CINXE.COM

connection on a bundle gerbe in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> connection on a bundle gerbe in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> connection on a bundle gerbe </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="chernweil_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Chern-Weil theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></strong></p> <p><a class="existingWikiWord" href="/schreiber/show/%E2%88%9E-Chern-Simons+theory">∞-Chern-Simons theory</a></p> <p><a class="existingWikiWord" href="/schreiber/show/%E2%88%9E-Wess-Zumino-Witten+theory">∞-Wess-Zumino-Witten theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory+introduction">∞-Chern-Weil theory introduction</a></p> </li> </ul> <h2 id="ingredients">Ingredients</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+an+%28%E2%88%9E%2C1%29-topos">differential cohomology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+theory">∞-Lie theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Chevalley-Eilenberg+algebra">Chevalley-Eilenberg algebra</a>, <a class="existingWikiWord" href="/nlab/show/Weil+algebra">Weil algebra</a>, <a class="existingWikiWord" href="/nlab/show/invariant+polynomial">invariant polynomial</a></li> </ul> </li> </ul> <h2 id="connection">Connection</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid+valued+differential+forms">∞-Lie algebroid valued differential forms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-connection+on+a+principal+%E2%88%9E-bundle">∞-connection on a principal ∞-bundle</a></p> </li> </ul> <h2 id="curvature">Curvature</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/curvature">curvature</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Bianchi+identity">Bianchi identity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/curvature+characteristic+form">curvature characteristic form</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/covariant+derivative">covariant derivative</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Simons+form">Chern-Simons form</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+homomorphism">Chern-Weil homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Gauss-Bonnet+theorem">Chern-Gauss-Bonnet theorem</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/infinity-Chern-Weil+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="differential_cohomology">Differential cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a></strong></p> <h2 id="ingredients">Ingredients</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a></p> </li> </ul> <h2 id="connections_on_bundles">Connections on bundles</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connection on a bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/parallel+transport">parallel transport</a>, <a class="existingWikiWord" href="/nlab/show/holonomy">holonomy</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/curvature">curvature</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/curvature+characteristic+form">curvature characteristic form</a>, <a class="existingWikiWord" href="/nlab/show/Chern+character">Chern character</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+homomorphism">Chern-Weil homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> </ul> <h2 id="higher_abelian_differential_cohomology">Higher abelian differential cohomology</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+function+complex">differential function complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+orientation">differential orientation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+differential+cohomology">ordinary differential cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+Thom+class">differential Thom class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characters">differential characters</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-bundle+with+connection">circle n-bundle with connection</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bundle+gerbe">bundle gerbe with connection</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> </ul> <h2 id="higher_nonabelian_differential_cohomology">Higher nonabelian differential cohomology</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+2-bundle">connection on a 2-bundle</a>, <a class="existingWikiWord" href="/nlab/show/connection+on+an+%E2%88%9E-bundle">connection on an ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory+in+Smooth%E2%88%9EGrpd">Chern-Weil theory in Smooth∞Grpd</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Simons+theory">∞-Chern-Simons theory</a></p> </li> </ul> <h2 id="fiber_integration">Fiber integration</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+holonomy">higher holonomy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+cohomology">fiber integration in differential cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+ordinary+differential+cohomology">fiber integration in ordinary differential cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+K-theory">fiber integration in differential K-theory</a></p> </li> </ul> </li> </ul> <h2 id="application_to_gauge_theory">Application to gauge theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+field">gauge field</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/electromagnetic+field">electromagnetic field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yang-Mills+field">Yang-Mills field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kalb-Ramond+field">Kalb-Ramond field</a>/<a class="existingWikiWord" href="/nlab/show/B-field">B-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/RR-field">RR-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+C-field">supergravity C-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/D%27Auria-Fre+formulation+of+supergravity">supergravity</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/differential+cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connection on a bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+2-bundle">connection on a 2-bundle</a> / <a class="existingWikiWord" href="/nlab/show/connection+on+a+gerbe">connection on a gerbe</a> / <strong>connection on a bundle gerbe</strong></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+3-bundle">connection on a 3-bundle</a> / <a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle+2-gerbe">connection on a bundle 2-gerbe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+an+%E2%88%9E-bundle">connection on an ∞-bundle</a></p> </li> </ul> <hr /> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <ul> <li><a href='#definitions'>Definitions</a></li> <ul> <li><a href='#for_line_bundle_gerbes'>For line bundle gerbes</a></li> <li><a href='#for_principal_bundle_gerbes'>For principal bundle gerbes</a></li> </ul> <li><a href='#surface_transport'>Surface transport</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#further_references'>Further references</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>connection on a <a class="existingWikiWord" href="/nlab/show/bundle+gerbe">bundle gerbe</a></em> is a slight variant of a <a class="existingWikiWord" href="/nlab/show/Cech+cohomology">Cech</a>-realization of a degree 3 <a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a> cocycle.</p> <blockquote> <p>old content, needs to be polished</p> </blockquote> <p>Like a <a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connection</a> on a locally trivialized bundle is encoded in a Lie algebra-valued connection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, the connection on a bundle gerbe gives rise to a Lie-algebra valued <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> (this shift in degree is directly related to the step from second to third integral cohomology). This <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-form is sometimes addressed as the <em>curving <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-form</em> of a bundle gerbe.</p> <p>But there is more data necessary to describe a connection on a bundle gerbe. The details of the definition – which is evident for line bundle gerbes but more involved for principal bundle gerbes – can be naturally derived from a functorial concept of parallel surface transport, just like connection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>-forms on bundles can be derived from parallel line transport.</p> <h3 id="definitions">Definitions</h3> <h4 id="for_line_bundle_gerbes">For line bundle gerbes</h4> <p>A connection (also known as “connection and curving”) on a line bundle gerbe</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><mover><mo>→</mo><mi>p</mi></mover><msup><mi>Y</mi> <mrow><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mrow></msup><mover><mo>→</mo><mo>→</mo></mover><mi>Y</mi><mover><mo>→</mo><mi>π</mi></mover><mi>X</mi></mrow><annotation encoding="application/x-tex"> B \stackrel{p}{\to} Y^{[2]} \stackrel{\to}{\to} Y \stackrel{\pi}{\to} X </annotation></semantics></math></div> <p>is</p> <ul> <li> <p>a 2-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>∈</mo><msup><mi>Ω</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> B \in \Omega^2(Y) </annotation></semantics></math></div></li> <li> <p>a connection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∇</mo></mrow><annotation encoding="application/x-tex">\nabla</annotation></semantics></math> on the line bundle <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>→</mo><msup><mi>Y</mi> <mrow><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mrow></msup></mrow><annotation encoding="application/x-tex">B \to Y^{[2]}</annotation></semantics></math></p> </li> <li> <p>such that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>π</mi> <mn>1</mn> <mo>*</mo></msubsup><mi>B</mi><mspace width="thickmathspace"></mspace><mo>−</mo><mspace width="thickmathspace"></mspace><msubsup><mi>p</mi> <mn>2</mn> <mo>*</mo></msubsup><mi>B</mi><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msub><mi>F</mi> <mo>∇</mo></msub></mrow><annotation encoding="application/x-tex"> \pi_1^*B \; -\; p_2^*B \;=\; F_\nabla </annotation></semantics></math></div></li> <li> <p>together with an extension of the bundle gerbe product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>μ</mi></mrow><annotation encoding="application/x-tex">\mu</annotation></semantics></math> to an isomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>μ</mi> <mo>∇</mo></msub><mspace width="thickmathspace"></mspace><mo>:</mo><mspace width="thickmathspace"></mspace><msubsup><mi>p</mi> <mn>12</mn> <mo>*</mo></msubsup><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mo>∇</mo><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>⊗</mo><msubsup><mi>p</mi> <mn>23</mn> <mo>*</mo></msubsup><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mo>∇</mo><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>→</mo><mspace width="thickmathspace"></mspace><msubsup><mi>p</mi> <mn>13</mn> <mo>*</mo></msubsup><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mo>∇</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \mu_\nabla \;:\; p_{12}^* (B,\nabla) \;\; \otimes p_{23}^* (B,\nabla) \;\to\; p_{13}^* (B,\nabla) </annotation></semantics></math></div> <p>of line bundles with connection.</p> </li> </ul> <p>Notice that this condition ensures that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi><mi>B</mi></mrow><annotation encoding="application/x-tex">d B</annotation></semantics></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>3</mn></mrow><annotation encoding="application/x-tex">3</annotation></semantics></math>-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> which agrees on double intersections</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>p</mi> <mn>1</mn> <mo>*</mo></msubsup><mi>d</mi><mi>B</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msubsup><mi>p</mi> <mn>2</mn> <mo>*</mo></msubsup><mi>d</mi><mi>B</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> p_1^* d B \;\; = \;\; p_2^* d B \,. </annotation></semantics></math></div> <p>This means that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi><mi>B</mi></mrow><annotation encoding="application/x-tex">d B</annotation></semantics></math> actually descends to a 3-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <p>The <strong>curvature</strong> associated with the connection on a line bundle gerbe is the unique 3-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>∈</mo><msup><mi>Ω</mi> <mn>3</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H \in \Omega^3(X) </annotation></semantics></math></div> <p>such that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><mi>H</mi><mo>=</mo><mi>d</mi><mi>B</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \pi^* H = d B \,. </annotation></semantics></math></div> <p>The deRham class <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[H]</annotation></semantics></math> of this 3-form is the image in real cohomology of the class in integral coholomology classifying the bundle gerbe.</p> <h4 id="for_principal_bundle_gerbes">For principal bundle gerbes</h4> <p>A connection on a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-principal bundle gerbe is</p> <ul> <li> <p>a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">Lie</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{Lie}(G)</annotation></semantics></math>-valued 2-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>∈</mo><msup><mi>Ω</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi mathvariant="normal">Lie</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> B \in \Omega^2(Y,\mathrm{Lie}(G)) </annotation></semantics></math></div></li> <li> <p>together with a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">Lie</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Aut</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{Lie}(\mathrm{Aut}(G))</annotation></semantics></math>-valued 1-form on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∈</mo><msup><mi>Ω</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi mathvariant="normal">Lie</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Aut</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> A \in \Omega^1(Y,\mathrm{Lie}(\mathrm{Aut}(G))) </annotation></semantics></math></div></li> <li> <p>and a certain twisted notion of connection on the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-bundle <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></p> </li> <li> <p>satisfying a couple of conditions that reduce to those described above in the case <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>=</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G = U(1)</annotation></semantics></math>.</p> </li> </ul> <p>For the case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>F</mi> <mi>A</mi></msub><mo>+</mo><mi mathvariant="normal">ad</mi><mi>B</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">F_{A} + \mathrm{ad} B = 0</annotation></semantics></math>, these conditions are nothing but a tetrahedron law on a 2-functor from 2-paths in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> to the category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi><mo stretchy="false">(</mo><mi>G</mi><mi mathvariant="normal">BiTor</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Sigma(G\mathrm{BiTor})</annotation></semantics></math>. This is discussed in <a href="http://arxiv.org/abs/math.DG/0511710">math.DG/0511710</a>.</p> <p>For the more general case a choice for these conditions that harmonizes with the conditions found for (proper) gerbes with connection by Breen &amp; Messing in <a href="http://arxiv.org/abs/math.AG/0106083">math.AG/0106083</a> has been given by Aschieri, Cantini &amp; Jurčo in<br /><a href="http://arxiv.org/abs/hep-th/0312154">hep-th/0312154</a>.</p> <h3 id="surface_transport">Surface transport</h3> <p>From a line bundle gerbe with connection one obtains a notion of <a class="existingWikiWord" href="/nlab/show/parallel+transport">parallel transport</a> along surfaces in a way that generalizes the procedure for locally trivialized fiber bundles with connection.</p> <p>Recall that in the case of fiber bundles, the holonomy associated to a based loop <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> is obtained by</p> <ul> <li> <p>choosing a triangulation of the loop (i.e., a decomposition into intervals) such that each vertex sits in a double intersection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>ij</mi></msub></mrow><annotation encoding="application/x-tex">U_{ij}</annotation></semantics></math> and such that each edge sits in a patch <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">U_i</annotation></semantics></math></p> </li> <li> <p>choosing for each edge a lift into <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>=</mo><msub><mo>⊔</mo> <mi>i</mi></msub><msub><mi>U</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">Y = \sqcup_i U_i</annotation></semantics></math></p> </li> <li> <p>choosing for each vertex a lift into <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Y</mi> <mrow><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo></mrow></msup><mo>=</mo><msub><mo>⊔</mo> <mi>ij</mi></msub><msub><mi>U</mi> <mi>i</mi></msub><mo>∩</mo><msub><mi>U</mi> <mi>j</mi></msub></mrow><annotation encoding="application/x-tex">Y^{[2]} = \sqcup_{ij} U_i\cap U_j</annotation></semantics></math></p> </li> <li> <p>assigning to each edge lifted to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">U_i</annotation></semantics></math> the transport computed from the connection 1-form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">a_i</annotation></semantics></math></p> </li> <li> <p>assigning to each vertex lifted to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>i</mi></msub><mo>∩</mo><msub><mi>U</mi> <mi>j</mi></msub></mrow><annotation encoding="application/x-tex">U_i \cap U_j</annotation></semantics></math> the value of the transition function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>g</mi> <mi>ij</mi></msub></mrow><annotation encoding="application/x-tex">g_{ij}</annotation></semantics></math> at that point</p> </li> <li> <p>multiplying these data in the order given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> .</p> </li> </ul> <p>For bundle gerbes this generalizes to a procedure that assigns a triangulation to a closed surface, that lifts faces, edges, and vertices to single, double and triple intersections, respectively, and which assigns the exponentiated integrals of the 2-form over faces, of the connection 1-form over edges, and assigns the isomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>μ</mi> <mi>ijk</mi></msub></mrow><annotation encoding="application/x-tex">\mu_{ijk}</annotation></semantics></math> to vertices.</p> <p>For the abelian case (line bundle gerbes) this procedure has been first described in</p> <ul> <li>K. Gawedzki &amp; N. Reis, <em>WZW branes and Gerbes</em> (<a href="http://arxiv.org/abs/hep-th/0205233">arXiv</a>)</li> </ul> <p>based on</p> <ul> <li>O. Alvarez, <em>Topological quantization and cohomology</em> Commun. Math. Phys. 100 (1985), 279-309.</li> </ul> <p>Further discussion can be found in</p> <ul> <li>A. Carey, S. Johnson &amp; M. Murray, <em>Holonomy on D-branes</em>, (<a href="http://arxiv.org/abs/hep-th/0204199">arXiv</a>)</li> </ul> <p>Gawedzki and Reis showed this way that the Wess-Zumino term in the WZW-model is nothing but the surface holonomy of a (line bundle) gerbe.</p> <p>In terms of string physics this means that the string (the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-particle) couples to the Kalb-Ramond field – which hence has to be interpreted as the connection (“and curving”) of a gerbe – in a way that categorifies the coupling of the electromagnetically charged (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>-)particle to a line bundle.</p> <p>The necessity to interpret the Kalb–Ramond field as a connection on a gerbe was originally discussed in</p> <ul> <li>D. Freed and E. Witten <em>Anomalies in string theory with D-branes</em>, Asian J. Math. 3 (1999), 819-851 (<a href="http://arxiv.org/abs/hep-th/9907189">arXiv</a>)</li> </ul> <p>Underlying the Gawedzki–Reis formula is a general mechanism of transition of transport <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-functors, described in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a>, <a class="existingWikiWord" href="/nlab/show/Konrad+Waldorf">Konrad Waldorf</a>, <em>Connections on non-abelian gerbes and their holonomy</em>, Theory and Applications of Categories, Vol. 28, 2013, No. 17, pp 476-540. (<a href="http://www.tac.mta.ca/tac/volumes/28/17/28-17abs.html">TAC</a>, <a href="http://arxiv.org/abs/0808.1923">arXiv:0808.1923</a>, <a href="http://ncatlab.org/schreiber/show/differential+cohomology+in+an+(%E2%88%9E%2C1)-topos+--+references#SchrWalII+III">web</a>)</li> </ul> <p>and similarly in</p> <ul> <li>Joao Faria Martins, Roger Picken, <em>A Cubical Set Approach to 2-Bundles with Connection and Wilson Surfaces</em> (<a href="http://arxiv.org/abs/0808.3964">arXiv</a>)</li> </ul> <p>This applies to more general situations than ordinary line bundle gerbes with connection.</p> <p>The generalization (“<a class="existingWikiWord" href="/nlab/show/Jandl+gerbes">Jandl gerbes</a>”) to unoriented surfaces (hence to type I strings)</p> <ul> <li>K. Waldorf, C. Schweigert &amp; U. S., <em>Unoriented WZW Models and Holonomy of Bundle Gerbes</em> (<a href="http://arxiv.org/abs/hep-th/0512283">arXiv</a>)</li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/B-field">B-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> </ul> <h2 id="further_references">Further references</h2> <p>(…)</p> <p>In relation to <a class="existingWikiWord" href="/nlab/show/ordinary+differential+cohomology">ordinary differential cohomology</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Byungdo+Park">Byungdo Park</a>, <em>Differential cohomology and gerbes: An introduction to higher differential geometry</em>, lecture notes (2023) &lbrack;<a href="https://byungdo.github.io/seminars/IMSRS.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Park-DifferentialCohomology.pdf" title="pdf">pdf</a>&rbrack;</li> </ul> <p>Discussion of <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a> and <a class="existingWikiWord" href="/nlab/show/higher+holonomy">higher holonomy</a> in <a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a> (for <a class="existingWikiWord" href="/nlab/show/bundle+gerbes+with+connection">bundle gerbes with connection</a>) over <a class="existingWikiWord" href="/nlab/show/orbifolds">orbifolds</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ernesto+Lupercio">Ernesto Lupercio</a>, <a class="existingWikiWord" href="/nlab/show/Bernardo+Uribe">Bernardo Uribe</a>, <em>Holonomy for Gerbes over Orbifolds</em>, J. Geom.Phys. <strong>56</strong> (2006) 1534-1560 &lbrack;<a href="https://arxiv.org/abs/math/0307114">arXiv:math/0307114</a>, <a href="https://doi.org/10.1016/j.geomphys.2005.08.006">doi:10.1016/j.geomphys.2005.08.006</a>&rbrack;</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on February 8, 2024 at 11:50:05. See the <a href="/nlab/history/connection+on+a+bundle+gerbe" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/connection+on+a+bundle+gerbe" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/connection+on+a+bundle+gerbe/7" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/connection+on+a+bundle+gerbe" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/connection+on+a+bundle+gerbe" accesskey="S" class="navlink" id="history" rel="nofollow">History (7 revisions)</a> <a href="/nlab/show/connection+on+a+bundle+gerbe/cite" style="color: black">Cite</a> <a href="/nlab/print/connection+on+a+bundle+gerbe" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/connection+on+a+bundle+gerbe" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10