CINXE.COM

Search results for: orthotropic materials

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: orthotropic materials</title> <meta name="description" content="Search results for: orthotropic materials"> <meta name="keywords" content="orthotropic materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="orthotropic materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="orthotropic materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6893</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: orthotropic materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6893</span> Hyperelastic Formulation for Orthotropic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20O%27Shea">Daniel O&#039;Shea</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20M.%20Attard"> Mario M. Attard</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Kellermann"> David C. Kellermann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20strain" title="finite strain">finite strain</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=invariants" title=" invariants"> invariants</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic" title=" orthotropic"> orthotropic</a> </p> <a href="https://publications.waset.org/abstracts/79452/hyperelastic-formulation-for-orthotropic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6892</span> Design and Development of Chassis Made of Composite Material </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Ravinder%20Reddy">P. Ravinder Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Vishal%20Nalli"> Chaitanya Vishal Nalli</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tulja%20Lal"> B. Tulja Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusha%20Kankanala"> Anusha Kankanala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chassis frame of an automobile with different sections have been considered for different loads. The orthotropic materials are selected to get the stability by varying fiber angle, fiber thickness, laminates, fiber properties, matrix properties and elastic ratios. The geometric model of chassis frame is carried out with parametric modelling approach. The analysis of chassis frame is carried out with ANSYS FEA software. The static and dynamic analysis of chassis frame is carried out by varying geometric parameters, orthotropic properties, materials and various sections. The static and dynamic response is discussed in detail in different sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chassis%20frame" title="chassis frame">chassis frame</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20model" title=" geometric model"> geometric model</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a> </p> <a href="https://publications.waset.org/abstracts/56298/design-and-development-of-chassis-made-of-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6891</span> Dynamic Modeling of Orthotropic Cracked Materials by X-FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Houcine%20Habib">S. Houcine Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Elkhalil%20Hachi"> B. Elkhalil Hachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Guesmi"> Mohamed Guesmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haboussi"> Mohamed Haboussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dynamic fracture behaviors of cracked orthotropic structure are modeled using extended finite element method (X-FEM). In this approach, the finite element method model is first created and then enriched by special orthotropic crack tip enrichments and Heaviside functions in the framework of partition of unity. The mixed mode stress intensity factor (SIF) is computed using the interaction integral technique based on J-integral in order to predict cracking behavior of the structure. The developments of these procedures are programmed and introduced in a self-software platform code. To assess the accuracy of the developed code, results obtained by the proposed method are compared with those of literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-FEM" title="X-FEM">X-FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20orthotropic%20behavior" title=" dynamic orthotropic behavior"> dynamic orthotropic behavior</a> </p> <a href="https://publications.waset.org/abstracts/38362/dynamic-modeling-of-orthotropic-cracked-materials-by-x-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6890</span> Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannaneh%20Manafi%20Farid"> Hannaneh Manafi Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed-mode%20fracture" title="mixed-mode fracture">mixed-mode fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20strain%20energy%20density%20criterion" title=" minimum strain energy density criterion"> minimum strain energy density criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20limit%20curve" title=" fracture limit curve"> fracture limit curve</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20II%20critical%20stress%20intensity%20factor" title=" mode II critical stress intensity factor"> mode II critical stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/91812/extended-strain-energy-density-criterion-for-fracture-investigation-of-orthotropic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6889</span> Free Vibration of Orthotropic Plate with Four Clamped Edges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Meijie%20Xu"> Meijie Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The explicit solutions for the natural frequencies and mode shapes of the orthotropic rectangular plate with four clamped edges are presented by the double finite cosine integral transform method. In the analysis procedure, the classical orthotropic rectangular thin plate is considered. Because only are the basic dynamic elasticity equations of the orthotropic thin plate adopted, it is not need prior to select the deformation function arbitrarily. Therefore, the solution developed by this paper is reasonable and theoretical. Finally, an illustrative example is given and the results are compared with those reported earlier. This method is found to be easier and effective. The results show reasonable agreement with other available results, but with a simpler and practical approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rectangular%20orthotropic%20plate" title="rectangular orthotropic plate">rectangular orthotropic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20clamped%20edges" title=" four clamped edges"> four clamped edges</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies%20and%20mode%20shapes" title=" natural frequencies and mode shapes"> natural frequencies and mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20integral%20transform" title=" finite integral transform"> finite integral transform</a> </p> <a href="https://publications.waset.org/abstracts/25169/free-vibration-of-orthotropic-plate-with-four-clamped-edges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6888</span> Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Guzel">Hatice Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Oral"> Imran Oral</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Isler"> Huseyin Isler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/74353/ultrasonic-measurement-of-elastic-properties-of-fiber-reinforced-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6887</span> Nonlinear Defects and Discombinations in Anisotropic Solids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Golgoon">Ashkan Golgoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Yavari"> Arash Yavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with line and point defects distributions. In particular, we determine the induced stress fields of a parallel cylindrically-symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media as well as a cylindrically-symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium. For a given distribution of edge dislocations, the material manifold is constructed using Cartan's moving frames and the stress field is obtained assuming that the medium is orthotropic. Also, we consider a spherically-symmetric distribution of point defects in a transversely isotropic spherical ball. We show that for an arbitrary incompressible transversely isotropic ball with the radial material preferred direction, a uniform point defect distribution results in a uniform hydrostatic stress field inside the spherical region the distribution is supported in. Finally, we find the stresses induced by a discombination in an orthotropic medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defects" title="defects">defects</a>, <a href="https://publications.waset.org/abstracts/search?q=disclinations" title=" disclinations"> disclinations</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocations" title=" dislocations"> dislocations</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20solids" title=" monoclinic solids"> monoclinic solids</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20elasticity" title=" nonlinear elasticity"> nonlinear elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20solids" title=" orthotropic solids"> orthotropic solids</a>, <a href="https://publications.waset.org/abstracts/search?q=transversely%20isotropic%20solids" title=" transversely isotropic solids"> transversely isotropic solids</a> </p> <a href="https://publications.waset.org/abstracts/88905/nonlinear-defects-and-discombinations-in-anisotropic-solids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6886</span> Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Remache">D. Remache</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Semaan"> M. Semaan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Baron"> C. Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pithioux"> M. Pithioux</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chabrand"> P. Chabrand</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Rossi"> J. M. Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Milan"> J. L. Milan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior%20of%20bone" title="mechanical behavior of bone">mechanical behavior of bone</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20optimization%20approaches" title=" inverse optimization approaches"> inverse optimization approaches</a> </p> <a href="https://publications.waset.org/abstracts/67986/identification-of-the-orthotropic-parameters-of-cortical-bone-under-nanoindentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6885</span> Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar%20Vishwakarma">Sumit Kumar Vishwakarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20waves" title="Rayleigh waves">Rayleigh waves</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20medium" title=" orthotropic medium"> orthotropic medium</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20field" title=" gravity field"> gravity field</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a> </p> <a href="https://publications.waset.org/abstracts/123019/rayleigh-wave-propagation-in-an-orthotropic-medium-under-the-influence-of-exponentially-varying-inhomogeneities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6884</span> Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongyang%20Ye">Chongyang Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Liu"> Rong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20compression%20stockings" title="elastic compression stockings">elastic compression stockings</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%E2%80%99s%20ratio" title=" Poisson’s ratio"> Poisson’s ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20analysis" title=" mechanical analysis"> mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/152509/determination-of-poissons-ratio-and-elastic-modulus-of-compression-textile-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6883</span> Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibu%20Dave%20Mbako">Dibu Dave Mbako</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Cheng"> Bin Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20steel%20bridge%20deck" title="orthotropic steel bridge deck">orthotropic steel bridge deck</a>, <a href="https://publications.waset.org/abstracts/search?q=rib-to-deck%20connection" title=" rib-to-deck connection"> rib-to-deck connection</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20spot%20stress" title=" hot spot stress"> hot spot stress</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/84337/hot-spot-stress-analysis-and-parametric-study-on-rib-to-deck-welded-connections-in-orthotropic-steel-bridge-decks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6882</span> Micromechanics Modeling of 3D Network Smart Orthotropic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Hassan">E. M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Kalamkarov"> A. L. Kalamkarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20homogenization%20method" title="asymptotic homogenization method">asymptotic homogenization method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20piezothermoelastic%20coefficients" title=" effective piezothermoelastic coefficients"> effective piezothermoelastic coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20smart%20network%20composite%20structures" title=" 3D smart network composite structures"> 3D smart network composite structures</a> </p> <a href="https://publications.waset.org/abstracts/18190/micromechanics-modeling-of-3d-network-smart-orthotropic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6881</span> An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Tscharnuter">Daniel Tscharnuter</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliza%20Truszkiewicz"> Eliza Truszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Pinter"> Gerald Pinter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title="hyperelastic">hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title=" anisotropic"> anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20film" title=" polymer film"> polymer film</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoforming" title=" thermoforming"> thermoforming</a> </p> <a href="https://publications.waset.org/abstracts/50739/an-adaptable-semi-numerical-anisotropic-hyperelastic-model-for-the-simulation-of-high-pressure-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6880</span> Rehabilitation of Orthotropic Steel Deck Bridges Using a Modified Ortho-Composite Deck System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhdeh%20Shirinzadeh">Mozhdeh Shirinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Stroetmann"> Richard Stroetmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthotropic steel deck bridge consists of a deck plate, longitudinal stiffeners under the deck plate, cross beams and the main longitudinal girders. Due to the several advantages, Orthotropic Steel Deck (OSD) systems have been utilized in many bridges worldwide. The significant feature of this structural system is its high load-bearing capacity while having relatively low dead weight. In addition, cost efficiency and the ability of rapid field erection have made the orthotropic steel deck a popular type of bridge worldwide. However, OSD bridges are highly susceptible to fatigue damage. A large number of welded joints can be regarded as the main weakness of this system. This problem is, in particular, evident in the bridges which were built before 1994 when the fatigue design criteria had not been introduced in the bridge design codes. Recently, an Orthotropic-composite slab (OCS) for road bridges has been experimentally and numerically evaluated and developed at Technische Universität Dresden as a part of AIF-FOSTA research project P1265. The results of the project have provided a solid foundation for the design and analysis of Orthotropic-composite decks with dowel strips as a durable alternative to conventional steel or reinforced concrete decks. In continuation, while using the achievements of that project, the application of a modified Ortho-composite deck for an existing typical OSD bridge is investigated. Composite action is obtained by using rows of dowel strips in a clothoid (CL) shape. Regarding Eurocode criteria for different fatigue detail categories of an OSD bridge, the effect of the proposed modification approach is assessed. Moreover, a numerical parametric study is carried out utilizing finite element software to determine the impact of different variables, such as the size and arrangement of dowel strips, the application of transverse or longitudinal rows of dowel strips, and local wheel loads. For the verification of the simulation technique, experimental results of a segment of an OCS deck are used conducted in project P1265. Fatigue assessment is performed based on the last draft of Eurocode 1993-2 (2024) for the most probable detail categories (Hot-Spots) that have been reported in the previous statistical studies. Then, an analytical comparison is provided between the typical orthotropic steel deck and the modified Ortho-composite deck bridge in terms of fatigue issues and durability. The load-bearing capacity of the bridge, the critical deflections, and the composite behavior are also evaluated and compared. Results give a comprehensive overview of the efficiency of the rehabilitation method considering the required design service life of the bridge. Moreover, the proposed approach is assessed with regard to the construction method, details and practical aspects, as well as the economic point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20action" title="composite action">composite action</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20deck" title=" steel deck"> steel deck</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a> </p> <a href="https://publications.waset.org/abstracts/170778/rehabilitation-of-orthotropic-steel-deck-bridges-using-a-modified-ortho-composite-deck-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6879</span> Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evy%20Van%20Puymbroeck">Evy Van Puymbroeck</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Nagy"> Wim Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Schotte"> Ken Schotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Fang"> Heng Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20De%20Backer"> Hans De Backer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title="finite element modelling">finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal-mechanical%20analysis" title=" thermal-mechanical analysis"> thermal-mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20simulation" title=" welding simulation"> welding simulation</a> </p> <a href="https://publications.waset.org/abstracts/78482/thermal-mechanical-analysis-of-a-bridge-deck-to-determine-residual-weld-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6878</span> Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gautier%20Girard">Gautier Girard</a>, <a href="https://publications.waset.org/abstracts/search?q=Marion%20Martiny"> Marion Martiny</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Mercier"> Sebastien Mercier</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Jrad"> Mohamad Jrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed-Slim%20Bahi"> Mohamed-Slim Bahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Bodin"> Laurent Bodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Lechleiter"> Francois Lechleiter</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Nevo"> David Nevo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Dareys"> Sophie Dareys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogenization" title="homogenization">homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20behaviour" title=" orthotropic behaviour"> orthotropic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title=" printed circuit board"> printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=woven%20composites" title=" woven composites"> woven composites</a> </p> <a href="https://publications.waset.org/abstracts/75268/characterization-of-thin-woven-composites-used-in-printed-circuit-boards-by-combining-numerical-and-experimental-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6877</span> Effect of Loose Bonding and Corrugated Boundary Surface on Propagation of Rayleigh-Type Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitish%20Ch.%20Mistri">Kshitish Ch. Mistri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Singh"> Abhishek Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of undulatory boundary surface of a medium as well as the degree of bonding between two consecutive mediums, on the propagation of surface waves is an unavoidable matter of fact. Therefore, this paper investigates the propagation of Rayleigh-type wave in a corrugated fibre-reinforced layer overlying an initially stressed orthotropic half-space under gravity. Also, the two mediums are assumed to be loosely (or imperfectly) bonded. Numerical computation of the obtained frequency equation has been carried out which aids to analyze the influence of corrugation, loose bonding, initial stress and gravity on the phase velocity of Rayleigh-type wave. Moreover, the presence and absence of corrugation, loose bonding and initial stress are also discussed in a comparative manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20boundary%20surface" title="corrugated boundary surface">corrugated boundary surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-reinforced%20layer" title=" fibre-reinforced layer"> fibre-reinforced layer</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20stress" title=" initial stress"> initial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=loose%20bonding" title=" loose bonding"> loose bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20half-space" title=" orthotropic half-space"> orthotropic half-space</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-type%20wave" title=" Rayleigh-type wave"> Rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/60386/effect-of-loose-bonding-and-corrugated-boundary-surface-on-propagation-of-rayleigh-type-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6876</span> Study of Ultrasonic Waves in Unidirectional Fiber-Reinforced Composite Plates for the Aerospace Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DucTho%20Le">DucTho Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duy%20Kien%20Dao"> Duy Kien Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Tinh%20Bui"> Quoc Tinh Bui</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidang%20Phan"> Haidang Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is concerned with the motion of ultrasonic guided waves in a unidirectional fiber-reinforced composite plate under acoustic sources. Such unidirectional composite material has orthotropic elastic properties as it is very stiff along the fibers and rather compliant across the fibers. The dispersion equations of free Lamb waves propagating in an orthotropic layer are derived that results in the dispersion curves. The connection of these equations to the Rayleigh-Lamb frequency relations of isotropic plates is discussed. By the use of reciprocity in elastodynamics, closed-form solutions of elastic wave motions subjected to time-harmonic loads in the layer are computed in a simple manner. We also consider the problem of Lamb waves generated by a set of time-harmonic sources. The obtained computations can be very useful for developing ultrasound-based methods for nondestructive evaluation of composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title="lamb waves">lamb waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20composite%20plates" title=" fiber-reinforced composite plates"> fiber-reinforced composite plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20equations" title=" dispersion equations"> dispersion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reciprocity%20theorems" title=" reciprocity theorems"> reciprocity theorems</a> </p> <a href="https://publications.waset.org/abstracts/110250/study-of-ultrasonic-waves-in-unidirectional-fiber-reinforced-composite-plates-for-the-aerospace-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6875</span> Determination of Optimum Parameters for Thermal Stress Distribution in Composite Plate Containing a Triangular Cutout by Optimization Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Bayati%20Chaleshtari">Mohammad Hossein Bayati Chaleshtari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Khoramishad"> Hadi Khoramishad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing the stress concentration around triangular cutout in infinite perforated plates subjected to a uniform heat flux induces thermal stresses is an important consideration in engineering design. Furthermore, understanding the effective parameters on stress concentration and proper selection of these parameters enables the designer to achieve a reliable design. In the analysis of thermal stress, the effective parameters on stress distribution around cutout include fiber angle, flux angle, bluntness and rotation angle of the cutout for orthotropic materials. This paper was tried to examine effect of these parameters on thermal stress analysis of infinite perforated plates with central triangular cutout. In order to achieve the least amount of thermal stress around a triangular cutout using a novel swarm intelligence optimization technique called dragonfly optimizer that inspired by the life method and hunting behavior of dragonfly in nature. In this study, using the two-dimensional thermoelastic theory and based on the Likhnitskiiʼ complex variable technique, the stress analysis of orthotropic infinite plate with a circular cutout under a uniform heat flux was developed to the plate containing a quasi-triangular cutout in thermal steady state condition. To achieve this goal, a conformal mapping function was used to map an infinite plate containing a quasi- triangular cutout into the outside of a unit circle. The plate is under uniform heat flux at infinity and Neumann boundary conditions and thermal-insulated condition at the edge of the cutout were considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infinite%20perforated%20plate" title="infinite perforated plate">infinite perforated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20variable%20method" title=" complex variable method"> complex variable method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20method" title=" optimization method"> optimization method</a> </p> <a href="https://publications.waset.org/abstracts/121173/determination-of-optimum-parameters-for-thermal-stress-distribution-in-composite-plate-containing-a-triangular-cutout-by-optimization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6874</span> On Elastic Anisotropy of Fused Filament Fabricated Acrylonitrile Butadiene Styrene Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Marae%20Djouda">Joseph Marae Djouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Kasmi"> Ashraf Kasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Hild"> François Hild</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused filament fabrication is one of the most widespread additive manufacturing techniques because of its low-cost implementation. Its initial development was based on part fabrication with thermoplastic materials. The influence of the manufacturing parameters such as the filament orientation through the nozzle, the deposited layer thickness, or the speed deposition on the mechanical properties of the parts has been widely experimentally investigated. It has been recorded the remarkable variations of the anisotropy in the function of the filament path during the fabrication process. However, there is a lack in the development of constitutive models describing the mechanical properties. In this study, integrated digital image correlation (I-DIC) is used for the identification of mechanical constitutive parameters of two configurations of ABS samples: +/-45° and so-called “oriented deposition.” In this last, the filament was deposited in order to follow the principal strain of the sample. The identification scheme based on the gap reduction between simulation and the experiment directly from images recorded from a single sample (single edge notched tension specimen) is developed. The macroscopic and mesoscopic analysis are conducted from images recorded in both sample surfaces during the tensile test. The elastic and elastoplastic models in isotropic and orthotropic frameworks have been established. It appears that independently of the sample configurations (filament orientation during the fabrication), the elastoplastic isotropic model gives the correct description of the behavior of samples. It is worth noting that in this model, the number of constitutive parameters is limited to the one considered in the elastoplastic orthotropic model. This leads to the fact that the anisotropy of the architectured 3D printed ABS parts can be neglected in the establishment of the macroscopic behavior description. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20anisotropy" title="elastic anisotropy">elastic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=Acrylonitrile%20butadiene%20styrene" title=" Acrylonitrile butadiene styrene"> Acrylonitrile butadiene styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=I-DIC%20identification" title=" I-DIC identification"> I-DIC identification</a> </p> <a href="https://publications.waset.org/abstracts/147590/on-elastic-anisotropy-of-fused-filament-fabricated-acrylonitrile-butadiene-styrene-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6873</span> Optimization of Cutting Forces in Drilling of Polimer Composites via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eser%20Yarar">Eser Yarar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahri%20Vatansever"> Fahri Vatansever</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tamer%20Erturk"> A. Tamer Erturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Karabay"> Sedat Karabay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, drilling behavior of multi-layer orthotropic polyester composites reinforced with woven polyester fiber and PTFE particle was investigated. Conventional drilling methods have low cost and ease of use. Therefore, it is one of the most preferred machining methods. The increasing range of use of composite materials in many areas has led to the investigation of the machinability performance of these materials. The drilling capability of the synthetic polymer composite material was investigated by measuring the cutting forces using different tool diameters, feed rate and high cutting speed parameters. Cutting forces were measured using a dynamometer in the experiments. In order to evaluate the results of the experiment, the Taguchi experimental design method was used. According to the results, the optimum cutting parameters were obtained for 0.1 mm/rev, 1070 rpm and 2 mm diameter drill bit. Verification tests were performed for the optimum cutting parameters obtained according to the model. Verification experiments showed the success of the established model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=polimer%20composite" title=" polimer composite"> polimer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a> </p> <a href="https://publications.waset.org/abstracts/102883/optimization-of-cutting-forces-in-drilling-of-polimer-composites-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6872</span> Analytical and Numerical Results for Free Vibration of Laminated Composites Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Ben%20Henni">Mohamed Amine Ben Henni</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Hassaine%20Daouadji"> Taher Hassaine Daouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussad%20Abbes"> Boussad Abbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Ming%20Li"> Yu Ming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazilay%20Abbes"> Fazilay Abbes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton&rsquo;s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites%20materials" title="composites materials">composites materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite%20plate" title=" laminated composite plate"> laminated composite plate</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20analysis" title=" finite-element analysis"> finite-element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a> </p> <a href="https://publications.waset.org/abstracts/81223/analytical-and-numerical-results-for-free-vibration-of-laminated-composites-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6871</span> Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Kumar%20Yadav">Anand Kumar Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygro-thermo-elasticity" title="hygro-thermo-elasticity">hygro-thermo-elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid" title=" viscous fluid"> viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20coefficient" title=" reflection coefficient"> reflection coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20coefficient" title=" transmission coefficient"> transmission coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20concentration" title=" moisture concentration"> moisture concentration</a> </p> <a href="https://publications.waset.org/abstracts/172992/analysis-of-reflection-coefficients-of-reflected-and-transmitted-waves-at-the-interface-between-viscous-fluid-and-hygro-thermo-orthotropic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6870</span> Investigation of Mode II Fracture Toughness in Orthotropic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabi%20Mehri%20Khansari"> Nabi Mehri Khansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Farokhi"> Ahmadreza Farokhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FPZ" title="FPZ">FPZ</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20test%20fixture" title=" shear test fixture"> shear test fixture</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20II%20fracture%20toughness" title=" mode II fracture toughness"> mode II fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/80199/investigation-of-mode-ii-fracture-toughness-in-orthotropic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6869</span> Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rana">K. Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.Saeed"> H.A.Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zahir"> S. Zahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ILSS" title="ILSS">ILSS</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanical" title=" micromechanical"> micromechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20volume%20fraction" title=" fibre volume fraction"> fibre volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a> </p> <a href="https://publications.waset.org/abstracts/39787/determination-of-ilss-of-composite-materials-using-micromechanical-fea-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6868</span> Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Shabbir%20Ahmed">R. M. Shabbir Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haneef"> Mohamed Haneef</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Anwar%20Khan"> A. R. Anwar Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20force" title="bearing force">bearing force</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20force" title=" frictional force"> frictional force</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/21934/finite-element-analysis-of-layered-composite-plate-with-elastic-pin-under-uniaxial-load-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6867</span> 3D Elasticity Analysis of Laminated Composite Plate Using State Space Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prathmesh%20Vikas%20Patil">Prathmesh Vikas Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashaswini%20Lomte%20Patil"> Yashaswini Lomte Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminated composite materials have considerable attention in various engineering applications due to their exceptional strength-to-weight ratio and mechanical properties. The analysis of laminated composite plates in three-dimensional (3D) elasticity is a complex problem, as it requires accounting for the orthotropic anisotropic nature of the material and the interactions between multiple layers. Conventional approaches, such as the classical plate theory, provide simplified solutions but are limited in performing exact analysis of the plate. To address such a challenge, the state space method emerges as a powerful numerical technique for modeling the behavior of laminated composites in 3D. The state-space method involves transforming the governing equations of elasticity into a state-space representation, enabling the analysis of complex structural systems in a systematic manner. Here, an effort is made to perform a 3D elasticity analysis of plates with cross-ply and angle-ply laminates using the state space approach. The state space approach is used in this study as it is a mixed formulation technique that gives the displacements and stresses simultaneously with the same level of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20ply%20laminates" title="cross ply laminates">cross ply laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20ply%20laminates" title=" angle ply laminates"> angle ply laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20method" title=" state space method"> state space method</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20elasticity%20analysis" title=" three-dimensional elasticity analysis"> three-dimensional elasticity analysis</a> </p> <a href="https://publications.waset.org/abstracts/173929/3d-elasticity-analysis-of-laminated-composite-plate-using-state-space-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6866</span> Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Tanvir%20Rahman">Md Tanvir Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbube%20Subhani"> Mahbube Subhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Ashraf"> Mahmud Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Kremer"> Paul Kremer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20shear%20modulus" title="rolling shear modulus">rolling shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deflection" title=" shear deflection"> shear deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20of%20shear%20modulus%20and%20rolling%20shear%20modulus" title=" ratio of shear modulus and rolling shear modulus"> ratio of shear modulus and rolling shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a> </p> <a href="https://publications.waset.org/abstracts/116656/effect-of-rolling-shear-modulus-and-geometric-make-up-on-the-out-of-plane-bending-performance-of-cross-laminated-timber-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6865</span> Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eliska%20Smidova">Eliska Smidova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Kabele"> Petr Kabele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compact%20tension%20%28CT%29%20test" title="compact tension (CT) test">compact tension (CT) test</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20tension%20shear%20%28CTS%29%20test" title=" compact tension shear (CTS) test"> compact tension shear (CTS) test</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20smeared%20crack%20model" title=" fixed smeared crack model"> fixed smeared crack model</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20bending%20test" title=" four point bending test"> four point bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20arch" title=" laminated arch"> laminated arch</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20veneer%20lumber%20LVL" title=" laminated veneer lumber LVL"> laminated veneer lumber LVL</a>, <a href="https://publications.waset.org/abstracts/search?q=off-axis%20test" title=" off-axis test"> off-axis test</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20elasticity" title=" orthotropic elasticity"> orthotropic elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20fracture%20criterion" title=" orthotropic fracture criterion"> orthotropic fracture criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=Radiata%20Pine%20LVL" title=" Radiata Pine LVL"> Radiata Pine LVL</a>, <a href="https://publications.waset.org/abstracts/search?q=traction-separation%20law" title=" traction-separation law"> traction-separation law</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20poplar%20LVL" title=" yellow poplar LVL"> yellow poplar LVL</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20constitutive%20model" title=" 2D constitutive model"> 2D constitutive model</a> </p> <a href="https://publications.waset.org/abstracts/52675/finite-element-simulation-of-four-point-bending-of-laminated-veneer-lumber-lvl-arch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6864</span> Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Sabri">F. Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Jamali"> J. Jamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/88781/wrinkling-prediction-of-membrane-composite-of-varying-orientation-under-in-plane-shear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=229">229</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=230">230</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10