CINXE.COM

Search results for: MCF-7

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MCF-7</title> <meta name="description" content="Search results for: MCF-7"> <meta name="keywords" content="MCF-7"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MCF-7" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MCF-7"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MCF-7</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Facile Synthesis of Novel Substituted Aryl-Thiazole (SAT) Analogs via One-Pot Multicomponent Reaction as Potent Cytotoxic Agents against Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Mirza">Salma Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Asma%20Naqvi"> Syeda Asma Naqvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Mohammed%20Khan"> Khalid Mohammed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Iqbal%20Choudhary"> M. Iqbal Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study twenty-five (25) newly synthesized compounds substituted aryl thiazoles (SAT) 1-25 were synthesized, and in vitro cytotoxicity of these compounds was evaluated against four cancer cell lines namely, MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast), HCT116 (colorectal), and, HeLa (cervical) and compared with the standard anticancer drug doxorubicin with IC50 value of 1.56 ± 0.05 μM. Among them, compounds 1, 4-8 and 19 were found to be active against all four cell lines. Compound 20 was found to be selectively active against MCF7 cells with IC50 value of 40.21 ± 4.15 µM, whereas compound 19 was active against only MCF7 and HeLa cells with IC50 values of 46.72 ± 1.8 and 19.86 ± 0.11 μM, respectively. These results suggest that aryl thiazoles 1 and 4 deserve to be investigated further in vivo as anti-cancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20agents" title="anticancer agents">anticancer agents</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cell%20lines%20%28MCF7" title=" breast cancer cell lines (MCF7"> breast cancer cell lines (MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-MB-231%29" title=" MDA-MB-231)"> MDA-MB-231)</a>, <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer%20cell%20line%20%28HCT-116%29" title=" colorectal cancer cell line (HCT-116)"> colorectal cancer cell line (HCT-116)</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer%20cell%20line%20%28HeLa%29" title=" cervical cancer cell line (HeLa)"> cervical cancer cell line (HeLa)</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiazole%20derivatives" title=" Thiazole derivatives"> Thiazole derivatives</a> </p> <a href="https://publications.waset.org/abstracts/53064/facile-synthesis-of-novel-substituted-aryl-thiazole-sat-analogs-via-one-pot-multicomponent-reaction-as-potent-cytotoxic-agents-against-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Differential Expression of Biomarkers in Cancer Stem Cells and Side Populations in Breast Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipali%20Dhawan">Dipali Dhawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancerous epithelial cells are confined to a primary site by the continued expression of adhesion molecules and the intact basal lamina. However, as the cancer progresses some cells are believed to undergo an epithelial-mesenchymal transition (EMT) event, leading to increased motility, invasion and, ultimately, metastasis of the cells from the primary tumour to secondary sites within the body. These disseminated cancer cells need the ability to self-renew, as stem cells do, in order to establish and maintain a heterogeneous metastatic tumour mass. Identification of the specific subpopulation of cancer stem cells amenable to the process of metastasis is highly desirable. In this study, we have isolated and characterized cancer stem cells from luminal and basal breast cancer cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-468, MCF7 and T47D) on the basis of cell surface markers CD44 and CD24; as well as Side Populations (SP) using Hoechst 33342 dye efflux. The isolated populations were analysed for epithelial and mesenchymal markers like E-cadherin, N-cadherin, Sfrp1 and Vimentin by Western blotting and Immunocytochemistry. MDA-MB-231 cell lines contain a major population of CD44+CD24- cells whereas MCF7, T47D and MDA-MB-231 cell lines show a side population. We observed higher expression of N-cadherin in MCF-7 SP cells as compared to MCF-7NSP (Non-side population) cells suggesting that the SP cells are mesenchymal like cells and hence express increased N-cadherin with stem cell-like properties. There was an expression of Sfrp1 in the MCF7- NSP cells as compared to no expression in MCF7-SP cells, which suggests that the Wnt pathway is expressed in the MCF7-SP cells. The mesenchymal marker Vimentin was expressed only in MDA-MB-231 cells. Hence, understanding the breast cancer heterogeneity would enable a better understanding of the disease progression and therapeutic targeting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cells" title="cancer stem cells">cancer stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial%20to%20mesenchymal%20transition" title=" epithelial to mesenchymal transition"> epithelial to mesenchymal transition</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/21001/differential-expression-of-biomarkers-in-cancer-stem-cells-and-side-populations-in-breast-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Dehpour">A. A. Dehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Eslami"> B. Eslami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rezaie"> S. Rezaie</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Hashemian"> S. F. Hashemian</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Shafie"> F. Shafie</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kiaie"> M. Kiaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coronilla%20varia" title="Coronilla varia">Coronilla varia</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer" title=" anticancer"> anticancer</a>, <a href="https://publications.waset.org/abstracts/search?q=hela%20cell%20line" title=" hela cell line"> hela cell line</a> </p> <a href="https://publications.waset.org/abstracts/16276/chemical-composition-of-essential-oil-and-in-vitro-antibacterial-and-anticancer-activity-of-the-hydroalcolic-extract-from-coronilla-varia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Gas Chromatography-Analysis, Antioxidant, Anti-Inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Abdullah%20Morsi">Eman Abdullah Morsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hend%20Okasha"> Hend Okasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Abdel%20Hady"> Heba Abdel Hady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mortada%20El-Sayed"> Mortada El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abbas%20Shemis"> Mohamed Abbas Shemis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Linum usitatissimum (Linn), known as Flaxseed, is one of the most important medicinal plants traditionally used for various health as nutritional purposes. Objective: Estimation of total phenolic and flavonoid contents as well as evaluate the antioxidant using α, α-diphenyl-β-picrylhydrazyl (DPPH), 2-2'azinobis (3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC) assay and investigation of anti-inflammatory by Bovine serum albumin (BSA) and anticancer activities of hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7) have been applied on hexane, ethyl acetate, n-butanol and methanol extracts and also, fractions of methonal extract (hexane, ethyl acetate and n-butanol). Materials and Methods: Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts and fractions of methanolic extract were tested on (HepG2) and (MCF7). Results: Methanolic extract and its ethyl acetate fraction contain higher contents of total phenols and flavonoids. In addition, methanolic extract had higher antioxidant activity. Butanolic and ethyl acetate fractions yielded higher percent of inhibition of protein denaturation. Meanwhile, ethyl acetate fraction and methanolic extract had anticancer activity against HepG2 and MCF7 (IC50=60 ± 0.24 and 29.4 ± 0.12µg.mL⁻¹) and (IC50=94.7 ± 0.21 and 227 ± 0.48µg.mL⁻¹), respectively. In Gas chromatography-mass spectrometry (GC-MS) analysis, methanolic extract has 32 compounds, whereas; ethyl acetate and butanol fractions contain 40 and 36 compounds, respectively. Conclusion: Flaxseed contains totally different biologically active compounds that have been found to possess good variable activities, which can protect human body against several diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title="phenolic content">phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20content" title=" flavonoid content"> flavonoid content</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2" title=" HepG2"> HepG2</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolysis-assay" title=" hemolysis-assay"> hemolysis-assay</a>, <a href="https://publications.waset.org/abstracts/search?q=flaxseed" title=" flaxseed"> flaxseed</a> </p> <a href="https://publications.waset.org/abstracts/111278/gas-chromatography-analysis-antioxidant-anti-inflammatory-and-anticancer-activities-of-some-extracts-and-fractions-of-linum-usitatissimum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition Inhibits by INT3 &amp; Quercetin in MCF7 Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradhan">D. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tripathy"> G. Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pradhan"> S. Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Imperviousness gainst estrogen treatments is a noteworthy reason for infection backslide and mortality in estrogen receptor alpha (ERα)- positive breast diseases. Tamoxifen or estrogen withdrawal builds the reliance of breast malignancy cells on INT3 flagging. Here, we researched the commitment of Quercetin and INT3 motioning in endocrine-safe breast tumor cells. Methods: We utilized two models of endocrine treatments safe (ETR) breast tumor: Tamoxifen-safe (TamR) and long haul estrogen-denied (LTED) MCF7 cells. We assessed the transitory and intrusive limit of these cells by Transwell cells. Articulation of epithelial to mesenchymal move (EMT) controllers and in addition INT3 receptors and targets were assessed by constant PCR and western smudge investigation. Besides, we tried in-vitro hostile to Quercetin monoclonal Antibodies (mAbs) and Gamma Secretase Inhibitors (GSIs) as potential EMT inversion remedial specialists. At last, we created stable Quercetin overexpressing MCF7 cells and assessed their EMT components and reaction to Tamoxifen. Results: We found that ETR cells procured an Epithelial to Mesenchymal move (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we distinguished more elevated amount of INT3 however lower levels of INT1 and INT3 proposing a change to motioning through distinctive INT3 receptors after obtaining of resistance. Against Quercetin monoclonal antibodies and the GSI PF03084014 were powerful in obstructing the Quercetin/INT3 pivot and in part repressing the EMT process. As a consequence of this, cell relocation and attack were weakened and the immature microorganism like populace was essentially decreased. Hereditary hushing of Quercetin and INT3 prompted proportionate impacts. At long last, stable overexpression of Quercetin was adequate to make MCF7 lethargic to Tamoxifen by INT3 initiation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives intrusive conduct. Hostile to Quercetin mAbs and GSI PF03084014 lessen articulation of EMT particles decreasing cell obtrusiveness. Quercetin overexpression instigates Tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and INT3 warrants further clinical Correlation as substantial restorative methodologies in endocrine-safe breast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine" title="endocrine">endocrine</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial" title=" epithelial"> epithelial</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal" title=" mesenchymal"> mesenchymal</a>, <a href="https://publications.waset.org/abstracts/search?q=INT3" title=" INT3"> INT3</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a> </p> <a href="https://publications.waset.org/abstracts/43473/endocrine-therapy-resistance-and-epithelial-to-mesenchymal-transition-inhibits-by-int3-quercetin-in-mcf7-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pradhan">S. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradhan"> D. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tripathy"> G. Tripathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quercetin" title="quercetin">quercetin</a>, <a href="https://publications.waset.org/abstracts/search?q=INT3" title=" INT3"> INT3</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20transition" title=" mesenchymal transition"> mesenchymal transition</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7%20breast%20cancer%20cells" title=" MCF7 breast cancer cells"> MCF7 breast cancer cells</a> </p> <a href="https://publications.waset.org/abstracts/37378/quercetin-and-int3-inhibits-endocrine-therapy-resistance-and-epithelial-to-mesenchymal-transition-in-mcf7-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> New 5’-O- and 6-Substituted Purine Nucleoside Analogs: Synthesis and Cytotoxic Activity on Selected Human Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meral%20Tuncbilek">Meral Tuncbilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Sac"> Duygu Sac</a>, <a href="https://publications.waset.org/abstracts/search?q=Irem%20Durmaz"> Irem Durmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rengul%20Cetin%20Atalay"> Rengul Cetin Atalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nucleoside analogs are a pharmacologically diverse family that includes cytotoxic compounds, antiviral agents, and immunosuppressive molecules. Purine nucleoside derivatives such as fludarabine, cladribine, and pentostatin are significant drugs used in chemotherapy for the treatment of solid tumors and hematological malignancies. In this study, we synthesized novel purine ribonucleoside analogs containing a 4-(4-substituted phenylsulfonyl) piperazine in the substituent at N6- and O-substituted sulfonyl group at 5’-position as putative cytotoxic agents. The newly obtained compounds were then characterized for their cytotoxicity in human cancer cell lines. The 5’, 6-disubstituted 9-(β-D-ribofuranosyl)purine derivatives (44-67) were readily obtained from commercially available inosine in seven steps in very cost effective synthesis approach. The newly synthesized compounds were first evaluated for their anti-tumor activities against human liver (Huh7), colon (HCT116) and breast (MCF7) carcinoma cell lines. The IC50 values were in micromolar concentrations with 5’, 6-disubstituted purine nucleoside derivatives. Time-dependent IC50 values for each molecule were also calculated in comparison with known cytotoxic agents Camptothecin (CPT), 5-Fluorouracil (5-FU), Cladribine, Pentostatine and Fludarabine. N6-(4-trifluoromethyl phenyl) / N6-(4-bromophenyl) and 5’-O-(4-methoxybenzene sulfonyl) / 5’-O-(benzenesulfonyl) derivatives 54, 64 displayed the best cytotoxic activity with IC50 values of 8.8, 7 µM against MCF7 cell line. The N6-(4-methylphenyl) analog 50 was also very active (IC50= 10.7 μM) against HCT116 cell line. Furthermore, compound 64 had a better cytotoxic activity than the known cell growth inhibitors 5-FU and Fludarabine on Huh7 (1.5 vs 30.7, 29.9 μM for 5-FU and Fludarabine). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Huh7" title=" Huh7"> Huh7</a>, <a href="https://publications.waset.org/abstracts/search?q=HCT116" title=" HCT116"> HCT116</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleoside" title=" nucleoside"> nucleoside</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/49693/new-5-o-and-6-substituted-purine-nucleoside-analogs-synthesis-and-cytotoxic-activity-on-selected-human-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> SOCS3 Reverses Multidrug Resistance by Inhibiting MDR1 in Mammary Cell Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pradhan">S. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradhan"> D. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tripathy"> G. Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Dasmohapatra"> T. Dasmohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suppressors of cytokine signalling (SOCS3), a newly indentified anti-apoptotic molecule is a downstream effecter of the receptor tyrosine kinase-Ras signalling pathway. Current study has uncovered that SOCS3 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS3 on MDR, we analyzed the expression of P-gp and SOCS3 by immune-histochemistry and found there was positive correlation between them. At that point we effectively interfered with RNA translation by the contamination of siRNA of SOCS3 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flowcytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS3 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOCS3gene" title="SOCS3gene">SOCS3gene</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=MDR1%20gene" title=" MDR1 gene"> MDR1 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20interference" title=" RNA interference"> RNA interference</a> </p> <a href="https://publications.waset.org/abstracts/43474/socs3-reverses-multidrug-resistance-by-inhibiting-mdr1-in-mammary-cell-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> SOCS1 Inhibits MDR1 in Mammary Cell Carcinoma Reverses Multidrug Resistance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debasish%20Pradhan">Debasish Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaktiprasad%20Pradhan"> Shaktiprasad Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar%20Pradhan"> Rakesh Kumar Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gitanjali%20Tripathy"> Gitanjali Tripathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suppressors of cytokine signalling (SOCS1), a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signalling pathway. The current study has uncovered that SOCS1 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS1 on MDR, we analyzed the expression of P-gp and SOCS1 by immunohistochemistry and found there was a positive correlation between them. At that point, we effectively interfered with RNA translation by the contamination of siRNA of SOCS1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi, the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise, the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flow cytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS1 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=SOCS1%20gene" title=" SOCS1 gene"> SOCS1 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=MDR1%20gene" title=" MDR1 gene"> MDR1 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20interference" title=" RNA interference"> RNA interference</a> </p> <a href="https://publications.waset.org/abstracts/37565/socs1-inhibits-mdr1-in-mammary-cell-carcinoma-reverses-multidrug-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Samy%20Elnoby">Ahmed Samy Elnoby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ailanthus%20altissima" title="Ailanthus altissima">Ailanthus altissima</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC" title="TLC">TLC</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title="HPLC">HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a> </p> <a href="https://publications.waset.org/abstracts/140076/a-contribution-to-phytochemical-and-biological-studies-of-ailanthus-alitssima-swingle-cultivated-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Apoptosis Pathway Targeted by Thymoquinone in MCF7 Breast Cancer Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Marjaneh">M. Marjaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Narazah"> M. Y. Narazah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Shahrul"> H. Shahrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Array-based gene expression analysis is a powerful tool to profile expression of genes and to generate information on therapeutic effects of new anti-cancer compounds. Anti-apoptotic effect of thymoquinone was studied in MCF7 breast cancer cell line using gene expression profiling with cDNA micro array. The purity and yield of RNA samples were determined using RNeasyPlus Mini kit. The Agilent RNA 6000 Nano LabChip kit evaluated the quantity of the RNA samples. AffinityScript RT oligo-dT promoter primer was used to generate cDNA strands. T7 RNA polymerase was used to convert cDNA to cRNA. The cRNA samples and human universal reference RNA were labelled with Cy-3-CTP and Cy-5-CTP, respectively. Feature Extraction and GeneSpring software analysed the data. The single experiment analysis revealed involvement of 64 pathways with up-regulated genes and 78 pathways with down-regulated genes. The MAPK and p38-MAPK pathways were inhibited due to the up-regulation of PTPRR gene. The inhibition of p38-MAPK suggested up-regulation of TGF-ß pathway. Inhibition of p38 - MAPK caused up-regulation of TP53 and down-regulation of Bcl2 genes indicating involvement of intrinsic apoptotic pathway. Down-regulation of CARD16 gene as an adaptor molecule regulated CASP1 and suggested necrosis-like programmed cell death and involvement of caspase in apoptosis. Furthermore, down-regulation of GPCR, EGF-EGFR signalling pathways suggested reduction of ER. Involvement of AhR pathway which control cytochrome P450 and glucuronidation pathways showed metabolism of Thymoquinone. The findings showed differential expression of several genes in apoptosis pathways with thymoquinone treatment in estrogen receptor-positive breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cDNA%20microarray" title="cDNA microarray">cDNA microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=thymoquinone" title=" thymoquinone"> thymoquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=CARD16" title=" CARD16"> CARD16</a>, <a href="https://publications.waset.org/abstracts/search?q=PTPRR" title=" PTPRR"> PTPRR</a>, <a href="https://publications.waset.org/abstracts/search?q=CASP10" title=" CASP10"> CASP10</a> </p> <a href="https://publications.waset.org/abstracts/22436/apoptosis-pathway-targeted-by-thymoquinone-in-mcf7-breast-cancer-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> BRG1 and Ep300 as a Transcriptional Regulators of Breast Cancer Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Sobczak">Maciej Sobczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Julita%20Pietrzak"> Julita Pietrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20P%C5%82oszaj"> Tomasz Płoszaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Robaszkiewicz"> Agnieszka Robaszkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brg1, a member of SWI/SNF complex, plays a role in chromatin remodeling, therefore, regulates expression of many genes. Brg1 is an ATPase of SWI/SNF complex, thus its activity requires ATP. Through its bromodomain recognizes acetylated histone residues and evicts them, thus promoting transcriptionally active state of chromatin. One of the enzymes that is responsible for acetylation of histone residues is Ep300. It was previously shown in the literature that cooperation of Brg1 and Ep300 occurs at the promoter regions that have binding sites for E2F-family transcription factors as well as CpG islands. According to literature, approximately 20% of human cancer possess mutation in Brg1 or any other crucial SWI/SNF subunit. That phenomenon makes Brg1-Ep300 a very promising target for anti-cancer therapy. Therefore in our study, we investigated if physical interaction between Brg1 and Ep300 exists and what impact those two proteins have on key for breast cancer cells processes such as DNA damage repair and cell proliferation. Bioinformatical analysis pointed out, that genes involved in cell proliferation and DNA damage repair are overexpressed in MCF7 and MDA-MB-231 cells. Moreover, promoter regions of these genes are highly acetylated, which suggests high transcriptional activity of those sites. Notably, many of those gene possess within their promoters an E2F, Brg1 motives, as well as CpG islands and acetylated histones. Our data show that Brg1 physically interacts with Ep300, and together they regulate expression of genes involved in DNA damage repair and cell proliferation. Upon inhibiting Brg1 or Ep300, expression of vital for cancer cell survival genes such as CDK2/4, BRCA1/2, PCNA, and XRCC1 is decreased in MDA-MB-231 and MCF7 cells. Moreover, inhibition or silencing of either Brg1 or Ep300 leads to cell cycle arrest in G1. After inhibition of BRG1 or Ep300 on tested gene promoters, the repressor complex including Rb, HDAC1, and EZH2 is formed, which inhibits gene expression. These results highlight potentially significant target for targeted anticancer therapy to be introduced as a supportive therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brg1" title="brg1">brg1</a>, <a href="https://publications.waset.org/abstracts/search?q=ep300" title=" ep300"> ep300</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetics" title=" epigenetics"> epigenetics</a> </p> <a href="https://publications.waset.org/abstracts/144592/brg1-and-ep300-as-a-transcriptional-regulators-of-breast-cancer-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karol%20Rodriguez-Pe%C3%B1a">Karol Rodriguez-Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20L.%20Macias-Rubalcava"> Martha L. Macias-Rubalcava</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Rocha-Zavaleta"> Leticia Rocha-Zavaleta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Sanchez"> Sergio Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphipterygium%20adstringens" title="amphipterygium adstringens">amphipterygium adstringens</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=streptomyces%20scabrisporus" title=" streptomyces scabrisporus"> streptomyces scabrisporus</a>, <a href="https://publications.waset.org/abstracts/search?q=steffimycin" title=" steffimycin"> steffimycin</a> </p> <a href="https://publications.waset.org/abstracts/66620/an-endophyte-of-amphipterygium-adstringens-as-producer-of-cytotoxic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Multiple-Channel Coulter Counter for Cell Sizing and Enumeration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jin%20Kim"> Seong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehoon%20Chung"> Jaehoon Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulter%20counter" title="Coulter counter">Coulter counter</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20enumeration" title=" cell enumeration"> cell enumeration</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20through-put" title=" high through-put"> high through-put</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20sizing" title=" cell sizing"> cell sizing</a> </p> <a href="https://publications.waset.org/abstracts/12788/multiple-channel-coulter-counter-for-cell-sizing-and-enumeration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupalli%20Roja%20Rani">Anupalli Roja Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavithra%20Dasari"> Pavithra Dasari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coleus%20barbatus" title="coleus barbatus">coleus barbatus</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLC" title=" MPLC"> MPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20chromatograph" title=" flash chromatograph"> flash chromatograph</a>, <a href="https://publications.waset.org/abstracts/search?q=ESI-MS" title=" ESI-MS"> ESI-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=FACS" title=" FACS"> FACS</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA." title=" ELISA."> ELISA.</a> </p> <a href="https://publications.waset.org/abstracts/169291/anti-proliferative-activity-and-her2-receptor-expression-analysis-of-mcf-7-breast-cancer-cell-cells-by-plant-extract-coleus-barbatus-andrew" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20A.%20Alqarni">Ali A. A. Alqarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20A.%20Mohamed"> Gamal A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Abdallah"> Hossam M. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrin%20R.%20M.%20Ibrahim"> Sabrin R. M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asteraceae" title="Asteraceae">Asteraceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20minuta" title=" Tagetes minuta"> Tagetes minuta</a> </p> <a href="https://publications.waset.org/abstracts/144923/cytotoxic-metabolites-from-tagetes-minuta-l-growing-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> pH and Thermo-Sensitive Nanogels for Anti-Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Naga%20Sravan%20Kumar%20Varma">V. Naga Sravan Kumar Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Shivakumar"> H. G. Shivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to develop dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) (PNA) nanogels(NGs) and studying its applications for Anti-Cancer therapy. NGs were fabricated by free radical polymerization using different amount of N-isopropylacrylamide and acrylic acid. A study for polymer composition over the effect on LCST in different pH was evaluated by measuring the absorbance at 500nm using UV spectrophotometer. Further selected NG’s were evaluated for change in hydrodynamic diameters in response to pH and temperature. NGs which could sharply respond to low pH value of cancer cells at body temperature were loaded with Fluorouracil (5-FU) using equilibrium swelling method and studied for drug release behaviour in different pH. A significant influence of NGs polymer composition over pH dependent LCST was observed. NGs which were spherical with an average particle size of 268nm at room temperature, shrinked forming an irregular shape when heated above to their respective LCST. 5FU loaded NGs did not intervene any difference in pH depended LCST behaviour of NGs. The in vitro drug release of NGs exhibited a pH and thermo-dependent control release. The cytoxicity study of blank carrier to MCF7 cell line showed no cytotoxicity. The results indicated that PNA NGs could be used as a potential drug carrier for anti-cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pH%20and%20thermo-sensitive" title="pH and thermo-sensitive">pH and thermo-sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogels" title=" nanogels"> nanogels</a>, <a href="https://publications.waset.org/abstracts/search?q=P%28NIPAM-co-AAc%29" title=" P(NIPAM-co-AAc)"> P(NIPAM-co-AAc)</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cancer" title=" anti-cancer"> anti-cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=5-FU" title=" 5-FU"> 5-FU</a> </p> <a href="https://publications.waset.org/abstracts/43882/ph-and-thermo-sensitive-nanogels-for-anti-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reynaldo%20Esquivel">Reynaldo Esquivel</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Hernandez"> Pedro Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Martinez-Higareda"> Aaron Martinez-Higareda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Tena-Cano"> Sergio Tena-Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Alvarez-Ramos"> Enrique Alvarez-Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Lucero-Acuna"> Armando Lucero-Acuna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=vincristine" title=" vincristine"> vincristine</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=PNIPAM" title=" PNIPAM"> PNIPAM</a> </p> <a href="https://publications.waset.org/abstracts/90050/smart-polymeric-nanoparticles-loaded-with-vincristine-sulfate-for-applications-in-breast-cancer-drug-delivery-in-mda-mb-231-and-mcf7-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Evaluation of ROS Mediated Apoptosis Induced by Tuber Extract of Dioscorea Bulbifera on Human Breast Adenocarcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debasmita%20Dubey">Debasmita Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Meher"> Rajesh Kumar Meher</a>, <a href="https://publications.waset.org/abstracts/search?q=Smruti%20Pragya%20Samal"> Smruti Pragya Samal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Kumar%20Naik"> Pradeep Kumar Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: To determine antioxidant properties and anticancer activity by ROS and mitochondrial transmembrane potential mediated apoptosis against MCF7, MDA-MB-231, cell line. Methods: Leaf sample was extracted using methanol by microwave digestion technique. The antioxidant properties of the methanolic extract were determined by a DPPH scavenging assay. In vitro anticancer activity, mitochondrial transmembrane potential, apoptosis activity and DNA fragmentation study, as well as intracellular ROS activity of most potential leaf extract, were also determined by using the MDA-MB-231cell line. In vivo animal toxicity study was carried out using mice model. Results: Methanolic leaf extract has shown the highest antioxidant, as well as anticancer activity, is based on the assay conducted. For the identification of active phytochemicals from methanolic extract, High-resolution mass spectroscopy-LCMS was used. In vitro cytotoxicity study against MCF-7 and MDA-MB-231 cell line and IC 50 value was found to be 37.5µg/ml. From histopathological studies, no toxicity in liver and kidney tissue was identified. Conclusion: This plant tuber can be used as a regular diet to reduce the chance of breast cancer. Further, more studies should be conducted to isolate and identify the responsible compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20breast%20adenocarcinoma" title="human breast adenocarcinoma">human breast adenocarcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20transmembrane" title=" mitochondrial transmembrane"> mitochondrial transmembrane</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/147968/evaluation-of-ros-mediated-apoptosis-induced-by-tuber-extract-of-dioscorea-bulbifera-on-human-breast-adenocarcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipranjan%20Laha">Dipranjan Laha</a>, <a href="https://publications.waset.org/abstracts/search?q=Parimal%20Karmakar"> Parimal Karmakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=siRNA-mediated%20inhibition" title=" siRNA-mediated inhibition"> siRNA-mediated inhibition</a> </p> <a href="https://publications.waset.org/abstracts/18208/therapeutical-role-of-copper-oxide-nanoparticles-cuo-nps-for-breast-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Daniel%20Iduh">Stephen Daniel Iduh</a>, <a href="https://publications.waset.org/abstracts/search?q=Evans%20Chidi%20Egwin"> Evans Chidi Egwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20Kudirat%20Shittu"> Oluwatosin Kudirat Shittu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title="biosynthesis">biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=calotropis%20procera" title=" calotropis procera"> calotropis procera</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/18866/green-synthesis-and-characterisation-of-gold-nanoparticles-from-the-stem-bark-and-leaves-of-khaya-senegalensis-and-its-cytotoxicity-on-mcf7-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> In-silico Target Identification and Molecular Docking of Withaferin A and Withanolide D to Understand their Anticancer Therapeutic Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Kaur%20Sugga">Devinder Kaur Sugga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekamdeep%20Kaur"> Ekamdeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaspreet%20Kaur"> Jaspreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rajesh"> C. Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Rajesh"> Preeti Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsimran%20Kaur"> Harsimran Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Withanolides are steroidal lactones and are highly oxygenated phytoconstituents that can be developed as potential anti-carcinogenic agents. The two main withanolides, namely Withaferin A and Withanolides D, have been extensively studied for their pharmacological activities. Both these withanolides are present in the Withania somnifera (WS) leaves belonging to the family Solanaceae, also known as “Indian ginseng .”In this study effects of WS leaf extract on the MCF7 breast cancer cell line were investigated by performing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effects and in vitro wound-healing assay to study the effect on cancer cell migration. Our data suggest WS extracts have cytotoxic effects and are effective anti-migrating agents and thus can be a source of potential candidates for the development of potential agents against metastasis. Thus, it can be a source of potential candidates for the development of potential agents against metastasis. Insight into these results, the in-silico approach to identify the possible protein targets interacting with withanolides was taken. Protein kinase C alpha (PKCα) was among the selected 5 top-ranked target proteins identified by the Swiss Target Prediction tool. PKCα is known to promote the growth and invasion of cancer cells and is being evaluated as a prognostic biomarker and therapeutic target in clinically aggressive tumors. Molecular docking of Withaferin A and Withanolides D was performed using AutoDock Vina. Both the bioactive compounds interacted with PKCα. The targets predicted using this approach will serve as leads for the possible therapeutic potential of withanolides, the bioactive ingredients of WS extracts, as anti-cancer drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=withania%20somnifera" title="withania somnifera">withania somnifera</a>, <a href="https://publications.waset.org/abstracts/search?q=withaferin%20A" title=" withaferin A"> withaferin A</a>, <a href="https://publications.waset.org/abstracts/search?q=withanolides%20D" title=" withanolides D"> withanolides D</a>, <a href="https://publications.waset.org/abstracts/search?q=PKC%CE%B1" title=" PKCα"> PKCα</a> </p> <a href="https://publications.waset.org/abstracts/151339/in-silico-target-identification-and-molecular-docking-of-withaferin-a-and-withanolide-d-to-understand-their-anticancer-therapeutic-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Hydrophobically Modified Glycol Chitosan Nanoparticles as a Carrier for Etoposide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Aman">Akhtar Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abida%20Raza"> Abida Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20Bashir"> Shumaila Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Javaid%20Irfan"> Javaid Irfan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20G.%20Sch%C3%A4tzlein"> Andreas G. Schätzlein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijeoma%20F%20Uchegbeu"> Ijeoma F Uchegbeu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of efficient delivery system for hydrophobic drugs remains a major concern in chemotherapy. The objective of the current study was to develop polymeric drug-delivery system for etoposide from amphiphilic derivatives of glycol chitosan, capable to improve the pharmacokinetics and to reduce the adverse effects of etoposide due to various organic solvents used in commercial formulations for solubilisation of etoposide. As a promising carrier, amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxy succinimide and quaternisation to glycol chitosan backbone. To this end a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternisation into 13 kDa. Nano sized micelles prepared from this amphiphilic polymer had the capability to encapsulate up to 3 mg/ml etoposide. The pharmacokinetic results indicated that GCPQ based etoposide formulation transformed the biodistribution pattern. AUC 0.5-24 hr showed statistically significant difference in ETP-GCPQ vs. commercial preparation in liver (25 vs 70, p<0.001), spleen (27 vs. 36, P<0.05), lungs (42 vs. 136, p<0.001), kidneys (25 vs. 30, p<0.05) and brain (19 vs. 9,p<0.001). Using the hydrophobic fluorescent dye Nile red, we showed that micelles efficiently delivered their payload to MCF7 and A2780 cancer cells in-vitro and to A431 xenograft tumor in-vivo, suggesting these systems could deliver hydrophobic anti- cancer drugs such as etoposide to tumors. The pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drug after intravenous administration. GCPQ based formulations not only reduced side effects associated with current available formulations but also increased their transport through the biological barriers, thus making it a good delivery system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycol%20chitosan" title="glycol chitosan">glycol chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nile%20red" title=" Nile red"> Nile red</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=etoposide" title=" etoposide"> etoposide</a>, <a href="https://publications.waset.org/abstracts/search?q=A431%20xenografts" title=" A431 xenografts"> A431 xenografts</a> </p> <a href="https://publications.waset.org/abstracts/15339/hydrophobically-modified-glycol-chitosan-nanoparticles-as-a-carrier-for-etoposide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Cytotoxicity of 13 South African Macrofungal Species and Mechanism/s of Action against Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerhardt%20Boukes">Gerhardt Boukes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryna%20Van%20De%20Venter"> Maryna Van De Venter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharlene%20Govender"> Sharlene Govender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macrofungi have been used for the past two thousand years in Asian countries, and more recently in Western countries, for their medicinal properties. Biological activities include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and immunomodulatory to name a few. Several biologically active compounds have been identified and isolated. Macrofungal research in Africa is poorly documented and to the best of our knowledge non-existent. South Africa has a rich macrofungal biodiversity, which includes endemic and exotic macrofungal species. Ethanolic extracts of 13 macrofungal species, including mushrooms, bracket fungi and puffballs, were prepared and screened for cytotoxicity against a panel of seven cell lines, including A549 (human lung adenocarcinoma), HeLa (human cervical adenocarcinoma), HT-29 (human colorectal adenocarcinoma), MCF7 (human breast adenocarcinoma), MIA PaCa-2 (human pancreatic ductal adenocarcinoma), PC-3 (human prostate adenocarcinoma) and Vero (African green monkey kidney epithelial) cells using MTT. Cell lines were chosen according to the most prevalent cancer types affecting males and females in South Africa and globally, and the mutations they contain. Preliminary results have shown that three of the macrofungal genera, i.e. Fomitopsis, Gymnopilus and Pycnoporus, have shown cytotoxic activity, ranging between IC50 ~20 and 200 µg/mL. The molecular mechanism of action contributing to cell death investigated and being investigated include apoptosis (i.e. DNA cell cycle arrest, caspase-3 activation and mitochondrial membrane potential), autophagy (i.e. acridine orange and LC3B staining) and ER stress (i.e. thioflavin T staining and caspase-12) in the presence of melphalan, chloroquine and thapsigargin/tuncamycin as positive controls, respectively. The genus, Pycnoporus, has shown the best cytotoxicity of the three macrofungal genera. Future work will focus on the identification and isolation of novel active compounds and elucidating the mechanism/s of action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=macrofungi" title=" macrofungi"> macrofungi</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%2Fs%20of%20action" title=" mechanism/s of action"> mechanism/s of action</a> </p> <a href="https://publications.waset.org/abstracts/53098/cytotoxicity-of-13-south-african-macrofungal-species-and-mechanisms-of-action-against-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifigeneia%20V.%20Mavragani">Ifigeneia V. Mavragani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zacharenia%20Nikitaki"> Zacharenia Nikitaki</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kalantzis"> George Kalantzis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Iliakis"> George Iliakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20G.%20Georgakilas"> Alexandros G. Georgakilas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20DNA%20damage" title="complex DNA damage">complex DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20simulation" title=" DNA damage simulation"> DNA damage simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=protons" title=" protons"> protons</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a> </p> <a href="https://publications.waset.org/abstracts/60953/comparison-of-monte-carlo-simulations-and-experimental-results-for-the-measurement-of-complex-dna-damage-induced-by-ionizing-radiations-of-different-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20El-Rafie">H. M. El-Rafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Abou%20Zeid"> A. H. Abou Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Mohammed"> R. S. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Sleem"> A. A. Sleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acrocarpus%20fraxinofolius" title="Acrocarpus fraxinofolius">Acrocarpus fraxinofolius</a>, <a href="https://publications.waset.org/abstracts/search?q=antidiabetic" title=" antidiabetic"> antidiabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatoprotective" title=" hepatoprotective"> hepatoprotective</a> </p> <a href="https://publications.waset.org/abstracts/72471/bioactivities-and-phytochemical-studies-of-acrocarpus-fraxinifolius-bark-wight-and-arn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujatha%20Edla">Sujatha Edla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title="cyanobacteria">cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=silvernanoparticles" title=" silvernanoparticles"> silvernanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a> </p> <a href="https://publications.waset.org/abstracts/182204/freshwater-cyanobacterial-bioactive-insights-planktothricoides-raciorskii-compounds-vs-green-synthesized-silver-nanoparticles-characterization-in-vitro-cytotoxicity-and-antibacterial-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonard%20Lipovich">Leonard Lipovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattaraporn%20Thepsuwan"> Pattaraporn Thepsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton-Scott%20Goustin"> Anton-Scott Goustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Cai"> Juan Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghong%20Ju"> Donghong Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20B.%20Brown"> James B. Brown</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20code" title="genetic code">genetic code</a>, <a href="https://publications.waset.org/abstracts/search?q=lncRNA" title=" lncRNA"> lncRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20non-coding%20RNA" title=" long non-coding RNA"> long non-coding RNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=proteogenomics" title=" proteogenomics"> proteogenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=ribo-seq" title=" ribo-seq"> ribo-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosome" title=" ribosome"> ribosome</a>, <a href="https://publications.waset.org/abstracts/search?q=RNAseq" title=" RNAseq "> RNAseq </a> </p> <a href="https://publications.waset.org/abstracts/90989/persistent-ribosomal-in-frame-mis-translation-of-stop-codons-as-amino-acids-in-multiple-open-reading-frames-of-a-human-long-non-coding-rna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Hexahydropyrimidine-2,4-Diones: Synthesis and Cytotoxic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Koksal">M. Koksal</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ozyazici"> T. Ozyazici</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gurdal"> E. Gurdal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yar%C4%B1m"> M. Yarım</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Demirpolat"> E. Demirpolat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Y.%20Aycan"> M. B. Y. Aycan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery of new drugs in cancer chemotherapy is still a major topic because of severe side effects, selectivity problems and resistance development potential of existing drugs. In recent years, combined anticancer therapies or multi-acting drugs are clinically preferred over traditional cytotoxic treatment, with the aim of avoiding resistance and toxic side effects. Arrangement of multi-acting targets can be carried out either by combination of several drugs with different mechanisms or by usage of a single chemical compound capable of regulating several targets of a disease with multiple factors. In literature, several pyrimidine and piperazine derivatives have been involved in the structure of many compounds which have been used as chemotherapeutic agents along with wide clinical applications. The aim of this study is to combine pyrimidine and piperazine core structures to research and develop novel piperazinylpyrimidine derivatives with selective cytotoxicity over cancer cells. In this study, a group of novel 6-fluorophenyl-3-[2-(substitutedpiperazinyl)ethyl] hexahydropyrimidine-2,4-dione derivatives designed to observe the desired anticancer activity due to pyrimidine and piperazine based scaffolds. Target compounds were obtained by the reaction of appropriate piperazine derivatives and 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione. The synthetic pathway of 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione was started with Rodionov reaction using aldehyde, malonic acid and ammonium acetate in ethanol. Isolated β-fluorophenyl-β-amino acids were treated with 2-chloroethylisocyanate in the presence of an aqueous sodium hydroxide solution at room temperature to yield the sodium salts of the corresponding ureido acids. By addition of a mineral acid, ureido acids were precipitated. Later, these ureido acids were refluxed in thionyl chloride to give the 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-di-one which were furthermore treated with secondary amines. Structures of purified compounds were characterized with IR, 1H-NMR, 13C-NMR, mass spectroscopies and elemental analysis. All of the compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures. In IR spectra of the compounds, N-H group was seen at 3230-3213 cm⁻¹. C-H was seen at 3100-2820 cm⁻¹ and C=O vibrational peaks were observed approximately at 1725 and 1665 cm⁻¹ in accordance with literature. In the NMR spectra of target compounds, the methylene protons of piperazine give two separate multiplet peaks around 3.5 and 4.5 ppm representing the successful N-alkylation of the structure. The cytotoxic activity of the synthesized compounds was investigated on human bronchial epithelial (BEAS 2B), lung (A549), colon adenocarcinoma (COLO205) and breast (MCF7) cell lines, by means of sulphorhodamine B (SRB) assays in triplicate. IC₅₀ values of the screened derivatives were found in range of 11.8-78 µM. This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project no: 215S157). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=hexahydropyrimidine" title=" hexahydropyrimidine"> hexahydropyrimidine</a>, <a href="https://publications.waset.org/abstracts/search?q=piperazine" title=" piperazine"> piperazine</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphorhodamine%20B%20assay" title=" sulphorhodamine B assay "> sulphorhodamine B assay </a> </p> <a href="https://publications.waset.org/abstracts/83531/hexahydropyrimidine-24-diones-synthesis-and-cytotoxic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10