CINXE.COM

Search results for: recombinant protein

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recombinant protein</title> <meta name="description" content="Search results for: recombinant protein"> <meta name="keywords" content="recombinant protein"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recombinant protein" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recombinant protein"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2414</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recombinant protein</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> Production of Recombinant VP2 Protein of Canine Parvovirus Type 2c Using Baculovirus Expression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Song">Jae Young Song</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Ohk%20Ouh"> In-Ohk Ouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyeon%20Park"> Seyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Sul%20Kang"> Byeong Sul Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Dong%20Cho"> Soo Dong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Soo%20Cho"> In-Soo Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Canine parvovirus (CPV) is a major pathogen of diarrhea disease in dogs. CPV type 2 has three of antigenic variants such as 2a, 2b, and 2c. CPV constructs a small non-enveloped, icosahedral capsid that contains single-stranded DNA. It has capsids that two largely overlapping virion proteins (VP), VP1 (82 kDa), and VP2 (65 kDa). Baculoviruses are insect pathogens that regulate insect populations in nature and are being successfully used to control insect pests. The proteins produced in the baculovirus-expression system are used for instance for functional studies, vaccine preparations, or diagnostics. The vaccines produced by baculovirus-expression system showed elicitation of antibodies. The recombinant baculovirus infected SF9 cells showed broken shape. The recombinant VP2 proteins from cell pellet or supernatant were confirmed by western blotting. The result showed that the recombinant VP2 protein bands were appeared at 65 kDa molecular weight in both cell pellet and supernatant of infected SF9 cell. These results indicated that the recombinant baculovirus infected SF9 cell express the recombinant VP2 protein successfully. In addition, the expressed recombinant VP2 protein is secreted from cell to supernatant. The baculovirus expression system can be used to produce the VP2 protein of CPV 2c. In addition, the secretion property of the expression of VP2 protein may decrease the cost of production, because it can be skipped the cell breaking step. The produced VP2 protein could be used for vaccine and the agent of diagnostic tests. This study provides the foundation of the production of CPV 2c vaccine and the diagnostic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculovirus" title="baculovirus">baculovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=canine%20parvovirus%202c" title=" canine parvovirus 2c"> canine parvovirus 2c</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a> </p> <a href="https://publications.waset.org/abstracts/93353/production-of-recombinant-vp2-protein-of-canine-parvovirus-type-2c-using-baculovirus-expression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> Production of Recombinant VP2 Protein of Canine Parvovirus 2a Using Baculovirus Expression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo%20Dong%20Cho">Soo Dong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Ohk%20Ouh"> In-Ohk Ouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Sul%20Kang"> Byeong Sul Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyeon%20Park"> Seyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Soo%20Cho"> In-Soo Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Song"> Jae Young Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An VP2 gene from the current prevalent CPV (Canine Parvovirus) strain (new CPV-2a) in the Republic of Korea was expressed in a baculovirus expression system. Genomic DNA was extracted from the isolate strain CPV-2a. The recombinant baculovirus, containing the coding sequences of VP2 with the histidine tag at the N-terminus, were generated by using the Bac-to-Bac system. For production of the recombinant VP2 proteins, SF9 cells were transfection into 6 wells. Propagation of recombinant baculoviruses and expression of the VP2 protein were performed in the Sf9 cell line maintained. The proteins were detected to Western blot anlaysis. CPV-2a VP2 was detected by Western blotting the monoclonal antibodies recognized 6x His and the band had a molecular weight of 65 KDa. We demonstrated that recombinant CPV-2a VP2 expression in baculovirus. The recombinant CPV-2a VP2 may able to development of specific diagnostic test and vaccination of against CPV2. This study provides a foundation for application of CPV2 on the development of new CPV2 subunit vaccine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculovirus" title="baculovirus">baculovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=canine%20parvovirus%202a" title=" canine parvovirus 2a"> canine parvovirus 2a</a>, <a href="https://publications.waset.org/abstracts/search?q=Dog" title=" Dog"> Dog</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a> </p> <a href="https://publications.waset.org/abstracts/93351/production-of-recombinant-vp2-protein-of-canine-parvovirus-2a-using-baculovirus-expression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Production and Purification of Salmonella Typhimurium MisL Autotransporter Protein in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neslihan%20Taskale%20Karatug">Neslihan Taskale Karatug</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Akcelik"> Mustafa Akcelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some literature data show that misL protein play a role on host immune response formed against Salmonella Typhimurium. The aim of the present study is to learn the role of the protein in S. Typhimurium pathogenicity. To describe certain functions of the protein, primarily recombinant misL protein was produced and purified. PCR was performed using a primer set targeted to passenger domain of the misL gene on S. Typhimurium LT2 genome. Amplicon and pet28a vector were enzymatically cleaved with EcoRI and NheI. The digested DNA materials were purified with High Pure PCR Product Purification Kit. The ligation reaction was achieved with the pure products. After preparation of competent Escherichia coli Dh5α, ligation mix was transformed into the cell by electroporation. To confirm the existence of insert gene, recombinant plasmid DNA of Dh5α was isolated with high pure plasmid DNA kit. Proved the correctness of recombinant plasmid was electroporated to BL21. The cell was induced by IPTG. After induction, the presence of recombinant protein was checked by SDS-PAGE. The recombinant misL protein was purified using HisPur Ni-NTA spin colon. The pure protein was shown by SDS-PAGE and western blot immünoassay. The concentration of the protein was measured BCA Protein Assay kit. In the wake of ligation with digested products (2 kb misL and 5.4 kb pet28a) visualised on gel size of the band was about 7.4 kb and was named as pNT01. The pNT01 recombinant plasmid was transformed into Dh5α and colonies were chosen in selective medium. Plasmid DNA isolation from them was carried out. PCR was achieved on the pNT01 to check misL and 2 kb band was observed on the agarose gel. After electroporation of the plasmid and induction of the cell, 68 kDa misL protein was seen. Subsequent to the purification of the protein, only a band was observed on SDS-PAGE. Association of the pure protein with anti-his antibody was verified by the western blot assay. The concentration of the pure misL protein was determined as 345 μg/mL. Production of polyclonal antibody will be achieved by using the obtained pure recombinant misL protein as next step. The role of the protein will come out on the immune system together some assays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloning" title="cloning">cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20purification" title=" recombinant protein purification"> recombinant protein purification</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20Typhimurium" title=" Salmonella Typhimurium"> Salmonella Typhimurium</a> </p> <a href="https://publications.waset.org/abstracts/22958/production-and-purification-of-salmonella-typhimurium-misl-autotransporter-protein-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2411</span> Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saskya%20E.%20Carrera%20P.">Saskya E. Carrera P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Hankamer"> Ben Hankamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Oey"> Melanie Oey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlamydomonas%20reinhardtii" title="chlamydomonas reinhardtii">chlamydomonas reinhardtii</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=mixotrophic" title=" mixotrophic"> mixotrophic</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a> </p> <a href="https://publications.waset.org/abstracts/84908/optimising-light-conditions-for-recombinant-protein-production-in-the-microalgal-chlamydomonas-reinhardtii-chloroplast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2410</span> Production of Human BMP-7 with Recombinant E. coli and B. subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee">Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polypeptide representing the mature part of human BMP-7 was cloned and efficiently expressed in Escherichia coli and Bacillus subtilis, which had a clear band for hBMP-7, a homodimeric protein with an apparent molecular weight of 15.4 kDa. Recombinant E.coli produced 111 pg hBMP-7/mg of protein hBMP-7 through IPTG induction. Recombinant B. subtilis also produced 350 pg hBMP-7/ml of culture medium. The hBMP-7 was purified in 2 steps using an FPLC system with an ion exchange column and a gel filtration column. The hBMP-7 produced in this work also stimulated the alkaline phosphatase (ALP) activity in a dose-dependent manner, i.e. 2.5- and 8.9-fold at 100 and 300 ng hBMP-7/ml, respectively, and showed intact biological activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20subtilis" title="B. subtilis">B. subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hBMP-7" title=" hBMP-7"> hBMP-7</a> </p> <a href="https://publications.waset.org/abstracts/35799/production-of-human-bmp-7-with-recombinant-e-coli-and-b-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2409</span> Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mi-Hye%20Hwang">Mi-Hye Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Son"> Young Min Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Kichan%20Lee"> Kichan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang-Hun%20Hyun"> Bang-Hun Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Yeal%20Jung">Byeong Yeal Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botulism" title="botulism">botulism</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a>, <a href="https://publications.waset.org/abstracts/search?q=toxin" title=" toxin"> toxin</a> </p> <a href="https://publications.waset.org/abstracts/80612/safety-and-efficacy-of-recombinant-clostridium-botulinum-types-b-vaccine-candidate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2408</span> New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamzeh%20Alipour">Hamzeh Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Bagheri"> Masoumeh Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Raz"> Abbasali Raz</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Dadgar%20Pakdel"> Javad Dadgar Pakdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Azizi"> Kourosh Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboozar%20Soltani"> Aboozar Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Djaefar%20Moemenbellah-Fard">Mohammad Djaefar Moemenbellah-Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowfly" title="blowfly">blowfly</a>, <a href="https://publications.waset.org/abstracts/search?q=BEVS" title=" BEVS"> BEVS</a>, <a href="https://publications.waset.org/abstracts/search?q=gene" title=" gene"> gene</a>, <a href="https://publications.waset.org/abstracts/search?q=immature%20insect" title=" immature insect"> immature insect</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Sf9" title=" Sf9"> Sf9</a> </p> <a href="https://publications.waset.org/abstracts/156898/new-recombinant-netrin-a-protein-of-lucilia-sericata-larvae-by-bac-to-bac-expression-vector-system-in-sf9-insect-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2407</span> Characterization of Crustin from Litopenaeus vannamei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchao%20Donpudsa">Suchao Donpudsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Tassanakajon"> Anchalee Tassanakajon</a>, <a href="https://publications.waset.org/abstracts/search?q=Vichien%20Rimphanitchayakit"> Vichien Rimphanitchayakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A crustin gene, LV-SWD1, previously found in the hemocyte cDNA library of Litopenaeus vannamei, contains the open reading frames of 288 bp encoding a putative protein of 96 amino acid residues. The putative signal peptides of the LV-SWD1 were identified using the online SignalP 3.0 with predicted cleavage sites between Ala24-Val25, resulting in 72 residue mature protein with calculated molecular mass of 7.4 kDa and predicted pI of 8.5. This crustin contains a Arg-Pro rich region at the amino-terminus and a single whey acidic protein (WAP) domain at the carboxyl-terminus. In order to characterize their properties and biological activities, the recombinant crustin protein was produced in the Escherichia coli expression system. Antimicrobial assays showed that the growth of Bacillus subtilis was inhibited by this recombinant crustin with MIC of about 25-50 µM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustin" title="crustin">crustin</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20whey%20acidic%20protein" title=" single whey acidic protein"> single whey acidic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Litopenaeus%20vannamei" title=" Litopenaeus vannamei"> Litopenaeus vannamei</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/40824/characterization-of-crustin-from-litopenaeus-vannamei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2406</span> Targetting T6SS of Klebsiella pneumoniae for Assessment of Immune Response in Mice for Therapeutic Lead Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sweta%20Pandey">Sweta Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Samridhi%20Dhyani"> Samridhi Dhyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Chaudhuri"> Susmita Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella pneumoniae bacteria is a global threat to human health due to an increase in multi-drug resistance among strains. The hypervirulent strains of Klebsiella pneumoniae is a major trouble due to their association with life-threatening infections in a healthy population. One of the major virulence factors of hyper virulent strains of Klebsiella pneumoniae is the T6SS (Type six secretary system) which is majorly involved in microbial antagonism and causes interaction with the host eukaryotic cells during infections. T6SS mediates some of the crucial factors for establishing infection by the bacteria, such as cell adherence, invasion, and subsequent in vivo colonisation. The antibacterial activity and the cell invasion property of the T6SS system is a major requirement for the establishment of K. pneumoniae infections within the gut. The T6SS can be an appropriate target for developing therapeutics. The T6SS consists of an inner tube comprising hexamers of Hcp (Haemolysin -regulated protein) protein, and at the top of this tube sits VgrG (Valine glycine repeat protein G); the tip of the machinery consists of PAAR domain containing proteins which act as a delivery system for bacterial effectors. For this study, immune response to recombinant VgrG protein was generated to establish this protein as a potential immunogen for the development of therapeutic leads. The immunogenicity of the selected protein was determined by predicting the B cell epitopes by the BCEP analysis tool. The gene sequence for multiple domains of VgrG protein (phage_base_V, T6SS_Vgr, DUF2345) was selected and cloned in pMAL vector in E. coli. The construct was subcloned and expressed as a fusion protein of 203 residue protein with mannose binding protein tag (MBP) to enhance solubility and purification of this protein. The purified recombinant VgrG fusion protein was used for mice immunisation. The antiserum showed reactivity with the recombinant VgrG in ELISA and western blot. The immunised mice were challenged with K. pneumoniae bacteria and showed bacterial clearance in immunised mice. The recombinant VgrG protein can further be used for studying downstream signalling of VgrG protein in mice during infection and for therapeutic MAb development to eradicate K. pneumoniae infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title="immune response">immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumoniae" title=" Klebsiella pneumoniae"> Klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-drug%20resistance" title=" multi-drug resistance"> multi-drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20expression" title=" recombinant protein expression"> recombinant protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=T6SS" title=" T6SS"> T6SS</a>, <a href="https://publications.waset.org/abstracts/search?q=VgrG" title=" VgrG"> VgrG</a> </p> <a href="https://publications.waset.org/abstracts/153029/targetting-t6ss-of-klebsiella-pneumoniae-for-assessment-of-immune-response-in-mice-for-therapeutic-lead-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2405</span> Chemical Synthesis of a cDNA and Its Expression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salman%20Akrokayan">Salman Akrokayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20cDNA" title="synthetic cDNA">synthetic cDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20G-CSF" title=" recombinant G-CSF"> recombinant G-CSF</a>, <a href="https://publications.waset.org/abstracts/search?q=cloning" title=" cloning"> cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/59150/chemical-synthesis-of-a-cdna-and-its-expression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2404</span> Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzyy-Rong%20Jinn">Tzyy-Rong Jinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Kuo%20Hsieh"> Sheng-Kuo Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Chung"> Yi-Ching Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Chia%20Hsieh"> Feng-Chia Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arti%EF%AC%81cial%20oil%20bodies" title="artificial oil bodies">artificial oil bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleosin-fusion%20protein" title=" Oleosin-fusion protein"> Oleosin-fusion protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Mastoparan-B" title=" Mastoparan-B"> Mastoparan-B</a> </p> <a href="https://publications.waset.org/abstracts/68074/design-of-an-artificial-oil-body-cyanogen-bromide-technology-platform-for-the-expression-of-small-bioactive-peptide-mastoparan-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2403</span> The Role of Il-6-Mediated NS5ATP9 Expression in Autophagy of Liver Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongping%20Lu">Hongping Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelbinur%20%20Tursun"> Kelbinur Tursun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaru%20Li"> Yaru Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang"> Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunai%20Liu"> Shunai Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Han"> Ming Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To investigate whether NS5ATP9 is involved in IL-6 mediated autophagy and the relationship between IL-6 and NS5ATP9 in liver cancer cells. Methods: 1. Detect the mRNA and protein levels of Beclin 1 after HepG2 cells were treated with or without recombinant human IL-6 protein. 2. Measure and compare of the changes of autophagy-related genes with their respective control, after IL-6 was silenced or neutralized with monoclonal antibody against human IL-6. 3. HepG2 cells were incubated with 50 ng/ml of IL-6 in the presence or absence of PDTC. The expression of NS5ATP9 was analyzed by Western blot after 48 h. 4. After NS5ATP9-silenced HepG2 cells had been treated with 50 ng/ml recombinant IL-6 protein, we detected the Beclin 1 and LC3B (LC3Ⅱ/Ⅰ) expression. 5. HepG2 cells were transfected with pNS5ATP9, si-NS5ATP9, and their respective control. Total RNA was isolated from cells and analyzed for IL-6. 6. Silence or neutralization of IL-6 in HepG2 cells which has been transfected with NS5ATP9. Beclin 1 and LC3 protein levels were analyzed by Western blot. Result: 1. After HepG2 were treated with recombinant human IL-6 protein, the expression of endogenous Beclin 1 was up-regulated at mRNA and protein level, and the conversion of endogenous LC3-I to LC3-II was also increased. These results indicated that IL-6 could induce autophagy. 2. When HepG2 cells were treated with IL-6 siRNA or monoclonal antibody against human IL-6, the expression of autophagy-related genes were decreased. 3. Exogenous human IL-6 recombinant protein up-regulated NS5ATP9 via NF-κB activation. 4. The expression of Beclin 1 and LC3B was down-regulated after IL-6 treated NS5ATP9-silenced HepG2 cells. 5. NS5ATP9 could reverse regulates IL-6 expression in HepG2 cells. 6. Silence or neutralization of IL-6 attenuates NS5ATP9-induced autophagy slightly. Conclusion: Our results implied that in HCC patients, maybe the higher level of IL-6 in the serum promoted the expression of NS5ATP9 and induced autophagy in cancer cells. And the over-expression of NS5ATP9 which induced by IL-6, in turn, increased IL-6 expression, further, promotes the IL-6/NS5ATP9-mediated autophagy and affects the progression of tumor. Therefore, NS5ATP9 silence might be a potential target for HCC therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy" title="autophagy">autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatocellular%20carcinoma" title=" Hepatocellular carcinoma"> Hepatocellular carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-6" title=" IL-6"> IL-6</a>, <a href="https://publications.waset.org/abstracts/search?q=microenvironment" title=" microenvironment"> microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=NS5ATP9" title=" NS5ATP9"> NS5ATP9</a> </p> <a href="https://publications.waset.org/abstracts/58075/the-role-of-il-6-mediated-ns5atp9-expression-in-autophagy-of-liver-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2402</span> Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Donatas%20Levisauskas"> Donatas Levisauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaldas%20Urniezius"> Renaldas Urniezius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20algorithms" title="adaptive algorithms">adaptive algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20control" title=" model-based control"> model-based control</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20E.%20coli" title=" recombinant E. coli"> recombinant E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-up%20of%20bioprocesses" title=" scale-up of bioprocesses"> scale-up of bioprocesses</a> </p> <a href="https://publications.waset.org/abstracts/88066/development-and-investigation-of-efficient-substrate-feeding-and-dissolved-oxygen-control-algorithms-for-scale-up-of-recombinant-e-coli-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2401</span> Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Lotfieblisofla">Sadegh Lotfieblisofla</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Khodabakhshi"> Arash Khodabakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (&gamma;-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by <em>Agrobacterium tumefaciens</em> strain LBA<sub>4404</sub>. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tPA" title="tPA">tPA</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant" title=" recombinant"> recombinant</a>, <a href="https://publications.waset.org/abstracts/search?q=transgenic" title=" transgenic"> transgenic</a>, <a href="https://publications.waset.org/abstracts/search?q=tobacco" title=" tobacco"> tobacco</a> </p> <a href="https://publications.waset.org/abstracts/100395/expression-of-tissue-plasminogen-activator-in-transgenic-tobacco-plants-by-signal-peptides-targeting-for-delivery-to-apoplast-endoplasmic-reticulum-and-cytosol-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2400</span> Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Adeppa">J. Adeppa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Samanta"> S. Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20K.%20Raina"> O. K. Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fasciola%20gigantic" title="fasciola gigantic">fasciola gigantic</a>, <a href="https://publications.waset.org/abstracts/search?q=fasciola%20hepatica" title=" fasciola hepatica"> fasciola hepatica</a>, <a href="https://publications.waset.org/abstracts/search?q=GST" title=" GST"> GST</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-%20PCR" title=" RT- PCR"> RT- PCR</a> </p> <a href="https://publications.waset.org/abstracts/84694/molecular-characterisation-and-expression-of-glutathione-s-transferase-of-fasciola-gigantica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2399</span> Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Tokmakov">Alexander A. Tokmakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20analysis" title="bioinformatics analysis">bioinformatics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20protein%20synthesis" title=" cell-free protein synthesis"> cell-free protein synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=expression%20success" title=" expression success"> expression success</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20proteins" title=" recombinant proteins"> recombinant proteins</a> </p> <a href="https://publications.waset.org/abstracts/22904/bioinformatics-approach-to-identify-physicochemical-and-structural-properties-associated-with-successful-cell-free-protein-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2398</span> A Recombinant Group a Streptococcus (GAS-2W) Strain Elicits Protective Immunity in Mice through Induction of an IFN-γ Dependent Humoral Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Emami">Shiva Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Persson"> Jenny Persson</a>, <a href="https://publications.waset.org/abstracts/search?q=Bengt%20Johansson%20Lindbom"> Bengt Johansson Lindbom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group A streptococcus (GAS) is a prevalent human pathogen, causing a wide range of infections and diseases. One of the most well-known virulence factors in GAS is M protein, a surface protein that facilitates bacterial invasion. In this study, we used a recombinant GAS strain (GAS-2W) expressing M protein containing a hyper immunogenic peptide (2W). Mice were immunized three times with heat-killed-GAS subcutaneously at three weeks intervals. Three weeks post last immunization, mice were challenged intraperitoneally with a lethal dose of live GAS. In order to investigate the impact of IFN-ƴ and antibodies in protection against GAS infection, we used a mouse model knock-out for IFN-ƴ (IFN-ƴ KO). We observed immunization with GAS-2W strain can increase protection against GAS infection in mice compared with the original GAS strain. Higher levels of antibodies against M1 protein were measured in GAS-2W-immunized mice. There was also a significant increase in IgG2c response in mice immunized with GAS2W. By using IFN-ƴ KO mice, we showed that not a high level of total IgG, but IgG2c was correlated with protection through the i.p challenge. It also emphasizes the importance of IFN-ƴ cytokine to combat GAS by isotype switching to IgG2c (which is opsonic for phagocytosis). Our data indicate the crucial role of IFN-ƴ in the protective immune response that, together with IgG2c, can induce protection against GAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Group%20A%20streptococcus" title="Group A streptococcus">Group A streptococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=IgG2c" title=" IgG2c"> IgG2c</a>, <a href="https://publications.waset.org/abstracts/search?q=IFN-%CE%B3" title=" IFN-γ"> IFN-γ</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a> </p> <a href="https://publications.waset.org/abstracts/141555/a-recombinant-group-a-streptococcus-gas-2w-strain-elicits-protective-immunity-in-mice-through-induction-of-an-ifn-gh-dependent-humoral-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2397</span> Expression of Human Papillomavirus Type 18 L1 Virus-Like Particles in Methylotropic Yeast, Pichia Pastoris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Rassi">Hossein Rassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Moradi%20Fard"> Marjan Moradi Fard</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Niko"> Samaneh Niko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human papillomavirus type 16 and 18 are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, HPV type 18 accounts for about 34 % of all HPV infections in Iran and the most promising vaccine against HPV infection is based on the L1 major capsid protein. The L1 protein of HPV18 has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are non-infectious, highly immunogenic and allowing their use in vaccine production. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system used to produce high levels of heterologous proteins. In this study we expressed HPV18 L1 VLPs in P. pastoris. The gene encoding the major capsid protein L1 of the high-risk HPV type 18 was isolated from Iranian patient by PCR and inserted into pTG19-T vector to obtain the recombinant expression vector pTG19-HPV18-L1. Then, the pTG19-HPV18-L1 was transformed into E. coli strain DH5α and the recombinant protein HPV18 L1 was expressed under IPTG induction in soluble form. The HPV18 L1 gene was excised from recombinant plasmid with XhoI and EcoRI enzymes and ligated into the yeast expression vector pPICZα linearized with the same enzymes, and transformed into P. pastoris. Induction and expression of HPV18 L1 protein was demonstrated by BMGY/BMMY and RT PCR. The parameters for induced cultivation for strain in P. pastoris KM71 with HPV16L1 were investigated in shaking flask cultures. After induced cultivation BMMY (pH 7.0) medium supplemented with methanol to a final concentration of 1.0% every 24 h at 37 degrees C for 96 h, the recombinant produced 78.6 mg/L of L1 protein. This work offers the possibility for the production of prophylactic vaccine for cervical carcinoma by P. pastoris for HPV-18 L1 gene. The VLP-based HPV vaccines can prevent persistent HPV18 infections and cervical cancer in Iran. The HPV-18 L1 gene was expressed successfully in E.coli, which provides necessary basis for preparing HPV-18 L1 vaccine in human. Also, HPV type 6 L1 proteins expressed in Pichia pastoris will facilitate the HPV vaccine development and structure-function study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pichia%20pastoris" title="Pichia pastoris">Pichia pastoris</a>, <a href="https://publications.waset.org/abstracts/search?q=L1%20virus-like%20particles" title=" L1 virus-like particles"> L1 virus-like particles</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20papillomavirus%20type%2018" title=" human papillomavirus type 18"> human papillomavirus type 18</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/27942/expression-of-human-papillomavirus-type-18-l1-virus-like-particles-in-methylotropic-yeast-pichia-pastoris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2396</span> Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashima%20Sharma">Ashima Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20serum%20albumin" title="recombinant human serum albumin">recombinant human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=biosimilar" title=" biosimilar"> biosimilar</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone%20assisted%20protein%20folding" title=" chaperone assisted protein folding"> chaperone assisted protein folding</a> </p> <a href="https://publications.waset.org/abstracts/89334/enhanced-functional-production-of-a-crucial-biomolecule-human-serum-albumin-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2395</span> Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashima%20Sharma">Ashima Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20K.%20Chaudhuri"> Tapan K. Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20functional%20production%20of%20rHSA%20in%20E.%20coli" title="enhanced functional production of rHSA in E. coli">enhanced functional production of rHSA in E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20serum%20albumin" title=" recombinant human serum albumin"> recombinant human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20expression" title=" recombinant protein expression"> recombinant protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20processing" title=" recombinant protein processing"> recombinant protein processing</a> </p> <a href="https://publications.waset.org/abstracts/67504/production-of-recombinant-human-serum-albumin-in-escherichia-coli-a-crucial-biomolecule-for-biotechnological-and-healthcare-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2394</span> Designing Next Generation Platforms for Recombinant Protein Production by Genome Engineering of Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Jain">Priyanka Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20K.%20Sharma"> Ashish K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Esha%20%20Shukla"> Esha Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Mukherjee"> K. J. Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a paradigm shift in our approach to design improved platforms for recombinant protein production, by addressing system level issues rather than the individual steps associated with recombinant protein synthesis like transcription, translation, etc. We demonstrate that by controlling and modulating the cellular stress response (CSR), which is responsible for feedback control of protein synthesis, we can generate hyper-producing strains. We did transcriptomic profiling of post-induction cultures, expressing different types of protein, to analyze the nature of this cellular stress response. We found significant down-regulation of substrate utilization, translation, and energy metabolism genes due to generation CSR inside the host cell. However, transcription profiling has also shown that many genes are up-regulated post induction and their role in modulating the CSR is unclear. We hypothesized that these up-regulated genes trigger signaling pathways, generating the CSR and concomitantly reduce the recombinant protein yield. To test this hypothesis, we knocked out the up-regulated genes, which did not have any downstream regulatees, and analyzed their impact on cellular health and recombinant protein expression. Two model proteins i.e., GFP and L-Asparaginase were chosen for this analysis. We observed a significant improvement in expression levels, with some knock-outs showing more than 7-fold higher expression compared to control. The 10 best single knock-outs were chosen to make 45 combinations of all possible double knock-outs. A further increase in expression was observed in some of these double knock- outs with GFP levels being highest in a double knock-out ΔyhbC + ΔelaA. However, for L-Asparaginase which is a secretory protein, the best results were obtained using a combination of ΔelaA+ΔcysW knock-outs. We then tested all the knock outs for their ability to enhance the expression of a 'difficult-to-express' protein. The Rubella virus E1 protein was chosen and tagged with sfGFP at the C-terminal using a linker peptide for easy online monitoring of expression of this fusion protein. Interestingly, the highest increase in Rubella-sGFP levels was obtained in the same double knock-out ΔelaA + ΔcysW (5.6 fold increase in expression yield compared to the control) which gave the highest expression for L-Asparaginase. However, for sfGFP alone, the ΔyhbC+ΔmarR knock-out gave the highest level of expression. These results indicate that there is a fair degree of commonality in the nature of the CSR generated by the induction of different proteins. Transcriptomic profiling of the double knock out showed that many genes associated with the translational machinery and energy biosynthesis did not get down-regulated post induction, unlike the control where these genes were significantly down-regulated. This confirmed our hypothesis of these genes playing an important role in the generation of the CSR and allowed us to design a strategy for making better expression hosts by simply knocking out key genes. This strategy is radically superior to the previous approach of individually up-regulating critical genes since it blocks the mounting of the CSR thus preventing the down-regulation of a very large number of genes responsible for sustaining the flux through the recombinant protein production pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20stress%20response" title="cellular stress response">cellular stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=GFP" title=" GFP"> GFP</a>, <a href="https://publications.waset.org/abstracts/search?q=knock-outs" title=" knock-outs"> knock-outs</a>, <a href="https://publications.waset.org/abstracts/search?q=up-regulated%20genes" title=" up-regulated genes"> up-regulated genes</a> </p> <a href="https://publications.waset.org/abstracts/79980/designing-next-generation-platforms-for-recombinant-protein-production-by-genome-engineering-of-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2393</span> Novel Point of Care Test for Rapid Diagnosis of COVID-19 Using Recombinant Nanobodies against SARS-CoV-2 Spike1 (S1) Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Kamel">Manal Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Maher"> Sara Maher</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20El%20Baz"> Hanan El Baz</a>, <a href="https://publications.waset.org/abstracts/search?q=Faten%20Salah"> Faten Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Sayyouh"> Omar Sayyouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Demerdash"> Zeinab Demerdash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent COVID 19 pandemic, experts of public health have emphasized testing, tracking infected people, and tracing their contacts as an effective strategy to reduce the spread of the virus. Development of rapid and sensitive diagnostic assays to replace reverse transcription polymerase chain reaction (RT-PCR) is mandatory..Our innovative test strip relying on the application of nanoparticles conjugated to recombinant nanobodies for SARS-COV-2 spike protein (S1) & angiotensin-converting enzyme 2 (that is responsible for the virus entry into host cells) for rapid detection of SARS-COV-2 spike protein (S1) in saliva or sputum specimens. Comparative tests with RT-PCR will be held to estimate the significant effect of using COVID 19 nanobodies for the first time in the development of lateral flow test strip. The SARS-CoV-2 S1 (3 ng of recombinant proteins) was detected by our developed LFIA in saliva specimen of COVID-19 Patients No cross-reaction was detected with Middle East respiratory syndrome coronavirus (MERS-CoV) or SARS- CoV antigens..Our developed system revealed 96 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% sensitivity and specificity for nasopharyngeal swabs. providing a reliable alternative for the painful and uncomfortable nasopharyngeal swab process and the complexes, time consuming PCR test. An increase in testing compliances to be expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID%2019" title="COVID 19">COVID 19</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=LFIA" title=" LFIA"> LFIA</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobodies" title=" nanobodies"> nanobodies</a>, <a href="https://publications.waset.org/abstracts/search?q=ACE2" title=" ACE2"> ACE2</a> </p> <a href="https://publications.waset.org/abstracts/148096/novel-point-of-care-test-for-rapid-diagnosis-of-covid-19-using-recombinant-nanobodies-against-sars-cov-2-spike1-s1-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2392</span> Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Kiran%20Shahzadi">Syeda Kiran Shahzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Mahmood"> Nasir Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdul%20Qadir"> Muhammad Abdul Qadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20refolding" title="protein refolding">protein refolding</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20activities" title=" antiproliferative activities"> antiproliferative activities</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20interferon%20alpha-2b" title=" human interferon alpha-2b"> human interferon alpha-2b</a>, <a href="https://publications.waset.org/abstracts/search?q=pegylation" title=" pegylation"> pegylation</a>, <a href="https://publications.waset.org/abstracts/search?q=mPEG-propionaldehyde" title=" mPEG-propionaldehyde"> mPEG-propionaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20directed%20mutagenesis" title=" site directed mutagenesis"> site directed mutagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20expression" title=" E. coli expression"> E. coli expression</a> </p> <a href="https://publications.waset.org/abstracts/83956/cloning-expression-and-n-terminal-pegylation-of-human-interferon-alpha-2b-analogs-and-their-cytotoxic-evaluation-against-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2391</span> A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ali%20Abdulle">Yusuf Ali Abdulle</a>, <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Uddin%20Keerio"> Azhar Uddin Keerio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance" title="resistance">resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Lecanicillium%20lecanii" title=" Lecanicillium lecanii"> Lecanicillium lecanii</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=whitefly" title=" whitefly"> whitefly</a> </p> <a href="https://publications.waset.org/abstracts/151545/a-novel-protein-elicitor-extracted-from-lecanicillium-lecanii-induced-resistance-against-whitefly-bemisia-tabaci-in-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2390</span> Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katerina%20H.%20Takova">Katerina H. Takova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20N.%20Minkov"> Ivan N. Minkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergana%20G.%20Zahmanova"> Gergana G. Zahmanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20E%20virus" title="hepatitis E virus">hepatitis E virus</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20molecular%20farming" title=" plant molecular farming"> plant molecular farming</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20expression" title=" transient expression"> transient expression</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccines" title=" vaccines"> vaccines</a> </p> <a href="https://publications.waset.org/abstracts/90648/molecular-farming-plants-producing-vaccine-and-diagnostic-reagent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2389</span> Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayli%20Varasteh%20Moradi">Shayli Varasteh Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20A.%20Johnston"> Wayne A. Johnston</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Gagoski"> Dejan Gagoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Alexandrov"> Kirill Alexandrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlphaLISA%20technology" title="AlphaLISA technology">AlphaLISA technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20protein%20expression" title=" cell-free protein expression"> cell-free protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=epitope%20mapping" title=" epitope mapping"> epitope mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tarentolae" title=" Leishmania tarentolae"> Leishmania tarentolae</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a> </p> <a href="https://publications.waset.org/abstracts/81407/combining-in-vitro-protein-expression-with-alphalisa-technology-to-study-protein-protein-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2388</span> Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20V.%20Chervyakova">Olga V. Chervyakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmira%20T.%20Tailakova"> Elmira T. Tailakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaliy%20M.%20Strochkov"> Vitaliy M. Strochkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulyaisan%20T.%20Sultankulova"> Kulyaisan T. Sultankulova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurlan%20T.%20Sandybayev"> Nurlan T. Sandybayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Lev%20G.%20Nemchinov"> Lev G. Nemchinov</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemarie%20W.%20Hammond"> Rosemarie W. Hammond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prophylactic%20preparation" title="prophylactic preparation">prophylactic preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20pox%20virus" title=" sheep pox virus"> sheep pox virus</a>, <a href="https://publications.waset.org/abstracts/search?q=subunit%20vaccine" title=" subunit vaccine "> subunit vaccine </a> </p> <a href="https://publications.waset.org/abstracts/39087/sheep-pox-virus-recombinant-proteins-to-develop-subunit-vaccines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2387</span> Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Singh">Ankita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Gorain"> Chandan Gorain</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirul%20I.%20Mallick"> Amirul I. Mallick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickens" title="chickens">chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=lipoprotein%20adhesion%20of%20Campylobacter%20jejuni" title=" lipoprotein adhesion of Campylobacter jejuni"> lipoprotein adhesion of Campylobacter jejuni</a>, <a href="https://publications.waset.org/abstracts/search?q=immuno-protection" title=" immuno-protection"> immuno-protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20lactis" title=" Lactococcus lactis"> Lactococcus lactis</a>, <a href="https://publications.waset.org/abstracts/search?q=mucosal%20delivery" title=" mucosal delivery"> mucosal delivery</a> </p> <a href="https://publications.waset.org/abstracts/108716/immuno-protective-role-of-mucosal-delivery-of-lactococcus-lactis-expressing-functionally-active-jlpa-protein-on-campylobacter-jejuni-colonization-in-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2386</span> ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maysam%20Mard-Soltani">Maysam Mard-Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Javad%20Rasaee"> Mohamad Javad Rasaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khalili"> Saeed Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdol%20Karim%20Sheikhi"> Abdol Karim Sheikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Hedayati"> Mehdi Hedayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for <em>in vivo</em> immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hTSH" title="hTSH">hTSH</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20expression" title=" protein expression"> protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20reactivity" title=" cross reactivity"> cross reactivity</a> </p> <a href="https://publications.waset.org/abstracts/84047/elisa-based-htsh-assessment-using-two-sensitive-and-specific-anti-htsh-polyclonal-antibodies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2385</span> Structural and Functional Characterization of the Transcriptional Regulator Rv1176 of Mycobacterium tuberculosis H37Rv</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikash%20Yadav">Vikash Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Arora"> Ashish Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms have self-defense mechanisms to protect themselves from toxic environments. Phenolic acid decarboxylase(pad) is responsible for the defense against toxicity caused by phenolic acids, converting them into less toxic vinyl derivatives. The transcription of the pad gene is regulated by a negative transcription factor, phenolic acid decarboxylase regulators (PadR), in a substrate-inducible manner. The PadR family members share the conserved DNA-binding features and interact with the operator DNA using a winged helix-turn-helix (wHTH) motif, which contains a three-helix motif and a β-stranded wing. The members of this family function as transcriptional regulators that are involved in various cellular survival processes, such as toxin production, detoxification, multidrug resistance, antibiotic biosynthesis, and carbon catabolism. Rv1176 of Mycobacterium tuberculosis H37Rv has been assigned to the PadR family protein that remains to be structurally and functionally uncharacterized. To reveal the structural mechanism by which Rv1176 could regulates effector-responsive transcription, several experiments were performed, including Electrophoretic Mobility Shift Assay (EMSA) for DNA protein interaction, differential scanning calorimetry (DSC) and Differential Scanning Fluorimetry (DSF) for temperature and ligand-dependent protein stability, Circular Dichroism (CD) spectroscopy for secondary structure analysis. Further, to evaluate the functional role of Rv1176, the intracellular survival of recombinant M. smegmatis was examined in murine macrophage cell line J774A.1 and different stressed conditions like oxidative, pH, and nutritive stress. All these studies demonstrated that Rv1176 could behave as a transcription regulator and its expression in recombinant M. smegmatis increases intracellular survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMSA" title="EMSA">EMSA</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculosis" title=" Mycobacterium tuberculosis"> Mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=PadR%20family%20protein" title=" PadR family protein"> PadR family protein</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptional%20regulator" title=" transcriptional regulator"> transcriptional regulator</a> </p> <a href="https://publications.waset.org/abstracts/161202/structural-and-functional-characterization-of-the-transcriptional-regulator-rv1176-of-mycobacterium-tuberculosis-h37rv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20protein&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10