CINXE.COM
Обратная функция — Википедия
<!DOCTYPE html> <html class="client-nojs" lang="ru" dir="ltr"> <head> <meta charset="UTF-8"> <title>Обратная функция — Википедия</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )ruwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","январь","февраль","март","апрель","май","июнь","июль","август","сентябрь","октябрь","ноябрь","декабрь"],"wgRequestId":"9673b4f6-114b-4e25-a71e-3a4a5ca74799","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Обратная_функция","wgTitle":"Обратная функция","wgCurRevisionId":124061985,"wgRevisionId":124061985,"wgArticleId":222812, "wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Страницы, использующие волшебные ссылки ISBN","Общие понятия о функциях"],"wgPageViewLanguage":"ru","wgPageContentLanguage":"ru","wgPageContentModel":"wikitext","wgRelevantPageName":"Обратная_функция","wgRelevantArticleId":222812,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":124060033,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ru","pageLanguageDir":"ltr","pageVariantFallbacks":"ru"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample": false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q191884","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.common-site":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.collapserefs","ext.gadget.directLinkToCommons","ext.gadget.referenceTooltips","ext.gadget.logo","ext.gadget.edittop","ext.gadget.navboxDefaultGadgets","ext.gadget.wikibugs","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession", "oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=ru&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=ext.gadget.common-site&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=site.styles&only=styles&skin=vector"> <noscript><link rel="stylesheet" href="/w/load.php?lang=ru&modules=noscript&only=styles&skin=vector"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c8/Inverse_Function.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1839"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c8/Inverse_Function.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1226"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="981"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Обратная функция — Википедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ru.m.wikipedia.org/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F"> <link rel="alternate" type="application/x-wiki" title="Править" href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедия (ru)"> <link rel="EditURI" type="application/rsd+xml" href="//ru.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ru"> <link rel="alternate" type="application/atom+xml" title="Википедия — Atom-лента" href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Обратная_функция rootpage-Обратная_функция skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Обратная функция</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">Материал из Википедии — свободной энциклопедии</div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div class="cdx-message mw-fr-message-box cdx-message--block cdx-message--notice mw-fr-basic mw-fr-draft-not-synced plainlinks noprint"><span class="cdx-message__icon"></span><div class="cdx-message__content">Текущая версия страницы пока <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9F%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B0_%D1%81%D1%82%D0%B0%D1%82%D0%B5%D0%B9/%D0%9F%D0%BE%D1%8F%D1%81%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B4%D0%BB%D1%8F_%D1%87%D0%B8%D1%82%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%B9" title="Википедия:Проверка статей/Пояснение для читателей">не проверялась</a> опытными участниками и может значительно отличаться от <a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&stable=1">версии, проверенной 15 июля 2022 года</a>; проверки требуют <a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&oldid=124060033&diff=cur&diffonly=0">13 правок</a>.</div></div></div></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Перейти к навигации</a> <a class="mw-jump-link" href="#searchInput">Перейти к поиску</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ru" dir="ltr"><div class="hatnote navigation-not-searchable dabhide">Не следует путать с <a href="/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0" class="mw-redirect" title="Обратная величина">Обратная величина</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Inverse_Function.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Inverse_Function.png/220px-Inverse_Function.png" decoding="async" width="220" height="337" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Inverse_Function.png/330px-Inverse_Function.png 1.5x, //upload.wikimedia.org/wikipedia/commons/c/c8/Inverse_Function.png 2x" data-file-width="336" data-file-height="515" /></a><figcaption>Функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> и обратная ей функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5cfa2f5c08d6fe7d046b73faa6e3f213acc802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.653ex; height:3.009ex;" alt="{\displaystyle f^{-1}}"></span>. Если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/107d5f24d57a1b45e4bec306df7cbf1e9abbbca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.579ex; height:2.843ex;" alt="{\displaystyle f(a)=3}"></span>, то <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(3)=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(3)=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6903b0449644a937a40cc7f918e3a09dd53db919" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.953ex; height:3.176ex;" alt="{\displaystyle f^{-1}(3)=a}"></span></figcaption></figure> <p><b>Обра́тная фу́нкция</b> — <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика)">функция</a>, обращающая зависимость, выражаемую данной функцией. Например, если функция от <i>x</i> даёт <i>y</i>, то обратная ей функция от <i>y</i> даёт <i>x</i>. Обратная функция функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> обычно обозначается <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5cfa2f5c08d6fe7d046b73faa6e3f213acc802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.653ex; height:3.009ex;" alt="{\displaystyle f^{-1}}"></span>, иногда также используется обозначение <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{\mathrm {inv} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">v</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{\mathrm {inv} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6a4a83e569830d99e56269ef30074a260416989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.792ex; height:3.009ex;" alt="{\displaystyle f^{\mathrm {inv} }}"></span>. </p><p>Функция, имеющая обратную, называется <b>обратимой</b>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="ru" dir="ltr"><h2 id="mw-toc-heading">Содержание</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Определение"><span class="tocnumber">1</span> <span class="toctext">Определение</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Связанные_определения"><span class="tocnumber">2</span> <span class="toctext">Связанные определения</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Существование"><span class="tocnumber">3</span> <span class="toctext">Существование</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Примеры"><span class="tocnumber">4</span> <span class="toctext">Примеры</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Свойства"><span class="tocnumber">5</span> <span class="toctext">Свойства</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Разложение_в_степенной_ряд"><span class="tocnumber">6</span> <span class="toctext">Разложение в степенной ряд</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#См._также"><span class="tocnumber">7</span> <span class="toctext">См. также</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#Примечания"><span class="tocnumber">8</span> <span class="toctext">Примечания</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Определение"><span id=".D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5"></span>Определение</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=1" title="Редактировать раздел «Определение»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=1" title="Редактировать код раздела «Определение»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10a9844999dbfd6d1ba60a6d5d37779df277a74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.421ex; height:2.509ex;" alt="{\displaystyle g:Y\to X}"></span> называется <b>обратной</b> к функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>, если выполнены следующие тождества: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(g(y))=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(g(y))=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e774231d71a255aa573dfbb55f22e4d9137bbeb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.423ex; height:2.843ex;" alt="{\displaystyle f(g(y))=y}"></span> для всех <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81ee8970ea98874ff790c45f0d85f3895c8072f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.416ex; height:2.509ex;" alt="{\displaystyle y\in Y;}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(f(x))=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(f(x))=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d12c5b0b3b9b020bfc9f5e330c074b809cc54ebc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.771ex; height:2.843ex;" alt="{\displaystyle g(f(x))=x}"></span> для всех <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0deab6a01578b5b543b772df12dc0d2c593cc924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.797ex; height:2.176ex;" alt="{\displaystyle x\in X.}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Связанные_определения"><span id=".D0.A1.D0.B2.D1.8F.D0.B7.D0.B0.D0.BD.D0.BD.D1.8B.D0.B5_.D0.BE.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F"></span>Связанные определения</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=2" title="Редактировать раздел «Связанные определения»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=2" title="Редактировать код раздела «Связанные определения»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10a9844999dbfd6d1ba60a6d5d37779df277a74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.421ex; height:2.509ex;" alt="{\displaystyle g:Y\to X}"></span> называется <b>левой обратной</b> к функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>, если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(f(x))=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(f(x))=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d12c5b0b3b9b020bfc9f5e330c074b809cc54ebc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.771ex; height:2.843ex;" alt="{\displaystyle g(f(x))=x}"></span> для всех <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle x\in X}"></span>.</li> <li>Функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10a9844999dbfd6d1ba60a6d5d37779df277a74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.421ex; height:2.509ex;" alt="{\displaystyle g:Y\to X}"></span> называется <b>правой обратной</b> к функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span>, если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(g(y))=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(g(y))=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e774231d71a255aa573dfbb55f22e4d9137bbeb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.423ex; height:2.843ex;" alt="{\displaystyle f(g(y))=y}"></span> для всех <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee1c0ec36a82f33f5e3d7434d5667881b4ec323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.769ex; height:2.509ex;" alt="{\displaystyle y\in Y}"></span><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Существование"><span id=".D0.A1.D1.83.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.BE.D0.B2.D0.B0.D0.BD.D0.B8.D0.B5"></span>Существование</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=3" title="Редактировать раздел «Существование»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=3" title="Редактировать код раздела «Существование»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Чтобы найти обратную функцию, нужно решить <a href="/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5" title="Уравнение">уравнение</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span> относительно <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>. Если оно имеет более чем один корень, то функции, обратной к <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> не существует. Таким образом, функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> обратима на интервале <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a;b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>;</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a;b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7516e4924a48cdb8e7f78bf5593abd024baa7819" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a;b)}"></span> тогда и только тогда, когда на этом интервале она <a href="/wiki/%D0%92%D0%B7%D0%B0%D0%B8%D0%BC%D0%BD%D0%BE-%D0%BE%D0%B4%D0%BD%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%BD%D0%BE%D0%B5_%D0%BE%D1%82%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" class="mw-redirect" title="Взаимно-однозначное отображение">взаимно-однозначна</a>. </p><p>Для <a href="/wiki/%D0%9D%D0%B5%D0%BF%D1%80%D0%B5%D1%80%D1%8B%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Непрерывная функция">непрерывной функции</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eadf02ab183fb1a25db88855970e45e079eb205" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.706ex; height:2.843ex;" alt="{\displaystyle F(y)}"></span> выразить <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> из уравнения <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-F(y)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>−<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-F(y)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0a5a232f500ffb58eda98fb99acf4173b909905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.137ex; height:2.843ex;" alt="{\displaystyle x-F(y)=0}"></span> возможно в том и только том случае, когда функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eadf02ab183fb1a25db88855970e45e079eb205" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.706ex; height:2.843ex;" alt="{\displaystyle F(y)}"></span> строго <a href="/wiki/%D0%9C%D0%BE%D0%BD%D0%BE%D1%82%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Монотонная функция">монотонна</a> (см. <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE_%D0%BD%D0%B5%D1%8F%D0%B2%D0%BD%D0%BE%D0%B9_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Теорема о неявной функции">теорема о неявной функции</a>). Тем не менее, непрерывную функцию всегда можно обратить на промежутках её строгой монотонности. Например, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d62b24be305beff66cba9bfbcc01a362ba390f44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt {x}}}"></span> является обратной функцией к <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf0bf28fd28f45d07e1ceb909ce333c18c558c93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.676ex;" alt="{\displaystyle x^{2}}"></span> на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,+\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,+\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c0ec7f25cac88c59009a7fe528dc000ec7f58c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.88ex; height:2.843ex;" alt="{\displaystyle [0,+\infty )}"></span>, хотя на промежутке <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,0]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,0]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0241c015ef4c611c9c9aeafb395e7c4a16178405" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.88ex; height:2.843ex;" alt="{\displaystyle (-\infty ,0]}"></span> обратная функция другая: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2eaf3e2777b21ab1c891db88d1db286bd167d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.074ex; height:3.009ex;" alt="{\displaystyle -{\sqrt {x}}}"></span>. </p><p>Для существования обратной функции не являются необходимыми ни непрерывность, ни монотонность исходной функции. Пример: функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x+D(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>D</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x+D(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5568fbcae1d12c092e31ef5efe1a551f9fa7317c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.134ex; height:2.843ex;" alt="{\displaystyle y=x+D(x),}"></span> где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be208da111170920787fb435ff586d2377b43cc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.063ex; height:2.843ex;" alt="{\displaystyle D(x)}"></span> — <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%94%D0%B8%D1%80%D0%B8%D1%85%D0%BB%D0%B5" title="Функция Дирихле">функция Дирихле</a>, разрывна и не монотонна, однако обратная для неё существует<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=y-D(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>D</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=y-D(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eddf4870bbad1298d4dd7ad08da0c556154391bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.96ex; height:2.843ex;" alt="{\displaystyle x=y-D(y).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Примеры"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80.D1.8B"></span>Примеры</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=4" title="Редактировать раздел «Примеры»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=4" title="Редактировать код раздела «Примеры»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F:\mathbb {R} \to \mathbb {R} _{+},\;F(x)=a^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F:\mathbb {R} \to \mathbb {R} _{+},\;F(x)=a^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4edcb41f34297d278cc6e236a44ed38fbb54cec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.219ex; height:2.843ex;" alt="{\displaystyle F:\mathbb {R} \to \mathbb {R} _{+},\;F(x)=a^{x}}"></span>, где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a>0,a\neq 1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>></mo> <mn>0</mn> <mo>,</mo> <mi>a</mi> <mo>≠<!-- ≠ --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a>0,a\neq 1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48ff5ce38b5454292d4c9dd07c147bd85a55e9fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.662ex; height:2.676ex;" alt="{\displaystyle a>0,a\neq 1,}"></span> то <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(x)=\log _{a}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(x)=\log _{a}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d02e75aadf3e31354a9bd34a5e2fe4dac5ba2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.822ex; height:3.176ex;" alt="{\displaystyle F^{-1}(x)=\log _{a}x.}"></span></li> <li>Если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)=ax+b,\;x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)=ax+b,\;x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97b64af27f027d68052785c0b81710e62cae86f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.903ex; height:2.843ex;" alt="{\displaystyle F(x)=ax+b,\;x\in \mathbb {R} }"></span>, где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe0bf0e2324bac843fab916c46d1b3349017a616" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.78ex; height:2.509ex;" alt="{\displaystyle a,b\in \mathbb {R} }"></span> фиксированные постоянные и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f455a7f96d74aa94573d8e32da3b240ab0aa294f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.491ex; height:2.676ex;" alt="{\displaystyle a\neq 0}"></span>, то <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(x)={\frac {x-b}{a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>b</mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(x)={\frac {x-b}{a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b9675a9458e09f74d25e5bf7dc4b2fe57cf162d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.036ex; height:5.343ex;" alt="{\displaystyle F^{-1}(x)={\frac {x-b}{a}}.}"></span></li> <li>Если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)=x^{n},x\geq 0,n\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)=x^{n},x\geq 0,n\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c795a6af198808522699719eb3afce6d6c323173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.971ex; height:2.843ex;" alt="{\displaystyle F(x)=x^{n},x\geq 0,n\in \mathbb {Z} }"></span>, то <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(x)={\sqrt[{n}]{x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(x)={\sqrt[{n}]{x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb1c87a631ca4cad19afda61c340f970d29b54b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.297ex; height:3.343ex;" alt="{\displaystyle F^{-1}(x)={\sqrt[{n}]{x}}.}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Свойства"><span id=".D0.A1.D0.B2.D0.BE.D0.B9.D1.81.D1.82.D0.B2.D0.B0"></span>Свойства</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=5" title="Редактировать раздел «Свойства»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=5" title="Редактировать код раздела «Свойства»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Inverse_Function_Graph.png" class="mw-file-description"><img alt="Графики функции и обратной ей" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Inverse_Function_Graph.png/330px-Inverse_Function_Graph.png" decoding="async" width="330" height="330" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/1/11/Inverse_Function_Graph.png 1.5x" data-file-width="360" data-file-height="360" /></a><figcaption>Графики функции и обратной ей</figcaption></figure> <ul><li>Областью определения <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2a1a300038291319dc37f8cf5d1e87b6abc1ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.148ex; height:2.676ex;" alt="{\displaystyle F^{-1}}"></span> является <a href="/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Множество">множество</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, а областью значений — множество <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>.</li> <li>По построению имеем:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=F(x)\Leftrightarrow x=F^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇔<!-- ⇔ --></mo> <mi>x</mi> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=F(x)\Leftrightarrow x=F^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d18db073710ce71dbde58b9a2ff4de2f442d361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.288ex; height:3.176ex;" alt="{\displaystyle y=F(x)\Leftrightarrow x=F^{-1}(y)}"></span></dd></dl> <p>или </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\left(F^{-1}(y)\right)=y,\;\forall y\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\left(F^{-1}(y)\right)=y,\;\forall y\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89cb60a268fc377647dda42e9ae8f39bf711bdef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.365ex; height:3.343ex;" alt="{\displaystyle F\left(F^{-1}(y)\right)=y,\;\forall y\in Y}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(F(x))=x,\;\forall x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(F(x))=x,\;\forall x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6e4888ca6eedfc3a0a708f13506744beab90287" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.387ex; height:3.176ex;" alt="{\displaystyle F^{-1}(F(x))=x,\;\forall x\in X}"></span>,</dd></dl> <p>или короче </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\circ F^{-1}=\mathrm {id} _{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>∘<!-- ∘ --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\circ F^{-1}=\mathrm {id} _{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87a454e3fb3122d87fe346c0a5cefb70a5c1fd41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.607ex; height:3.009ex;" alt="{\displaystyle F\circ F^{-1}=\mathrm {id} _{Y}}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}\circ F=\mathrm {id} _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <mi>F</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}\circ F=\mathrm {id} _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dde4f87d34d19a86178cb177bfc632abc8de466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.753ex; height:3.009ex;" alt="{\displaystyle F^{-1}\circ F=\mathrm {id} _{X}}"></span>,</dd></dl> <p>где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \circ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∘<!-- ∘ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \circ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99add39d2b681e2de7ff62422c32704a05c7ec31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.125ex; margin-bottom: -0.297ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle \circ }"></span> означает <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BE%D0%B7%D0%B8%D1%86%D0%B8%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9" title="Композиция функций">композицию функций</a>, а <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {id} _{X},\mathrm {id} _{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {id} _{X},\mathrm {id} _{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f6e99a3e41eca1239f9c3c6969eef2f73a38bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.031ex; height:2.509ex;" alt="{\displaystyle \mathrm {id} _{X},\mathrm {id} _{Y}}"></span> — <a href="/wiki/%D0%A2%D0%BE%D0%B6%D0%B4%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D1%82%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Тождественное отображение">тождественные отображения</a> на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> соответственно. </p> <dl><dd><ul><li>Такое отображение <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\colon \,Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>:<!-- : --></mo> <mspace width="thinmathspace" /> <mi>Y</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\colon \,Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/418bedfc50ea961f2ab19711d701140c54027339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.615ex; height:2.176ex;" alt="{\displaystyle G\colon \,Y\to X}"></span>, что <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\circ G=\mathrm {id} _{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>∘<!-- ∘ --></mo> <mi>G</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\circ G=\mathrm {id} _{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5ddf9666211061f855315ee911682a2b35d4abf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.286ex; height:2.509ex;" alt="{\displaystyle F\circ G=\mathrm {id} _{Y}}"></span> («обратное справа»), называется сечением отображения <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>.</li></ul></dd></dl> <ul><li>Функция <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> является обратной к <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2a1a300038291319dc37f8cf5d1e87b6abc1ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.148ex; height:2.676ex;" alt="{\displaystyle F^{-1}}"></span>:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(F^{-1}\right)^{-1}=F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(F^{-1}\right)^{-1}=F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e387b352d7989ed721beace554eb475c40161697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.449ex; height:3.843ex;" alt="{\displaystyle \left(F^{-1}\right)^{-1}=F}"></span>.</dd></dl> <ul><li>Пусть <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F:X\subset \mathbb {R} \to Y\subset \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>:</mo> <mi>X</mi> <mo>⊂<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mi>Y</mi> <mo>⊂<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F:X\subset \mathbb {R} \to Y\subset \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cd4ea707cfababe785e2597fcd76a75ea8e07b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:20.598ex; height:2.176ex;" alt="{\displaystyle F:X\subset \mathbb {R} \to Y\subset \mathbb {R} }"></span> — биекция. Пусть <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96be6b9565d66be7a60a0ea0bc26f21328ad9b66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.452ex; height:2.676ex;" alt="{\displaystyle F^{-1}:Y\to X}"></span> её обратная функция. Тогда <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)#График" title="Функция (математика)">графики</a> функций <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89668c82d8595045896dd5535f97a1ff6dd6897d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.134ex; height:2.843ex;" alt="{\displaystyle y=F(x)}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=F^{-1}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=F^{-1}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4b25aad4bd03f94ef79809eacee16d953f6c2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.54ex; height:3.176ex;" alt="{\displaystyle y=F^{-1}(x)}"></span> симметричны относительно прямой <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0abe2e7da593fb7b41d44e87a97fefdd8998b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle y=x}"></span>.</li> <li>Также, если у функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> есть обратная ей <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46a543a3462cbb9effd5d0c514529426172c7d7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.792ex; height:3.176ex;" alt="{\displaystyle f^{-1}(x)}"></span>, то графики этих функций будут симметричны относительно линии <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0abe2e7da593fb7b41d44e87a97fefdd8998b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle y=x}"></span>.</li></ul> <p><b>Теорема</b>. Композиция любых двух обратимых функций является обратимой функцией, то есть <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\left(f\circ g\right)}^{-1}=g^{-1}\circ f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\left(f\circ g\right)}^{-1}=g^{-1}\circ f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33894e3afbc92f8e5fdceea45a80d40e08803b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.129ex; height:3.343ex;" alt="{\displaystyle {\left(f\circ g\right)}^{-1}=g^{-1}\circ f^{-1}}"></span>. </p> <table class="wikitable collapsible collapsed" width="100%"> <tbody><tr> <th>Доказательство </th></tr> <tr> <td>Поскольку <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \circ {\alpha }^{-1}={\alpha }^{-1}\circ \alpha =e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>∘<!-- ∘ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \circ {\alpha }^{-1}={\alpha }^{-1}\circ \alpha =e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94b97f1a6a169f636332e986d860f0e7ba2b72f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:22.286ex; height:2.676ex;" alt="{\displaystyle \alpha \circ {\alpha }^{-1}={\alpha }^{-1}\circ \alpha =e}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \circ e=e\circ \alpha =\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>∘<!-- ∘ --></mo> <mi>e</mi> <mo>=</mo> <mi>e</mi> <mo>∘<!-- ∘ --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \circ e=e\circ \alpha =\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd68bd2f38e95a7946ba4b8f08dea2f86eacbb72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.216ex; height:1.676ex;" alt="{\displaystyle \alpha \circ e=e\circ \alpha =\alpha }"></span> для любой обратимой функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>, где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> — тождественное преобразование, то можно записать следующие равенства. <p>Имеем: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=e\Longleftrightarrow e=f\circ f^{-1}\Longleftrightarrow e=f\circ g\circ g^{-1}\circ f^{-1}\Longleftrightarrow e=\left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mi>e</mi> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mi>e</mi> <mo>=</mo> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mi>e</mi> <mo>=</mo> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> <mo>∘<!-- ∘ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mi>e</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> <mo>∘<!-- ∘ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=e\Longleftrightarrow e=f\circ f^{-1}\Longleftrightarrow e=f\circ g\circ g^{-1}\circ f^{-1}\Longleftrightarrow e=\left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9f1df62360fa06a0838eb122e11557954a999f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:78.898ex; height:3.343ex;" alt="{\displaystyle e=e\Longleftrightarrow e=f\circ f^{-1}\Longleftrightarrow e=f\circ g\circ g^{-1}\circ f^{-1}\Longleftrightarrow e=\left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right).}"></span> </p><p>Подействуем слева функцией <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\left(f\circ g\right)}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\left(f\circ g\right)}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/178fd13dfb7dc1befb67609bd9e0bdf4aa85fa08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.731ex; height:3.343ex;" alt="{\displaystyle {\left(f\circ g\right)}^{-1}}"></span> и получим: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\left(f\circ g\right)}^{-1}\circ \mid e=\left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}\circ e={\left(f\circ g\right)}^{-1}\circ \left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}=e\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}=g^{-1}\circ f^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <mo>∣<!-- ∣ --></mo> <mi>e</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> <mo>∘<!-- ∘ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">⟺<!-- ⟺ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <mi>e</mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> <mo>∘<!-- ∘ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">⟺<!-- ⟺ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>e</mi> <mo>∘<!-- ∘ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">⟺<!-- ⟺ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\left(f\circ g\right)}^{-1}\circ \mid e=\left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}\circ e={\left(f\circ g\right)}^{-1}\circ \left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}=e\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}=g^{-1}\circ f^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc87852d4d9985620e3c0b9c6ed18d8191b35a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:147.225ex; height:3.509ex;" alt="{\displaystyle {\left(f\circ g\right)}^{-1}\circ \mid e=\left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}\circ e={\left(f\circ g\right)}^{-1}\circ \left(f\circ g\right)\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}=e\circ \left(g^{-1}\circ f^{-1}\right)\Longleftrightarrow {\left(f\circ g\right)}^{-1}=g^{-1}\circ f^{-1}.}"></span> Теорема доказана. </p> </td></tr></tbody></table> <p>Это утверждение легко запомнить так: «<i>Пиджак надевают после рубашки, а снимают раньше</i>». </p> <div class="mw-heading mw-heading2"><h2 id="Разложение_в_степенной_ряд"><span id=".D0.A0.D0.B0.D0.B7.D0.BB.D0.BE.D0.B6.D0.B5.D0.BD.D0.B8.D0.B5_.D0.B2_.D1.81.D1.82.D0.B5.D0.BF.D0.B5.D0.BD.D0.BD.D0.BE.D0.B9_.D1.80.D1.8F.D0.B4"></span>Разложение в степенной ряд</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=6" title="Редактировать раздел «Разложение в степенной ряд»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=6" title="Редактировать код раздела «Разложение в степенной ряд»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Обратная функция <a href="/wiki/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Аналитическая функция">аналитической</a> в некоторой <a href="/wiki/%D0%9E%D0%BA%D1%80%D0%B5%D1%81%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D1%82%D0%BE%D1%87%D0%BA%D0%B8" class="mw-redirect" title="Окрестность точки">окрестности точки</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> функции может быть представлена в виде <a href="/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%BD%D0%BE%D0%B9_%D1%80%D1%8F%D0%B4" title="Степенной ряд">степенного ряда</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)=\sum _{k=0}^{\infty }A_{k}(x_{0}){\frac {(y-f(x_{0}))^{k}}{k!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)=\sum _{k=0}^{\infty }A_{k}(x_{0}){\frac {(y-f(x_{0}))^{k}}{k!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2b6bf1876b8a4bbf62ca1636779d851a29e20c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.332ex; height:7.176ex;" alt="{\displaystyle f^{-1}(y)=\sum _{k=0}^{\infty }A_{k}(x_{0}){\frac {(y-f(x_{0}))^{k}}{k!}},}"></span></dd></dl> <p>где функции <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72095229db907e86eb4343cb4736429fcc56507d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.832ex; height:2.509ex;" alt="{\displaystyle A_{k}}"></span> задаются рекурсивной формулой: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(x)={\begin{cases}x\;,\;n=0\\{\frac {A_{n-1}'(x)}{f'(x)}}\;,\;n>0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>x</mi> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>></mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(x)={\begin{cases}x\;,\;n=0\\{\frac {A_{n-1}'(x)}{f'(x)}}\;,\;n>0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd21bd5a870297ff84b9afd5548f079a91026721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.161ex; margin-bottom: -0.177ex; width:26.762ex; height:7.843ex;" alt="{\displaystyle A_{n}(x)={\begin{cases}x\;,\;n=0\\{\frac {A_{n-1}'(x)}{f'(x)}}\;,\;n>0\end{cases}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="См._также"><span id=".D0.A1.D0.BC._.D1.82.D0.B0.D0.BA.D0.B6.D0.B5"></span>См. также</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=7" title="Редактировать раздел «См. также»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=7" title="Редактировать код раздела «См. также»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9B%D0%B0%D0%B3%D1%80%D0%B0%D0%BD%D0%B6%D0%B0_%D0%BE%D0%B1_%D0%BE%D0%B1%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D0%B8_%D1%80%D1%8F%D0%B4%D0%BE%D0%B2" title="Теорема Лагранжа об обращении рядов">Теорема Лагранжа об обращении рядов</a></li> <li><a href="/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Обратные тригонометрические функции">Обратные тригонометрические функции</a></li> <li><a href="/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%B8%D0%BC%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Обратимая функция">Обратимая функция</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Примечания"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.87.D0.B0.D0.BD.D0.B8.D1.8F"></span>Примечания</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit&section=8" title="Редактировать раздел «Примечания»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit&section=8" title="Редактировать код раздела «Примечания»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://scask.ru/q_book_algebra.php?id=32">Куликов Л.Я. "Алгебра и теория чисел: Учебное пособие для педагогических институтов"</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r141305934">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a::after,.mw-parser-output .id-lock-limited a::after,.mw-parser-output .id-lock-registration a::after,.mw-parser-output .id-lock-subscription a::after,.mw-parser-output .cs1-ws-icon a::after{content:"";width:1.1em;height:1.1em;display:inline-block;vertical-align:middle;background-position:center;background-repeat:no-repeat;background-size:contain}.mw-parser-output .id-lock-free.id-lock-free a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")}.mw-parser-output .id-lock-limited.id-lock-limited a::after,.mw-parser-output .id-lock-registration.id-lock-registration a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")}.mw-parser-output .id-lock-subscription.id-lock-subscription a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")}.mw-parser-output .cs1-ws-icon a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-night .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-os .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}</style><span class="citation no-wikidata" data-wikidata-property-id="P1343"><i>Шибинский В. М.</i> Примеры и контрпримеры в курсе математического анализа. Учебное пособие. — <abbr title="Москва">М.</abbr>: Высшая школа, 2007. — С. 29—30. — 543 с. — <a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/9785060057744" class="internal mw-magiclink-isbn">ISBN 978-5-06-005774-4</a>.</span></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7c479b968‐jcqlq Cached time: 20241118031627 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.172 seconds Real time usage: 0.565 seconds Preprocessor visited node count: 942/1000000 Post‐expand include size: 2472/2097152 bytes Template argument size: 679/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 7341/5000000 bytes Lua time usage: 0.011/10.000 seconds Lua memory usage: 960141/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 111.584 1 -total 48.62% 54.252 1 Шаблон:Примечания 47.13% 52.591 1 Шаблон:Distinguish 43.21% 48.213 1 Шаблон:Другое_значение 39.09% 43.619 1 Шаблон:Книга 17.21% 19.200 1 Шаблон:В_2_кв._скобках 3.97% 4.431 1 Шаблон:Указание_места_в_библиоссылке 2.79% 3.110 1 Шаблон:±. 2.21% 2.470 2 Шаблон:Yesno 1.43% 1.597 1 Шаблон:М. --> <!-- Saved in parser cache with key ruwiki:pcache:idhash:222812-0!canonical and timestamp 20241118031627 and revision id 124061985. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Источник — <a dir="ltr" href="https://ru.wikipedia.org/w/index.php?title=Обратная_функция&oldid=124061985">https://ru.wikipedia.org/w/index.php?title=Обратная_функция&oldid=124061985</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Служебная:Категории">Категория</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9E%D0%B1%D1%89%D0%B8%D0%B5_%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F_%D0%BE_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F%D1%85" title="Категория:Общие понятия о функциях">Общие понятия о функциях</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Скрытая категория: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B,_%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5_%D0%B2%D0%BE%D0%BB%D1%88%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_ISBN" title="Категория:Страницы, использующие волшебные ссылки ISBN">Страницы, использующие волшебные ссылки ISBN</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Навигация</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Персональные инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Страница участника для моего IP">Вы не представились системе</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D1%91_%D0%BE%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Страница обсуждений для моего IP [n]" accesskey="n"><span>Обсуждение</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D0%B9_%D0%B2%D0%BA%D0%BB%D0%B0%D0%B4" title="Список правок, сделанных с этого IP-адреса [y]" accesskey="y"><span>Вклад</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D1%82%D1%8C_%D1%83%D1%87%D1%91%D1%82%D0%BD%D1%83%D1%8E_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D1%8C&returnto=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F+%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Мы предлагаем вам создать учётную запись и войти в систему, хотя это и не обязательно."><span>Создать учётную запись</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%92%D1%85%D0%BE%D0%B4&returnto=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F+%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Здесь можно зарегистрироваться в системе, но это необязательно. [o]" accesskey="o"><span>Войти</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Пространства имён</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Просмотреть контентную страницу [c]" accesskey="c"><span>Статья</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/%D0%9E%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5:%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" rel="discussion" title="Обсуждение основной страницы [t]" accesskey="t"><span>Обсуждение</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">русский</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Просмотры</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&stable=1"><span>Читать</span></a></li><li id="ca-current" class="collapsible selected mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&stable=0&redirect=no" title="Показать текущую версию этой страницы [v]" accesskey="v"><span>Текущая версия</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&veaction=edit" title="Редактировать данную страницу [v]" accesskey="v"><span>Править</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=edit" title="Править исходный текст этой страницы [e]" accesskey="e"><span>Править код</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=history" title="Журнал изменений страницы [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Больше возможностей" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ещё</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Поиск</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Искать в Википедии" aria-label="Искать в Википедии" autocapitalize="sentences" title="Искать в Википедии [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Служебная:Поиск"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Найти страницы, содержащие указанный текст" value="Найти"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Перейти к странице, имеющей в точности такое название" value="Перейти"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Навигация</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу [z]" accesskey="z"><span>Заглавная страница</span></a></li><li id="n-content" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5"><span>Содержание</span></a></li><li id="n-featured" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%98%D0%B7%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8" title="Статьи, считающиеся лучшими статьями проекта"><span>Избранные статьи</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Посмотреть случайно выбранную страницу [x]" accesskey="x"><span>Случайная статья</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A2%D0%B5%D0%BA%D1%83%D1%89%D0%B8%D0%B5_%D1%81%D0%BE%D0%B1%D1%8B%D1%82%D0%B8%D1%8F" title="Статьи о текущих событиях в мире"><span>Текущие события</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ru.wikipedia.org&uselang=ru" title="Поддержите нас"><span>Пожертвовать</span></a></li> </ul> </div> </nav> <nav id="p-participation" class="mw-portlet mw-portlet-participation vector-menu-portal portal vector-menu" aria-labelledby="p-participation-label" > <h3 id="p-participation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Участие</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BE%D0%B1_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%D1%85" title="Сообщить об ошибке в этой статье"><span>Сообщить об ошибке</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0:%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Как править статьи</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="О проекте, о том, чем здесь можно заниматься, а также — где что находится"><span>Сообщество</span></a></li><li id="n-forum" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A4%D0%BE%D1%80%D1%83%D0%BC" title="Форум участников Википедии"><span>Форум</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8" title="Список последних изменений [r]" accesskey="r"><span>Свежие правки</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9D%D0%BE%D0%B2%D1%8B%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список недавно созданных страниц"><span>Новые страницы</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0" title="Место расположения Справки"><span>Справка</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_%D1%81%D1%8E%D0%B4%D0%B0/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Список всех страниц, ссылающихся на данную [j]" accesskey="j"><span>Ссылки сюда</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D1%8F%D0%B7%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" rel="nofollow" title="Последние изменения в страницах, на которые ссылается эта страница [k]" accesskey="k"><span>Связанные правки</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BF%D0%B5%D1%86%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список служебных страниц [q]" accesskey="q"><span>Служебные страницы</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&oldid=124061985" title="Постоянная ссылка на эту версию страницы"><span>Постоянная ссылка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=info" title="Подробнее об этой странице"><span>Сведения о странице</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A6%D0%B8%D1%82%D0%B0%D1%82%D0%B0&page=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&id=124061985&wpFormIdentifier=titleform" title="Информация о том, как цитировать эту страницу"><span>Цитировать страницу</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:UrlShortener&url=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%259E%25D0%25B1%25D1%2580%25D0%25B0%25D1%2582%25D0%25BD%25D0%25B0%25D1%258F_%25D1%2584%25D1%2583%25D0%25BD%25D0%25BA%25D1%2586%25D0%25B8%25D1%258F"><span>Получить короткий URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:QrCode&url=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%259E%25D0%25B1%25D1%2580%25D0%25B0%25D1%2582%25D0%25BD%25D0%25B0%25D1%258F_%25D1%2584%25D1%2583%25D0%25BD%25D0%25BA%25D1%2586%25D0%25B8%25D1%258F"><span>Скачать QR-код</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Печать/экспорт</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:DownloadAsPdf&page=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&action=show-download-screen" title="Скачать эту страницу как файл PDF"><span>Скачать как PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&printable=yes" title="Версия этой страницы для печати [p]" accesskey="p"><span>Версия для печати</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">В других проектах</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Inverse_functions" hreflang="en"><span>Викисклад</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q191884" title="Ссылка на связанный элемент репозитория данных [g]" accesskey="g"><span>Элемент Викиданных</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">На других языках</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%98%E1%88%8B%E1%88%BD_%E1%8A%A0%E1%88%B5%E1%88%A8%E1%8A%AB%E1%89%A2" title="መላሽ አስረካቢ — амхарский" lang="am" hreflang="am" data-title="መላሽ አስረካቢ" data-language-autonym="አማርኛ" data-language-local-name="амхарский" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9_%D8%B9%D9%83%D8%B3%D9%8A%D8%A9" title="دالة عكسية — арабский" lang="ar" hreflang="ar" data-title="دالة عكسية" data-language-autonym="العربية" data-language-local-name="арабский" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C9%99rs_funksiya" title="Tərs funksiya — азербайджанский" lang="az" hreflang="az" data-title="Tərs funksiya" data-language-autonym="Azərbaycanca" data-language-local-name="азербайджанский" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D0%B4%D0%B2%D0%B0%D1%80%D0%BE%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F" title="Адваротная функцыя — белорусский" lang="be" hreflang="be" data-title="Адваротная функцыя" data-language-autonym="Беларуская" data-language-local-name="белорусский" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Обратна функция — болгарский" lang="bg" hreflang="bg" data-title="Обратна функция" data-language-autonym="Български" data-language-local-name="болгарский" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Inverzna_funkcija" title="Inverzna funkcija — боснийский" lang="bs" hreflang="bs" data-title="Inverzna funkcija" data-language-autonym="Bosanski" data-language-local-name="боснийский" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3_inversa" title="Funció inversa — каталанский" lang="ca" hreflang="ca" data-title="Funció inversa" data-language-autonym="Català" data-language-local-name="каталанский" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%D9%86%DA%A9%D8%B4%D9%86%DB%8C_%DA%BE%DB%95%DA%B5%DA%AF%DB%95%DA%95%D8%A7%D9%88%DB%95" title="فانکشنی ھەڵگەڕاوە — центральнокурдский" lang="ckb" hreflang="ckb" data-title="فانکشنی ھەڵگەڕاوە" data-language-autonym="کوردی" data-language-local-name="центральнокурдский" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Inverzn%C3%AD_zobrazen%C3%AD" title="Inverzní zobrazení — чешский" lang="cs" hreflang="cs" data-title="Inverzní zobrazení" data-language-autonym="Čeština" data-language-local-name="чешский" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D1%83%D1%82%C4%83%D0%BD%D0%BB%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8" title="Кутăнла функци — чувашский" lang="cv" hreflang="cv" data-title="Кутăнла функци" data-language-autonym="Чӑвашла" data-language-local-name="чувашский" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Invers_funktion" title="Invers funktion — датский" lang="da" hreflang="da" data-title="Invers funktion" data-language-autonym="Dansk" data-language-local-name="датский" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Umkehrfunktion" title="Umkehrfunktion — немецкий" lang="de" hreflang="de" data-title="Umkehrfunktion" data-language-autonym="Deutsch" data-language-local-name="немецкий" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CE%BD%CF%84%CE%AF%CF%83%CF%84%CF%81%CE%BF%CF%86%CE%B7_%CF%83%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7" title="Αντίστροφη συνάρτηση — греческий" lang="el" hreflang="el" data-title="Αντίστροφη συνάρτηση" data-language-autonym="Ελληνικά" data-language-local-name="греческий" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Inverse_function" title="Inverse function — английский" lang="en" hreflang="en" data-title="Inverse function" data-language-autonym="English" data-language-local-name="английский" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_inversa" title="Función inversa — испанский" lang="es" hreflang="es" data-title="Función inversa" data-language-autonym="Español" data-language-local-name="испанский" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/P%C3%B6%C3%B6rdfunktsioon" title="Pöördfunktsioon — эстонский" lang="et" hreflang="et" data-title="Pöördfunktsioon" data-language-autonym="Eesti" data-language-local-name="эстонский" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Alderantzizko_funtzio" title="Alderantzizko funtzio — баскский" lang="eu" hreflang="eu" data-title="Alderantzizko funtzio" data-language-autonym="Euskara" data-language-local-name="баскский" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D9%88%D8%A7%D8%B1%D9%88%D9%86" title="تابع وارون — персидский" lang="fa" hreflang="fa" data-title="تابع وارون" data-language-autonym="فارسی" data-language-local-name="персидский" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/K%C3%A4%C3%A4nteisfunktio" title="Käänteisfunktio — финский" lang="fi" hreflang="fi" data-title="Käänteisfunktio" data-language-autonym="Suomi" data-language-local-name="финский" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Bijection_r%C3%A9ciproque" title="Bijection réciproque — французский" lang="fr" hreflang="fr" data-title="Bijection réciproque" data-language-autonym="Français" data-language-local-name="французский" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n_inversa" title="Función inversa — галисийский" lang="gl" hreflang="gl" data-title="Función inversa" data-language-autonym="Galego" data-language-local-name="галисийский" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94_%D7%94%D7%A4%D7%99%D7%9B%D7%94" title="פונקציה הפיכה — иврит" lang="he" hreflang="he" data-title="פונקציה הפיכה" data-language-autonym="עברית" data-language-local-name="иврит" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%A4%E0%A4%BF%E0%A4%B2%E0%A5%8B%E0%A4%AE_%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="प्रतिलोम फलन — хинди" lang="hi" hreflang="hi" data-title="प्रतिलोम फलन" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Inverzna_funkcija" title="Inverzna funkcija — хорватский" lang="hr" hreflang="hr" data-title="Inverzna funkcija" data-language-autonym="Hrvatski" data-language-local-name="хорватский" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Inverz_f%C3%BCggv%C3%A9ny" title="Inverz függvény — венгерский" lang="hu" hreflang="hu" data-title="Inverz függvény" data-language-autonym="Magyar" data-language-local-name="венгерский" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%A1%D5%AF%D5%A1%D5%A4%D5%A1%D6%80%D5%B1_%D6%86%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1" title="Հակադարձ ֆունկցիա — армянский" lang="hy" hreflang="hy" data-title="Հակադարձ ֆունկցիա" data-language-autonym="Հայերեն" data-language-local-name="армянский" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Function_inverse" title="Function inverse — интерлингва" lang="ia" hreflang="ia" data-title="Function inverse" data-language-autonym="Interlingua" data-language-local-name="интерлингва" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_invers" title="Fungsi invers — индонезийский" lang="id" hreflang="id" data-title="Fungsi invers" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезийский" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Simetra_elemento" title="Simetra elemento — идо" lang="io" hreflang="io" data-title="Simetra elemento" data-language-autonym="Ido" data-language-local-name="идо" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Andhverfa" title="Andhverfa — исландский" lang="is" hreflang="is" data-title="Andhverfa" data-language-autonym="Íslenska" data-language-local-name="исландский" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_inversa" title="Funzione inversa — итальянский" lang="it" hreflang="it" data-title="Funzione inversa" data-language-autonym="Italiano" data-language-local-name="итальянский" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%80%86%E5%86%99%E5%83%8F" title="逆写像 — японский" lang="ja" hreflang="ja" data-title="逆写像" data-language-autonym="日本語" data-language-local-name="японский" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D1%80%D1%96_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Кері функция — казахский" lang="kk" hreflang="kk" data-title="Кері функция" data-language-autonym="Қазақша" data-language-local-name="казахский" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B5%E0%B3%8D%E0%B2%AF%E0%B2%B8%E0%B3%8D%E0%B2%A4_%E0%B2%AB%E0%B2%B2%E0%B2%A8" title="ವ್ಯಸ್ತ ಫಲನ — каннада" lang="kn" hreflang="kn" data-title="ವ್ಯಸ್ತ ಫಲನ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="каннада" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%97%AD%ED%95%A8%EC%88%98" title="역함수 — корейский" lang="ko" hreflang="ko" data-title="역함수" data-language-autonym="한국어" data-language-local-name="корейский" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Functio_inversa" title="Functio inversa — латинский" lang="la" hreflang="la" data-title="Functio inversa" data-language-autonym="Latina" data-language-local-name="латинский" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Aplicaziun_recipruca" title="Aplicaziun recipruca — Lombard" lang="lmo" hreflang="lmo" data-title="Aplicaziun recipruca" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%98%D0%BD%D0%B2%D0%B5%D1%80%D0%B7%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Инверзна функција — македонский" lang="mk" hreflang="mk" data-title="Инверзна функција" data-language-autonym="Македонски" data-language-local-name="македонский" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Fungsi_songsang" title="Fungsi songsang — малайский" lang="ms" hreflang="ms" data-title="Fungsi songsang" data-language-autonym="Bahasa Melayu" data-language-local-name="малайский" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%AA%E0%A4%B0%E0%A5%80%E0%A4%A4_%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="विपरीत फलन — непальский" lang="ne" hreflang="ne" data-title="विपरीत फलन" data-language-autonym="नेपाली" data-language-local-name="непальский" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Inverteerbaar" title="Inverteerbaar — нидерландский" lang="nl" hreflang="nl" data-title="Inverteerbaar" data-language-autonym="Nederlands" data-language-local-name="нидерландский" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Invers_funksjon" title="Invers funksjon — нюнорск" lang="nn" hreflang="nn" data-title="Invers funksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="нюнорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Invers_funksjon" title="Invers funksjon — норвежский букмол" lang="nb" hreflang="nb" data-title="Invers funksjon" data-language-autonym="Norsk bokmål" data-language-local-name="норвежский букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja_odwrotna" title="Funkcja odwrotna — польский" lang="pl" hreflang="pl" data-title="Funkcja odwrotna" data-language-autonym="Polski" data-language-local-name="польский" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_inversa" title="Função inversa — португальский" lang="pt" hreflang="pt" data-title="Função inversa" data-language-autonym="Português" data-language-local-name="португальский" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bie_invers%C4%83" title="Funcție inversă — румынский" lang="ro" hreflang="ro" data-title="Funcție inversă" data-language-autonym="Română" data-language-local-name="румынский" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Inverse_function" title="Inverse function — Simple English" lang="en-simple" hreflang="en-simple" data-title="Inverse function" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Inverzn%C3%A9_zobrazenie_(funkcia)" title="Inverzné zobrazenie (funkcia) — словацкий" lang="sk" hreflang="sk" data-title="Inverzné zobrazenie (funkcia)" data-language-autonym="Slovenčina" data-language-local-name="словацкий" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Inverzna_funkcija" title="Inverzna funkcija — словенский" lang="sl" hreflang="sl" data-title="Inverzna funkcija" data-language-autonym="Slovenščina" data-language-local-name="словенский" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Funksioni_i_anasjellt%C3%AB" title="Funksioni i anasjelltë — албанский" lang="sq" hreflang="sq" data-title="Funksioni i anasjelltë" data-language-autonym="Shqip" data-language-local-name="албанский" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%BD%D0%B2%D0%B5%D1%80%D0%B7%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Инверзна функција — сербский" lang="sr" hreflang="sr" data-title="Инверзна функција" data-language-autonym="Српски / srpski" data-language-local-name="сербский" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Invers_funktion" title="Invers funktion — шведский" lang="sv" hreflang="sv" data-title="Invers funktion" data-language-autonym="Svenska" data-language-local-name="шведский" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AF%87%E0%AE%B0%E0%AF%8D%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AF%81%E0%AE%9A%E0%AF%8D_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81" title="நேர்மாறுச் சார்பு — тамильский" lang="ta" hreflang="ta" data-title="நேர்மாறுச் சார்பு" data-language-autonym="தமிழ்" data-language-local-name="тамильский" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Inbersong_punsiyon" title="Inbersong punsiyon — тагалог" lang="tl" hreflang="tl" data-title="Inbersong punsiyon" data-language-autonym="Tagalog" data-language-local-name="тагалог" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Ters_fonksiyon" title="Ters fonksiyon — турецкий" lang="tr" hreflang="tr" data-title="Ters fonksiyon" data-language-autonym="Türkçe" data-language-local-name="турецкий" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9E%D0%B1%D0%B5%D1%80%D0%BD%D0%B5%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F" title="Обернена функція — украинский" lang="uk" hreflang="uk" data-title="Обернена функція" data-language-autonym="Українська" data-language-local-name="украинский" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_ng%C6%B0%E1%BB%A3c" title="Hàm ngược — вьетнамский" lang="vi" hreflang="vi" data-title="Hàm ngược" data-language-autonym="Tiếng Việt" data-language-local-name="вьетнамский" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8F%8D%E5%87%BD%E6%95%B0" title="反函数 — у" lang="wuu" hreflang="wuu" data-title="反函数" data-language-autonym="吴语" data-language-local-name="у" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%87%BD%E6%95%B8" title="反函數 — китайский" lang="zh" hreflang="zh" data-title="反函數" data-language-autonym="中文" data-language-local-name="китайский" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Ge%CC%8Dk-h%C3%A2m-s%C3%B2%CD%98" title="Ge̍k-hâm-sò͘ — миньнань" lang="nan" hreflang="nan" data-title="Ge̍k-hâm-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="миньнань" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%8F%8D%E5%87%BD%E6%95%B8" title="反函數 — кантонский" lang="yue" hreflang="yue" data-title="反函數" data-language-autonym="粵語" data-language-local-name="кантонский" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q191884#sitelinks-wikipedia" title="Править ссылки на другие языки" class="wbc-editpage">Править ссылки</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Эта страница в последний раз была отредактирована 15 июля 2022 в 15:16.</li> <li id="footer-info-copyright">Текст доступен по <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ru">лицензии Creative Commons «С указанием авторства — С сохранением условий» (CC BY-SA)</a>; в отдельных случаях могут действовать дополнительные условия. <span class="noprint">Подробнее см. <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/ru">Условия использования</a>.</span><br /> Wikipedia® — зарегистрированный товарный знак некоммерческой организации <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/ru/">«Фонд Викимедиа» (Wikimedia Foundation, Inc.)</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ru">Политика конфиденциальности</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5">Описание Википедии</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D1%82%D0%BA%D0%B0%D0%B7_%D0%BE%D1%82_%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8">Отказ от ответственности</a></li> <li id="footer-places-contact"><a href="//ru.wikipedia.org/wiki/Википедия:Контакты">Свяжитесь с нами</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Policy:Universal_Code_of_Conduct/ru">Кодекс поведения</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Разработчики</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ru.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Заявление о куки</a></li> <li id="footer-places-mobileview"><a href="//ru.m.wikipedia.org/w/index.php?title=%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобильная версия</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-rhwrx","wgBackendResponseTime":160,"wgPageParseReport":{"limitreport":{"cputime":"0.172","walltime":"0.565","ppvisitednodes":{"value":942,"limit":1000000},"postexpandincludesize":{"value":2472,"limit":2097152},"templateargumentsize":{"value":679,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":7341,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 111.584 1 -total"," 48.62% 54.252 1 Шаблон:Примечания"," 47.13% 52.591 1 Шаблон:Distinguish"," 43.21% 48.213 1 Шаблон:Другое_значение"," 39.09% 43.619 1 Шаблон:Книга"," 17.21% 19.200 1 Шаблон:В_2_кв._скобках"," 3.97% 4.431 1 Шаблон:Указание_места_в_библиоссылке"," 2.79% 3.110 1 Шаблон:±."," 2.21% 2.470 2 Шаблон:Yesno"," 1.43% 1.597 1 Шаблон:М."]},"scribunto":{"limitreport-timeusage":{"value":"0.011","limit":"10.000"},"limitreport-memusage":{"value":960141,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7c479b968-jcqlq","timestamp":"20241118031627","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u041e\u0431\u0440\u0430\u0442\u043d\u0430\u044f \u0444\u0443\u043d\u043a\u0446\u0438\u044f","url":"https:\/\/ru.wikipedia.org\/wiki\/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F","sameAs":"http:\/\/www.wikidata.org\/entity\/Q191884","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q191884","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-06-04T09:08:12Z","dateModified":"2022-07-15T15:16:43Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/c\/c8\/Inverse_Function.png","headline":"\u0444\u0443\u043d\u043a\u0446\u0438\u044f, \u0434\u0430\u044e\u0449\u0430\u044f \u0442\u043e\u0436\u0434\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u0443\u044e \u043f\u0440\u0438 \u043a\u043e\u043c\u043f\u043e\u0437\u0438\u0446\u0438\u0438 \u0441 \u0438\u0441\u0445\u043e\u0434\u043d\u043e\u0439"}</script> </body> </html>