CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;24 of 24 results for author: <span class="mathjax">Kovalev, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Kovalev%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kovalev, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kovalev%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kovalev, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01424">arXiv:2410.01424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01424">pdf</a>, <a href="https://arxiv.org/format/2410.01424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Terahertz harmonic generation across the Mott insulator-metal transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Prajapati%2C+G+L">Gulloo Lal Prajapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ray%2C+S">Sujay Ray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A+N">Alexey N. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arshad%2C+A">Atiqa Arshad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">Thales V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubey%2C+G">Gaurav Dubey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rana%2C+D+S">Dhanvir Singh Rana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01424v1-abstract-short" style="display: inline;"> We demonstrate terahertz (THz) harmonic generation across the Mott insulator-metal transition in rare-earth nickelates (RNiO$_3$, R = rare-earth atom). The THz harmonic generation is observed in all the three different phases with distinct behaviors: the intensity of harmonics increases upon cooling in both the low-temperature antiferromagnetic (AFM) insulating and high-temperature paramagnetic (P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01424v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01424v1-abstract-full" style="display: none;"> We demonstrate terahertz (THz) harmonic generation across the Mott insulator-metal transition in rare-earth nickelates (RNiO$_3$, R = rare-earth atom). The THz harmonic generation is observed in all the three different phases with distinct behaviors: the intensity of harmonics increases upon cooling in both the low-temperature antiferromagnetic (AFM) insulating and high-temperature paramagnetic (PM) metallic phases, while this trend is reversed in the intermediate PM insulating phase. Using single- and two-band Hubbard models, we find different dominant origins of THz harmonics in different phases: strong spin-charge and orbital-charge couplings in the AFM insulating phase, intraband currents from renormalized quasi-particles with frequency-dependent scattering rate in the PM metallic phase, and the reduction of the charge carrier density due to the opening of the Mott gap in the PM insulating phase. Our study offers strategies for efficient THz harmonic generation from Mott and other strongly correlated systems and insights into the fundamental physics of complex materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01424v1-abstract-full').style.display = 'none'; document.getElementById('2410.01424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Physical Review Letters. 5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07872">arXiv:2409.07872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07872">pdf</a>, <a href="https://arxiv.org/format/2409.07872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> THz Second and Third Harmonic Generation in PdCoO$_2$ Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Priessnitz%2C+T">T. Priessnitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+L">L. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">T. V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+G">G. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">I. Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">A. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arshad%2C+A">A. Arshad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prajapati%2C+G+L">G. L. Prajapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J+-">J. -C. Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">S. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaiser%2C+S">S. Kaiser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07872v1-abstract-short" style="display: inline;"> Terahertz high harmonic generation (THz HHG) is a common property of nonlinear systems. Recently it has been used to investigate fundamental principles that govern transport and nonlinear dynamics in novel quantum materials like graphene, Dirac semimetals or high-temperature superconductors. Here, we report on the observation of exceptionally large THz second harmonic and third harmonic generation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07872v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07872v1-abstract-full" style="display: none;"> Terahertz high harmonic generation (THz HHG) is a common property of nonlinear systems. Recently it has been used to investigate fundamental principles that govern transport and nonlinear dynamics in novel quantum materials like graphene, Dirac semimetals or high-temperature superconductors. Here, we report on the observation of exceptionally large THz second harmonic and third harmonic generation in thin films of the highly conducting delafossite PdCoO$_2$ down to low temperatures. The growth of this material on offcut substrate allows for a significant enhancement of the third harmonic intensity compared to ordinary $c$-axis grown thin films. Furthermore, it appears to be a necessity for the observation of THz second harmonic generation. We model the temperature dependence of the third harmonic generation by means of Boltzmann transport theory and provide an explanation for the second harmonic generation by comparing the system to the electric field induced second harmonic generation. The present investigation thus provides an important contribution to the ongoing discussion of low temperature origins of THz HHG and might serve as a new platform for THz high harmonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07872v1-abstract-full').style.display = 'none'; document.getElementById('2409.07872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16808">arXiv:2408.16808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16808">pdf</a>, <a href="https://arxiv.org/format/2408.16808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast unidirectional spin Hall magnetoresistance driven by terahertz light field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Salikhov%2C+R">Ruslan Salikhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinold%2C+A">Anneke Reinold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T">Thales de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">Alexey Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prajapati%2C+G+L">Gulloo Lal Prajapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pilch%2C+P">Patrick Pilch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghalgaoui%2C+A">Ahmed Ghalgaoui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+M">Max Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">J眉rgen Fassbender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16808v1-abstract-short" style="display: inline;"> The ultrafast control of magnetisation states in magnetically ordered systems is a key technological challenge for developing memory devices operable at picosecond timescales or terahertz (THz) frequencies. Despite significant efforts in ultrafast magnetic switching, convenient ultrafast readout of magnetic states remains under investigation. Currently, many experiments exploit magneto-optical eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16808v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16808v1-abstract-full" style="display: none;"> The ultrafast control of magnetisation states in magnetically ordered systems is a key technological challenge for developing memory devices operable at picosecond timescales or terahertz (THz) frequencies. Despite significant efforts in ultrafast magnetic switching, convenient ultrafast readout of magnetic states remains under investigation. Currently, many experiments exploit magneto-optical effects for detecting magnetisation states, necessitating laser sources and optical components. However, energy-efficient and cost-effective electrical detection is preferred for practical applications. Unidirectional spin-Hall magnetoresistance (USMR) was proposed as a simple two-terminal geometry for the electrical detection of the magnetisation state in magnetic heterostructures. Here, we demonstrate that USMR is active at THz frequencies for picosecond time readouts, and can be initiated with light fields. We detect ultrafast USMR in various types of ferromagnet/heavy metal thin film heterostructures through THz second harmonic generation. Our studies, combined with temperature-dependent measurements of USMR, reveal a significant contribution from electron-magnon spin-flip scattering. This suggests possibilities for all-electrical detection of THz magnon modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16808v1-abstract-full').style.display = 'none'; document.getElementById('2408.16808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13272">arXiv:2311.13272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13272">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit interaction driven terahertz nonlinear dynamics in transition metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Salikhov%2C+R">Ruslan Salikhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lysne%2C+M">Markus Lysne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">Thales V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">Alexey Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arshad%2C+A">Atiqa Arshad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prajapati%2C+G+L">Gulloo Lal Prajapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makushko%2C+P">Pavlo Makushko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makarov%2C+D">Denys Makarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cowan%2C+T">Thomas Cowan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">J眉rgen Fassbender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+A">Aleksandra Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortix%2C+C">Carmine Ortix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13272v1-abstract-short" style="display: inline;"> The interplay of electric charge, spin, and orbital polarizations, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz spintronics and orbitronics. The essential rules for how terahertz light interacts with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13272v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13272v1-abstract-full" style="display: none;"> The interplay of electric charge, spin, and orbital polarizations, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz spintronics and orbitronics. The essential rules for how terahertz light interacts with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by 蟺), depending on the d-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13272v1-abstract-full').style.display = 'none'; document.getElementById('2311.13272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15225">arXiv:2310.15225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15225">pdf</a>, <a href="https://arxiv.org/format/2310.15225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunable room temperature nonlinear Hall effect from the surfaces of elementary bismuth thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Makushko%2C+P">Pavlo Makushko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabila%2C+Y">Yevhen Zabila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">Alexey Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arshad%2C+A">Atiqa Arshad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prajapati%2C+G+L">Gulloo Lal Prajapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">Thales V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chekhonin%2C+P">Paul Chekhonin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veremchuk%2C+I">Igor Veremchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kosub%2C+T">Tobias Kosub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Yurii Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganss%2C+F">Fabian Ganss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makarov%2C+D">Denys Makarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortix%2C+C">Carmine Ortix</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15225v1-abstract-short" style="display: inline;"> The nonlinear Hall effect (NLHE) with time-reversal symmetry constitutes the appearance of a transverse voltage quadratic in the applied electric field. It is a second-order electronic transport phenomenon that induces frequency doubling and occurs in non-centrosymmetric crystals with large Berry curvature -- an emergent magnetic field encoding the geometric properties of electronic wavefunctions.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15225v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15225v1-abstract-full" style="display: none;"> The nonlinear Hall effect (NLHE) with time-reversal symmetry constitutes the appearance of a transverse voltage quadratic in the applied electric field. It is a second-order electronic transport phenomenon that induces frequency doubling and occurs in non-centrosymmetric crystals with large Berry curvature -- an emergent magnetic field encoding the geometric properties of electronic wavefunctions. The design of (opto)electronic devices based on the NLHE is however hindered by the fact that this nonlinear effect typically appears at low temperatures and in complex compounds characterized by Dirac or Weyl electrons. Here, we show a strong room temperature NLHE in the centrosymmetric elemental material bismuth synthesized in the form of technologically relevant polycrystalline thin films. The ($1\,1\,1$) surface electrons of this material are equipped with a Berry curvature triple that activates side jumps and skew scatterings generating nonlinear transverse currents. We also report a boost of the zero field nonlinear transverse voltage in arc-shaped bismuth stripes due to an extrinsic geometric classical counterpart of the NLHE. This electrical frequency doubling in curved geometries is then extended to optical second harmonic generation in the terahertz (THz) spectral range. The strong nonlinear electrodynamical responses of the surface states are further demonstrated by a concomitant highly efficient THz third harmonic generation which we achieve in a broad range of frequencies in Bi and Bi-based heterostructures. Combined with the possibility of growth on CMOS-compatible and mechanically flexible substrates, these results highlight the potential of Bi thin films for THz (opto)electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15225v1-abstract-full').style.display = 'none'; document.getElementById('2310.15225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.01052">arXiv:2308.01052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.01052">pdf</a>, <a href="https://arxiv.org/format/2308.01052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49716-w">10.1038/s41467-024-49716-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impulsive Fermi magnon-phonon resonance in antiferromagnetic $CoF_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Metzger%2C+T+W+J">Thomas W. J. Metzger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grishunin%2C+K+A">Kirill A. Grishunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinhoffer%2C+C">Chris Reinhoffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubrovin%2C+R+M">Roman M. Dubrovin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arshad%2C+A">Atiqa Arshad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">Thales V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">Alexey Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pisarev%2C+R+V">Roman V. Pisarev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsnelson%2C+M+I">Mikhail I. Katsnelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+B+A">Boris A. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loosdrecht%2C+P+H+M">Paul H. M. van Loosdrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">Alexey V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">Evgeny A. Mashkovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.01052v1-abstract-short" style="display: inline;"> Understanding spin-lattice interactions in antiferromagnets is one of the most fundamental issues at the core of the recently emerging and booming fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear spin-lattice coupling was discovered in an antiferromagnet which opened the possibility to control the nonlinear coupling strength and thus showing a novel pathway to co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01052v1-abstract-full').style.display = 'inline'; document.getElementById('2308.01052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.01052v1-abstract-full" style="display: none;"> Understanding spin-lattice interactions in antiferromagnets is one of the most fundamental issues at the core of the recently emerging and booming fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear spin-lattice coupling was discovered in an antiferromagnet which opened the possibility to control the nonlinear coupling strength and thus showing a novel pathway to coherently control magnon-phonon dynamics. Here, utilizing intense narrow band terahertz (THz) pulses and tunable magnetic fields up to 7 T, we experimentally realize the conditions of the Fermi magnon-phonon resonance in antiferromagnetic $CoF_{2}$. These conditions imply that both the spin and the lattice anharmonicities harvest energy transfer between the subsystems, if the magnon eigenfrequency $f_{m}$ is twice lower than the frequency of the phonon $2f_{m}=f_{ph}$. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of an impulsive THz-induced response. This study focuses on the role of nonlinearity in spin-lattice interactions, providing insights into the control of coherent magnon-phonon energy exchange. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01052v1-abstract-full').style.display = 'none'; document.getElementById('2308.01052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 5472 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03288">arXiv:2303.03288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03288">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Tracing the dynamics of superconducting order via transient third harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Jae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Udina%2C+M">Mattia Udina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haenel%2C+R">Rafael Haenel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gideok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puviani%2C+M">Matteo Puviani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cristiani%2C+G">Georg Cristiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">Thales V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">Alexey Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manske%2C+D">Dirk Manske</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benfatto%2C+L">Lara Benfatto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaiser%2C+S">Stefan Kaiser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03288v1-abstract-short" style="display: inline;"> Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity with ultrashort laser pulses has attracted much of attention. To identify non-equilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales. Recently non-linear THz third harmonic generation (THG) was sh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03288v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03288v1-abstract-full" style="display: none;"> Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity with ultrashort laser pulses has attracted much of attention. To identify non-equilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales. Recently non-linear THz third harmonic generation (THG) was shown to directly probe the collective degrees of freedoms of the superconducting condensate including particularly the Higgs mode. Here we extend this idea to light-driven non-equilibrium states in superconducting La2-xSrxCuO4 establishing a protocol to access the transient superconducting (SC) order-parameter fluctuations. We perform an optical pump-THz-THG drive experiment and use a two-dimensional spectroscopy approach to disentangle the driven third-harmonic response of optically excited quasiparticles and the pure condensate response. In this way, 2D spectroscopy separately probes both the ultrafast pair breaking dynamics and transient pairing amplitude of the condensate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03288v1-abstract-full').style.display = 'none'; document.getElementById('2303.03288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10947">arXiv:2211.10947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10947">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dynamical interplay between superconductivity and charge-density-wave: a nonlinear terahertz study of coherently-driven 2H-NbSe2 and La2-xSrxCuO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+L">Liwen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Jiayuan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Priessnitz%2C+T">Tim Priessnitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yunyun Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T">Thales de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jiayu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Jae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A+N">Alexey N. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haotian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y">Yongbo Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzotti%2C+V">Valentina Mazzotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gideok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christiani%2C+G">Georg Christiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaiser%2C+S">Stefan Kaiser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+H">Hao Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10947v2-abstract-short" style="display: inline;"> 2H-NbSe2 is an archetypal system in which superconductivity and charge-density-wave (CDW) coexist and compete macroscopically with each other. In particular, this interplay also manifests in their dynamical fluctuations. As a result, the superconducting amplitude fluctuations (i.e. Higgs mode) is pushed below the quasiparticle continuum, allowing it to become a coherent excitation observable by Ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10947v2-abstract-full').style.display = 'inline'; document.getElementById('2211.10947v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10947v2-abstract-full" style="display: none;"> 2H-NbSe2 is an archetypal system in which superconductivity and charge-density-wave (CDW) coexist and compete macroscopically with each other. In particular, this interplay also manifests in their dynamical fluctuations. As a result, the superconducting amplitude fluctuations (i.e. Higgs mode) is pushed below the quasiparticle continuum, allowing it to become a coherent excitation observable by Raman scattering. In the present study, we coherently drive the collective oscillations of the two orders and visualize their interplay in the driven states in the time domain. We find that both collective modes contribute to terahertz third harmonic generation (THG) and the THG signals interfere below Tc, leading to an anti-resonance of the integrated THG signal. The dynamical Ginzburg-Landau model suggests that around the anti-resonance a periodic energy transfer between the driven Higgs oscillations and the driven CDW oscillations is possible. In addition to 2H-NbSe2, we also studied an underdoped La2-xSrxCuO4 (x ~ 0.12) driven beyond the perturbative regime of THG. A similar interference between two sources of THG is observed below Tc. While there might be additional sources of THG in these experiments, our results illustrate the roles of coupled modes in the terahertz THG process and the tantalizing possibility of coherent control via such couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10947v2-abstract-full').style.display = 'none'; document.getElementById('2211.10947v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00465">arXiv:2211.00465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-022-01008-y">10.1038/s41377-022-01008-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Milliwatt terahertz harmonic generation from topological insulator metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tielrooij%2C+K">Klaas-Jan Tielrooij</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Principi%2C+A">Alessandro Principi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reig%2C+D+S">David Saleta Reig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Block%2C+A">Alexander Block</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varghese%2C+S">Sebin Varghese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreyeck%2C+S">Steffen Schreyeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brunner%2C+K">Karl Brunner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karczewski%2C+G">Grzegorz Karczewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+O">Oleksiy Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">Thales V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbonell%2C+C+G">Carmen Gomez Carbonell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenzuela%2C+S+O">Sergio O. Valenzuela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molenkamp%2C+L+W">Laurens W. Molenkamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiessling%2C+T">Tobias Kiessling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astakhov%2C+G+V">Georgy V. Astakhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00465v1-abstract-short" style="display: inline;"> Achieving efficient, high-power harmonic generation in the terahertz spectral domain has technological applications, for example in sixth generation (6G) communication networks. Massless Dirac fermions possess extremely large terahertz nonlinear susceptibilities and harmonic conversion efficiencies. However, the observed maximum generated harmonic power is limited, because of saturation effects at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00465v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00465v1-abstract-full" style="display: none;"> Achieving efficient, high-power harmonic generation in the terahertz spectral domain has technological applications, for example in sixth generation (6G) communication networks. Massless Dirac fermions possess extremely large terahertz nonlinear susceptibilities and harmonic conversion efficiencies. However, the observed maximum generated harmonic power is limited, because of saturation effects at increasing incident powers, as shown recently for graphene. Here, we demonstrate room-temperature terahertz harmonic generation in a Bi$_2$Se$_3$ topological insulator and topological-insulator-grating metamaterial structures with surface-selective terahertz field enhancement. We obtain a third-harmonic power approaching the milliwatt range for an incident power of 75 mW - an improvement by two orders of magnitude compared to a benchmarked graphene sample. We establish a framework in which this exceptional performance is the result of thermodynamic harmonic generation by the massless topological surface states, benefiting from ultrafast dissipation of electronic heat via surface-bulk Coulomb interactions. These results are an important step towards on-chip terahertz (opto)electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00465v1-abstract-full').style.display = 'none'; document.getElementById('2211.00465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light Sci Appl 11, 315 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02548">arXiv:2208.02548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02548">pdf</a>, <a href="https://arxiv.org/format/2208.02548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L081127">10.1103/PhysRevB.106.L081127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ellipticity control of terahertz high-harmonic generation in a Dirac semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">Semyon Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantas%2C+R+M+A">Renato M. A. Dantas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinhoffer%2C+C">Chris Reinhoffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">Evgeny A. Mashkovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loosdrecht%2C+P+H+M">Paul H. M. van Loosdrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sur%C3%B3wka%2C+P">Piotr Sur贸wka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moessner%2C+R">Roderich Moessner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oka%2C+T">Takashi Oka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02548v2-abstract-short" style="display: inline;"> We report on terahertz high-harmonic generation in a Dirac semimetal as a function of the driving-pulse ellipticity and on a theoretical study of the field-driven intraband kinetics of massless Dirac fermions.Very efficient control of third-harmonic yield and polarization state is achieved in electron-doped Cd$_3$As$_2$ thin films at room temperature. The observed tunability is understood as resul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02548v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02548v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02548v2-abstract-full" style="display: none;"> We report on terahertz high-harmonic generation in a Dirac semimetal as a function of the driving-pulse ellipticity and on a theoretical study of the field-driven intraband kinetics of massless Dirac fermions.Very efficient control of third-harmonic yield and polarization state is achieved in electron-doped Cd$_3$As$_2$ thin films at room temperature. The observed tunability is understood as resulting from terahertz-field driven intraband kinetics of the Dirac fermions. Our study paves the way for exploiting nonlinear optical properties of Dirac matter for applications in signal processing and optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02548v2-abstract-full').style.display = 'none'; document.getElementById('2208.02548v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, supplemental material included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L081127 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12361">arXiv:2207.12361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12361">pdf</a>, <a href="https://arxiv.org/format/2207.12361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.214514">10.1103/PhysRevB.106.214514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-order nonlinear terahertz probing of the two-band superconductor MgB$_2$: Third- and fifth-order harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reinhoffer%2C+C">C. Reinhoffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pilch%2C+P">P. Pilch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinold%2C+A">A. Reinold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Derendorf%2C+P">P. Derendorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">S. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J+-">J. -C. Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">I. Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">A. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tie-Quan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+Z">Zi-Zhao Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">De-Sheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jian-Lin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">S. Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mashkovich%2C+E+A">E. A. Mashkovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loosdrecht%2C+P+H+M">P. H. M. van Loosdrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eremin%2C+I+M">I. M. Eremin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12361v2-abstract-short" style="display: inline;"> We report on high-order harmonic generation in the two-band superconductor MgB$_2$ driven by intense terahertz electromagnetic pulses. Third- and fifth-order harmonics are resolved in time domain and investigated as a function of temperature and in applied magnetic fields crossing the superconducting phase boundary. The high-order harmonics in the superconducting phase reflects nonequilibrium dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12361v2-abstract-full').style.display = 'inline'; document.getElementById('2207.12361v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12361v2-abstract-full" style="display: none;"> We report on high-order harmonic generation in the two-band superconductor MgB$_2$ driven by intense terahertz electromagnetic pulses. Third- and fifth-order harmonics are resolved in time domain and investigated as a function of temperature and in applied magnetic fields crossing the superconducting phase boundary. The high-order harmonics in the superconducting phase reflects nonequilibrium dynamics of the superconducting order parameter in MgB$_2$, which is probed via nonlinear coupling to the terahertz field. The observed temperature and field dependence of the nonlinear response allows to establish the superconducting phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12361v2-abstract-full').style.display = 'none'; document.getElementById('2207.12361v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 214514 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09971">arXiv:2109.09971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36787-4">10.1038/s41467-023-36787-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fano interference of the Higgs mode in cuprate high-Tc superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+H">Hao Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+X">Zi Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwarz%2C+L">Lukas Schwarz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+L">Liwen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haenel%2C+R">Rafael Haenel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Jae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabestari%2C+P">Parmida Shabestari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phuong%2C+H+L">Hoang Le Phuong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Honasoge%2C+K">Kedar Honasoge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dawson%2C+R+D">Robert David Dawson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzky%2C+D">Daniel Putzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gideok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puviani%2C+M">Matteo Puviani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">Nilesh Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A+N">Alexey N. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluschke%2C+M">Martin Bluschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">Mengxing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christiani%2C+G">Georg Christiani</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09971v2-abstract-short" style="display: inline;"> Despite decades of search for the pairing boson in cuprate high-Tc superconductors, its identity still remains debated to date. For this reason, spectroscopic signatures of electron-boson interactions in cuprates have always been a center of attention. For example, the kinks in the quasiparticle dispersion observed by angle-resolved photoemission spectroscopy (ARPES) studies have motivated a decad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09971v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09971v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09971v2-abstract-full" style="display: none;"> Despite decades of search for the pairing boson in cuprate high-Tc superconductors, its identity still remains debated to date. For this reason, spectroscopic signatures of electron-boson interactions in cuprates have always been a center of attention. For example, the kinks in the quasiparticle dispersion observed by angle-resolved photoemission spectroscopy (ARPES) studies have motivated a decade-long investigation of electron-phonon as well as electron-paramagnon interactions in cuprates. On the other hand, the overlap between the charge-order correlations and the pseudogap in the cuprate phase diagram has also generated discussions about the potential link between them. In the present study, we provide a fresh perspective on these intertwined interactions using the novel approach of Higgs spectroscopy, i.e. an investigation of the amplitude oscillations of the superconducting order parameter driven by a terahertz radiation. Uniquely for cuprates, we observe a Fano interference of its dynamically driven Higgs mode with another collective mode, which we reveal to be charge density wave fluctuations from an extensive doping- and magnetic field-dependent study. This finding is further corroborated by a mean field model in which we describe the microscopic mechanism underlying the interaction between the two orders. Our work demonstrates Higgs spectroscopy as a novel and powerful technique for investigating intertwined orders and microscopic processes in unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09971v2-abstract-full').style.display = 'none'; document.getElementById('2109.09971v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 14, Article number: 1343 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05019">arXiv:2010.05019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.05019">pdf</a>, <a href="https://arxiv.org/ps/2010.05019">ps</a>, <a href="https://arxiv.org/format/2010.05019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L140505">10.1103/PhysRevB.104.L140505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band-selective third-harmonic generation in superconducting MgB$_2$: Possible evidence for Higgs amplitude mode in the dirty limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Li-Yu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinhoffer%2C+C">Chris Reinhoffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tie-Quan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hong-Zhang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+Z">Zi-Zhao Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">Semyon Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loosdrecht%2C+P+H+M">Paul H. M. van Loosdrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nan-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demsar%2C+J">Jure Demsar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05019v2-abstract-short" style="display: inline;"> We report on time-resolved linear and nonlinear terahertz spectroscopy of the two-band superconductor MgB$_2$ with the superconducting transition temperature $T_c \approx 36$ K. Third-harmonic generation (THG) is observed below $T_c$ by driving the system with intense narrowband THz pulses. For the pump-pulse frequencies $f=$ 0.3, 0.4, and 0.5 THz, temperature-dependent evolution of the THG signal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05019v2-abstract-full').style.display = 'inline'; document.getElementById('2010.05019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05019v2-abstract-full" style="display: none;"> We report on time-resolved linear and nonlinear terahertz spectroscopy of the two-band superconductor MgB$_2$ with the superconducting transition temperature $T_c \approx 36$ K. Third-harmonic generation (THG) is observed below $T_c$ by driving the system with intense narrowband THz pulses. For the pump-pulse frequencies $f=$ 0.3, 0.4, and 0.5 THz, temperature-dependent evolution of the THG signals exhibits a resonance maximum at the temperatures with the resonance conditions $2f=2螖_蟺(T)$ fulfilled, for the dirty-limit superconducting gap $2螖_蟺$. In contrast, for $f=$ 0.6 and 0.7 THz with $2f&gt;2螖_蟺(T\rightarrow0)=1.03$ THz, the THG intensity increases monotonically with decreasing temperature. Moreover, for $2f&lt;2螖_蟺(T\rightarrow0)$ the THG is found nearly isotropic with respect to the pump-pulse polarization. These results suggest a predominant contribution of the driven Higgs amplitude mode of the dirty-limit $蟺$-band superconducting gap, pointing to the importance of scattering for observation of the Higgs mode in superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05019v2-abstract-full').style.display = 'none'; document.getElementById('2010.05019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, L140505 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11730">arXiv:2009.11730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11730">pdf</a>, <a href="https://arxiv.org/format/2009.11730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c08106">10.1021/acsnano.0c08106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Grating-graphene metamaterial as a platform for terahertz nonlinear photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iranzo%2C+D+A">David Alcaraz Iranzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+R">Raul Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xiaoyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hafez%2C+H+A">Hassan A. Hafez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">Nilesh Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawatna%2C+M">Mohammed Bawatna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A+N">Alexey N. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">Semyon Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+M">Mischa Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koppens%2C+F+H+L">Frank H. L. Koppens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turchinovich%2C+D">Dmitry Turchinovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tielrooij%2C+K">Klaas-Jan Tielrooij</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11730v1-abstract-short" style="display: inline;"> Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11730v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11730v1-abstract-full" style="display: none;"> Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3$\cdot$10$^{-8}$m$^2$/V$^2$, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to $\sim$1% using a moderate field strength of $\sim$30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9$^{\rm th}$ harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11730v1-abstract-full').style.display = 'none'; document.getElementById('2009.11730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03948">arXiv:2006.03948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.03948">pdf</a>, <a href="https://arxiv.org/ps/2006.03948">ps</a>, <a href="https://arxiv.org/format/2006.03948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00384-9">10.1038/s41535-021-00384-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">S. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tielrooij%2C+K+-">K. -J. Tielrooij</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J+-">J. -C. Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">I. Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">N. Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomaryov%2C+A">A. Ponomaryov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawatna%2C+M">M. Bawatna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Oliveira%2C+T+V+A+G">T. V. A. G. de Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eng%2C+L+M">L. M. Eng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuznetsov%2C+K+A">K. A. Kuznetsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitaeva%2C+G+K">G. Kh. Kitaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuznetsov%2C+P+I">P. I. Kuznetsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hafez%2C+H+A">H. A. Hafez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turchinovich%2C+D">D. Turchinovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">M. Gensch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03948v2-abstract-short" style="display: inline;"> Topologically-protected surface states present rich physics and promising spintronic, optoelectronic and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03948v2-abstract-full').style.display = 'inline'; document.getElementById('2006.03948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03948v2-abstract-full" style="display: none;"> Topologically-protected surface states present rich physics and promising spintronic, optoelectronic and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons with TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically-protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03948v2-abstract-full').style.display = 'none'; document.getElementById('2006.03948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.01476">arXiv:1911.01476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.01476">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-16133-8">10.1038/s41467-020-16133-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-perturbative high-harmonic generation in the three-dimensional Dirac semimetal Cd$_3$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantas%2C+R+M+A">Renato M. A. Dantas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">Semyon Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+B">Bertram Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">Nilesh Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawatna%2C+M">Mohammed Bawatna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+J">Jiwei Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loosdrecht%2C+P+H+M">Paul H. M. van Loosdrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sur%C3%B3wka%2C+P">Piotr Sur贸wka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oka%2C+T">Takashi Oka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.01476v1-abstract-short" style="display: inline;"> Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produced via a three-step process of ionization, acceleration, and recollision by strong-field infrared laser. This mechanism has been intensively investiga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01476v1-abstract-full').style.display = 'inline'; document.getElementById('1911.01476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.01476v1-abstract-full" style="display: none;"> Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produced via a three-step process of ionization, acceleration, and recollision by strong-field infrared laser. This mechanism has been intensively investigated in the extreme ultraviolet and soft X-ray regions, forming the basis of attosecond research. In solid-state materials, which are characterized by crystalline symmetry and strong interactions, yielding of harmonics has just recently been reported. The observed high-harmonic generation was interpreted with fundamentally different mechanisms, such as interband tunneling combined with dynamical Bloch oscillations, intraband thermodynamics and nonlinear dynamics, and many-body electronic interactions. Here, in a distinctly different context of three-dimensional Dirac semimetal, we report on experimental observation of high-harmonic generation up to the seventh order driven by strong-field terahertz pulses. The observed non-perturbative high-harmonic generation is interpreted as a generic feature of terahertz-field driven nonlinear intraband kinetics of Dirac fermions. We anticipate that our results will trigger great interest in detection, manipulation, and coherent control of the nonlinear response in the vast family of three-dimensional Dirac and Weyl materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01476v1-abstract-full').style.display = 'none'; document.getElementById('1911.01476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 2451 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11284">arXiv:1910.11284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.11284">pdf</a>, <a href="https://arxiv.org/format/1910.11284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Experimental evidence of inertial dynamics in ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neeraj%2C+K">Kumar Neeraj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">Nilesh Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+D">Debanjan Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arekapudi%2C+S+S+P+K">Sri Sai Phani Kanth Arekapudi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Semisalova%2C+A">Anna Semisalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+B">Bertram Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowatna%2C+M">Mohammed Bowatna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scalera%2C+V">Valentino Scalera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=d%27Aquino%2C+M">Massimiliano d&#39;Aquino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serpico%2C+C">Claudio Serpico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wegrowe%2C+J">Jean-Eric Wegrowe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">Stefano Bonetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11284v1-abstract-short" style="display: inline;"> The understanding of how spins move at pico- and femtosecond time scales is the goal of much of modern research in condensed matter physics, with implications for ultrafast and more energy-efficient data storage. However, the limited comprehension of the physics behind this phenomenon has hampered the possibility of realising a commercial technology based on it. Recently, it has been suggested tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11284v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11284v1-abstract-full" style="display: none;"> The understanding of how spins move at pico- and femtosecond time scales is the goal of much of modern research in condensed matter physics, with implications for ultrafast and more energy-efficient data storage. However, the limited comprehension of the physics behind this phenomenon has hampered the possibility of realising a commercial technology based on it. Recently, it has been suggested that inertial effects should be considered in the full description of the spin dynamics at these ultrafast time scales, but a clear observation of such effects in ferromagnets is still lacking. Here, we report the first direct experimental evidence of inertial spin dynamics in ferromagnetic thin films in the form of a nutation of the magnetisation at a frequency of approximately 0.6 THz. This allows us to evince that the angular momentum relaxation time in ferromagnets is on the order of 10 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11284v1-abstract-full').style.display = 'none'; document.getElementById('1910.11284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06675">arXiv:1901.06675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-15613-1">10.1038/s41467-020-15613-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-resolved Higgs response in superconducting cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+H">Hao Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Min-Jae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsumi%2C+K">Kota Katsumi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dawson%2C+R+D">Robert David Dawson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwarz%2C+L">Lukas Schwarz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshikawa%2C+N">Naotaka Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gideok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzky%2C+D">Daniel Putzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+Z">Zhi Zhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raffy%2C+H">H茅l猫ne Raffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">Semyon Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J">Jan-Christoph Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">Nilesh Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ilyakov%2C+I">Igor Ilyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+B">Bertram Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawatna%2C+M">Mohammed Bawatna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cristiani%2C+G">Georg Cristiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallais%2C+Y">Yann Gallais</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boris%2C+A+V">Alexander V. Boris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A+P">Andreas P. Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manske%2C+D">Dirk Manske</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06675v2-abstract-short" style="display: inline;"> In high energy physics, the Higgs field couples to gauge bosons and fermions and gives mass to their elementary excitations. Experimentally, such couplings can be inferred from the decay product of the Higgs boson, i.e. the scalar (amplitude) excitation of the Higgs field. In superconductors, Cooper pairs bear a close analogy to the Higgs field. Interaction between the Cooper pairs and other degre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06675v2-abstract-full').style.display = 'inline'; document.getElementById('1901.06675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06675v2-abstract-full" style="display: none;"> In high energy physics, the Higgs field couples to gauge bosons and fermions and gives mass to their elementary excitations. Experimentally, such couplings can be inferred from the decay product of the Higgs boson, i.e. the scalar (amplitude) excitation of the Higgs field. In superconductors, Cooper pairs bear a close analogy to the Higgs field. Interaction between the Cooper pairs and other degrees of freedom provides dissipation channel for the amplitude mode, which may reveal important information about the microscopic pairing mechanism. To this end, we investigate the Higgs (amplitude) mode of several cuprate thin films using phase-resolved terahertz third harmonic generation (THG). In addition to the heavily damped Higgs mode itself, we observe a universal jump in the phase of the driven Higgs oscillation as well as a non-vanishing THG above Tc. These findings indicate coupling of the Higgs mode to other collective modes and potentially a nonzero pairing amplitude above Tc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06675v2-abstract-full').style.display = 'none'; document.getElementById('1901.06675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 20 figues</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 1793 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.07968">arXiv:1806.07968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.07968">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5031213">10.1063/1.5031213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field dependence of antiferromagnetic resonance in NiO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">S. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awari%2C+N">N. Awari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Germanskiy%2C+S">S. Germanskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+B">B. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinert%2C+J+-">J. -C. Deinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kampfrath%2C+T">T. Kampfrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Milano%2C+J">J. Milano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">M. Gensch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.07968v1-abstract-short" style="display: inline;"> We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3K and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07968v1-abstract-full').style.display = 'inline'; document.getElementById('1806.07968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.07968v1-abstract-full" style="display: none;"> We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3K and in magnetic fields up to 10 T. The measurements reveal two antiferromagnetic resonance modes, which can be distinguished by their characteristic magnetic field dependencies. The nature of the two modes is discussed by comparison to an eight-sublattice antiferromagnetic model, which includes superexchange between the next-nearest-neighbor Ni spins, magnetic dipolar interactions, cubic magneto-crystalline anisotropy, and Zeeman interaction with the external magnetic field. Our study indicates that a two-sublattice model is insufficient for the description of spin dynamics in NiO, while the magnetic-dipolar interactions and magneto-crystalline anisotropy play important roles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07968v1-abstract-full').style.display = 'none'; document.getElementById('1806.07968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 112, 252404 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.01546">arXiv:1506.01546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.01546">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms9175">10.1038/ncomms9175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz Field Control of In-Plane Orbital Order in La0.5Sr1.5MnO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+T+A">Timothy A. Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chhajlany%2C+R+W">Ravindra W. Chhajlany</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagliacozzo%2C+L">Luca Tagliacozzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+B">Bertram Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+S">Sergey Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wall%2C+S">Simon Wall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.01546v2-abstract-short" style="display: inline;"> In-plane anisotropic ground states are ubiquitous in correlated solids such as pnictides, cuprates and manganites. They can arise from doping Mott insulators and compete with phases such as superconductivity, however their origins are debated. Strong coupling between lattice, charge, orbital and spin degrees of freedom results in simultaneous ordering of multiple parameters, masking the mechanism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01546v2-abstract-full').style.display = 'inline'; document.getElementById('1506.01546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.01546v2-abstract-full" style="display: none;"> In-plane anisotropic ground states are ubiquitous in correlated solids such as pnictides, cuprates and manganites. They can arise from doping Mott insulators and compete with phases such as superconductivity, however their origins are debated. Strong coupling between lattice, charge, orbital and spin degrees of freedom results in simultaneous ordering of multiple parameters, masking the mechanism that drives the transition. We demonstrate that the anisotropic orbital domains in a manganite can be oriented by the polarization of a pulsed THz light field. Through the application of the Hubbard model, we show that domain control can be achieved either through field assisted hopping of charges or a field-induced modification of bond angles. Both routes enhance the local Coulomb repulsions which drive domain reorientation and the dominant mechanism is dictated by the equilibrium Mn-O-Mn bond angle. Our results highlight the key role played by the Coulomb interaction in driving orbital order in manganites and demonstrate how THz can be utilized in new ways to understand and manipulate anisotropic phases in a broad range of correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01546v2-abstract-full').style.display = 'none'; document.getElementById('1506.01546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages including supplementary information, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 6 8175 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.3804">arXiv:0908.3804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.3804">pdf</a>, <a href="https://arxiv.org/format/0908.3804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Do the Size Effects Exist? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuklin%2C+A+I">A. I. Kuklin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogachev%2C+A+V">A. V. Rogachev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cherny%2C+A+Y">A. Yu. Cherny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dokukin%2C+E+B">E. B. Dokukin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islamov%2C+A+K">A. Kh. Islamov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+Y+S">Yu. S. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murugova%2C+T+N">T. N. Murugova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soloviev%2C+D+V">D. V. Soloviev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivankov%2C+O+I">O. I. Ivankov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soloviev%2C+A+G">A. G. Soloviev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gordeliy%2C+V+I">V. I. Gordeliy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.3804v2-abstract-short" style="display: inline;"> In this short paper we review a series of publications, some of which are our own, where various aspects of size effects were examined. By analyzing a series of examples we show that various intensive macroscopic characteristics of nanoobjects exhibit non-trivial size dependencies on the scale of 200 to 40 A. Drastic variations take place for sizes in the region 50-60 A for ordinary systems, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.3804v2-abstract-full').style.display = 'inline'; document.getElementById('0908.3804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.3804v2-abstract-full" style="display: none;"> In this short paper we review a series of publications, some of which are our own, where various aspects of size effects were examined. By analyzing a series of examples we show that various intensive macroscopic characteristics of nanoobjects exhibit non-trivial size dependencies on the scale of 200 to 40 A. Drastic variations take place for sizes in the region 50-60 A for ordinary systems, and 60-200 A in the case of magnetic systems. We argue that X-ray and neutron scattering gives an excellent metrological support in the domain from 100 A to 10 A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.3804v2-abstract-full').style.display = 'none'; document.getElementById('0908.3804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rom. Journ. Phys. 56, 134-140 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0409653">arXiv:cond-mat/0409653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0409653">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0409653">ps</a>, <a href="https://arxiv.org/format/cond-mat/0409653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.71.046601">10.1103/PhysRevE.71.046601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the internal modes in sine-Gordon chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Prilepsky%2C+J+E">Jaroslaw E. Prilepsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+A+S">Alexander S. Kovalev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0409653v1-abstract-short" style="display: inline;"> We address the issue of internal modes of a kink of a discrete sine-Gordon equation. The main point of the present study is to elucidate how the antisymmetric internal mode frequency dependence enters the quasicontinuum spectrum of nonlocalized waves. We analyze the internal frequency dependencies as functions of both the number of cites and discreteness parameter and explain the origin of spect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409653v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0409653v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0409653v1-abstract-full" style="display: none;"> We address the issue of internal modes of a kink of a discrete sine-Gordon equation. The main point of the present study is to elucidate how the antisymmetric internal mode frequency dependence enters the quasicontinuum spectrum of nonlocalized waves. We analyze the internal frequency dependencies as functions of both the number of cites and discreteness parameter and explain the origin of spectrum peculiarity which arises after the frequency dependence of antisymmetric mode returns back to the continuous spectrum at some nonzero value of the intersite coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409653v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0409653v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0112158">arXiv:cond-mat/0112158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0112158">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0112158">ps</a>, <a href="https://arxiv.org/format/cond-mat/0112158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/e10051-002-0010-1">10.1140/e10051-002-0010-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering of vortex pairs in 2D easy-plane ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+A+S">A. S. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komineas%2C+S">S. Komineas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mertens%2C+F+G">F. G. Mertens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0112158v1-abstract-short" style="display: inline;"> Vortex-antivortex pairs in 2D easy-plane ferromagnets have characteristics of solitons in two dimensions. We investigate numerically and analytically the dynamics of such vortex pairs. In particular we simulate numerically the head-on collision of two pairs with different velocities for a wide range of the total linear momentum of the system. If the momentum difference of the two pairs is small,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0112158v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0112158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0112158v1-abstract-full" style="display: none;"> Vortex-antivortex pairs in 2D easy-plane ferromagnets have characteristics of solitons in two dimensions. We investigate numerically and analytically the dynamics of such vortex pairs. In particular we simulate numerically the head-on collision of two pairs with different velocities for a wide range of the total linear momentum of the system. If the momentum difference of the two pairs is small, the vortices exchange partners, scatter at an angle depending on this difference, and form two new identical pairs. If it is large, the pairs pass through each other without losing their identity. We also study head-tail collisions. Two identical pairs moving in the same direction are bound into a moving quadrupole in which the two vortices as well as the two antivortices rotate around each other. We study the scattering processes also analytically in the frame of a collective variable theory, where the equations of motion for a system of four vortices constitute an integrable system. The features of the different collision scenarios are fully reproduced by the theory. We finally compare some aspects of the present soliton scattering with the corresponding situation in one dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0112158v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0112158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages (RevTeX), 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. B 25, 89-100 (2002) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9706054">arXiv:cond-mat/9706054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9706054">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9706054">ps</a>, <a href="https://arxiv.org/format/cond-mat/9706054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0921-4534(97)00789-2">10.1016/S0921-4534(97)00789-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Fluctuations and Magnetic Inelastic Neutron Scattering in Copper-Oxide high -Tc superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moskvin%2C+A+S">A. S. Moskvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovchinnikov%2C+A+S">A. S. Ovchinnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+O+S">O. S. Kovalev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9706054v1-abstract-short" style="display: inline;"> Spin subsystem of the copper oxides within the polar Jahn-Teller centers model corresponds to a singlet-triplet magnet where the local boson movement accompanied by the induced longitudinal spin fluctuations. These fluctuations determine the features of the magnetic inelastic scattering in the high-Tc cuprates. </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9706054v1-abstract-full" style="display: none;"> Spin subsystem of the copper oxides within the polar Jahn-Teller centers model corresponds to a singlet-triplet magnet where the local boson movement accompanied by the induced longitudinal spin fluctuations. These fluctuations determine the features of the magnetic inelastic scattering in the high-Tc cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9706054v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9706054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 3 figures, LaTeX</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10