CINXE.COM

Search results for: personal aerosol sampler

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: personal aerosol sampler</title> <meta name="description" content="Search results for: personal aerosol sampler"> <meta name="keywords" content="personal aerosol sampler"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="personal aerosol sampler" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="personal aerosol sampler"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2440</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: personal aerosol sampler</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2440</span> Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinhao%20Yang">Shinhao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Chien%20Huang"> Hsiao-Chien Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Hsiang%20Luo"> Chin-Hsiang Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorochrome" title="fluorochrome">fluorochrome</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effects" title=" shielding effects"> shielding effects</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20ratio" title=" leakage ratio"> leakage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20protective%20equipment" title=" personal protective equipment"> personal protective equipment</a> </p> <a href="https://publications.waset.org/abstracts/43218/study-of-aerosol-deposition-and-shielding-effects-on-fluorescent-imaging-quantitative-evaluation-in-protective-equipment-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2439</span> LES Investigation of the Natural Vortex Length in a Small-Scale Gas Cyclone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dzmitry%20Misiulia">Dzmitry Misiulia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergiy%20Antonyuk"> Sergiy Antonyuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small-scale cyclone separators are widely used in aerosol sampling. The flow field in a cyclone sampler is very complex, especially the vortex behavior. Most of the existing models for calculating cyclone efficiency use the same stable vortex structure while the vortex demonstrates dynamic variations rather than the steady-state picture. It can spontaneously ‘end’ at some point within the body of the separator. Natural vortex length is one of the most critical issues when designing and operating gas cyclones and is crucial to proper cyclone performance. The particle transport along the wall to the grid pot is not effective beyond this point. The flow field and vortex behavior inside the aerosol sampler have been investigated for a wide range of Reynolds numbers using Large Eddy Simulations. Two characteristics types of vortex behavior have been found with simulations. At low flow rates the vortex created in the cyclone dissipates in free space (without attaching to a surface) while at higher flow rates it attaches to the cyclone wall. The effects of the Reynolds number on the natural vortex length and the rotation frequency of the end of the vortex have been revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone" title="cyclone">cyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20field" title=" flow field"> flow field</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20vortex%20length" title=" natural vortex length"> natural vortex length</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/127284/les-investigation-of-the-natural-vortex-length-in-a-small-scale-gas-cyclone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2438</span> Characterization of Polycyclic Aromatic Hydrocarbons in Ambient Air PM2.5 in an Urban Site of Győr, Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Szab%C3%B3%20Nagy">A. Szabó Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szab%C3%B3"> J. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Zs.%20Csan%C3%A1di"> Zs. Csanádi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Erd%C5%91s"> J. Erdős</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Hungary, the measurement of ambient PM10-bound polycyclic aromatic hydrocarbon (PAH) concentrations is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the monitoring of PAHs associated with PM2.5 aerosol fraction is still incomplete. Therefore, the main aim of this study was to investigate the concentration levels of PAHs in PM2.5 urban aerosol fraction. PM2.5 and associated PAHs were monitored in November 2014 in an urban site of Győr (Northwest Hungary). The aerosol samples were collected every day for 24-hours over two weeks with a high volume air sampler provided with a PM2.5 cut-off inlet. The levels of 19 PAH compounds associated with PM2.5 aerosol fraction were quantified by a gas chromatographic method. Polluted air quality for PM2.5 (>25 g/m3) was indicated in 50% of the collected samples. The total PAHs concentrations ranged from 2.1 to 37.3 ng/m3 with the mean value of 12.4 ng/m3. Indeno(123-cd)pyrene (IND) and sum of three benzofluoranthene isomers were the most dominant PAH species followed by benzo(ghi)perylene and benzo(a)pyrene (BaP). Using BaP-equivalent approach on the concentration data of carcinogenic PAH species, BaP, and IND contributed the highest carcinogenic exposure equivalent (1.50 and 0.24 ng/m3 on average). A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected that the major source of PAH compounds in the PM2.5 aerosol fraction of Győr during the study period was fossil fuel combustion from automobiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air" title="air">air</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=benzo%28a%29pyrene" title=" benzo(a)pyrene"> benzo(a)pyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbon" title=" polycyclic aromatic hydrocarbon"> polycyclic aromatic hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/48972/characterization-of-polycyclic-aromatic-hydrocarbons-in-ambient-air-pm25-in-an-urban-site-of-gyor-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2437</span> FEM Investigation of Inhomogeneous Wall Thickness Backward Extrusion for Aerosol Can Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemal%20Ebrahim%20Dessie">Jemal Ebrahim Dessie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Lukacs"> Zsolt Lukacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wall of the aerosol can is extruded from the backward extrusion process. Necking is another forming process stage developed on the can shoulder after the backward extrusion process. Due to the thinner thickness of the wall, buckling is the critical challenge for current pure aluminum aerosol can industries. Design and investigation of extrusion with inhomogeneous wall thickness could be the best solution for reducing and optimization of neck retraction numbers. FEM simulation of inhomogeneous wall thickness has been simulated through this investigation. From axisymmetric Deform-2D backward extrusion, an aerosol can with a thickness of 0.4 mm at the top and 0.33 mm at the bottom of the aerosol can have been developed. As the result, it can optimize the number of retractions of the necking process and manufacture defect-free aerosol can shoulder due to the necking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20can" title="aerosol can">aerosol can</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20extrusion" title=" backward extrusion"> backward extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Deform-2D" title=" Deform-2D"> Deform-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=necking" title=" necking"> necking</a> </p> <a href="https://publications.waset.org/abstracts/135808/fem-investigation-of-inhomogeneous-wall-thickness-backward-extrusion-for-aerosol-can-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2436</span> Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siriluk%20Ruangrungrote">Siriluk Ruangrungrote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20scattering%20optical%20depth" title="aerosol scattering optical depth">aerosol scattering optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20extinction%20optical%20depth" title=" aerosol extinction optical depth"> aerosol extinction optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20burning%20aerosol" title=" biomass burning aerosol"> biomass burning aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20dust%20aerosol" title=" soil dust aerosol"> soil dust aerosol</a> </p> <a href="https://publications.waset.org/abstracts/38336/estimations-of-spectral-dependence-of-tropospheric-aerosol-single-scattering-albedo-in-sukhothai-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2435</span> Exposure Assessment to Airborne Particulate Matter in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rumchev">K. Rumchev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gilbey"> S. Gilbey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne particulate matter is a known hazard to human health, with a considerable body of evidence linking agricultural dust exposures to adverse human health effects in exposed populations. It is also known that agricultural workers are exposed to high levels of soil dust and other types of airborne particulate matter within the farming environment. The aim of this study was to examine exposure to agricultural dust among farm workers during the seeding season. Twenty-one wheat-belt farms consented to participate in the study with 30 workers being monitored for dust exposure whilst seeding or undertaking seeding associated tasks. Each farm was visited once and farmers’ were asked to wear a personal air sampler for a 4-hour sampling period. Simultaneous, real-time, tractor cabin air quality monitoring was also undertaken. Data for this study was collected using real-time aerosol dust monitors to determine in-tractor cabin PM exposure to five size fractions (total, PM10, respirable, PM2.5 and PM1), and personal sampling was undertaken to establish individual exposure to inhalable and respirable dust concentrations. The study established a significant difference between personal exposures and simultaneous real-time in-cabin exposures for both inhalable and respirable fractions. No significant difference was shown between in-cabin and personal inhalable dust concentrations during seeding and spraying tasks, although both in-cabin and personal concentrations were two times greater for seeding than spraying. Future research should focus on educating and providing farm owners and workers with more information on adopting safe work practices to minimise harmful exposures to agricultural dust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/72033/exposure-assessment-to-airborne-particulate-matter-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2434</span> Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiya%20Rao">Sofiya Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol-cloud-precipitation%20interaction" title="aerosol-cloud-precipitation interaction">aerosol-cloud-precipitation interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol-cloud-climate%20interaction" title=" aerosol-cloud-climate interaction"> aerosol-cloud-climate interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20radiative%20forcing" title=" indirect radiative forcing"> indirect radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20model" title=" climate model"> climate model</a> </p> <a href="https://publications.waset.org/abstracts/94163/observationally-constrained-estimates-of-aerosol-indirect-radiative-forcing-over-indian-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2433</span> Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesta%20Kohlmeier">Vesta Kohlmeier</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Dragan"> George C. Dragan</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Orasche"> Juergen Orasche</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Schnelle-Kreis"> Juergen Schnelle-Kreis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietmar%20Breuer"> Dietmar Breuer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Zimmermann"> Ralf Zimmermann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20collection%20efficiency" title="gas phase collection efficiency">gas phase collection efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20transmission" title=" particle transmission"> particle transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler" title=" personal aerosol sampler"> personal aerosol sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=SVOC" title=" SVOC"> SVOC</a> </p> <a href="https://publications.waset.org/abstracts/86966/carbonaceous-monolithic-multi-channel-denuders-as-a-gas-particle-partitioning-tool-for-the-occupational-sampling-of-aerosols-from-semi-volatile-organic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2432</span> Seasonal Variation in Aerosols Characteristics over Ahmedabad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devansh%20Desai">Devansh Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamandeep%20Kaur"> Chamandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kullu">Nirmal Kullu</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Christopher"> George Christopher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiative%20forcing" title="radiative forcing">radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20depth" title=" aerosol optical depth"> aerosol optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20mode" title=" fine mode"> fine mode</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20mode" title=" coarse mode"> coarse mode</a> </p> <a href="https://publications.waset.org/abstracts/19171/seasonal-variation-in-aerosols-characteristics-over-ahmedabad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2431</span> Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Srivastava">Shreya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20radiative%20forcing%20%28ARF%29" title="aerosol radiative forcing (ARF)">aerosol radiative forcing (ARF)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20composition" title=" aerosol composition"> aerosol composition</a>, <a href="https://publications.waset.org/abstracts/search?q=MISR" title=" MISR"> MISR</a>, <a href="https://publications.waset.org/abstracts/search?q=CERES" title=" CERES"> CERES</a>, <a href="https://publications.waset.org/abstracts/search?q=SBDART" title=" SBDART"> SBDART</a> </p> <a href="https://publications.waset.org/abstracts/182412/aerosol-direct-radiative-forcing-over-the-indian-subcontinent-a-comparative-analysis-from-the-satellite-observation-and-radiative-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2430</span> Seasonal Variability of Aerosol Optical Properties and Their Radiative Effects over Indo-Gangetic Plain in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Taneja">Kanika Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Soni"> V. K. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Attri"> S. D. Attri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafeel%20Ahmad"> Kafeel Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamshad%20Ahmad"> Shamshad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols represent an important component of earth-atmosphere system and have a profound impact on the global and regional climate. With the growing population and urbanization, the aerosol load in the atmosphere over the Indian region is found to be increasing. Several studies have reported that the aerosol optical depth over the northern part of India is higher as compared to the southern part. The northern India along the Indo-Gangetic plain is often influenced with dust transported from the Thar Desert in northwestern India and from Arabian Peninsula during the pre-monsoon season. Seasonal variations in aerosol optical and radiative properties were examined using data retrieved from ground based multi-wavelength Prede Sun/sky radiometer (POM-02) over Delhi, Rohtak, Jodhpur and Varanasi for the period April 2011-April 2013. These stations are part of the Skynet-India network of India Meteorological Department. The Sun/sky radiometer (POM-02) has advantage over other instruments that it can be calibrated on-site. These aerosol optical properties retrieved from skyradiometer observations are further used to analyze the Direct Aerosol Radiative Forcing (DARF) over the study locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20properties" title="aerosol optical properties">aerosol optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=indo-%20gangetic%20plain" title=" indo- gangetic plain"> indo- gangetic plain</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20forcing" title=" radiative forcing"> radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20radiometer" title=" sky radiometer"> sky radiometer</a> </p> <a href="https://publications.waset.org/abstracts/26748/seasonal-variability-of-aerosol-optical-properties-and-their-radiative-effects-over-indo-gangetic-plain-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2429</span> Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razaq%20A.%20Olaitan">Razaq A. Olaitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayansina%20Ayanlade"> Ayansina Ayanlade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20loading" title="aerosol loading">aerosol loading</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20types" title=" aerosol types"> aerosol types</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks"> health risks</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/184518/characterization-of-aerosol-particles-in-ilorin-nigeria-ground-based-measurement-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2428</span> Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Hyza">Miroslav Hyza</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Rulik"> Petr Rulik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojtech%20Bednar"> Vojtech Bednar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Sury"> Jan Sury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title=" atmosphere"> atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20radioactivity%20monitoring" title=" atmospheric radioactivity monitoring"> atmospheric radioactivity monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20sampler" title=" autonomous sampler"> autonomous sampler</a> </p> <a href="https://publications.waset.org/abstracts/94234/real-time-radiological-monitoring-of-the-atmosphere-using-an-autonomous-aerosol-sampler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2427</span> Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reema%20Tiwari">Reema Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20C.%20Kulshrestha"> U. C. Kulshrestha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diurnal%20ratios" title="diurnal ratios">diurnal ratios</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-aerosol%20interactions" title=" gas-aerosol interactions"> gas-aerosol interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20gradient" title=" spatial gradient"> spatial gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20equilibrium" title=" thermodynamic equilibrium"> thermodynamic equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/101393/investigating-the-atmospheric-phase-distribution-of-inorganic-reactive-nitrogen-species-along-the-urban-transect-of-indo-gangetic-plains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2426</span> Determination of Air Quality Index Using Respirable Dust Sampler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sapan%20Bhatnagar">Sapan Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Danish%20Akhtar"> Danish Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Ahmed"> Salman Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Ekbal"> Asif Ekbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gufran%20Beig"> Gufran Beig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particulates are the solid and liquid droplets present in the atmosphere, they have serious negative effects on human health and environment. PM10 and PM2.5 are so small that they can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Air Quality Index is an index tells us how clean or polluted our air is, and what associated health effects might be a concern for us. The AQI focuses on health affects you may experience within a few hours or days after breathing polluted air. The quality rating for each pollutant was calculated. The geometric mean of these quality ratings gives the Air Quality Index. The existing concentrations of pollutants were compared with ambient air quality standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20index" title="air quality index">air quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate" title=" particulate"> particulate</a>, <a href="https://publications.waset.org/abstracts/search?q=respirable%20dust%20sampler" title=" respirable dust sampler"> respirable dust sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20sampler" title=" dust sampler"> dust sampler</a> </p> <a href="https://publications.waset.org/abstracts/21814/determination-of-air-quality-index-using-respirable-dust-sampler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2425</span> Modeling Aerosol Formation in an Electrically Heated Tobacco Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20Nordlund">Markus Nordlund</a>, <a href="https://publications.waset.org/abstracts/search?q=Arkadiusz%20K.%20Kuczaj"> Arkadiusz K. Kuczaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20nucleation%20theory%20%28CNT%29" title=" classical nucleation theory (CNT)"> classical nucleation theory (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrically%20heated%20tobacco%20product%20%28EHTP%29" title=" electrically heated tobacco product (EHTP)"> electrically heated tobacco product (EHTP)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrically%20heated%20tobacco%20system%20%28EHTS%29" title=" electrically heated tobacco system (EHTS)"> electrically heated tobacco system (EHTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=multicomponent" title=" multicomponent"> multicomponent</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/47104/modeling-aerosol-formation-in-an-electrically-heated-tobacco-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2424</span> Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Srivastava">Shreya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushovan%20Ghosh"> Sushovan Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20Radiative%20forcing%20%28ARF%29" title="aerosol Radiative forcing (ARF)">aerosol Radiative forcing (ARF)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20composition" title=" aerosol composition"> aerosol composition</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20scattering%20albedo%20%28SSA%29" title=" single scattering albedo (SSA)"> single scattering albedo (SSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=CERES" title=" CERES"> CERES</a> </p> <a href="https://publications.waset.org/abstracts/182415/aerosol-radiative-forcing-over-indian-subcontinent-for-2000-2021-using-satellite-observations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2423</span> Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhenjamin%20Jordan%20L.%20Ona">Bhenjamin Jordan L. Ona</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=CCN" title=" CCN"> CCN</a>, <a href="https://publications.waset.org/abstracts/search?q=IN" title=" IN"> IN</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20cylone" title=" tropical cylone"> tropical cylone</a> </p> <a href="https://publications.waset.org/abstracts/44387/experimental-simulations-of-aerosol-effect-to-landfalling-tropical-cyclones-over-philippine-coast-virtual-seeding-using-wrf-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2422</span> Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Djikaev">Yuri S. Djikaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20aerosols" title="aqueous aerosols">aqueous aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20coating" title=" organic coating"> organic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20aging" title=" chemical aging"> chemical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20condensation%20nuclei" title=" cloud condensation nuclei"> cloud condensation nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohler%20activation" title=" Kohler activation"> Kohler activation</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20droplets" title=" cloud droplets"> cloud droplets</a> </p> <a href="https://publications.waset.org/abstracts/43796/thermodynamics-of-water-condensation-on-an-aqueous-organic-coated-aerosol-aging-via-chemical-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2421</span> Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Zhuravkova">D. S. Zhuravkova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Temnikov"> A. G. Temnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Belova"> O. S. Belova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Chernensky"> L. L. Chernensky</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Gerastenok"> T. K. Gerastenok</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Y.%20Kalugina"> I. Y. Kalugina</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Y.%20Lysov"> N. Y. Lysov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.V.%20Orlov"> A.V. Orlov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=main%20stage%20of%20discharge" title="main stage of discharge">main stage of discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometeor%20form" title=" hydrometeor form"> hydrometeor form</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20parameters" title=" lightning parameters"> lightning parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20and%20positive%20artificial%20charged%20aerosol%20cloud" title=" negative and positive artificial charged aerosol cloud"> negative and positive artificial charged aerosol cloud</a> </p> <a href="https://publications.waset.org/abstracts/67737/parameters-of-main-stage-of-discharge-between-artificial-charged-aerosol-cloud-and-ground-in-presence-of-model-hydrometeor-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2420</span> Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wang">Bo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20retrieve" title="remote sensing retrieve">remote sensing retrieve</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%202.5" title=" PM 2.5"> PM 2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-1" title=" GF-1"> GF-1</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20depth" title=" aerosol optical depth"> aerosol optical depth</a> </p> <a href="https://publications.waset.org/abstracts/78405/retrieval-of-aerosol-optical-depth-and-correlation-analysis-of-pm25-based-on-gf-1-wide-field-of-view-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2419</span> Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ding%20Jue">Ding Jue</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jiahua"> Li Jiahua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhidi"> Lei Zhidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Weng%20Peifen"> Weng Peifen</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xiaowei"> Li Xiaowei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30&mu;m of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20droplet" title="water droplet">water droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20particle" title=" aerosol particle"> aerosol particle</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20and%20coagulation" title=" collision and coagulation"> collision and coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-monte%20carlo%20method" title=" multi-monte carlo method"> multi-monte carlo method</a> </p> <a href="https://publications.waset.org/abstracts/27344/dynamical-characteristics-of-interaction-between-water-droplet-and-aerosol-particle-in-dedusting-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2418</span> High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal">Muhammad Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongfeng%20Qiu"> Zhongfeng Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AEORNET" title="AEORNET">AEORNET</a>, <a href="https://publications.waset.org/abstracts/search?q=AOD" title=" AOD"> AOD</a>, <a href="https://publications.waset.org/abstracts/search?q=SARA" title=" SARA"> SARA</a>, <a href="https://publications.waset.org/abstracts/search?q=GOCI" title=" GOCI"> GOCI</a>, <a href="https://publications.waset.org/abstracts/search?q=Beijing" title=" Beijing"> Beijing</a> </p> <a href="https://publications.waset.org/abstracts/101729/high-resolution-spatiotemporal-retrievals-of-aerosol-optical-depth-from-geostationary-satellite-using-sara-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2417</span> Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahabeh%20Safarpour">Sahabeh Safarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khiruddin%20Abdullah"> Khiruddin Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwee%20San%20Lim"> Hwee San Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Dadras"> Mohsen Dadras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20depth" title="aerosol optical depth">aerosol optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=MODIS" title=" MODIS"> MODIS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation%20techniques" title=" spatial interpolation techniques"> spatial interpolation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=Radial%20Basis%20Functions" title=" Radial Basis Functions"> Radial Basis Functions</a> </p> <a href="https://publications.waset.org/abstracts/25858/spatial-interpolation-of-aerosol-optical-depth-pollution-comparison-of-methods-for-the-development-of-aerosol-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2416</span> Carcinogenic Polycyclic Aromatic Hydrocarbons in Urban Air Particulate Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Szab%C3%B3%20Nagy">A. Szabó Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szab%C3%B3"> J. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Zs.%20Csan%C3%A1di"> Zs. Csanádi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Erd%C5%91s"> J. Erdős</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An assessment of the air quality of Győr (Hungary) was performed by determining the ambient concentrations of PM10-bound carcinogenic polycyclic aromatic hydrocarbons (cPAHs) in different seasons. A high volume sampler was used for the collection of ambient aerosol particles, and the associated cPAH compounds (benzo[a]pyrene (BaP), benzo[a]anthracene, benzofluoranthene isomers, indeno[123-cd]pyrene and dibenzo[ah]anthracene) were analyzed by a gas chromatographic method. Higher mean concentrations of total cPAHs were detected in samples collected in winter (9.62 ng/m<sup>3</sup>) and autumn (2.69 ng/m<sup>3</sup>) compared to spring (1.05 ng/m<sup>3</sup>) and summer (0.21 ng/m<sup>3</sup>). The calculated <em>BaP</em> <em>toxic equivalent concentrations</em> have also reflected that the local population appears to be exposed to significantly higher cancer risk in the heating seasons. Moreover, the concentration levels of cPAHs determined in this study were compared to other Hungarian urban sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air" title="air">air</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogenic" title=" carcinogenic"> carcinogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons%20%28PAH%29" title=" polycyclic aromatic hydrocarbons (PAH)"> polycyclic aromatic hydrocarbons (PAH)</a>, <a href="https://publications.waset.org/abstracts/search?q=PM10" title=" PM10"> PM10</a> </p> <a href="https://publications.waset.org/abstracts/67011/carcinogenic-polycyclic-aromatic-hydrocarbons-in-urban-air-particulate-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2415</span> Two-Phase Flow Study of Airborne Transmission Control in Dental Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Zabihi">Mojtaba Zabihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Munro"> Stephen Munro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Little"> Jonathan Little</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Li"> Ri Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Brinkerhoff"> Joshua Brinkerhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Kheirkhah"> Sina Kheirkhah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=dental" title=" dental"> dental</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase%20model" title=" discrete phase model"> discrete phase model</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/130160/two-phase-flow-study-of-airborne-transmission-control-in-dental-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> Investigating the Aerosol Load of Eastern Mediterranean Basin with Sentinel-5p Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Yurto%C4%9Flu">Deniz Yurtoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols directly affect the radiative balance of the earth by absorbing and/or scattering the sun rays reaching the atmosphere and indirectly affect the balance by acting as a nucleus in cloud formation. The composition, physical, and chemical properties of aerosols vary depending on their sources and the time spent in the atmosphere. The Eastern Mediterranean Basin has a high aerosol load that is formed from different sources; such as anthropogenic activities, desert dust outbreaks, and the spray of sea salt; and the area is subjected to atmospheric transport from other locations on the earth. This region, which includes the deserts of Africa, the Middle East, and the Mediterranean sea, is one of the most affected areas by climate change due to its location and the chemistry of the atmosphere. This study aims to investigate the spatiotemporal deviation of aerosol load in the Eastern Mediterranean Basin between the years 2018-2022 with the help of a new pioneer satellite of ESA (European Space Agency), Sentinel-5P. The TROPOMI (The TROPOspheric Monitoring Instrument) traveling on this low-Earth orbiting satellite is a UV (Ultraviolet)-sensing spectrometer with a resolution of 5.5 km x 3.5 km, which can make measurements even in a cloud-covered atmosphere. By using Absorbing Aerosol Index data produced by this spectrometer and special scripts written in Python language that transforms this data into images, it was seen that the majority of the aerosol load in the Eastern Mediterranean Basin is sourced from desert dust and anthropogenic activities. After retrieving the daily data, which was separated from the NaN values, seasonal analyses match with the normal aerosol variations expected, which are high in warm seasons and lower in cold seasons. Monthly analyses showed that in four years, there was an increase in the amount of Absorbing Aerosol Index in spring and winter by 92.27% (2019-2021) and 39.81% (2019-2022), respectively. On the other hand, in the summer and autumn seasons, a decrease has been observed by 20.99% (2018-2021) and 0.94% (2018-2021), respectively. The overall variation of the mean absorbing aerosol index from TROPOMI between April 2018 to April 2022 reflects a decrease of 115.87% by annual mean from 0.228 to -0.036. However, when the data is analyzed by the annual mean values of the years which have the data from January to December, meaning from 2019 to 2021, there was an increase of 57.82% increase (0.108-0.171). This result can be interpreted as the effect of climate change on the aerosol load and also, more specifically, the effect of forest fires that happened in the summer months of 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=eastern%20mediterranean%20basin" title=" eastern mediterranean basin"> eastern mediterranean basin</a>, <a href="https://publications.waset.org/abstracts/search?q=sentinel-5p" title=" sentinel-5p"> sentinel-5p</a>, <a href="https://publications.waset.org/abstracts/search?q=tropomi" title=" tropomi"> tropomi</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20index" title=" aerosol index"> aerosol index</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/164862/investigating-the-aerosol-load-of-eastern-mediterranean-basin-with-sentinel-5p-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> Monte Carlo Methods and Statistical Inference of Multitype Branching Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Staneva">Ana Staneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vessela%20Stoimenova"> Vessela Stoimenova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=branching%20processes" title=" branching processes"> branching processes</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20sampler" title=" Gibbs sampler"> Gibbs sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20methods" title=" Monte Carlo methods"> Monte Carlo methods</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20estimation" title=" statistical estimation"> statistical estimation</a> </p> <a href="https://publications.waset.org/abstracts/63592/monte-carlo-methods-and-statistical-inference-of-multitype-branching-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Mestiri">Sami Mestiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeljelil%20Farhat"> Abdeljelil Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20risk" title=" credit risk"> credit risk</a>, <a href="https://publications.waset.org/abstracts/search?q=Penalized%20Quasi%20Likelihood" title=" Penalized Quasi Likelihood"> Penalized Quasi Likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20Sampler" title=" Gibbs Sampler"> Gibbs Sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression%20with%20random%20effects" title=" logistic regression with random effects"> logistic regression with random effects</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20ROC" title=" curve ROC"> curve ROC</a> </p> <a href="https://publications.waset.org/abstracts/28981/credit-risk-prediction-based-on-bayesian-estimation-of-logistic-regression-model-with-random-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2411</span> Ensemble Sampler For Infinite-Dimensional Inverse Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremie%20Coullon">Jeremie Coullon</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20J.%20Webber"> Robert J. Webber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20inverse%20problems" title="Bayesian inverse problems">Bayesian inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chain%20Monte%20Carlo" title=" Markov chain Monte Carlo"> Markov chain Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite-dimensional%20inverse%20problems" title=" infinite-dimensional inverse problems"> infinite-dimensional inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a> </p> <a href="https://publications.waset.org/abstracts/136397/ensemble-sampler-for-infinite-dimensional-inverse-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=82">82</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=personal%20aerosol%20sampler&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10