CINXE.COM

Search results for: boundary layer blockage

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: boundary layer blockage</title> <meta name="description" content="Search results for: boundary layer blockage"> <meta name="keywords" content="boundary layer blockage"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="boundary layer blockage" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="boundary layer blockage"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3587</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: boundary layer blockage</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3587</span> Numerical Studies on 2D and 3D Boundary Layer Blockage and External Flow Choking at Wing in Ground Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Dhanalakshmi">K. Dhanalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Deepak"> N. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Manikandan"> E. Manikandan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kanagaraj"> S. Kanagaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sulthan%20Ariff%20Rahman"> M. Sulthan Ariff Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chilambarasan%20C.%20Abhimanyu"> P. Chilambarasan C. Abhimanyu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Akaash%20Emmanuel%20Raj"> C. A. Akaash Emmanuel Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper using a validated double precision, density-based implicit standard k-ε model, the detailed 2D and 3D numerical studies have been carried out to examine the external flow choking at wing-in-ground (WIG) effect craft. The CFD code is calibrated using the exact solution based on the Sanal flow choking condition for adiabatic flows. We observed that at the identical WIG effect conditions the numerically predicted 2D boundary layer blockage is significantly higher than the 3D case and as a result, the airfoil exhibited an early external flow choking than the corresponding wing, which is corroborated with the exact solution. We concluded that, in lieu of the conventional 2D numerical simulation, it is invariably beneficial to go for a realistic 3D simulation of the wing in ground effect, which is analogous and would have the aspects of a real-time parametric flow. We inferred that under the identical flying conditions the chances of external flow choking at WIG effect is higher for conventional aircraft than an aircraft facilitating a divergent channel effect at the bottom surface of the fuselage as proposed herein. We concluded that the fuselage and wings integrated geometry optimization can improve the overall aerodynamic performance of WIG craft. This study is a pointer to the designers and/or pilots for perceiving the zone of danger a priori due to the anticipated external flow choking at WIG effect craft for safe flying at the close proximity of the terrain and the dynamic surface of the marine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage" title="boundary layer blockage">boundary layer blockage</a>, <a href="https://publications.waset.org/abstracts/search?q=chord%20dominated%20ground%20effect" title=" chord dominated ground effect"> chord dominated ground effect</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow%20choking" title=" external flow choking"> external flow choking</a>, <a href="https://publications.waset.org/abstracts/search?q=WIG%20effect" title=" WIG effect"> WIG effect</a> </p> <a href="https://publications.waset.org/abstracts/89424/numerical-studies-on-2d-and-3d-boundary-layer-blockage-and-external-flow-choking-at-wing-in-ground-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3586</span> Noise Reduction by Energising the Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20P.%20Kumar">Kiran P. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nayana"> H. M. Nayana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rakshitha"> R. Rakshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sushmitha"> S. Sushmitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airframe" title="airframe">airframe</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/53714/noise-reduction-by-energising-the-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3585</span> The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thochi%20Seb%20Rengma">Thochi Seb Rengma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Kumar%20Gupta"> Mahendra Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20V.%20Subbarao"> P. M. V. Subbarao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=savonius%20hydrokinetic%20turbine" title="savonius hydrokinetic turbine">savonius hydrokinetic turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20ratio" title=" blockage ratio"> blockage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20turbine" title=" vertical axis turbine"> vertical axis turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20coefficient" title=" power coefficient"> power coefficient</a> </p> <a href="https://publications.waset.org/abstracts/162783/the-effect-of-velocity-increment-by-blockage-factor-on-savonius-hydrokinetic-turbine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3584</span> Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Gao">Xiaodong Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingchuan%20Dong"> Pingchuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qichao%20Gao"> Qichao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene%20deposition%20rate" title="asphaltene deposition rate">asphaltene deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20length" title=" blockage length"> blockage length</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20thickness" title=" blockage thickness"> blockage thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20diameter" title=" blockage diameter"> blockage diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20condition" title=" transient condition"> transient condition</a> </p> <a href="https://publications.waset.org/abstracts/149723/simulation-of-the-asphaltene-deposition-rate-in-a-wellbore-blockage-via-computational-fluid-dynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3583</span> Non-Linear Velocity Fields in Turbulent Wave Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shamsul%20Chowdhury">Shamsul Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20boundary" title="wave boundary">wave boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transport" title=" mass transport"> mass transport</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20velocity" title=" mean velocity"> mean velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a> </p> <a href="https://publications.waset.org/abstracts/58577/non-linear-velocity-fields-in-turbulent-wave-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3582</span> Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mirabdolah%20Lavasani">Arash Mirabdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Maarefdoost"> Taher Maarefdoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title="wind tunnel">wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-circular%20tube" title=" non-circular tube"> non-circular tube</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20ratio" title=" blockage ratio"> blockage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20heat%20transfer" title=" experimental heat transfer"> experimental heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title=" cross-flow"> cross-flow</a> </p> <a href="https://publications.waset.org/abstracts/12528/designing-a-low-speed-wind-tunnel-for-investigating-effects-of-blockage-ratio-on-heat-transfer-of-a-non-circular-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3581</span> Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinsuk%20Hong">Chinsuk Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wall%20pressure%20fluctuation" title="wall pressure fluctuation">wall pressure fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=transition" title=" transition"> transition</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20body" title=" axisymmetric body"> axisymmetric body</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20noise" title=" flow noise"> flow noise</a> </p> <a href="https://publications.waset.org/abstracts/41330/wall-pressure-fluctuations-in-naturally-developing-boundary-layer-flows-on-axisymmetric-bodies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3580</span> Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Tu">Guohua Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Fu"> Zhi Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Hu"> Zhiwei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20D%20Sandham"> Neil D Sandham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqiang%20Chen"> Jianqiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20instability" title="boundary layer instability">boundary layer instability</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20transition" title=" boundary layer transition"> boundary layer transition</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flows" title=" supersonic flows"> supersonic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a> </p> <a href="https://publications.waset.org/abstracts/61412/triggering-supersonic-boundary-layer-instability-by-small-scale-vortex-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3579</span> A Wall Law for Two-Phase Turbulent Boundary Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhahri%20Maher">Dhahri Maher</a>, <a href="https://publications.waset.org/abstracts/search?q=Aouinet%20Hana"> Aouinet Hana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbly%20flows" title="bubbly flows">bubbly flows</a>, <a href="https://publications.waset.org/abstracts/search?q=log%20law" title=" log law"> log law</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/64652/a-wall-law-for-two-phase-turbulent-boundary-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3578</span> Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malika">M. Y. Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzana"> Farzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rehman"> Abdul Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title="boundary layer flow">boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretched%20surface" title=" exponentially stretched surface"> exponentially stretched surface</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20fluid" title=" Maxwell fluid"> Maxwell fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/23186/magnetohydrodynamic-3d-maxwell-fluid-flow-towards-a-horizontal-stretched-surface-with-convective-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3577</span> Relation of Black Carbon Aerosols and Atmospheric Boundary Layer Height during Wet Removal Processes over a Semi Urban Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ashok%20Williams">M. Ashok Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Lakshmi%20Kumar"> T. V. Lakshmi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The life cycle of Black carbon aerosols depends on their physical removal processes from the atmosphere during the precipitation events. Black Carbon (BC) mass concentration has been analysed during rainy and non-rainy days of Northeast (NE) Monsoon months of the years 2015 and 2017 over a semi-urban environment near Chennai (12.81 N, 80.03 E), located on the east coast of India. BC, measured using an Aethalometer (AE-31) has been related to the atmospheric boundary layer height (BLH) obtained from the ERA Interim Reanalysis data during rainy and non-rainy days on monthly mean basis to understand the wet removal of BC over the study location. The study reveals that boundary layer height has a profound effect on the BC concentration on rainy days and non rainy days. It is found that the BC concentration in the night time is lower on rainy days compared to non rainy days owing to wash out on rainy days and the boundary layer height remaining nearly the same on rainy and non rainy days. On the other hand, in the daytime, it is found that the BC concentration remains nearly the same on rainy and non rainy days whereas the boundary layer height is lower on rainy days compared to non rainy days. This reveals that in daytime, lower boundary layer heights compensate for the wet removal effect on BC concentration on rainy days. A quantitative relation is found between the product of BC and BLH during rainy and non-rainy days which indicates the extent of redistribution of BC during non-rainy days when compared to the rainy days. Further work on the wet removal processes of the BC is in progress considering the individual rain events and other related parameters like wind speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20carbon%20aerosols" title="black carbon aerosols">black carbon aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20boundary%20layer" title=" atmospheric boundary layer"> atmospheric boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=scavenging%20processes" title=" scavenging processes"> scavenging processes</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20coastal%20location" title=" tropical coastal location"> tropical coastal location</a> </p> <a href="https://publications.waset.org/abstracts/96280/relation-of-black-carbon-aerosols-and-atmospheric-boundary-layer-height-during-wet-removal-processes-over-a-semi-urban-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3576</span> Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khairul%20Anuar%20Mohamed">Muhammad Khairul Anuar Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zuki%20Salleh"> Mohd Zuki Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuar%20Ishak"> Anuar Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Aida%20Zuraimi%20Md%20Noar"> Nor Aida Zuraimi Md Noar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection" title="free convection">free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20circular%20cylinder" title=" horizontal circular cylinder"> horizontal circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20layer%20flow" title=" convective boundary layer flow"> convective boundary layer flow</a> </p> <a href="https://publications.waset.org/abstracts/21742/effects-of-viscous-dissipation-on-free-convection-boundary-layer-flow-towards-a-horizontal-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3575</span> High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Buhr">Alexander Buhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Ehrenfried"> Klaus Ehrenfried</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in G&ouml;ttingen, the so called tunnel simulation facility G&ouml;ttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20PIV" title=" high-speed PIV"> high-speed PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=ICE3" title=" ICE3"> ICE3</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20train%20model" title=" moving train model"> moving train model</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20elements" title=" roughness elements"> roughness elements</a> </p> <a href="https://publications.waset.org/abstracts/65754/high-speed-particle-image-velocimetry-of-the-flow-around-a-moving-train-model-with-boundary-layer-control-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3574</span> Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Amailland">Sylvain Amailland</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Hugh%20Thomas"> Jean-Hugh Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20P%C3%A9zerat"> Charles Pézerat</a>, <a href="https://publications.waset.org/abstracts/search?q=Romuald%20Boucheron"> Romuald Boucheron</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Claude%20Pascal"> Jean-Claude Pascal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20imaging" title="acoustic imaging">acoustic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20noise%20denoising" title=" boundary layer noise denoising"> boundary layer noise denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20adaptation" title=" model adaptation"> model adaptation</a> </p> <a href="https://publications.waset.org/abstracts/58399/numerical-simulations-of-acoustic-imaging-in-hydrodynamic-tunnel-with-model-adaptation-and-boundary-layer-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3573</span> The Superhydrophobic Surface Effect on Laminar Boundary Layer Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yung%20Chou">Chia-Yung Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Chuan%20Cheng"> Che-Chuan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Chi%20Hsu"> Chin Chi Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Hui%20Wu"> Chun-Hui Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the fluid of boundary layer flow as it flows through the superhydrophobic surface. The superhydrophobic surface will be assembled into an observation channel for fluid experiments. The fluid in the channel will be doped with visual flow field particles, which will then be pumped by the syringe pump and introduced into the experimentally observed channel through the pipeline. Through the polarized light irradiation, the movement of the particles in the channel is captured by a high-speed camera, and the velocity of the particles is analyzed by MATLAB to find out the particle velocity field changes caused on the fluid boundary layer. This study found that the superhydrophobic surface can effectively increase the velocity near the wall surface, and the faster with the flow rate increases. The superhydrophobic surface also had longer the slip length compared with the plan surface. In the calculation of the drag coefficient, the superhydrophobic surface produces a lower drag coefficient, and there is a more significant difference when the Re reduced in the flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title="hydrophobic">hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20length" title=" slip length"> slip length</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a> </p> <a href="https://publications.waset.org/abstracts/108729/the-superhydrophobic-surface-effect-on-laminar-boundary-layer-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3572</span> Urban Boundary Layer and Its Effects on Haze Episode in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bualert">S. Bualert</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Duangmal"> K. Duangmal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric boundary layer shows effects of land cover on atmospheric characteristic in term of temperature gradient and wind profile. They are key factors to control atmospheric process such as atmospheric dilution and mixing via thermal and mechanical turbulent. Bangkok, ChiangMai, and Hatyai are major cities of central, southern and northern of Thailand, respectively. The different of them are location, geography and size of the city, Bangkok is the most urbanized city and classified as mega city compared to ChiangMai and HatYai, respectively. They have been suffering from air pollution episode such as transboundary haze. The worst period of the northern part of Thailand was occurred at the end of February through April of each year. The particulate matter less than 10 micrometer (PM10) concentrations were higher than Thai’s ambient air quality standard (120 micrograms per cubic meter) more than two times. Radiosonde technique and air pollutant (CO, PM10, TSP, O3, NOx) measurements were used to identify characteristics of urban boundary layer and air pollutions problems in the cities. Furthermore, air pollutant profiles showed good relationship to characteristic’s urban boundary layer especially on daytime temperature inversion on 29 February 2009 caused two times higher than normal concentrations of CO and particulate matter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=haze%20episode" title="haze episode">haze episode</a>, <a href="https://publications.waset.org/abstracts/search?q=micrometeorology" title=" micrometeorology"> micrometeorology</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20inversion" title=" temperature inversion"> temperature inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20boundary%20layer" title=" urban boundary layer"> urban boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/43172/urban-boundary-layer-and-its-effects-on-haze-episode-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3571</span> Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Coelho%20Lima">Bruno Coelho Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20F.A.%20Martos"> Joao F.A. Martos</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20P.%20Toro"> Paulo G. P. Toro</a>, <a href="https://publications.waset.org/abstracts/search?q=Israel%20S.%20Rego"> Israel S. Rego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20separation" title="boundary layer separation">boundary layer separation</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20shock%20wave" title=" moving shock wave"> moving shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20tube" title=" shock tube"> shock tube</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20simulation" title=" transient simulation"> transient simulation</a> </p> <a href="https://publications.waset.org/abstracts/59608/influences-of-separation-of-the-boundary-layer-in-the-reservoir-pressure-in-the-shock-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3570</span> Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiya%20Mohammed">Jiya Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsadu%20Shuaib"> Tsadu Shuaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Abdulhakeem"> Yusuf Abdulhakeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=Adomian%20decomposition" title=" Adomian decomposition"> Adomian decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/27223/magnetohydrodynamics-mhd-boundary-layer-flow-past-a-stretching-plate-with-heat-transfer-and-viscous-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3569</span> Analytical Solution of Blassius Equation Using the Kourosh Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Shahnazari">Mohammad Reza Shahnazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Kazemi"> Reza Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Saberi"> Ali Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blasius%20equation" title="Blasius equation">Blasius equation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20method" title=" Kourosh method"> Kourosh method</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a> </p> <a href="https://publications.waset.org/abstracts/49142/analytical-solution-of-blassius-equation-using-the-kourosh-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3568</span> A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruquan%20You">Ruquan You</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiwang%20Li"> Haiwang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Tao"> Zhi Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20facility" title="rotating facility">rotating facility</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20and%20temporal%20resolution" title=" spatial and temporal resolution"> spatial and temporal resolution</a> </p> <a href="https://publications.waset.org/abstracts/100655/a-rotating-facility-with-high-temporal-and-spatial-resolution-particle-image-velocimetry-system-to-investigate-the-turbulent-boundary-layer-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3567</span> Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al-%20Rawi">Mohammad Al- Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Al-%20Jumaily"> Ahmad Al- Jumaily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20blockage" title="arterial blockage">arterial blockage</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20wave" title=" pulse wave"> pulse wave</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/35958/assessing-arterial-blockages-using-animal-model-and-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3566</span> Lamb Waves Propagation in Elastic-Viscoelastic Three-Layer Adhesive Joints </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pezhman%20Taghipour%20Birgani">Pezhman Taghipour Birgani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Shekarzadeh"> Mehdi Shekarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the propagation of lamb waves in three-layer joints is investigated using global matrix method. Theoretical boundary value problem in three-layer adhesive joints with perfect bond and traction free boundary conditions on their outer surfaces is solved to find a combination of frequencies and modes with the lowest attenuation. The characteristic equation is derived by applying continuity and boundary conditions in three-layer joints using global matrix method. Attenuation and phase velocity dispersion curves are obtained with numerical solution of this equation by a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results of the characteristic equation, wave structure curves are plotted for a special mode in two different frequencies in the adhesive joint. The purpose of present paper is to find a combination of frequencies and modes with minimum attenuation in high and low frequencies. These frequencies and modes are recognizable by transducers in inspections with Lamb waves because of low attenuation level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-layer%20adhesive%20joints" title="three-layer adhesive joints">three-layer adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title=" lamb waves"> lamb waves</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20matrix%20method" title=" global matrix method"> global matrix method</a> </p> <a href="https://publications.waset.org/abstracts/33259/lamb-waves-propagation-in-elastic-viscoelastic-three-layer-adhesive-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3565</span> Instability by Weak Precession of the Flow in a Rapidly Rotating Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kida">S. Kida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the flow of an incompressible viscous fluid in a precessing sphere whose spin and precession axes are orthogonal to each other. The flow is characterized by two non-dimensional parameters, the Reynolds number Re and the Poincare number Po. For which values of (Re, Po) will the flow approach a steady state from an arbitrary initial condition? To answer it we are searching the instability boundary of the steady states in the whole (Re, Po) plane. Here, we focus the rapidly rotating and weakly precessing limit, i.e., Re >> 1 and Po << 1. The steady flow was obtained by the asymptotic expansion for small ε=Po Re¹/² << 1. The flow exhibits nearly a solid-body rotation in the whole sphere except for a thin boundary layer which develops over the sphere surface. The thickness of this boundary layer is of O(δ), where δ=Re⁻¹/², except where two circular critical bands of thickness of O(δ⁴/⁵) and of width of O(δ²/⁵) which are located away from the spin axis by about 60°. We perform the linear stability analysis of the steady flow. We assume that the disturbances are localized in the critical bands and make an expansion analysis in terms of ε to derive the eigenvalue problem for the growth rate of the disturbance, which is solved numerically. As the solution, we obtain an asymptote of the stability boundary as Po=28.36Re⁻⁰.⁸. This agrees excellently with the corresponding laboratory experiments and numerical simulations. One of the most popular instability mechanisms so far is the parametric instability, which turns out, however, not to give the correct stability boundary. The present instability is different from the parametric instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20band" title=" critical band"> critical band</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=precessing%20sphere" title=" precessing sphere"> precessing sphere</a> </p> <a href="https://publications.waset.org/abstracts/99149/instability-by-weak-precession-of-the-flow-in-a-rapidly-rotating-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3564</span> Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin">N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20M.%20Isa"> S. P. M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok"> N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Ali"> F. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title="forced convection">forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Casson%20fluids" title=" Casson fluids"> Casson fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20flat%20plate" title=" moving flat plate"> moving flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/13001/forced-convection-boundary-layer-flow-of-a-casson-fluid-over-a-moving-permeable-flat-plate-beneath-a-uniform-free-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3563</span> Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenqian%20Zhang">Wenqian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuelin%20Wang"> Xuelin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Hu"> Yujin Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyang%20Wang"> Siyang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20machining" title="surface machining">surface machining</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20layer" title=" subsurface layer"> subsurface layer</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20deformation" title=" local deformation"> local deformation</a> </p> <a href="https://publications.waset.org/abstracts/65094/characterizing-surface-machining-induced-local-deformation-using-electron-backscatter-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3562</span> Control Flow around NACA 4415 Airfoil Using Slot and Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imine%20Zakaria">Imine Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Meftah%20Sidi%20Mohamed%20El%20Amine"> Meftah Sidi Mohamed El Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20flow" title=" control flow"> control flow</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=slot" title=" slot"> slot</a> </p> <a href="https://publications.waset.org/abstracts/133748/control-flow-around-naca-4415-airfoil-using-slot-and-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3561</span> An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Jafari">Azadeh Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzin%20Ghanadi"> Farzin Ghanadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20J.%20Emes"> Matthew J. Emes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Arjomandi"> Maziar Arjomandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20S.%20Cazzolato"> Benjamin S. Cazzolato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20boundary%20layer" title="atmospheric boundary layer">atmospheric boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate" title=" flat plate"> flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20coefficient" title=" pressure coefficient"> pressure coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/105526/an-experimental-investigation-of-the-surface-pressure-on-flat-plates-in-turbulent-boundary-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3560</span> Analysis of Thermal Damping in Si Based Torsional Micromirrors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Resmi">R. Resmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Baiju"> M. R. Baiju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eigen%20frequency%20analysis" title="Eigen frequency analysis">Eigen frequency analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=micromirrors" title=" micromirrors"> micromirrors</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20damping" title=" thermal damping"> thermal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic%20interactions" title=" thermoacoustic interactions"> thermoacoustic interactions</a> </p> <a href="https://publications.waset.org/abstracts/68224/analysis-of-thermal-damping-in-si-based-torsional-micromirrors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3559</span> Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kargar">Ali Kargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Mansour"> Kamyar Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transitional%20Reynolds%20number" title="transitional Reynolds number">transitional Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20visualization" title=" smoke visualization"> smoke visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20parabola" title=" rotating parabola"> rotating parabola</a> </p> <a href="https://publications.waset.org/abstracts/36194/experimental-investigation-of-boundary-layer-instability-and-transition-on-a-rotating-parabola-in-axial-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3558</span> Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuelin%20Zhang">Xuelin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Changhai%20Li"> Changhai Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition%20time" title="ignition time">ignition time</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20loss%20rate" title=" mass loss rate"> mass loss rate</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20blockage" title=" heat blockage"> heat blockage</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20characteristic" title=" fire characteristic"> fire characteristic</a> </p> <a href="https://publications.waset.org/abstracts/74727/fire-characteristic-of-commercial-retardant-flame-polycarbonate-under-different-oxygen-concentration-ignition-time-and-heat-blockage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20blockage&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10