CINXE.COM

Fst example

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> <meta name="Generator" content="Microsoft Word 98"> <meta name="GENERATOR" content="Mozilla/4.76 (Macintosh; U; PPC) [Netscape]"> <title>Fst example</title> </head> <body text="#000000" bgcolor="#c0c0c0" link="#0000ee" vlink="#551a8b" alink="#ff0000"> <a name="Top"></a><font face="Times"><font size="+2">Worked example of calculating <i>F-statistics</i> from genotypic data:</font></font> <p><b><font face="Times New Roman,Times"><a href="http://www.uwyo.edu/dbmcd/popecol/index.html"> Return to Main Index page</a></font></b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <a href="http://www.uwyo.edu/dbmcd/popecol/Maylects/lect37.html"> Go to Lecture 35</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <a href="http://www.uwyo.edu/dbmcd/popecol/Maylects/lect38.html">Go to Lecture 36</a> </p> &nbsp; <table border="1" cellpadding="5" width="311"> <tbody> <tr> <td valign="top" width="41%">&nbsp;</td> <td valign="top" width="19%">&nbsp;</td> <td valign="top" width="25%"><font face="Times">Genotype</font></td> <td valign="top" width="15%">&nbsp;</td> </tr> <tr> <td valign="top" width="41%">&nbsp;</td> <td valign="top" width="19%"> <center><i><font face="Times">AA</font></i></center> </td> <td valign="top" width="25%"> <center><i><font face="Times">Aa</font></i></center> </td> <td valign="top" width="15%"> <center><i><font face="Times">aa</font></i></center> </td> </tr> <tr> <td valign="top" width="41%"> <center><font face="Times">Subpopulation 1</font></center> </td> <td valign="top" width="19%"> <center><font face="Times">125</font></center> </td> <td valign="top" width="25%"> <center><font face="Times">250</font></center> </td> <td valign="top" width="15%"> <center><font face="Times">125</font></center> </td> </tr> <tr> <td valign="top" width="41%"> <center><font face="Times">Subpopulation 2</font> </center> </td> <td valign="top" width="19%"> <center><font face="Times">50</font></center> </td> <td valign="top" width="25%"> <center><font face="Times">30</font></center> </td> <td valign="top" width="15%"> <center><font face="Times">20</font></center> </td> </tr> <tr> <td valign="top" width="41%"> <center><font face="Times">Subpopulation 3</font> </center> </td> <td valign="top" width="19%"> <center><font face="Times">100</font></center> </td> <td valign="top" width="25%"> <center><font face="Times">500</font></center> </td> <td valign="top" width="15%"> <center><font face="Times">400</font></center> </td> </tr> </tbody> </table> <p><font face="Times"><i>N</i> (number of individuals genotyped. The sum of each of the rows in the table above):</font> </p> <blockquote><font face="Times">Population 1:&nbsp;&nbsp; 500</font> <br> <font face="Times">Population 2:&nbsp;&nbsp; 100</font> <br> <font face="Times">Population 3:&nbsp;&nbsp; 1,000</font></blockquote> <font face="Times">Remember that the number of alleles is <b><font color="#ff0000">TWICE</font></b> the number of genotypes.</font> <p><font face="Times"><b>Step 1.&nbsp; Calculate the gene (allele) frequencies</b>:</font> </p> <blockquote><font face="Times">Each homozygote will have two alleles, each heterozygote will have one allele.&nbsp; Note that the denominator will be twice <i>N</i><sub>i</sub> (twice as many alleles as individuals).</font> <p><img src="EqnFST.1.gif" border="0" height="183" width="422" align="middle">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Eqns FST.1</b></p> </blockquote> <p><br> <font face="Times"><b>Step 2. Calculate the expected genotypic counts under Hardy-Weinberg Equilibrium</b>, and then calculate the <b>excess or deficiency of homozygotes in each subpopulation</b>.</font> </p> <blockquote><font face="Times">Pop. 1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>AA</em> = 500*0.5<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 125&nbsp;&nbsp;&nbsp;&nbsp; (= observed)</font> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>Aa</em> =&nbsp; 500*2*0.5*0.5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 250&nbsp;&nbsp;&nbsp;&nbsp; (= observed)</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>aa</em> =&nbsp; 500*0.5<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 125&nbsp;&nbsp;&nbsp;&nbsp; (= observed)</font> </p> <p><font face="Times">Pop. 2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>AA</em> = 100*0.65<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 42.25&nbsp; (observed has excess of 7.75)</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>Aa</em> =&nbsp; 100*2*0.65*0.35&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; =&nbsp; 45.5&nbsp;&nbsp; (observed has deficit of 15.5)</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>aa</em> =&nbsp; 100*0.35<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 12.25&nbsp; (observed has excess of 7.75)</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <font color="#0000ff">Note that sum of two types of homozygote excess = amount of heterozygote deficiency.</font></font> <br> <font face="Times"><font color="#0000ff">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; These quantities <b>have</b> to balance (it's a mathematical necessity, given that <i>p</i> + <i>q</i> =1.</font></font> <br> &nbsp; </p> <p><font face="Times">Pop. 3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>AA</em> = 1,000*0.35<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 122.5&nbsp; (observed has deficiency of 22.5)</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>Aa</em> =&nbsp; 1,000*2*0.65*0.35&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; =&nbsp; 455&nbsp;&nbsp; (observed has excess of 45)</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Expected <em>aa</em> =&nbsp; 1,000*0.35<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 422.5&nbsp; (observed has deficiency of 22.5)</font> </p> <p><font face="Times"><b>Summary of homozygote deficiency or excess relative to HWE</b>:</font> </p> <p><font face="Times">&nbsp;&nbsp;&nbsp; Pop. 1.&nbsp; Observed = Expected: perfect fit</font> <br> <font face="Times">&nbsp;&nbsp;&nbsp; Pop. 2.&nbsp; Excess of 15.5 homozygotes: some inbreeding</font> <br> <font face="Times">&nbsp;&nbsp;&nbsp; Pop. 3.&nbsp; Deficiency of 45 homozygotes: outbred or experiencing a Wahlund effect (isolate breaking).</font></p> </blockquote> <p><b>Step 3. Calculate the local <font color="#ff0000">observed </font>heterozygosities</b> of each subpopulation (we will call them <em>H</em><sub>obs s</sub>, where the <i>s</i> subscript refers to the <i>s</i><sup>th</sup> of <i>n</i> populations -- 3 in this example).&nbsp; Here we count <b>genotypes</b>: </p> <blockquote> <blockquote> <p><i>H</i><sub>obs 1</sub> = 250 / 500&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 0.5 </p> <p><i>H</i><sub>obs 2</sub> = 30 / 100&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 0.3</p> <p><i>H</i><sub>obs 3</sub> = 500 / 1000&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 0.5</p> </blockquote> </blockquote> <b>Step 4.&nbsp; Calculate the local expected heterozygosity, or gene diversity, of each subpopulation </b>(modified version of Eqn 35.1): <blockquote><img src="EqnFST.2.gif" border="0" height="97" width="559" align="middle"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Eqns FST.2</b> <p>(With two alleles it would actually be easier to use 2<i>pq</i> than to use the summation format of Eqn 33.1)</p> </blockquote> <blockquote><font color="#0000ff"><b><font size="+2">Notation</font></b>: Note that I am using <i>p</i><sub>1</sub> and <i>q</i><sub>1</sub> here (where the subscripts refer to subpopulations 1 through 3).&nbsp; We would need to use multiple subscripts if we were using the notation of Eqn 35.1 where the alleles are <i>p</i><sub>i</sub>&nbsp; (and the <i>i</i> refer to alleles 1 to <i>k</i>).&nbsp; Indeed, with real multi-locus multipopulation data, we would have a triple summation and three subscripts;&nbsp; one for alleles (<i>i</i> =1 to <i>k</i>), one for the loci (</font> <font face="Mistral">l </font>=1 to <i>m</i>), and one for subpopulations (<i>s</i> = 1 to <i>n</i>).</font></blockquote> <b>Step 5. Calculate the local inbreeding coefficient of each subpopulation </b>(same as Eqn 35.4, except that we are subscripting for the subpopulations): <blockquote><img src="EqnFST.3.gif" style="border: 0px solid ; height: 35px; width: 126px;" align="middle" title="" alt="FS"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; where <i>s</i> (<i>s</i> = 1 to 3) refers to the subpopulation&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Eqn FST.3</b></blockquote> <blockquote><i>F</i><sub>1</sub> = (0.5 &#8212; 0.5) / 0.5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 0 <p><i>F</i><sub>2</sub> = (0.455 &#8212; 0.3) / 0.455&nbsp;&nbsp;&nbsp;&nbsp; = 0.341 <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [positive <i>F</i> means fewer heterozygotes than expected indicates inbreeding] </p> <p><i>F</i><sub>3</sub> = (0.455 &#8212; 0.5) / 0.455&nbsp;&nbsp;&nbsp;&nbsp; = -0.099 <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [negative <i>F</i> means more heterozygotes than expected means excess outbreeding]</p> </blockquote> <b>Step 6. Calculate&nbsp;<img src="pbar.gif" border="0" height="15" width="12"><i>&nbsp;&nbsp;&nbsp; (p-bar</i>, the frequency of allele <i>A</i>) over the total population.</b> <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [<i>Note that if we had more alleles we could put this and Step 7 all together as a single &quot;global gene frequencies&quot; step, or have one for each allele frequency</i>]. <blockquote><img src="pbarcalc1a.gif" border="0" height="31" width="360" align="middle"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; {genotype splitting method}</blockquote> <blockquote> <blockquote>or (yields same answer)</blockquote> <img src="pbarcalc2.gif" border="0" height="31" width="357" align="middle"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; {using Eqn FST.1 values for <i>p</i><sub>s</sub>} <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <i>Note that we weight by <b>population size</b></i></p></blockquote> <b>Step 7. Calculate&nbsp;<img src="qbara.gif" border="0" height="15" width="12"> (<i>q-bar</i></font>, the frequency of allele <i>a</i>) over the total population</b> <blockquote><img src="qbarcalc.gif" border="0" height="31" width="360"></blockquote> <blockquote><b><font color="#ff0000">Check</font></b>: <i>p-bar</i> + <i>q-bar</i> =&nbsp; 0.4156 + 0.5844 = 1.0 (as required by Eqn 31.1). <p>&nbsp;&nbsp;&nbsp; The check doesn't guarantee that our result is correct, but if they don't sum to one, we know we miscalculated.</p></blockquote> <p><b>Step 8.&nbsp;&nbsp; Calculate the global heterozygosity indices (over <font color="#0000ff">I</font>ndividuals, <font color="#0000ff">S</font>ubpopulations and <font color="#0000ff">T</font>otal population)</b></p> <blockquote> <p><i>Note that the first two calculations employ a weighted average of the values in the whole set of subpopulations.</i></p> <p><i>H</i><sub><font color="#0000ff">I</font> </sub>based on <b><font color="#ff0000">observed</font></b> heterozygosities in <b>individuals</b> in subpopulations&nbsp;</p> <p><img src="EqnFST.4.gif" style="border: 0px solid ; height: 84px; width: 372px;" title="" alt="HI"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Eqn FST.4</b> </p> <p><i>H</i><sub><font color="#0000ff">S</font></sub> based on <b><font color="#0000cc">expected</font></b> heterozygosities in <b>subpopulations</b></p> <p>&nbsp; <img src="EqnFST.5.gif" style="border: 0px solid ; height: 85px; width: 383px;" title="" alt="HS"> &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;<b>Eqn FST.5</b> </p> <p><i>H</i><sub><font color="#0000ff">T</font> </sub>based on <b><font color="#0000cc">expected</font></b> heterozygosities for overall total population (using global allele frequencies and a modified form of Eqn 35.1):&nbsp;</p> <p><img src="Htcalc.gif" style="border: 0px solid ; height: 21px; width: 359px;" title="" alt="HTcalc"> &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>Eqn FST.6</b> </p> </blockquote> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; or we could calculate it as&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2*<em>p</em>-bar *<i>q</i>-bar&nbsp;&nbsp; = 2 * 0.4156 * 0.5844&nbsp; = 0.4858</p> <b>Step 9.&nbsp; CALCULATE THE GLOBAL&nbsp; <i>F</i>-STATISTICS:</b> <blockquote>Compare and contrast the global <i>F</i><sub>IS</sub>below with the &quot;local inbreeding coefficient&quot; <i>F</i><sub>s</sub> of Step 5. <br> Here we are using a weighted average of the individual heterozygosities over all the subpopulations. <br>Both <i>F</i><sub>IS</sub> and&nbsp; <i>F</i><sub>s</sub> are, however, based on the <b>observed</b> heterozygosities, <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; whereas <i>F</i><sub>ST</sub> and <i>F</i><sub>IT</sub> are based on <b>expected</b> heterozygosities. <p><img src="EqnFIS.gif" style="border: 0px solid ; height: 32px; width: 299px;" align="middle" title="" alt="FIScalc"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>Eqn FST.7</b></p> </blockquote> <blockquote><img src="EqnFST.gif" style="border: 0px solid ; height: 32px; width: 291px;" align="middle" title="" alt="FSTcalc"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>Eqn FST.8</b></blockquote> <blockquote><img src="EqnFIT.gif" style="border: 0px solid ; height: 32px; width: 299px;" align="middle" title="" alt="FITcalc"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>Eqn FST.9</b> <p><b>Notation note</b>: the subscripts I, S, and T are not summation subscripts.&nbsp; They simply indicate the level of our analysis.&nbsp; Likewise, the <i>s</i> on <i>F</i><sub>s</sub> in Step 5 or on the <i>p</i><sub>s</sub> in Step 1 (the <i>s</i> was implicit there) just tell us what we are referring to.&nbsp; In contrast, the subscripts for Eqn 35.1 and 35.2 are used in summations and change as we work through the pieces of the calculation.</p> </blockquote> <b><font face="Times"><font size="+1">Step 10.&nbsp; Finally, draw some conclusions about the genetic structure of the population and its subpopulations.</font></font></b> <blockquote><font face="Times"><font size="+1">1)&nbsp; One of the possible HWE conclusions we could make:</font></font> <blockquote><font face="Times"><font size="+1">Pop. 1 is consistent with HWE (results of Step 2)</font></font></blockquote> <font face="Times"><font size="+1">2)&nbsp; Two of the possible &quot;local inbreeding&quot; conclusions we could make from Step 5:</font></font> <blockquote><font face="Times"><font size="+1">Pop. 2 is inbred (results of Step 5), and</font></font> <br> <font face="Times"><font size="+1">Pop. 3 may have disassortative mating or be experiencing a Wahlund effect (more heterozygotes than expected).</font></font></blockquote> <b><font face="Times"><font size="+1">3)&nbsp; Conclusion concerning overall degree of genetic differentiation (<i>F</i></font><sub>ST</sub><font size="+1">)</font></font></b> <blockquote><font face="Times"><font size="+1">Subdivision of populations, possibly due to genetic drift,</font></font> <br> <font face="Times"><font size="+1">accounts for approx. 3.4% of the total genetic variation</font></font> <br> <font face="Times"><font size="+1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (result of Eqn FST.8 <i>F</i></font><sub>ST</sub><font size="+1"> calculation in Step 9),</font></font></blockquote> <font face="Times"><font size="+1">4)&nbsp; No excess or deficiency of heterozygotes over the total population (<i>F</i></font><sub>IT</sub><font size="+1">&nbsp; is nearly zero).</font></font></blockquote> <font face="Times"><font size="+1"><a href="#Top">Return to top</a></font></font> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10