CINXE.COM

About: Biot–Savart law

<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Biot–Savart law</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Biot–Savart_law.rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Biot–Savart_law.n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Biot–Savart_law.ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Biot–Savart_law.jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Biot–Savart_law.json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Biot–Savart_law.atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Biot–Savart_law.ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Biot%e2%80%93Savart_law" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Biot–Savart_law"/> <link rev="describedby" href="http://dbpedia.org/resource/Biot–Savart_law"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Biot–Savart law" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Biot–Savart_law" /> <meta property="og:image" content="http://commons.wikimedia.org/wiki/Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg?width=300" /> <meta property="og:description" content="In physics, specifically electromagnetism, the Biot–Savart law (/ˈbiːoʊ səˈvɑːr/ or /ˈbjoʊ səˈvɑːr/) is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is fundamental to magnetostatics, playing a role similar to that of Coulomb&#39;s law in electrostatics. When magnetostatics does not apply, the Biot–Savart law should be replaced by Jefimenko&#39;s equations. The law is valid in the magnetostatic approximation, and consistent with both Ampère&#39;s circuital law and Gauss&#39;s law for magnetism. It is named after Jean-Baptiste Biot and Félix Savart, who discovered this relationship in 1820." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Biot–Savart_law"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FBiot%E2%80%93Savart_law.ttl&amp;view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Biot–Savart_law.jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBiot%E2%80%93Savart_law%3E&amp;format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Biot–Savart_law">Biot–Savart law</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://www.w3.org/2002/07/owl#Thing">Thing</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In physics, specifically electromagnetism, the Biot–Savart law (/ˈbiːoʊ səˈvɑːr/ or /ˈbjoʊ səˈvɑːr/) is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is fundamental to magnetostatics, playing a role similar to that of Coulomb&#39;s law in electrostatics. When magnetostatics does not apply, the Biot–Savart law should be replaced by Jefimenko&#39;s equations. The law is valid in the magnetostatic approximation, and consistent with both Ampère&#39;s circuital law and Gauss&#39;s law for magnetism. It is named after Jean-Baptiste Biot and Félix Savart, who discovered this relationship in 1820.</p> </div> <div class="col-xs-3 col-sm-2"> <a href="#" class="thumbnail"> <img src="http://commons.wikimedia.org/wiki/Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg?width=300" alt="thumbnail" class="img-fluid" /> </a> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ca" >La llei de Biot-Savart és una equació de l&#39;electromagnetisme que descriu el vector d&#39;inducció magnètica B en termes de la magnitud i la direcció de la font de corrent elèctric, la distància de la font de corrent elèctric i el factor de ponderació de la permeabilitat magnètica. Aquesta llei va ser formulada pels matemàtics francesos Jean Baptiste Biot i Félix Savart. La importància de la llei de Biot-Savart rau en el fet que és una solució a la llei d&#39;Ampère segons la llei de la inversa del quadrat, i també a l&#39; d&#39;un remolí A = B. Per tant dona la solució al camp B de les equacions de Maxwell com la llei de Coulomb i la força de Lorentz donen la solució al camp E. La llei de Coulomb tota sola dona la solució al camp E de la llei de Biot-Savart.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ar" >قانون بيو وسافارت هو المكافئ المغناطيسي لقانون كولوم حيث أنه قانون يربط بين المجال المغناطيسي وبين التيار الكهربائي الذي ولده باستخدام الضرب الإتجاهي, في صياغة أخرى للصورة التي يربط بها قانون أمبير بين المجال المغناطيسي والتيار الكهربائي الذي أوجده.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="cs" >Biotův–Savartův zákon (také někdy nazývaný Biotův–Savartův–Laplaceův zákon, v některých zdrojích uváděný také jako Svartův–Biotův zákon) popisuje magnetickou indukci, která vzniká díky pohybujícímu se náboji. Pojmenován byl podle dvou francouzských matematiků – Jean-Baptiste Biotovi a Félixi Savartovi. Společně s Ampérovým zákonem o síle působící na náboj v magnetickém poli je základním zákonem magnetostatiky.</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="el" >Ο νόμος των Μπιό-Σαβάρ είναι μια εξίσωση του ηλεκτρομαγνητισμού που περιγράφει το διάνυσμα της μαγνητικής επαγωγής Β μέσω του μέτρου και της διεύθυνσης του ηλεκτρικού ρεύματος, της απόστασης από το ηλεκτρικό ρεύμα, και της μαγνητικής διαπερατότητας. Η σημασία του νόμου των Μπιό-Σαβάρ έγκειται στο ότι είναι ένας νόμος αντίστροφου τετραγώνου, που αποτελεί λύση στο νόμο του Αμπέρ. Είναι επίσης λύση της εξίσωσης στροβιλότητας: curl A = B, όπου το A μπορεί να θεωρηθεί ως το μαγνητικό διανυσματικό δυναμικό του B. Παρέχει λοιπόν τη λύση του πεδίου Β στις εξισώσεις του Μάξγουελ, όπως ακριβώς η δύναμη Λόρεντζ παρέχει τη λύση του πεδίου Ε. Η ίδια εξίσωση, και με την ίδια ονομασία, χρησιμοποιείται επίσης στην αεροδυναμική για τη μοντελοποίηση του πεδίου ταχυτήτων στη περιοχή γύρω από μία δίνη (vortex) .</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="de" >Das Biot-Savart-Gesetz beschreibt das Magnetfeld bewegter Ladungen. Es stellt einen Zusammenhang zwischen der magnetischen Feldstärke und der elektrischen Stromdichte her und erlaubt die Berechnung räumlicher magnetischer Feldstärkenverteilungen anhand der Kenntnis der räumlichen Stromverteilungen. Hier wird das Gesetz als Beziehung zwischen der magnetischen Flussdichte und der elektrischen Stromdichte behandelt. Im Vakuum und in magnetisch linearen und isotropen Stoffen besteht zwischen der magnetischen Flussdichte und der magnetischen Feldstärke der Zusammenhang mit der magnetischen Leitfähigkeit als konstantem Proportionalitätsfaktor. Im allgemeinen Fall (z. B. bei Magneten) kann hingegen die magnetische Leitfähigkeit eine Funktion der magnetischen Feldstärke oder der räumlichen Orientierung sein, womit sich deutlich kompliziertere und unter Umständen analytisch nicht mehr darstellbare Zusammenhänge ergeben können. Benannt wurde dieses Gesetz nach den beiden französischen Mathematikern Jean-Baptiste Biot und Félix Savart, die es 1820 formuliert hatten. Es stellt neben dem ampèreschen Gesetz eines der Grundgesetze der Magnetostatik, eines Teilgebiets der Elektrodynamik, dar.</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="eo" >En fiziko, la leĝo de Biot-Savart estas ekvacio en elektromagnetismo kiu priskribas la magnetan kampon B generitan per elektra kurento. La vektora kampo B dependas de la grandeco, direkto, longo, kaj apudeco de la elektra kurento, kaj ankaŭ de fundamenta konstanto nomata kiel la magneta konstanto. La leĝo estas valida en la magnetostatika proksimumado. La donata valoro de la B kampo estas konsekvenca kun ambaŭ cirkvita leĝo de Ampère kaj (ankaŭ alinomita leĝo de konservita flukso). La leĝo de Biot-Savart estas uzebla por kalkuli magnetan kampon generatan per neŝanĝiĝanta elektra kurento, kio estas konstanta fluo de ŝargoj tra konduktilo (drato), kiu fluo ne ŝanĝiĝas kun tempo kaj en kiu ŝargoj nek kolektiĝas nek elĉerpiĝas je iu punkto. La leĝo estas: aŭ (ekvivalente) (en SI-aj unuoj), kie I estas la elektra kurento,dl estas vektoro, kies grandeco estas longo de la diferenciala ero de la konduktilo, kaj kies direkto estas direkto de la kurento,dB estas la diferenciala kontribuo al la magneta kampo rezultanta de ĉi tiu diferenciala ero de la konduktilo,μ0 estas la magneta konstanto, estas la delokiga unuobla vektoro en la direkto punktanta de la konduktila ero al la punkto je kiu la kampo estas kalkulata,r estas la distanco de la konduktila ero al la punkto je kiu la kampo estas kalkulata, estas la plena de la konduktila ero al la punkto je kiu la kampo estas kalkulata(la simboloj en grasa tiparfasono estas vektoraj kvantoj). Por apliki la ekvacion, necesas elekti punkton en spaco je kiu kalkuli la magnetan kampon. Tenante la punkton fiksitan, oni integralu tra la vojo de la kurento (kurentoj) por trovi la tutecan magnetan kampon je la punkto. La apliko de ĉi tiu leĝo implice fidas sur la por magnetaj kampoj, kio estas tio ke la magneta kampo estas de la apartaj kampoj kreitaj per ĉiuj infinitezimaj sekcioj de la konduktiloj. La kompona principo veras por la elektra kaj magneta kampoj ĉar ili estas solvaĵo de la ekvacioj de Maxwell kiuj estas , kie la kurento estas unu el la fontaj kondiĉoj. La formulo donita pli supre laboras bone se la kurento povas esti proksimumita kvazaŭ fluanta tra malfinie mallarĝa konduktilo. Se la kurento havas iun dikecon, la respektiva formulo de la leĝo de Biot-Savart (denove en SI-aj unuoj) estas: aŭ ekvivalente kie dV estas la diferenciala ero de volumeno, J estas vektora elektra kurenta denseco en la volumeno. Tiel la magneta kampo povas esti kalkulita kiel La leĝo de Biot-Savart estas fundamenta en magnetostatiko, simile al kulomba leĝo en elektrostatiko.</span><small> (eo)</small></span></li> <li><span class="literal"><span property="dbo:abstract" lang="en" >In physics, specifically electromagnetism, the Biot–Savart law (/ˈbiːoʊ səˈvɑːr/ or /ˈbjoʊ səˈvɑːr/) is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is fundamental to magnetostatics, playing a role similar to that of Coulomb&#39;s law in electrostatics. When magnetostatics does not apply, the Biot–Savart law should be replaced by Jefimenko&#39;s equations. The law is valid in the magnetostatic approximation, and consistent with both Ampère&#39;s circuital law and Gauss&#39;s law for magnetism. It is named after Jean-Baptiste Biot and Félix Savart, who discovered this relationship in 1820.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="eu" >Biot-Savarten legeak (1820) korronte estatikoek sortutako eremu magnetikoak zehazten ditu. (1774-1862) eta (1791-1841) fisikari frantsesen omenez izendatu zen. Korronte elektriko konstante batek sortzen duen eremu magnetikoa kalkulatzeko balio du. Sortutako eremu magnetikoa korronte elektrikoaren intentsitate, norabide, luzera eta hurbiltasunarekin erlazionatzen du. oinarrizko legeetako bat da, Lege honek Coulomben legeak elektrostatikan betetzen duenaren antzeko eginkizuna betetzen du magnetostatikan.</span><small> (eu)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="es" >La ley de Biot-Savart indica el campo magnético creado por corrientes eléctricas estacionarias. Es una de las leyes fundamentales de la magnetostática, tanto como la ley de Coulomb lo es en electrostática.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="fr" >La loi de Biot et Savart, prononcée [bjɔtesavaʁ], nommée en l&#39;honneur des physiciens français Jean-Baptiste Biot et Félix Savart, datant de 1820, donne le champ magnétique créé par une distribution de courants continus. Elle constitue l&#39;une des lois fondamentales de la magnétostatique, au même titre que la loi de Coulomb pour l&#39;électrostatique.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="in" >Hukum Biot-Savart adalah hukum fisika yang menyatakan bahwa medan magnet di sekitar arus listrik dapat ditentukan nilainya. Dalam hukum Biot-Savart, sumber medan magnet adalah arus listrik. Keberadaan arus listrik ini merupakan hasil dari pergerakan muatan listrik. Perhitungan medan magnet di bagian manapun dari penghantar listrik dapat ditentukan ketika muatan listrik bergerak dengan kecepatan tertentu. Kecepatan pergerakan muatan listrik menentukan kuat arus listrik. Perhitungan medan magnet dilakukan dengan menambahkan segmen kecil medan magnet ke penghantar listrik. Asumsi yang diberikan ialah segmen merupakan besaran vektor. Segmen berfungsi sebagai penanda arah aliran arus listrik. Hukum Biot-Savart menentukan besarnya medan magnet menggunakan sumber arus listrik dengan nilai yang sangat kecil. Pernyataan hukum Biot-Savart berbentuk persamaan matematika. Hukum Biot-Savart mampu digunakan untuk menghitung vektor medan magnet pada setiap titik ruang untuk penyaluran arus listrik tertentu. Hukum Biot-Savart merupakan dasar magnetostatika dengan fungsi yang mirip dengan hukum Coulomb dalam elektrostatika. Jika magnetostatika tidak berlaku, hukum Biot – Savart harus diganti dengan persamaan Jefimenko. Hukum ini valid dalam pendekatan magnetostatis, dan konsisten dengan hukum sirkuital Ampere dan hukum Gauss untuk magnetisme. Di namai dengan Jean-Baptiste Biot dan , yang menemukan hubungan ini pada tahun 1820 M. Penerapan hukum Biot-Savart adalah pada cabang-cabang fisika dan teknik. Kekurangan dari hukum Biot-Savart adalah penggunaan persamaan integral yang hanya memberikan penyelesaian pada beberapa penyaluran arus listrik dengan kondisi simetri khusus.</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >ビオ・サバールの法則(ビオ・サバールのほうそく、英: Biot–Savart law)とは電流の存在によってその周りに生じる磁場を計算する為の電磁気学における法則である。この法則は静電場に対するクーロンの法則に対応する。 この法則によって磁場は距離、方向、およびその電流の大きさなどに依存することが論じられる。この法則は静的な近似の元ではアンペールの法則および磁場に対するガウスの法則と同等である。 1820年にフランスの物理学者ジャン=バティスト・ビオとフェリックス・サヴァールによって発見された。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ko" >비오-사바르 법칙(Biot-Savart法則, Biot–Savart law)은 전자기학에서 주어진 전류가 생성하는 자기장이 전류에 수직이고 전류에서의 거리의 역제곱에 비례한다는 물리 법칙이다. 또한 자기장이 전류의 세기, 방향, 길이에 연관이 있음을 알려준다. 비오-사바르 법칙은 전자기학에서 유효하며 앙페르 회로 법칙과 가우스 자기 법칙과 일맥상통한다. 이 법칙의 이름은 이 법칙을 발견한 장바티스트 비오와 (Félix Savart)의 이름을 땄다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="it" >Il termine legge di Biot-Savart, dal nome dei fisici francesi Jean-Baptiste Biot e Félix Savart, si può riferire a due diverse leggi della magnetostatica che permettono di calcolare il campo magnetico generato da correnti elettriche. Quella più generale, verificata empiricamente, è anche chiamata prima formula di Laplace, dal nome del fisico, matematico e astronomo francese Pierre-Simon Laplace; la seconda è invece la legge di Biot e Savart per un filo rettilineo indefinito, che può essere considerato un semplice caso particolare della legge di Laplace. Queste leggi unificano il campo magnetico con fenomeni elettrici stazionari.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="nl" >De wet van Biot-Savart is een manier om de magnetische fluxdichtheid te berekenen van een draad (of, algemener, eender welk stroompad), die een constante stroom voert, in een willekeurige vorm. Dit wordt gedaan door de bijdrage van een infinitesimaal element van de draad aan het magnetisch veld te integreren langs de stroomvoerende draad. In tegenstelling tot de wet van Ampère, die beperkt is tot eenvoudige systemen met een hoge mate van symmetrie, kan de wet van Biot-Savart wel gebruikt worden bij moeilijkere systemen. Men ziet de wet van Biot-Savart ook wel als de magnetische equivalent van de wet van Coulomb. Daarin is: de elektrische stroom door de draad, de kromme waarlangs de stroom loopt in drie dimensies, het infinitesimale lengte-elementje van de draad, de infinitesimale bijdrage aan het veld van dat elementje, de magnetische veldconstante, de voerstraal tot het punt van waaraf het veld wordt berekend.</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pl" >Prawo Biota-Savarta – prawo stosowane w elektromagnetyzmie i dynamice płynów. Pozwala określić w dowolnym punkcie przestrzeni indukcję pola magnetycznego, której źródłem jest element przewodnika, przez który płynie prąd elektryczny. Oryginalna wersja została sformułowana dla pola magnetycznego.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="sv" >Biot–Savarts lag är en naturlag som beskriver sambandet mellan magnetfält och elektrisk ström i en tråd. Lagen används även inom fluiddynamiken för att beskriva virvlar. Sedan Ørsted 1820 hade upptäckt att en magnetnål påverkas av en elektrisk ström, gjorde Jean Baptiste Biot och Félix Savart samma år försök att mäta storleken av denna inverkan. De spände en lång tråd genom vilken de kunde leda en elektrisk ström vertikalt och upphängde vid sidan av trådens mitt en liten horisontell magnetnål, som skyddades mot luftströmmar av ett glasomhölje. För att så mycket som möjligt undgå jordmagnetismens inverkan &quot;astatiserade&quot; de den lilla magnetnålen medelst en stor magnetstav upplagd i närheten. Den på den lilla magnetnålen verkande kraften är proportionell mot kvadraten på det antal svängningar nålen gör i sekunden under kraftens inflytande. De fann att den kraft som utövas av den vertikala strömmen är direkt proportionell mot strömstyrkan och omvänt proportionell mot avståndet mellan strömledaren och nålen. Lagen gavs en matematisk form av Pierre Simon de Laplace. Han visade att ett kort stycke (element) ds av en ledare genomlupen av en ström av styrkan I inverkar på en &quot;magnetisk massa&quot; m, som befinner sig på avståndet r, med kraften F, där och α är vinkeln mellan strömelementets riktning och förbindningslinjen mellan ds och m; k är en konstant. Denna lag har vidsträckt tillämpning inom elektrodynamiken. Med hjälp av densamma kan man bestämma en enhet för strömstyrkan I. Med en modern formulering i termer av ett magnetiskt fält B, skriver man Inom SI är μ0 den magnetiska konstanten, som är lika med 4π × 10-7 N/A2 på grund av definitionen av ampere.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pt" >A Lei de Biot-Savart é uma equação do Eletromagnetismo que fornece o campo magnético gerado por uma corrente elétrica constante no tempo. Essa equação é válida no domínio da Magnetostática. Podemos dizer que a Lei de Biot-Savart é o ponto de partida para a Magnetostática, tendo assim um papel semelhante à Lei de Coulomb na Eletrostática.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="zh" >在靜磁學裏,必歐-沙伐定律(Biot-Savart Law)以方程式描述,電流在其周圍所產生的磁場。採用靜磁近似,當電流緩慢地隨時間而改變時(例如當載流導線緩慢地移動時),這定律成立,磁場與電流的大小、方向、距離有關。必歐-沙伐定律是以法國物理學者让-巴蒂斯特·毕奥與菲利克斯·沙伐命名。 必歐-沙伐定律表明,假設源位置為的微小線元素有電流,則作用於場位置的磁場為 ; 其中,是微小磁場(這篇文章簡稱磁通量密度為磁場),是磁常數。 已知電流密度,則有: ; 其中,為微小體積元素,是積分的體積。 在流体力学中,以渦度對應電流、速度對應磁場強度,便可應用必歐-沙伐定律以計算(vortex line)導出的速度。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ru" >Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Установлен экспериментально Био и Саваром и сформулирован в общем виде Лапласом. Согласно этому закону магнитная индукция в вакууме, создаваемая пространственным распределением плотности тока , в точке с радиус-вектором составляет (в СИ) , где — элемент объёма, а интегрирование производится по всем областям, где (вектор соответствует текущей точке при интегрировании). Имеется также формула для векторного потенциала магнитного поля . Роль закона Био — Савара — Лапласа в магнитостатике аналогична роли закона Кулона в электростатике. Он широко используется для расчёта магнитного поля по заданному распределению токов. В современной методологии закон Био — Савара — Лапласа, как правило, рассматривается как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля.</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="uk" >Закон Біо-Савара-Лапласа — закон, який визначає магнітну індукцію навколо провідника, в якому протікає електричний струм.</span><small> (uk)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/thumbnail"><small>dbo:</small>thumbnail</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:thumbnail" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg?width=300" href="http://commons.wikimedia.org/wiki/Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg?width=300"><small>wiki-commons</small>:Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg?width=300</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageExternalLink"><small>dbo:</small>wikiPageExternalLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://www.physnet.org/modules/pdf_modules/m125.pdf" href="http://www.physnet.org/modules/pdf_modules/m125.pdf">http://www.physnet.org/modules/pdf_modules/m125.pdf</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://feynmanlectures.caltech.edu" href="https://feynmanlectures.caltech.edu">https://feynmanlectures.caltech.edu</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://archive.org/details/introductiontoel00grif_0" href="https://archive.org/details/introductiontoel00grif_0">https://archive.org/details/introductiontoel00grif_0</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://www.physnet.org" href="http://www.physnet.org">http://www.physnet.org</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >75110</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >21813</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1123093177</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ampere" href="http://dbpedia.org/resource/Ampere"><small>dbr</small>:Ampere</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electric_charge" href="http://dbpedia.org/resource/Electric_charge"><small>dbr</small>:Electric_charge</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electric_current" href="http://dbpedia.org/resource/Electric_current"><small>dbr</small>:Electric_current</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electric_potential" href="http://dbpedia.org/resource/Electric_potential"><small>dbr</small>:Electric_potential</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electromagnetism" href="http://dbpedia.org/resource/Electromagnetism"><small>dbr</small>:Electromagnetism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electrostatics" href="http://dbpedia.org/resource/Electrostatics"><small>dbr</small>:Electrostatics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Volume_element" href="http://dbpedia.org/resource/Volume_element"><small>dbr</small>:Volume_element</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_calculus_identities" href="http://dbpedia.org/resource/Vector_calculus_identities"><small>dbr</small>:Vector_calculus_identities</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Velocity" href="http://dbpedia.org/resource/Velocity"><small>dbr</small>:Velocity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vortex" href="http://dbpedia.org/resource/Vortex"><small>dbr</small>:Vortex</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vorticity" href="http://dbpedia.org/resource/Vorticity"><small>dbr</small>:Vorticity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inhomogeneous_electromagnetic_wave_equation" href="http://dbpedia.org/resource/Inhomogeneous_electromagnetic_wave_equation"><small>dbr</small>:Inhomogeneous_electromagnetic_wave_equation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Conventional_current" href="http://dbpedia.org/resource/Conventional_current"><small>dbr</small>:Conventional_current</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coulomb&#39;s_law" href="http://dbpedia.org/resource/Coulomb&#39;s_law"><small>dbr</small>:Coulomb&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maxwell&#39;s_equations" href="http://dbpedia.org/resource/Maxwell&#39;s_equations"><small>dbr</small>:Maxwell&#39;s_equations</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electric_field" href="http://dbpedia.org/resource/Electric_field"><small>dbr</small>:Electric_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electromagnetic_tensor" href="http://dbpedia.org/resource/Electromagnetic_tensor"><small>dbr</small>:Electromagnetic_tensor</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Elliptic_integral" href="http://dbpedia.org/resource/Elliptic_integral"><small>dbr</small>:Elliptic_integral</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gauss&#39;s_law_for_magnetism" href="http://dbpedia.org/resource/Gauss&#39;s_law_for_magnetism"><small>dbr</small>:Gauss&#39;s_law_for_magnetism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/André-Marie_Ampère" href="http://dbpedia.org/resource/André-Marie_Ampère"><small>dbr</small>:André-Marie_Ampère</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lorentz_transformations" href="http://dbpedia.org/resource/Lorentz_transformations"><small>dbr</small>:Lorentz_transformations</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_field" href="http://dbpedia.org/resource/Magnetic_field"><small>dbr</small>:Magnetic_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_sail" href="http://dbpedia.org/resource/Magnetic_sail"><small>dbr</small>:Magnetic_sail</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_susceptibility" href="http://dbpedia.org/resource/Magnetic_susceptibility"><small>dbr</small>:Magnetic_susceptibility</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_vector_potential" href="http://dbpedia.org/resource/Magnetic_vector_potential"><small>dbr</small>:Magnetic_vector_potential</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Closed_curve" href="http://dbpedia.org/resource/Closed_curve"><small>dbr</small>:Closed_curve</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Helmholtz_coil" href="http://dbpedia.org/resource/Helmholtz_coil"><small>dbr</small>:Helmholtz_coil</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Physics" href="http://dbpedia.org/resource/Physics"><small>dbr</small>:Physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetostatics" href="http://dbpedia.org/resource/Magnetostatics"><small>dbr</small>:Magnetostatics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Superposition_principle" href="http://dbpedia.org/resource/Superposition_principle"><small>dbr</small>:Superposition_principle</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Aerodynamics" href="http://dbpedia.org/resource/Category:Aerodynamics"><small>dbc</small>:Aerodynamics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Darwin_Lagrangian" href="http://dbpedia.org/resource/Darwin_Lagrangian"><small>dbr</small>:Darwin_Lagrangian</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Félix_Savart" href="http://dbpedia.org/resource/Félix_Savart"><small>dbr</small>:Félix_Savart</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Line_integral" href="http://dbpedia.org/resource/Line_integral"><small>dbr</small>:Line_integral</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ampère&#39;s_circuital_law" href="http://dbpedia.org/resource/Ampère&#39;s_circuital_law"><small>dbr</small>:Ampère&#39;s_circuital_law</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Current_density" href="http://dbpedia.org/resource/Current_density"><small>dbr</small>:Current_density</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/James_Clerk_Maxwell" href="http://dbpedia.org/resource/James_Clerk_Maxwell"><small>dbr</small>:James_Clerk_Maxwell</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jean-Baptiste_Biot" href="http://dbpedia.org/resource/Jean-Baptiste_Biot"><small>dbr</small>:Jean-Baptiste_Biot</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jefimenko&#39;s_equations" href="http://dbpedia.org/resource/Jefimenko&#39;s_equations"><small>dbr</small>:Jefimenko&#39;s_equations</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Electromagnetism" href="http://dbpedia.org/resource/Category:Electromagnetism"><small>dbc</small>:Electromagnetism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Charged_particle" href="http://dbpedia.org/resource/Charged_particle"><small>dbr</small>:Charged_particle</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chemical_shift" href="http://dbpedia.org/resource/Chemical_shift"><small>dbr</small>:Chemical_shift</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Aerodynamic" href="http://dbpedia.org/resource/Aerodynamic"><small>dbr</small>:Aerodynamic</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dirac_delta_function" href="http://dbpedia.org/resource/Dirac_delta_function"><small>dbr</small>:Dirac_delta_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pierre-Simon_Laplace" href="http://dbpedia.org/resource/Pierre-Simon_Laplace"><small>dbr</small>:Pierre-Simon_Laplace</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Infinitesimal" href="http://dbpedia.org/resource/Infinitesimal"><small>dbr</small>:Infinitesimal</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integration_by_parts" href="http://dbpedia.org/resource/Integration_by_parts"><small>dbr</small>:Integration_by_parts</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Oliver_Heaviside" href="http://dbpedia.org/resource/Oliver_Heaviside"><small>dbr</small>:Oliver_Heaviside</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Unit_vector" href="http://dbpedia.org/resource/Unit_vector"><small>dbr</small>:Unit_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetism" href="http://dbpedia.org/resource/Magnetism"><small>dbr</small>:Magnetism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Solenoid" href="http://dbpedia.org/resource/Solenoid"><small>dbr</small>:Solenoid</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Displacement_vector" href="http://dbpedia.org/resource/Displacement_vector"><small>dbr</small>:Displacement_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rita_G._Lerner" href="http://dbpedia.org/resource/Rita_G._Lerner"><small>dbr</small>:Rita_G._Lerner</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/The_Feynman_Lectures_on_Physics" href="http://dbpedia.org/resource/The_Feynman_Lectures_on_Physics"><small>dbr</small>:The_Feynman_Lectures_on_Physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Retarded_potential" href="http://dbpedia.org/resource/Retarded_potential"><small>dbr</small>:Retarded_potential</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_constant" href="http://dbpedia.org/resource/Magnetic_constant"><small>dbr</small>:Magnetic_constant</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetostatic" href="http://dbpedia.org/resource/Magnetostatic"><small>dbr</small>:Magnetostatic</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_(geometry)" href="http://dbpedia.org/resource/Vector_(geometry)"><small>dbr</small>:Vector_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/SI" href="http://dbpedia.org/resource/SI"><small>dbr</small>:SI</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_sum" href="http://dbpedia.org/resource/Vector_sum"><small>dbr</small>:Vector_sum</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg" href="http://dbpedia.org/resource/File:Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg"><small>dbr</small>:File:Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Vortex_filament_(Biot-Savart_law_illustration).png" href="http://dbpedia.org/resource/File:Vortex_filament_(Biot-Savart_law_illustration).png"><small>dbr</small>:File:Vortex_filament_(Biot-Savart_law_illustration).png</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/backgroundColour"><small>dbp:</small>backgroundColour</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:backgroundColour" lang="en" >#F5FFFA</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/borderColour"><small>dbp:</small>borderColour</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:borderColour" lang="en" >#0073CF</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/cellpadding"><small>dbp:</small>cellpadding</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:cellpadding" datatype="xsd:integer" >6</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/date"><small>dbp:</small>date</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:date" lang="en" >September 2022</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/indent"><small>dbp:</small>indent</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:indent" lang="en" >:</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/reason"><small>dbp:</small>reason</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:reason" lang="en" >needs a surface integral instead of a line integral.</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Electromagnetism" href="http://dbpedia.org/resource/Template:Electromagnetism"><small>dbt</small>:Electromagnetism</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cite_book" href="http://dbpedia.org/resource/Template:Cite_book"><small>dbt</small>:Cite_book</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Commons_category_inline" href="http://dbpedia.org/resource/Template:Commons_category_inline"><small>dbt</small>:Commons_category_inline</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Dubious" href="http://dbpedia.org/resource/Template:Dubious"><small>dbt</small>:Dubious</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Equation_box_1" href="http://dbpedia.org/resource/Template:Equation_box_1"><small>dbt</small>:Equation_box_1</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:IPAc-en" href="http://dbpedia.org/resource/Template:IPAc-en"><small>dbt</small>:IPAc-en</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:ISBN" href="http://dbpedia.org/resource/Template:ISBN"><small>dbt</small>:ISBN</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Math" href="http://dbpedia.org/resource/Template:Math"><small>dbt</small>:Math</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Rp" href="http://dbpedia.org/resource/Template:Rp"><small>dbt</small>:Rp</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:See_also" href="http://dbpedia.org/resource/Template:See_also"><small>dbt</small>:See_also</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Use_American_English" href="http://dbpedia.org/resource/Template:Use_American_English"><small>dbt</small>:Use_American_English</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Math_proof" href="http://dbpedia.org/resource/Template:Math_proof"><small>dbt</small>:Math_proof</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dcterms:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Aerodynamics" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Aerodynamics"><small>dbc</small>:Aerodynamics</a></span></li> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Electromagnetism" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Electromagnetism"><small>dbc</small>:Electromagnetism</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://purl.org/linguistics/gold/hypernym"><small>gold:</small>hypernym</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="gold:hypernym" resource="http://dbpedia.org/resource/Equation" prefix="gold: http://purl.org/linguistics/gold/" href="http://dbpedia.org/resource/Equation"><small>dbr</small>:Equation</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://www.w3.org/2002/07/owl#Thing" href="http://www.w3.org/2002/07/owl#Thing"><small>owl</small>:Thing</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ar" >قانون بيو وسافارت هو المكافئ المغناطيسي لقانون كولوم حيث أنه قانون يربط بين المجال المغناطيسي وبين التيار الكهربائي الذي ولده باستخدام الضرب الإتجاهي, في صياغة أخرى للصورة التي يربط بها قانون أمبير بين المجال المغناطيسي والتيار الكهربائي الذي أوجده.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="cs" >Biotův–Savartův zákon (také někdy nazývaný Biotův–Savartův–Laplaceův zákon, v některých zdrojích uváděný také jako Svartův–Biotův zákon) popisuje magnetickou indukci, která vzniká díky pohybujícímu se náboji. Pojmenován byl podle dvou francouzských matematiků – Jean-Baptiste Biotovi a Félixi Savartovi. Společně s Ampérovým zákonem o síle působící na náboj v magnetickém poli je základním zákonem magnetostatiky.</span><small> (cs)</small></span></li> <li><span class="literal"><span property="rdfs:comment" lang="en" >In physics, specifically electromagnetism, the Biot–Savart law (/ˈbiːoʊ səˈvɑːr/ or /ˈbjoʊ səˈvɑːr/) is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is fundamental to magnetostatics, playing a role similar to that of Coulomb&#39;s law in electrostatics. When magnetostatics does not apply, the Biot–Savart law should be replaced by Jefimenko&#39;s equations. The law is valid in the magnetostatic approximation, and consistent with both Ampère&#39;s circuital law and Gauss&#39;s law for magnetism. It is named after Jean-Baptiste Biot and Félix Savart, who discovered this relationship in 1820.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="eu" >Biot-Savarten legeak (1820) korronte estatikoek sortutako eremu magnetikoak zehazten ditu. (1774-1862) eta (1791-1841) fisikari frantsesen omenez izendatu zen. Korronte elektriko konstante batek sortzen duen eremu magnetikoa kalkulatzeko balio du. Sortutako eremu magnetikoa korronte elektrikoaren intentsitate, norabide, luzera eta hurbiltasunarekin erlazionatzen du. oinarrizko legeetako bat da, Lege honek Coulomben legeak elektrostatikan betetzen duenaren antzeko eginkizuna betetzen du magnetostatikan.</span><small> (eu)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="es" >La ley de Biot-Savart indica el campo magnético creado por corrientes eléctricas estacionarias. Es una de las leyes fundamentales de la magnetostática, tanto como la ley de Coulomb lo es en electrostática.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="fr" >La loi de Biot et Savart, prononcée [bjɔtesavaʁ], nommée en l&#39;honneur des physiciens français Jean-Baptiste Biot et Félix Savart, datant de 1820, donne le champ magnétique créé par une distribution de courants continus. Elle constitue l&#39;une des lois fondamentales de la magnétostatique, au même titre que la loi de Coulomb pour l&#39;électrostatique.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >ビオ・サバールの法則(ビオ・サバールのほうそく、英: Biot–Savart law)とは電流の存在によってその周りに生じる磁場を計算する為の電磁気学における法則である。この法則は静電場に対するクーロンの法則に対応する。 この法則によって磁場は距離、方向、およびその電流の大きさなどに依存することが論じられる。この法則は静的な近似の元ではアンペールの法則および磁場に対するガウスの法則と同等である。 1820年にフランスの物理学者ジャン=バティスト・ビオとフェリックス・サヴァールによって発見された。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ko" >비오-사바르 법칙(Biot-Savart法則, Biot–Savart law)은 전자기학에서 주어진 전류가 생성하는 자기장이 전류에 수직이고 전류에서의 거리의 역제곱에 비례한다는 물리 법칙이다. 또한 자기장이 전류의 세기, 방향, 길이에 연관이 있음을 알려준다. 비오-사바르 법칙은 전자기학에서 유효하며 앙페르 회로 법칙과 가우스 자기 법칙과 일맥상통한다. 이 법칙의 이름은 이 법칙을 발견한 장바티스트 비오와 (Félix Savart)의 이름을 땄다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="it" >Il termine legge di Biot-Savart, dal nome dei fisici francesi Jean-Baptiste Biot e Félix Savart, si può riferire a due diverse leggi della magnetostatica che permettono di calcolare il campo magnetico generato da correnti elettriche. Quella più generale, verificata empiricamente, è anche chiamata prima formula di Laplace, dal nome del fisico, matematico e astronomo francese Pierre-Simon Laplace; la seconda è invece la legge di Biot e Savart per un filo rettilineo indefinito, che può essere considerato un semplice caso particolare della legge di Laplace. Queste leggi unificano il campo magnetico con fenomeni elettrici stazionari.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pl" >Prawo Biota-Savarta – prawo stosowane w elektromagnetyzmie i dynamice płynów. Pozwala określić w dowolnym punkcie przestrzeni indukcję pola magnetycznego, której źródłem jest element przewodnika, przez który płynie prąd elektryczny. Oryginalna wersja została sformułowana dla pola magnetycznego.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pt" >A Lei de Biot-Savart é uma equação do Eletromagnetismo que fornece o campo magnético gerado por uma corrente elétrica constante no tempo. Essa equação é válida no domínio da Magnetostática. Podemos dizer que a Lei de Biot-Savart é o ponto de partida para a Magnetostática, tendo assim um papel semelhante à Lei de Coulomb na Eletrostática.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="zh" >在靜磁學裏,必歐-沙伐定律(Biot-Savart Law)以方程式描述,電流在其周圍所產生的磁場。採用靜磁近似,當電流緩慢地隨時間而改變時(例如當載流導線緩慢地移動時),這定律成立,磁場與電流的大小、方向、距離有關。必歐-沙伐定律是以法國物理學者让-巴蒂斯特·毕奥與菲利克斯·沙伐命名。 必歐-沙伐定律表明,假設源位置為的微小線元素有電流,則作用於場位置的磁場為 ; 其中,是微小磁場(這篇文章簡稱磁通量密度為磁場),是磁常數。 已知電流密度,則有: ; 其中,為微小體積元素,是積分的體積。 在流体力学中,以渦度對應電流、速度對應磁場強度,便可應用必歐-沙伐定律以計算(vortex line)導出的速度。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="uk" >Закон Біо-Савара-Лапласа — закон, який визначає магнітну індукцію навколо провідника, в якому протікає електричний струм.</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ca" >La llei de Biot-Savart és una equació de l&#39;electromagnetisme que descriu el vector d&#39;inducció magnètica B en termes de la magnitud i la direcció de la font de corrent elèctric, la distància de la font de corrent elèctric i el factor de ponderació de la permeabilitat magnètica. Aquesta llei va ser formulada pels matemàtics francesos Jean Baptiste Biot i Félix Savart.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="de" >Das Biot-Savart-Gesetz beschreibt das Magnetfeld bewegter Ladungen. Es stellt einen Zusammenhang zwischen der magnetischen Feldstärke und der elektrischen Stromdichte her und erlaubt die Berechnung räumlicher magnetischer Feldstärkenverteilungen anhand der Kenntnis der räumlichen Stromverteilungen. Hier wird das Gesetz als Beziehung zwischen der magnetischen Flussdichte und der elektrischen Stromdichte behandelt.</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="el" >Ο νόμος των Μπιό-Σαβάρ είναι μια εξίσωση του ηλεκτρομαγνητισμού που περιγράφει το διάνυσμα της μαγνητικής επαγωγής Β μέσω του μέτρου και της διεύθυνσης του ηλεκτρικού ρεύματος, της απόστασης από το ηλεκτρικό ρεύμα, και της μαγνητικής διαπερατότητας. Η ίδια εξίσωση, και με την ίδια ονομασία, χρησιμοποιείται επίσης στην αεροδυναμική για τη μοντελοποίηση του πεδίου ταχυτήτων στη περιοχή γύρω από μία δίνη (vortex) .</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="eo" >En fiziko, la leĝo de Biot-Savart estas ekvacio en elektromagnetismo kiu priskribas la magnetan kampon B generitan per elektra kurento. La vektora kampo B dependas de la grandeco, direkto, longo, kaj apudeco de la elektra kurento, kaj ankaŭ de fundamenta konstanto nomata kiel la magneta konstanto. La leĝo estas valida en la magnetostatika proksimumado. La donata valoro de la B kampo estas konsekvenca kun ambaŭ cirkvita leĝo de Ampère kaj (ankaŭ alinomita leĝo de konservita flukso). La leĝo estas: aŭ (ekvivalente) (en SI-aj unuoj), kie aŭ ekvivalente kie</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="in" >Hukum Biot-Savart adalah hukum fisika yang menyatakan bahwa medan magnet di sekitar arus listrik dapat ditentukan nilainya. Dalam hukum Biot-Savart, sumber medan magnet adalah arus listrik. Keberadaan arus listrik ini merupakan hasil dari pergerakan muatan listrik. Perhitungan medan magnet di bagian manapun dari penghantar listrik dapat ditentukan ketika muatan listrik bergerak dengan kecepatan tertentu. Kecepatan pergerakan muatan listrik menentukan kuat arus listrik. Perhitungan medan magnet dilakukan dengan menambahkan segmen kecil medan magnet ke penghantar listrik. Asumsi yang diberikan ialah segmen merupakan besaran vektor. Segmen berfungsi sebagai penanda arah aliran arus listrik. Hukum Biot-Savart menentukan besarnya medan magnet menggunakan sumber arus listrik dengan nilai yang sa</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="nl" >De wet van Biot-Savart is een manier om de magnetische fluxdichtheid te berekenen van een draad (of, algemener, eender welk stroompad), die een constante stroom voert, in een willekeurige vorm. Dit wordt gedaan door de bijdrage van een infinitesimaal element van de draad aan het magnetisch veld te integreren langs de stroomvoerende draad. In tegenstelling tot de wet van Ampère, die beperkt is tot eenvoudige systemen met een hoge mate van symmetrie, kan de wet van Biot-Savart wel gebruikt worden bij moeilijkere systemen. Men ziet de wet van Biot-Savart ook wel als de magnetische equivalent van de wet van Coulomb.</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="sv" >Biot–Savarts lag är en naturlag som beskriver sambandet mellan magnetfält och elektrisk ström i en tråd. Lagen används även inom fluiddynamiken för att beskriva virvlar. Sedan Ørsted 1820 hade upptäckt att en magnetnål påverkas av en elektrisk ström, gjorde Jean Baptiste Biot och Félix Savart samma år försök att mäta storleken av denna inverkan. De spände en lång tråd genom vilken de kunde leda en elektrisk ström vertikalt och upphängde vid sidan av trådens mitt en liten horisontell magnetnål, som skyddades mot luftströmmar av ett glasomhölje. För att så mycket som möjligt undgå jordmagnetismens inverkan &quot;astatiserade&quot; de den lilla magnetnålen medelst en stor magnetstav upplagd i närheten. Den på den lilla magnetnålen verkande kraften är proportionell mot kvadraten på det antal svängningar</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ru" >Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Установлен экспериментально Био и Саваром и сформулирован в общем виде Лапласом. Согласно этому закону магнитная индукция в вакууме, создаваемая пространственным распределением плотности тока , в точке с радиус-вектором составляет (в СИ) , Роль закона Био — Савара — Лапласа в магнитостатике аналогична роли закона Кулона в электростатике. Он широко используется для расчёта магнитного поля по заданному распределению токов.</span><small> (ru)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ar" >قانون بيوت - سافارت</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ca" >Llei de Biot-Savart</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="cs" >Biotův–Savartův zákon</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="de" >Biot-Savart-Gesetz</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="el" >Νόμος των Μπιό-Σαβάρ</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="eo" >Leĝo de Biot-Savart</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="es" >Ley de Biot-Savart</span><small> (es)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Biot–Savart law</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="eu" >Biot-Savarten legea</span><small> (eu)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="fr" >Loi de Biot et Savart</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="in" >Hukum Biot-Savart</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="it" >Legge di Biot-Savart</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ko" >비오-사바르 법칙</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >ビオ・サバールの法則</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="nl" >Wet van Biot-Savart</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pl" >Prawo Biota-Savarta</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pt" >Lei de Biot-Savart</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ru" >Закон Био — Савара — Лапласа</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="sv" >Biot–Savarts lag</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="zh" >毕奥-萨伐尔定律</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="uk" >Закон Біо — Савара — Лапласа</span><small> (uk)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#seeAlso"><small>rdfs:</small>seeAlso</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdfs:seeAlso" resource="http://dbpedia.org/resource/Curl_(mathematics)" href="http://dbpedia.org/resource/Curl_(mathematics)"><small>dbr</small>:Curl_(mathematics)</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.0j_0k" href="http://rdf.freebase.com/ns/m.0j_0k"><small>freebase</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q171340" href="http://www.wikidata.org/entity/Q171340"><small>wikidata</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q97395244" href="http://www.wikidata.org/entity/Q97395244"><small>wikidata</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ar.dbpedia.org/resource/قانون_بيوت_-_سافارت" href="http://ar.dbpedia.org/resource/قانون_بيوت_-_سافارت"><small>dbpedia-ar</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://be.dbpedia.org/resource/Закон_Біё_—_Савара_—_Лапласа" href="http://be.dbpedia.org/resource/Закон_Біё_—_Савара_—_Лапласа"><small>dbpedia-be</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bg.dbpedia.org/resource/Закон_на_Био-Савар" href="http://bg.dbpedia.org/resource/Закон_на_Био-Савар"><small>dbpedia-bg</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bn.dbpedia.org/resource/বিও-সাভার্ত_সূত্র" href="http://bn.dbpedia.org/resource/বিও-সাভার্ত_সূত্র">http://bn.dbpedia.org/resource/বিও-সাভার্ত_সূত্র</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ca.dbpedia.org/resource/Llei_de_Biot-Savart" href="http://ca.dbpedia.org/resource/Llei_de_Biot-Savart"><small>dbpedia-ca</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cs.dbpedia.org/resource/Biotův–Savartův_zákon" href="http://cs.dbpedia.org/resource/Biotův–Savartův_zákon"><small>dbpedia-cs</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cv.dbpedia.org/resource/Био_—_Савар_—_Лаплас_саккунĕ" href="http://cv.dbpedia.org/resource/Био_—_Савар_—_Лаплас_саккунĕ">http://cv.dbpedia.org/resource/Био_—_Савар_—_Лаплас_саккунĕ</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cy.dbpedia.org/resource/Deddf_Biot-Savart" href="http://cy.dbpedia.org/resource/Deddf_Biot-Savart"><small>dbpedia-cy</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://da.dbpedia.org/resource/Biot–Savarts_lov" href="http://da.dbpedia.org/resource/Biot–Savarts_lov"><small>dbpedia-da</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://de.dbpedia.org/resource/Biot-Savart-Gesetz" href="http://de.dbpedia.org/resource/Biot-Savart-Gesetz"><small>dbpedia-de</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://el.dbpedia.org/resource/Νόμος_των_Μπιό-Σαβάρ" href="http://el.dbpedia.org/resource/Νόμος_των_Μπιό-Σαβάρ"><small>dbpedia-el</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://eo.dbpedia.org/resource/Leĝo_de_Biot-Savart" href="http://eo.dbpedia.org/resource/Leĝo_de_Biot-Savart"><small>dbpedia-eo</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://es.dbpedia.org/resource/Ley_de_Biot-Savart" href="http://es.dbpedia.org/resource/Ley_de_Biot-Savart"><small>dbpedia-es</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://et.dbpedia.org/resource/Biot&#39;-Savarti_seadus" href="http://et.dbpedia.org/resource/Biot&#39;-Savarti_seadus"><small>dbpedia-et</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://eu.dbpedia.org/resource/Biot-Savarten_legea" href="http://eu.dbpedia.org/resource/Biot-Savarten_legea"><small>dbpedia-eu</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fa.dbpedia.org/resource/قانون_بیو−ساوار" href="http://fa.dbpedia.org/resource/قانون_بیو−ساوار"><small>dbpedia-fa</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fi.dbpedia.org/resource/Biot’n_ja_Savartin_laki" href="http://fi.dbpedia.org/resource/Biot’n_ja_Savartin_laki"><small>dbpedia-fi</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fr.dbpedia.org/resource/Loi_de_Biot_et_Savart" href="http://fr.dbpedia.org/resource/Loi_de_Biot_et_Savart"><small>dbpedia-fr</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://gl.dbpedia.org/resource/Lei_de_Biot–Savart" href="http://gl.dbpedia.org/resource/Lei_de_Biot–Savart"><small>dbpedia-gl</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://he.dbpedia.org/resource/חוק_ביו-סבר" href="http://he.dbpedia.org/resource/חוק_ביו-סבר"><small>dbpedia-he</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hi.dbpedia.org/resource/बायो-सावर्ट_नियम" href="http://hi.dbpedia.org/resource/बायो-सावर्ट_नियम">http://hi.dbpedia.org/resource/बायो-सावर्ट_नियम</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hi.dbpedia.org/resource/बायो-सेवर्ट_का_नियम" href="http://hi.dbpedia.org/resource/बायो-सेवर्ट_का_नियम">http://hi.dbpedia.org/resource/बायो-सेवर्ट_का_नियम</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hr.dbpedia.org/resource/Biot–Savartov_zakon" href="http://hr.dbpedia.org/resource/Biot–Savartov_zakon"><small>dbpedia-hr</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hu.dbpedia.org/resource/Biot–Savart-törvény" href="http://hu.dbpedia.org/resource/Biot–Savart-törvény"><small>dbpedia-hu</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hy.dbpedia.org/resource/Բիո-Սավար-Լապլասի_օրենք" href="http://hy.dbpedia.org/resource/Բիո-Սավար-Լապլասի_օրենք">http://hy.dbpedia.org/resource/Բիո-Սավար-Լապլասի_օրենք</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://id.dbpedia.org/resource/Hukum_Biot-Savart" href="http://id.dbpedia.org/resource/Hukum_Biot-Savart"><small>dbpedia-id</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://is.dbpedia.org/resource/Lögmál_Biot-Savarts" href="http://is.dbpedia.org/resource/Lögmál_Biot-Savarts"><small>dbpedia-is</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://d-nb.info/gnd/4772813-9" href="http://d-nb.info/gnd/4772813-9">http://d-nb.info/gnd/4772813-9</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://it.dbpedia.org/resource/Legge_di_Biot-Savart" href="http://it.dbpedia.org/resource/Legge_di_Biot-Savart"><small>dbpedia-it</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/ビオ・サバールの法則" href="http://ja.dbpedia.org/resource/ビオ・サバールの法則"><small>dbpedia-ja</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ka.dbpedia.org/resource/ბიო-სავარის_კანონი" href="http://ka.dbpedia.org/resource/ბიო-სავარის_კანონი"><small>dbpedia-ka</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ko.dbpedia.org/resource/비오-사바르_법칙" href="http://ko.dbpedia.org/resource/비오-사바르_법칙"><small>dbpedia-ko</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ky.dbpedia.org/resource/Био-Савар-Лаплас_мыйзамы" href="http://ky.dbpedia.org/resource/Био-Савар-Лаплас_мыйзамы">http://ky.dbpedia.org/resource/Био-Савар-Лаплас_мыйзамы</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://lt.dbpedia.org/resource/Bio-Savaro_dėsnis" href="http://lt.dbpedia.org/resource/Bio-Savaro_dėsnis">http://lt.dbpedia.org/resource/Bio-Savaro_dėsnis</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://lv.dbpedia.org/resource/Bio—Savāra—Laplasa_likums" href="http://lv.dbpedia.org/resource/Bio—Savāra—Laplasa_likums">http://lv.dbpedia.org/resource/Bio—Savāra—Laplasa_likums</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://mk.dbpedia.org/resource/Био-Саваров_закон" href="http://mk.dbpedia.org/resource/Био-Саваров_закон"><small>dbpedia-mk</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://mr.dbpedia.org/resource/बायो-सवार_नियम" href="http://mr.dbpedia.org/resource/बायो-सवार_नियम"><small>dbpedia-mr</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ne.dbpedia.org/resource/बायो-सेवर्टको_नियम" href="http://ne.dbpedia.org/resource/बायो-सेवर्टको_नियम">http://ne.dbpedia.org/resource/बायो-सेवर्टको_नियम</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nl.dbpedia.org/resource/Wet_van_Biot-Savart" href="http://nl.dbpedia.org/resource/Wet_van_Biot-Savart"><small>dbpedia-nl</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nn.dbpedia.org/resource/Biot–Savart-lova" href="http://nn.dbpedia.org/resource/Biot–Savart-lova"><small>dbpedia-nn</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://no.dbpedia.org/resource/Biot-Savarts_lov" href="http://no.dbpedia.org/resource/Biot-Savarts_lov"><small>dbpedia-no</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pl.dbpedia.org/resource/Prawo_Biota-Savarta" href="http://pl.dbpedia.org/resource/Prawo_Biota-Savarta"><small>dbpedia-pl</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pt.dbpedia.org/resource/Lei_de_Biot-Savart" href="http://pt.dbpedia.org/resource/Lei_de_Biot-Savart"><small>dbpedia-pt</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ro.dbpedia.org/resource/Legea_Biot-Savart" href="http://ro.dbpedia.org/resource/Legea_Biot-Savart"><small>dbpedia-ro</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ru.dbpedia.org/resource/Закон_Био_—_Савара_—_Лапласа" href="http://ru.dbpedia.org/resource/Закон_Био_—_Савара_—_Лапласа"><small>dbpedia-ru</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sco.dbpedia.org/resource/Biot–Savart_law" href="http://sco.dbpedia.org/resource/Biot–Savart_law">http://sco.dbpedia.org/resource/Biot–Savart_law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sh.dbpedia.org/resource/Biot–Savartov_zakon" href="http://sh.dbpedia.org/resource/Biot–Savartov_zakon"><small>dbpedia-sh</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://si.dbpedia.org/resource/බියෝ-සවා_නියමය" href="http://si.dbpedia.org/resource/බියෝ-සවා_නියමය">http://si.dbpedia.org/resource/බියෝ-සවා_නියමය</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sk.dbpedia.org/resource/Biotov-Savartov_zákon" href="http://sk.dbpedia.org/resource/Biotov-Savartov_zákon"><small>dbpedia-sk</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sq.dbpedia.org/resource/Ligji_Biot-Savart" href="http://sq.dbpedia.org/resource/Ligji_Biot-Savart"><small>dbpedia-sq</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sr.dbpedia.org/resource/Био—Саваров_закон" href="http://sr.dbpedia.org/resource/Био—Саваров_закон"><small>dbpedia-sr</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sv.dbpedia.org/resource/Biot–Savarts_lag" href="http://sv.dbpedia.org/resource/Biot–Savarts_lag"><small>dbpedia-sv</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ta.dbpedia.org/resource/பியோ-சவா_விதி" href="http://ta.dbpedia.org/resource/பியோ-சவா_விதி">http://ta.dbpedia.org/resource/பியோ-சவா_விதி</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://th.dbpedia.org/resource/กฎของบีโอต์-ซาวารต์" href="http://th.dbpedia.org/resource/กฎของบีโอต์-ซาวารต์"><small>dbpedia-th</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://tr.dbpedia.org/resource/Biot-savart_yasası" href="http://tr.dbpedia.org/resource/Biot-savart_yasası"><small>dbpedia-tr</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://tt.dbpedia.org/resource/Био_—_Савар_—_Лаплас_кануны" href="http://tt.dbpedia.org/resource/Био_—_Савар_—_Лаплас_кануны">http://tt.dbpedia.org/resource/Био_—_Савар_—_Лаплас_кануны</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uk.dbpedia.org/resource/Закон_Біо_—_Савара_—_Лапласа" href="http://uk.dbpedia.org/resource/Закон_Біо_—_Савара_—_Лапласа"><small>dbpedia-uk</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uz.dbpedia.org/resource/Biosavarlaplas_qonuni" href="http://uz.dbpedia.org/resource/Biosavarlaplas_qonuni">http://uz.dbpedia.org/resource/Biosavarlaplas_qonuni</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://vi.dbpedia.org/resource/Định_luật_Biot–Savart" href="http://vi.dbpedia.org/resource/Định_luật_Biot–Savart"><small>dbpedia-vi</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://zh.dbpedia.org/resource/毕奥-萨伐尔定律" href="http://zh.dbpedia.org/resource/毕奥-萨伐尔定律"><small>dbpedia-zh</small>:Biot–Savart law</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/fyF2" href="https://global.dbpedia.org/id/fyF2">https://global.dbpedia.org/id/fyF2</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Biot–Savart_law?oldid=1123093177&amp;ns=0" href="http://en.wikipedia.org/wiki/Biot–Savart_law?oldid=1123093177&amp;ns=0"><small>wikipedia-en</small>:Biot–Savart_law?oldid=1123093177&amp;ns=0</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/depiction"><small>foaf:</small>depiction</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg"><small>wiki-commons</small>:Special:FilePath/Magnetic_field_element_(Biot-Savart_Law)_PRIME.svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Vortex_filament_(Biot-Savart_law_illustration).png" href="http://commons.wikimedia.org/wiki/Special:FilePath/Vortex_filament_(Biot-Savart_law_illustration).png"><small>wiki-commons</small>:Special:FilePath/Vortex_filament_(Biot-Savart_law_illustration).png</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Biot–Savart_law" href="http://en.wikipedia.org/wiki/Biot–Savart_law"><small>wikipedia-en</small>:Biot–Savart_law</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/knownFor"><small>dbo:</small>knownFor</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:knownFor" resource="http://dbpedia.org/resource/Jean-Baptiste_Biot" href="http://dbpedia.org/resource/Jean-Baptiste_Biot"><small>dbr</small>:Jean-Baptiste_Biot</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-Savart_Law" href="http://dbpedia.org/resource/Biot-Savart_Law"><small>dbr</small>:Biot-Savart_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-Savart_law" href="http://dbpedia.org/resource/Biot-Savart_law"><small>dbr</small>:Biot-Savart_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-savart" href="http://dbpedia.org/resource/Biot-savart"><small>dbr</small>:Biot-savart</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-savat_law" href="http://dbpedia.org/resource/Biot-savat_law"><small>dbr</small>:Biot-savat_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Savart&#39;s_Law" href="http://dbpedia.org/resource/Savart&#39;s_Law"><small>dbr</small>:Savart&#39;s_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Savart_Law" href="http://dbpedia.org/resource/Savart_Law"><small>dbr</small>:Savart_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot&#39;s_Law" href="http://dbpedia.org/resource/Biot&#39;s_Law"><small>dbr</small>:Biot&#39;s_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot&#39;s_law" href="http://dbpedia.org/resource/Biot&#39;s_law"><small>dbr</small>:Biot&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-Savart&#39;s_Law" href="http://dbpedia.org/resource/Biot-Savart&#39;s_Law"><small>dbr</small>:Biot-Savart&#39;s_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-Savart&#39;s_law" href="http://dbpedia.org/resource/Biot-Savart&#39;s_law"><small>dbr</small>:Biot-Savart&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot-savart_law" href="http://dbpedia.org/resource/Biot-savart_law"><small>dbr</small>:Biot-savart_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot_Law" href="http://dbpedia.org/resource/Biot_Law"><small>dbr</small>:Biot_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot_and_Savart&#39;s_law" href="http://dbpedia.org/resource/Biot_and_Savart&#39;s_law"><small>dbr</small>:Biot_and_Savart&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot_savart" href="http://dbpedia.org/resource/Biot_savart"><small>dbr</small>:Biot_savart</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Biot_savart_law" href="http://dbpedia.org/resource/Biot_savart_law"><small>dbr</small>:Biot_savart_law</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scientific_law" href="http://dbpedia.org/resource/Scientific_law"><small>dbr</small>:Scientific_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Electromagnet" href="http://dbpedia.org/resource/Electromagnet"><small>dbr</small>:Electromagnet</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_eponymous_laws" href="http://dbpedia.org/resource/List_of_eponymous_laws"><small>dbr</small>:List_of_eponymous_laws</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vortex" href="http://dbpedia.org/resource/Vortex"><small>dbr</small>:Vortex</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vorticity" href="http://dbpedia.org/resource/Vorticity"><small>dbr</small>:Vorticity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Index_of_electrical_engineering_articles" href="http://dbpedia.org/resource/Index_of_electrical_engineering_articles"><small>dbr</small>:Index_of_electrical_engineering_articles</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Index_of_physics_articles_(B)" href="http://dbpedia.org/resource/Index_of_physics_articles_(B)"><small>dbr</small>:Index_of_physics_articles_(B)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Railgun" href="http://dbpedia.org/resource/Railgun"><small>dbr</small>:Railgun</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lift_(force)" href="http://dbpedia.org/resource/Lift_(force)"><small>dbr</small>:Lift_(force)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_important_publications_in_physics" href="http://dbpedia.org/resource/List_of_important_publications_in_physics"><small>dbr</small>:List_of_important_publications_in_physics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_scientific_laws_named_after_people" href="http://dbpedia.org/resource/List_of_scientific_laws_named_after_people"><small>dbr</small>:List_of_scientific_laws_named_after_people</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coulomb&#39;s_law" href="http://dbpedia.org/resource/Coulomb&#39;s_law"><small>dbr</small>:Coulomb&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gauss_separation_algorithm" href="http://dbpedia.org/resource/Gauss_separation_algorithm"><small>dbr</small>:Gauss_separation_algorithm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Timeline_of_fundamental_physics_discoveries" href="http://dbpedia.org/resource/Timeline_of_fundamental_physics_discoveries"><small>dbr</small>:Timeline_of_fundamental_physics_discoveries</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/1820_in_science" href="http://dbpedia.org/resource/1820_in_science"><small>dbr</small>:1820_in_science</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Classical_field_theory" href="http://dbpedia.org/resource/Classical_field_theory"><small>dbr</small>:Classical_field_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gaussian_units" href="http://dbpedia.org/resource/Gaussian_units"><small>dbr</small>:Gaussian_units</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_electrical_and_electronics_engineering" href="http://dbpedia.org/resource/Glossary_of_electrical_and_electronics_engineering"><small>dbr</small>:Glossary_of_electrical_and_electronics_engineering</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/The_Mechanical_Universe" href="http://dbpedia.org/resource/The_Mechanical_Universe"><small>dbr</small>:The_Mechanical_Universe</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_field" href="http://dbpedia.org/resource/Magnetic_field"><small>dbr</small>:Magnetic_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_sail" href="http://dbpedia.org/resource/Magnetic_sail"><small>dbr</small>:Magnetic_sail</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Siméon_Denis_Poisson" href="http://dbpedia.org/resource/Siméon_Denis_Poisson"><small>dbr</small>:Siméon_Denis_Poisson</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Helmholtz_coil" href="http://dbpedia.org/resource/Helmholtz_coil"><small>dbr</small>:Helmholtz_coil</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetostatics" href="http://dbpedia.org/resource/Magnetostatics"><small>dbr</small>:Magnetostatics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stokes&#39;_law" href="http://dbpedia.org/resource/Stokes&#39;_law"><small>dbr</small>:Stokes&#39;_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wind-turbine_aerodynamics" href="http://dbpedia.org/resource/Wind-turbine_aerodynamics"><small>dbr</small>:Wind-turbine_aerodynamics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Félix_Savart" href="http://dbpedia.org/resource/Félix_Savart"><small>dbr</small>:Félix_Savart</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Airfoil" href="http://dbpedia.org/resource/Airfoil"><small>dbr</small>:Airfoil</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ampère&#39;s_circuital_law" href="http://dbpedia.org/resource/Ampère&#39;s_circuital_law"><small>dbr</small>:Ampère&#39;s_circuital_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ampère&#39;s_force_law" href="http://dbpedia.org/resource/Ampère&#39;s_force_law"><small>dbr</small>:Ampère&#39;s_force_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Curl_(mathematics)" href="http://dbpedia.org/resource/Curl_(mathematics)"><small>dbr</small>:Curl_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Force_between_magnets" href="http://dbpedia.org/resource/Force_between_magnets"><small>dbr</small>:Force_between_magnets</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Centimetre–gram–second_system_of_units" href="http://dbpedia.org/resource/Centimetre–gram–second_system_of_units"><small>dbr</small>:Centimetre–gram–second_system_of_units</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-Savart_Law" href="http://dbpedia.org/resource/Biot-Savart_Law"><small>dbr</small>:Biot-Savart_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-Savart_law" href="http://dbpedia.org/resource/Biot-Savart_law"><small>dbr</small>:Biot-Savart_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-savart" href="http://dbpedia.org/resource/Biot-savart"><small>dbr</small>:Biot-savart</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-savat_law" href="http://dbpedia.org/resource/Biot-savat_law"><small>dbr</small>:Biot-savat_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/History_of_electromagnetic_theory" href="http://dbpedia.org/resource/History_of_electromagnetic_theory"><small>dbr</small>:History_of_electromagnetic_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_scalar_potential" href="http://dbpedia.org/resource/Magnetic_scalar_potential"><small>dbr</small>:Magnetic_scalar_potential</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quasistatic_approximation" href="http://dbpedia.org/resource/Quasistatic_approximation"><small>dbr</small>:Quasistatic_approximation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Heaviside–Lorentz_units" href="http://dbpedia.org/resource/Heaviside–Lorentz_units"><small>dbr</small>:Heaviside–Lorentz_units</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jean-Baptiste_Biot" href="http://dbpedia.org/resource/Jean-Baptiste_Biot"><small>dbr</small>:Jean-Baptiste_Biot</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jefimenko&#39;s_equations" href="http://dbpedia.org/resource/Jefimenko&#39;s_equations"><small>dbr</small>:Jefimenko&#39;s_equations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Relativistic_electromagnetism" href="http://dbpedia.org/resource/Relativistic_electromagnetism"><small>dbr</small>:Relativistic_electromagnetism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weber_electrodynamics" href="http://dbpedia.org/resource/Weber_electrodynamics"><small>dbr</small>:Weber_electrodynamics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Aerodynamic_potential-flow_code" href="http://dbpedia.org/resource/Aerodynamic_potential-flow_code"><small>dbr</small>:Aerodynamic_potential-flow_code</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Western_culture" href="http://dbpedia.org/resource/Western_culture"><small>dbr</small>:Western_culture</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bond_graph" href="http://dbpedia.org/resource/Bond_graph"><small>dbr</small>:Bond_graph</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Circulation_(physics)" href="http://dbpedia.org/resource/Circulation_(physics)"><small>dbr</small>:Circulation_(physics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(physics)" href="http://dbpedia.org/resource/Field_(physics)"><small>dbr</small>:Field_(physics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Navier–Stokes_equations" href="http://dbpedia.org/resource/Navier–Stokes_equations"><small>dbr</small>:Navier–Stokes_equations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lorentz_force_velocimetry" href="http://dbpedia.org/resource/Lorentz_force_velocimetry"><small>dbr</small>:Lorentz_force_velocimetry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetism" href="http://dbpedia.org/resource/Magnetism"><small>dbr</small>:Magnetism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scientific_phenomena_named_after_people" href="http://dbpedia.org/resource/Scientific_phenomena_named_after_people"><small>dbr</small>:Scientific_phenomena_named_after_people</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stokes&#39;_paradox" href="http://dbpedia.org/resource/Stokes&#39;_paradox"><small>dbr</small>:Stokes&#39;_paradox</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Two-dimensional_quantum_turbulence" href="http://dbpedia.org/resource/Two-dimensional_quantum_turbulence"><small>dbr</small>:Two-dimensional_quantum_turbulence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Laplace&#39;s_law" href="http://dbpedia.org/resource/Laplace&#39;s_law"><small>dbr</small>:Laplace&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Savart&#39;s_Law" href="http://dbpedia.org/resource/Savart&#39;s_Law"><small>dbr</small>:Savart&#39;s_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Savart_Law" href="http://dbpedia.org/resource/Savart_Law"><small>dbr</small>:Savart_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot&#39;s_Law" href="http://dbpedia.org/resource/Biot&#39;s_Law"><small>dbr</small>:Biot&#39;s_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot&#39;s_law" href="http://dbpedia.org/resource/Biot&#39;s_law"><small>dbr</small>:Biot&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-Savart&#39;s_Law" href="http://dbpedia.org/resource/Biot-Savart&#39;s_Law"><small>dbr</small>:Biot-Savart&#39;s_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-Savart&#39;s_law" href="http://dbpedia.org/resource/Biot-Savart&#39;s_law"><small>dbr</small>:Biot-Savart&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot-savart_law" href="http://dbpedia.org/resource/Biot-savart_law"><small>dbr</small>:Biot-savart_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot_Law" href="http://dbpedia.org/resource/Biot_Law"><small>dbr</small>:Biot_Law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot_and_Savart&#39;s_law" href="http://dbpedia.org/resource/Biot_and_Savart&#39;s_law"><small>dbr</small>:Biot_and_Savart&#39;s_law</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot_savart" href="http://dbpedia.org/resource/Biot_savart"><small>dbr</small>:Biot_savart</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biot_savart_law" href="http://dbpedia.org/resource/Biot_savart_law"><small>dbr</small>:Biot_savart_law</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/property/knownFor"><small>dbp:</small>knownFor</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbp:knownFor" resource="http://dbpedia.org/resource/Jean-Baptiste_Biot" href="http://dbpedia.org/resource/Jean-Baptiste_Biot"><small>dbr</small>:Jean-Baptiste_Biot</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Biot–Savart_law" href="http://en.wikipedia.org/wiki/Biot–Savart_law"><small>wikipedia-en</small>:Biot–Savart_law</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>&#160; &#160; <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a> &#160; &#160; <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a> &#160; &#160; <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>&#160; &#160; <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Biot–Savart_law">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10