cd04.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDehaeneIzardSpelkePica2008" class="citation cs2">Dehaene, Stanislas; Izard, Véronique; Spelke, Elizabeth; Pica, Pierre (2008), "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures", <i>Science</i>, <b>320</b> (5880): 1217–20, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Sci...320.1217D">2008Sci...320.1217D</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.362.2390">10.1.1.362.2390</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1156540">10.1126/science.1156540</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610411">2610411</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18511690">18511690</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Log+or+Linear%3F+Distinct+Intuitions+of+the+Number+Scale+in+Western+and+Amazonian+Indigene+Cultures&rft.volume=320&rft.issue=5880&rft.pages=1217-20&rft.date=2008&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2610411%23id-name%3DPMC&rft_id=info%3Abibcode%2F2008Sci...320.1217D&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.362.2390%23id-name%3DCiteSeerX&rft_id=info%3Apmid%2F18511690&rft_id=info%3Adoi%2F10.1126%2Fscience.1156540&rft.aulast=Dehaene&rft.aufirst=Stanislas&rft.au=Izard%2C+V%C3%A9ronique&rft.au=Spelke%2C+Elizabeth&rft.au=Pica%2C+Pierre&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBreiman1992" class="citation cs2">Breiman, Leo (1992), <i>Probability</i>, Classics in applied mathematics, Philadelphia: <a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">Society for Industrial and Applied Mathematics</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-296-4" title="Special:BookSources/978-0-89871-296-4"><bdi>978-0-89871-296-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Probability&rft.place=Philadelphia&rft.series=Classics+in+applied+mathematics&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=1992&rft.isbn=978-0-89871-296-4&rft.aulast=Breiman&rft.aufirst=Leo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 12.9</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAitchisonBrown1969" class="citation cs2">Aitchison, J.; Brown, J.A.C. (1969), <i>The lognormal distribution</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-04011-2" title="Special:BookSources/978-0-521-04011-2"><bdi>978-0-521-04011-2</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/301100935">301100935</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+lognormal+distribution&rft.pub=Cambridge+University+Press&rft.date=1969&rft_id=info%3Aoclcnum%2F301100935&rft.isbn=978-0-521-04011-2&rft.aulast=Aitchison&rft.aufirst=J.&rft.au=Brown%2C+J.A.C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJean_Mathieu_and_Julian_Scott2000" class="citation cs2">Jean Mathieu and Julian Scott (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nVA53NEAx64C&pg=PA50"><i>An introduction to turbulent flow</i></a>, Cambridge University Press, p. 50, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-77538-0" title="Special:BookSources/978-0-521-77538-0"><bdi>978-0-521-77538-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+introduction+to+turbulent+flow&rft.pages=50&rft.pub=Cambridge+University+Press&rft.date=2000&rft.isbn=978-0-521-77538-0&rft.au=Jean+Mathieu+and+Julian+Scott&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnVA53NEAx64C%26pg%3DPA50&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoseSmith2002" class="citation cs2">Rose, Colin; Smith, Murray D. (2002), <i>Mathematical statistics with Mathematica</i>, Springer texts in statistics, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95234-5" title="Special:BookSources/978-0-387-95234-5"><bdi>978-0-387-95234-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+statistics+with+Mathematica&rft.place=Berlin%2C+New+York&rft.series=Springer+texts+in+statistics&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=978-0-387-95234-5&rft.aulast=Rose&rft.aufirst=Colin&rft.au=Smith%2C+Murray+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 11.3</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTabachnikov2005" class="citation cs2"><a href="/wiki/Sergei_Tabachnikov" title="Sergei Tabachnikov">Tabachnikov, Serge</a> (2005), <i>Geometry and Billiards</i>, Providence, RI: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, pp. 36–40, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-3919-5" title="Special:BookSources/978-0-8218-3919-5"><bdi>978-0-8218-3919-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry+and+Billiards&rft.place=Providence%2C+RI&rft.pages=36-40&rft.pub=American+Mathematical+Society&rft.date=2005&rft.isbn=978-0-8218-3919-5&rft.aulast=Tabachnikov&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 2.1</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDurtschiHillisonPacini2004" class="citation cs2">Durtschi, Cindy; Hillison, William; Pacini, Carl (2004), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170829062510/http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf">"The Effective Use of Benford's Law in Detecting Fraud in Accounting Data"</a> <span class="cs1-format">(PDF)</span>, <i>Journal of Forensic Accounting</i>, <b>V</b>: 17–34, archived from <a rel="nofollow" class="external text" href="http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 29 August 2017<span class="reference-accessdate">, retrieved <span class="nowrap">28 May</span> 2018</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Forensic+Accounting&rft.atitle=The+Effective+Use+of+Benford%27s+Law+in+Detecting+Fraud+in+Accounting+Data&rft.volume=V&rft.pages=17-34&rft.date=2004&rft.aulast=Durtschi&rft.aufirst=Cindy&rft.au=Hillison%2C+William&rft.au=Pacini%2C+Carl&rft_id=http%3A%2F%2Ffaculty.usfsp.edu%2Fgkearns%2FArticles_Fraud%2FBenford%2520Analysis%2520Article.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-Wegener-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wegener_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWegener2005" class="citation cs2">Wegener, Ingo (2005), <i>Complexity theory: exploring the limits of efficient algorithms</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-21045-0" title="Special:BookSources/978-3-540-21045-0"><bdi>978-3-540-21045-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complexity+theory%3A+exploring+the+limits+of+efficient+algorithms&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=978-3-540-21045-0&rft.aulast=Wegener&rft.aufirst=Ingo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, pp. 1–2</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarelFeldman2004" class="citation cs2">Harel, David; Feldman, Yishai A. (2004), <i>Algorithmics: the spirit of computing</i>, New York: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-11784-7" title="Special:BookSources/978-0-321-11784-7"><bdi>978-0-321-11784-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algorithmics%3A+the+spirit+of+computing&rft.place=New+York&rft.pub=Addison-Wesley&rft.date=2004&rft.isbn=978-0-321-11784-7&rft.aulast=Harel&rft.aufirst=David&rft.au=Feldman%2C+Yishai+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 143</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1998" class="citation cs2"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1998), <a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming"><i>The Art of Computer Programming</i></a>, Reading, MA: Addison-Wesley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-89685-5" title="Special:BookSources/978-0-201-89685-5"><bdi>978-0-201-89685-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Art+of+Computer+Programming&rft.place=Reading%2C+MA&rft.pub=Addison-Wesley&rft.date=1998&rft.isbn=978-0-201-89685-5&rft.aulast=Knuth&rft.aufirst=Donald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 6.2.1, pp. 409–26</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text">Donald Knuth <a href="#CITEREFKnuth1998">1998</a>, section 5.2.4, pp. 158–68</span> </li> <li id="cite_note-Wegener20-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wegener20_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWegener2005" class="citation cs2">Wegener, Ingo (2005), <i>Complexity theory: exploring the limits of efficient algorithms</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, p. 20, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-21045-0" title="Special:BookSources/978-3-540-21045-0"><bdi>978-3-540-21045-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complexity+theory%3A+exploring+the+limits+of+efficient+algorithms&rft.place=Berlin%2C+New+York&rft.pages=20&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=978-3-540-21045-0&rft.aulast=Wegener&rft.aufirst=Ingo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMohrSchopfer1995" class="citation cs2">Mohr, Hans; Schopfer, Peter (1995), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/plantphysiology0000mohr"><i>Plant physiology</i></a></span>, Berlin, New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-58016-4" title="Special:BookSources/978-3-540-58016-4"><bdi>978-3-540-58016-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Plant+physiology&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=1995&rft.isbn=978-3-540-58016-4&rft.aulast=Mohr&rft.aufirst=Hans&rft.au=Schopfer%2C+Peter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fplantphysiology0000mohr&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, chapter 19, p. 298</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEco1989" class="citation cs2"><a href="/wiki/Umberto_Eco" title="Umberto Eco">Eco, Umberto</a> (1989), <i>The open work</i>, <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-674-63976-8" title="Special:BookSources/978-0-674-63976-8"><bdi>978-0-674-63976-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+open+work&rft.pub=Harvard+University+Press&rft.date=1989&rft.isbn=978-0-674-63976-8&rft.aulast=Eco&rft.aufirst=Umberto&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section III.I</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSprott2010" class="citation cs2">Sprott, Julien Clinton (2010), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=buILBDre9S4C">"Elegant Chaos: Algebraically Simple Chaotic Flows"</a>, <i>Elegant Chaos: Algebraically Simple Chaotic Flows. Edited by Sprott Julien Clinton. Published by World Scientific Publishing Co. Pte. Ltd</i>, New Jersey: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010ecas.book.....S">2010ecas.book.....S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F7183">10.1142/7183</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-283-881-0" title="Special:BookSources/978-981-283-881-0"><bdi>978-981-283-881-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Elegant+Chaos%3A+Algebraically+Simple+Chaotic+Flows.+Edited+by+Sprott+Julien+Clinton.+Published+by+World+Scientific+Publishing+Co.+Pte.+Ltd&rft.atitle=Elegant+Chaos%3A+Algebraically+Simple+Chaotic+Flows&rft.date=2010&rft_id=info%3Adoi%2F10.1142%2F7183&rft_id=info%3Abibcode%2F2010ecas.book.....S&rft.isbn=978-981-283-881-0&rft.aulast=Sprott&rft.aufirst=Julien+Clinton&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbuILBDre9S4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 1.9</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHelmberg2007" class="citation cs2">Helmberg, Gilbert (2007), <i>Getting acquainted with fractals</i>, De Gruyter Textbook, Berlin, New York: Walter de Gruyter, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-11-019092-2" title="Special:BookSources/978-3-11-019092-2"><bdi>978-3-11-019092-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Getting+acquainted+with+fractals&rft.place=Berlin%2C+New+York&rft.series=De+Gruyter+Textbook&rft.pub=Walter+de+Gruyter&rft.date=2007&rft.isbn=978-3-11-019092-2&rft.aulast=Helmberg&rft.aufirst=Gilbert&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWright2009" class="citation cs2">Wright, David (2009), <i>Mathematics and music</i>, Providence, RI: AMS Bookstore, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4873-9" title="Special:BookSources/978-0-8218-4873-9"><bdi>978-0-8218-4873-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+and+music&rft.place=Providence%2C+RI&rft.pub=AMS+Bookstore&rft.date=2009&rft.isbn=978-0-8218-4873-9&rft.aulast=Wright&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, chapter 5</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBatemanDiamond2004" class="citation cs2">Bateman, P.T.; Diamond, Harold G. (2004), <i>Analytic number theory: an introductory course</i>, New Jersey: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-256-080-3" title="Special:BookSources/978-981-256-080-3"><bdi>978-981-256-080-3</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/492669517">492669517</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analytic+number+theory%3A+an+introductory+course&rft.place=New+Jersey&rft.pub=World+Scientific&rft.date=2004&rft_id=info%3Aoclcnum%2F492669517&rft.isbn=978-981-256-080-3&rft.aulast=Bateman&rft.aufirst=P.T.&rft.au=Diamond%2C+Harold+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, theorem 4.1</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text">P. T. Bateman & Diamond <a href="#CITEREFBatemanDiamond2004">2004</a>, Theorem 8.15</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlomson1991" class="citation cs2">Slomson, Alan B. (1991), <i>An introduction to combinatorics</i>, London: <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-412-35370-3" title="Special:BookSources/978-0-412-35370-3"><bdi>978-0-412-35370-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+introduction+to+combinatorics&rft.place=London&rft.pub=CRC+Press&rft.date=1991&rft.isbn=978-0-412-35370-3&rft.aulast=Slomson&rft.aufirst=Alan+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, chapter 4</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGanguly2005" class="citation cs2">Ganguly, S. (2005), <i>Elements of Complex Analysis</i>, Kolkata: Academic Publishers, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-87504-86-3" title="Special:BookSources/978-81-87504-86-3"><bdi>978-81-87504-86-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+Complex+Analysis&rft.place=Kolkata&rft.pub=Academic+Publishers&rft.date=2005&rft.isbn=978-81-87504-86-3&rft.aulast=Ganguly&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, Definition 1.6.3</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNevanlinnaPaatero2007" class="citation cs2"><a href="/wiki/Rolf_Nevanlinna" title="Rolf Nevanlinna">Nevanlinna, Rolf Herman</a>; Paatero, Veikko (2007), "Introduction to complex analysis", <i>London: Hilger</i>, Providence, RI: AMS Bookstore, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974aitc.book.....W">1974aitc.book.....W</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4399-4" title="Special:BookSources/978-0-8218-4399-4"><bdi>978-0-8218-4399-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=London%3A+Hilger&rft.atitle=Introduction+to+complex+analysis&rft.date=2007&rft_id=info%3Abibcode%2F1974aitc.book.....W&rft.isbn=978-0-8218-4399-4&rft.aulast=Nevanlinna&rft.aufirst=Rolf+Herman&rft.au=Paatero%2C+Veikko&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 5.9</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMooreHadlock1991" class="citation cs2">Moore, Theral Orvis; Hadlock, Edwin H. (1991), <i>Complex analysis</i>, Singapore: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-0246-0" title="Special:BookSources/978-981-02-0246-0"><bdi>978-981-02-0246-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complex+analysis&rft.place=Singapore&rft.pub=World+Scientific&rft.date=1991&rft.isbn=978-981-02-0246-0&rft.aulast=Moore&rft.aufirst=Theral+Orvis&rft.au=Hadlock%2C+Edwin+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 1.2</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilde2006" class="citation cs2">Wilde, Ivan Francis (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vrWES2W6vG0C&q=complex+logarithm&pg=PA97"><i>Lecture notes on complex analysis</i></a>, London: Imperial College Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-86094-642-4" title="Special:BookSources/978-1-86094-642-4"><bdi>978-1-86094-642-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lecture+notes+on+complex+analysis&rft.place=London&rft.pub=Imperial+College+Press&rft.date=2006&rft.isbn=978-1-86094-642-4&rft.aulast=Wilde&rft.aufirst=Ivan+Francis&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DvrWES2W6vG0C%26q%3Dcomplex%2Blogarithm%26pg%3DPA97&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, theorem 6.1.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHigham2008" class="citation cs2"><a href="/wiki/Nicholas_Higham" title="Nicholas Higham">Higham, Nicholas</a> (2008), <i>Functions of Matrices. Theory and Computation</i>, Philadelphia, PA: <a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">SIAM</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-646-7" title="Special:BookSources/978-0-89871-646-7"><bdi>978-0-89871-646-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functions+of+Matrices.+Theory+and+Computation&rft.place=Philadelphia%2C+PA&rft.pub=SIAM&rft.date=2008&rft.isbn=978-0-89871-646-7&rft.aulast=Higham&rft.aufirst=Nicholas&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, chapter 11.</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeukirch1999" class="citation book cs2"><a href="/wiki/J%C3%BCrgen_Neukirch" title="Jürgen Neukirch">Neukirch, Jürgen</a> (1999), <i>Algebraische Zahlentheorie</i>, <span title="German-language text"><i lang="de">Grundlehren der mathematischen Wissenschaften</i></span>, vol. 322, Berlin: <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-65399-8" title="Special:BookSources/978-3-540-65399-8"><bdi>978-3-540-65399-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1697859">1697859</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0956.11021">0956.11021</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraische+Zahlentheorie&rft.place=Berlin&rft.series=%3Cspan+title%3D%22German-language+text%22%3E%3Ci+lang%3D%22de%22%3EGrundlehren+der+mathematischen+Wissenschaften%3C%2Fi%3E%3C%2Fspan%3ECategory%3AArticles+containing+German-language+text&rft.pub=Springer-Verlag&rft.date=1999&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0956.11021%23id-name%3DZbl&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1697859%23id-name%3DMR&rft.isbn=978-3-540-65399-8&rft.aulast=Neukirch&rft.aufirst=J%C3%BCrgen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section II.5.</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHancockMartinSabin2009" class="citation cs2">Hancock, Edwin R.; Martin, Ralph R.; Sabin, Malcolm A. (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0cqCy9x7V_QC&pg=PA379"><i>Mathematics of Surfaces XIII: 13th IMA International Conference York, UK, September 7–9, 2009 Proceedings</i></a>, Springer, p. 379, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-03595-1" title="Special:BookSources/978-3-642-03595-1"><bdi>978-3-642-03595-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+of+Surfaces+XIII%3A+13th+IMA+International+Conference+York%2C+UK%2C+September+7%E2%80%939%2C+2009+Proceedings&rft.pages=379&rft.pub=Springer&rft.date=2009&rft.isbn=978-3-642-03595-1&rft.aulast=Hancock&rft.aufirst=Edwin+R.&rft.au=Martin%2C+Ralph+R.&rft.au=Sabin%2C+Malcolm+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0cqCy9x7V_QC%26pg%3DPA379&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStinson2006" class="citation cs2">Stinson, Douglas Robert (2006), <i>Cryptography: Theory and Practice</i> (3rd ed.), London: <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58488-508-5" title="Special:BookSources/978-1-58488-508-5"><bdi>978-1-58488-508-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Cryptography%3A+Theory+and+Practice&rft.place=London&rft.edition=3rd&rft.pub=CRC+Press&rft.date=2006&rft.isbn=978-1-58488-508-5&rft.aulast=Stinson&rft.aufirst=Douglas+Robert&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLidlNiederreiter1997" class="citation cs2">Lidl, Rudolf; <a href="/wiki/Harald_Niederreiter" title="Harald Niederreiter">Niederreiter, Harald</a> (1997), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/finitefields0000lidl_a8r3"><i>Finite fields</i></a></span>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-39231-0" title="Special:BookSources/978-0-521-39231-0"><bdi>978-0-521-39231-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite+fields&rft.pub=Cambridge+University+Press&rft.date=1997&rft.isbn=978-0-521-39231-0&rft.aulast=Lidl&rft.aufirst=Rudolf&rft.au=Niederreiter%2C+Harald&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffinitefields0000lidl_a8r3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCorlessGonnetHareJeffrey1996" class="citation cs2">Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1996), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101214110615/http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf">"On the Lambert <i>W</i> function"</a> <span class="cs1-format">(PDF)</span>, <i>Advances in Computational Mathematics</i>, <b>5</b>: 329–59, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02124750">10.1007/BF02124750</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1019-7168">1019-7168</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:29028411">29028411</a>, archived from <a rel="nofollow" class="external text" href="http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 14 December 2010<span class="reference-accessdate">, retrieved <span class="nowrap">13 February</span> 2011</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Computational+Mathematics&rft.atitle=On+the+Lambert+W+function&rft.volume=5&rft.pages=329-59&rft.date=1996&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A29028411%23id-name%3DS2CID&rft.issn=1019-7168&rft_id=info%3Adoi%2F10.1007%2FBF02124750&rft.aulast=Corless&rft.aufirst=R.&rft.au=Gonnet%2C+G.&rft.au=Hare%2C+D.&rft.au=Jeffrey%2C+D.&rft.au=Knuth%2C+Donald&rft_id=http%3A%2F%2Fwww.apmaths.uwo.ca%2F~djeffrey%2FOffprints%2FW-adv-cm.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCherkasskyCherkasskyMulier2007" class="citation cs2">Cherkassky, Vladimir; Cherkassky, Vladimir S.; Mulier, Filip (2007), <i>Learning from data: concepts, theory, and methods</i>, Wiley series on adaptive and learning systems for signal processing, communications, and control, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-68182-3" title="Special:BookSources/978-0-471-68182-3"><bdi>978-0-471-68182-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Learning+from+data%3A+concepts%2C+theory%2C+and+methods&rft.place=New+York&rft.series=Wiley+series+on+adaptive+and+learning+systems+for+signal+processing%2C+communications%2C+and+control&rft.pub=John+Wiley+%26+Sons&rft.date=2007&rft.isbn=978-0-471-68182-3&rft.aulast=Cherkassky&rft.aufirst=Vladimir&rft.au=Cherkassky%2C+Vladimir+S.&rft.au=Mulier%2C+Filip&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, p. 357</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1998" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1998), <i>General topology. Chapters 5–10</i>, Elements of Mathematics, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-64563-4" title="Special:BookSources/978-3-540-64563-4"><bdi>978-3-540-64563-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1726872">1726872</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=General+topology.+Chapters+5%E2%80%9310&rft.place=Berlin%2C+New+York&rft.series=Elements+of+Mathematics&rft.pub=Springer-Verlag&rft.date=1998&rft.isbn=978-3-540-64563-4&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1726872%23id-name%3DMR&rft.aulast=Bourbaki&rft.aufirst=Nicolas&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section V.4.1</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmbartzumian1990" class="citation cs2"><a href="/wiki/Rouben_V._Ambartzumian" title="Rouben V. Ambartzumian">Ambartzumian, R.V.</a> (1990), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/factorizationcal0000amba"><i>Factorization calculus and geometric probability</i></a></span>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-34535-4" title="Special:BookSources/978-0-521-34535-4"><bdi>978-0-521-34535-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Factorization+calculus+and+geometric+probability&rft.pub=Cambridge+University+Press&rft.date=1990&rft.isbn=978-0-521-34535-4&rft.aulast=Ambartzumian&rft.aufirst=R.V.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffactorizationcal0000amba&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 1.4</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEsnaultViehweg1992" class="citation cs2">Esnault, Hélène; Viehweg, Eckart (1992), <i>Lectures on vanishing theorems</i>, DMV Seminar, vol. 20, Basel, Boston: Birkhäuser Verlag, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.3227">10.1.1.178.3227</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-0348-8600-0">10.1007/978-3-0348-8600-0</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-7643-2822-1" title="Special:BookSources/978-3-7643-2822-1"><bdi>978-3-7643-2822-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1193913">1193913</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+vanishing+theorems&rft.place=Basel%2C+Boston&rft.series=DMV+Seminar&rft.pub=Birkh%C3%A4user+Verlag&rft.date=1992&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.178.3227%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1193913%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-0348-8600-0&rft.isbn=978-3-7643-2822-1&rft.aulast=Esnault&rft.aufirst=H%C3%A9l%C3%A8ne&rft.au=Viehweg%2C+Eckart&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>, section 2</span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol2010" class="citation cs2">Apostol, T.M. (2010), <a rel="nofollow" class="external text" href="http://dlmf.nist.gov/25.12">"Logarithm"</a>, in <a href="/wiki/Frank_W._J._Olver" title="Frank W. J. Olver">Olver, Frank W. J.</a>; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), <i><a href="/wiki/Digital_Library_of_Mathematical_Functions" title="Digital Library of Mathematical Functions">NIST Handbook of Mathematical Functions</a></i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-19225-5" title="Special:BookSources/978-0-521-19225-5"><bdi>978-0-521-19225-5</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2723248">2723248</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logarithm&rft.btitle=NIST+Handbook+of+Mathematical+Functions&rft.pub=Cambridge+University+Press&rft.date=2010&rft.isbn=978-0-521-19225-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2723248%23id-name%3DMR&rft.aulast=Apostol&rft.aufirst=T.M.&rft_id=http%3A%2F%2Fdlmf.nist.gov%2F25.12&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithm&action=edit&section=42" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Logarithm" class="extiw" title="commons:Category:Logarithm">Logarithm</a> at Wikimedia Commons</li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wiktionary-logo-en-v2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/16px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/24px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/32px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span> The dictionary definition of <a href="https://en.wiktionary.org/wiki/Special:Search/logarithm" class="extiw" title="wiktionary:Special:Search/logarithm"><i>logarithm</i></a> at Wiktionary</li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiquote-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/13px-Wikiquote-logo.svg.png" decoding="async" width="13" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/20px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/27px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span> Quotations related to <a href="https://en.wikiquote.org/wiki/History_of_logarithms" class="extiw" title="wikiquote:History of logarithms">History of logarithms</a> at Wikiquote</li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://en.wikiversity.org/wiki/Speak_Math_Now!/Week_9:_Six_rules_of_Exponents/Logarithms" class="extiw" title="v:Speak Math Now!/Week 9: Six rules of Exponents/Logarithms">A lesson on logarithms can be found on Wikiversity</a></li> <li><span class="citation mathworld" id="Reference-Mathworld-Logarithm"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs2"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Logarithm.html">"Logarithm"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Logarithm&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLogarithm.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121218200616/http://www.khanacademy.org/math/algebra/logarithms-tutorial">Khan Academy: Logarithms, free online micro lectures</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Logarithmic_function">"Logarithmic function"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logarithmic+function&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DLogarithmic_function&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColin_Byfleet" class="citation cs2">Colin Byfleet, <a rel="nofollow" class="external text" href="http://mediasite.oddl.fsu.edu/mediasite/Viewer/?peid=003298f9a02f468c8351c50488d6c479"><i>Educational video on logarithms</i></a><span class="reference-accessdate">, retrieved <span class="nowrap">12 October</span> 2010</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Educational+video+on+logarithms&rft.au=Colin+Byfleet&rft_id=http%3A%2F%2Fmediasite.oddl.fsu.edu%2Fmediasite%2FViewer%2F%3Fpeid%3D003298f9a02f468c8351c50488d6c479&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdward_Wright" class="citation cs2">Edward Wright, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20021203005508/http://www.johnnapier.com/table_of_logarithms_001.htm"><i>Translation of Napier's work on logarithms</i></a>, archived from <a rel="nofollow" class="external text" href="http://www.johnnapier.com/table_of_logarithms_001.htm">the original</a> on 3 December 2002<span class="reference-accessdate">, retrieved <span class="nowrap">12 October</span> 2010</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Translation+of+Napier%27s+work+on+logarithms&rft.au=Edward+Wright&rft_id=http%3A%2F%2Fwww.johnnapier.com%2Ftable_of_logarithms_001.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlaisher1911" class="citation encyclopaedia cs2">Glaisher, James Whitbread Lee (1911), <span class="cs1-ws-icon" title="s:1911 Encyclopædia Britannica/Logarithm"><a class="external text" href="https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Logarithm">"Logarithm" </a></span>, in <a href="/wiki/Hugh_Chisholm" title="Hugh Chisholm">Chisholm, Hugh</a> (ed.), <i><a href="/wiki/Encyclop%C3%A6dia_Britannica_Eleventh_Edition" title="Encyclopædia Britannica Eleventh Edition">Encyclopædia Britannica</a></i>, vol. 16 (11th ed.), Cambridge University Press, pp. 868–77</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Logarithm&rft.btitle=Encyclop%C3%A6dia+Britannica&rft.pages=868-77&rft.edition=11th&rft.pub=Cambridge+University+Press&rft.date=1911&rft.aulast=Glaisher&rft.aufirst=James+Whitbread+Lee&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogarithm" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Hyperoperations" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Hyperoperations" title="Template:Hyperoperations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Hyperoperations" title="Template talk:Hyperoperations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Hyperoperations" title="Special:EditPage/Template:Hyperoperations"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Hyperoperations" style="font-size:114%;margin:0 4em"><a href="/wiki/Hyperoperation" title="Hyperoperation">Hyperoperations</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Primary</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Successor_function" title="Successor function">Successor (0)</a></li> <li><a href="/wiki/Addition" title="Addition">Addition (1)</a></li> <li><a href="/wiki/Multiplication" title="Multiplication">Multiplication (2)</a></li> <li><a href="/wiki/Exponentiation" title="Exponentiation">Exponentiation (3)</a></li> <li><a href="/wiki/Tetration" title="Tetration">Tetration (4)</a></li> <li><a href="/wiki/Pentation" title="Pentation">Pentation (5)</a></li> <li><a href="/wiki/Hexation" class="mw-redirect" title="Hexation">Hexation (6)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Inverse_function" title="Inverse function">Inverse</a> for left argument</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Primitive_recursive_function#Predecessor" title="Primitive recursive function">Predecessor (0)</a></li> <li><a href="/wiki/Subtraction" title="Subtraction">Subtraction (1)</a></li> <li><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division (2)</a></li> <li><a href="/wiki/Nth_root" title="Nth root">Root extraction (3)</a></li> <li><a href="/wiki/Super-root" class="mw-redirect" title="Super-root">Super-root (4)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inverse for right argument</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Primitive_recursive_function#Predecessor" title="Primitive recursive function">Predecessor (0)</a></li> <li><a href="/wiki/Subtraction" title="Subtraction">Subtraction (1)</a></li> <li><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division (2)</a></li> <li><a class="mw-selflink selflink">Logarithm (3)</a></li> <li><a href="/wiki/Super-logarithm" class="mw-redirect" title="Super-logarithm">Super-logarithm (4)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related articles</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ackermann_function" title="Ackermann function">Ackermann function</a></li> <li><a href="/wiki/Conway_chained_arrow_notation" title="Conway chained arrow notation">Conway chained arrow notation</a></li> <li><a href="/wiki/Grzegorczyk_hierarchy" title="Grzegorczyk hierarchy">Grzegorczyk hierarchy</a></li> <li><a href="/wiki/Knuth%27s_up-arrow_notation" title="Knuth's up-arrow notation">Knuth's up-arrow notation</a></li> <li><a href="/wiki/Steinhaus%E2%80%93Moser_notation" title="Steinhaus–Moser notation">Steinhaus–Moser notation</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11197#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4168047-9">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85078091">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Logarithmes"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11941516p">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Logarithmes"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11941516p">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00572566">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Logaritmos"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX527539">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007533701405171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐cnfgh Cached time: 20241122140340 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.496 seconds Real time usage: 3.066 seconds Preprocessor visited node count: 23153/1000000 Post‐expand include size: 295028/2097152 bytes Template argument size: 27858/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 18/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 411339/5000000 bytes Lua time usage: 1.200/10.000 seconds Lua memory usage: 22916512/52428800 bytes Lua Profile: MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 320 ms 23.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 200 ms 14.7% recursiveClone <mwInit.lua:45> 160 ms 11.8% dataWrapper <mw.lua:672> 140 ms 10.3% ? 120 ms 8.8% <mw.lua:694> 40 ms 2.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::anchorEncode 40 ms 2.9% (for generator) <mw.lua:684> 40 ms 2.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 40 ms 2.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 40 ms 2.9% [others] 220 ms 16.2% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2570.044 1 -total 33.12% 851.073 2 Template:Reflist 23.02% 591.734 85 Template:Citation 22.43% 576.576 6 Template:Audio 10.73% 275.668 236 Template:Math 5.30% 136.283 2 Template:Lang 4.77% 122.719 1 Template:Arithmetic_operations 4.02% 103.403 1 Template:Short_description 3.77% 96.804 13 Template:Cite_book 3.31% 85.153 247 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:17860-0!canonical and timestamp 20241122140340 and revision id 1258168520. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Logarithm&oldid=1258168520">https://en.wikipedia.org/w/index.php?title=Logarithm&oldid=1258168520</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Logarithms" title="Category:Logarithms">Logarithms</a></li><li><a href="/wiki/Category:Elementary_special_functions" title="Category:Elementary special functions">Elementary special functions</a></li><li><a href="/wiki/Category:Scottish_inventions" title="Category:Scottish inventions">Scottish inventions</a></li><li><a href="/wiki/Category:Additive_functions" title="Category:Additive functions">Additive functions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Pages_using_the_Phonos_extension" title="Category:Pages using the Phonos extension">Pages using the Phonos extension</a></li><li><a href="/wiki/Category:CS1_Latin-language_sources_(la)" title="Category:CS1 Latin-language sources (la)">CS1 Latin-language sources (la)</a></li><li><a href="/wiki/Category:Articles_containing_German-language_text" title="Category:Articles containing German-language text">Articles containing German-language text</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Featured_articles" title="Category:Featured articles">Featured articles</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_June_2020" title="Category:Use dmy dates from June 2020">Use dmy dates from June 2020</a></li><li><a href="/wiki/Category:Use_American_English_from_January_2024" title="Category:Use American English from January 2024">Use American English from January 2024</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_incorporating_a_citation_from_the_1911_Encyclopaedia_Britannica_with_Wikisource_reference" title="Category:Wikipedia articles incorporating a citation from the 1911 Encyclopaedia Britannica with Wikisource reference">Wikipedia articles incorporating a citation from the 1911 Encyclopaedia Britannica with Wikisource reference</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 November 2024, at 14:09<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Logarithm&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-vp9pw","wgBackendResponseTime":168,"wgPageParseReport":{"limitreport":{"cputime":"2.496","walltime":"3.066","ppvisitednodes":{"value":23153,"limit":1000000},"postexpandincludesize":{"value":295028,"limit":2097152},"templateargumentsize":{"value":27858,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":18,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":411339,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2570.044 1 -total"," 33.12% 851.073 2 Template:Reflist"," 23.02% 591.734 85 Template:Citation"," 22.43% 576.576 6 Template:Audio"," 10.73% 275.668 236 Template:Math"," 5.30% 136.283 2 Template:Lang"," 4.77% 122.719 1 Template:Arithmetic_operations"," 4.02% 103.403 1 Template:Short_description"," 3.77% 96.804 13 Template:Cite_book"," 3.31% 85.153 247 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"1.200","limit":"10.000"},"limitreport-memusage":{"value":22916512,"limit":52428800},"limitreport-profile":[["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","320","23.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","200","14.7"],["recursiveClone \u003CmwInit.lua:45\u003E","160","11.8"],["dataWrapper \u003Cmw.lua:672\u003E","140","10.3"],["?","120","8.8"],["\u003Cmw.lua:694\u003E","40","2.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::anchorEncode","40","2.9"],["(for generator) \u003Cmw.lua:684\u003E","40","2.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","40","2.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","40","2.9"],["[others]","220","16.2"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-cnfgh","timestamp":"20241122140340","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Logarithm","url":"https:\/\/en.wikipedia.org\/wiki\/Logarithm","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11197","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11197","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-08-24T19:06:52Z","dateModified":"2024-11-18T14:09:12Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/81\/Logarithm_plots.png","headline":"inverse of the exponential function, which maps products to sums"}</script> </body> </html>