CINXE.COM

Search results for: calcium carbide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: calcium carbide</title> <meta name="description" content="Search results for: calcium carbide"> <meta name="keywords" content="calcium carbide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="calcium carbide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="calcium carbide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 893</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: calcium carbide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Ihejirika">C. E. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Nwachukwu"> M. I. Nwachukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Njoku-Tony"> R. F. Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Ihejirika"> O. C. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20O.%20Enwereuzoh"> U. O. Enwereuzoh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Imo"> E. O. Imo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Ashiegbu"> D. C. Ashiegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium-carbide" title=" calcium-carbide"> calcium-carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity "> toxicity </a> </p> <a href="https://publications.waset.org/abstracts/12369/impact-of-calcium-carbide-waste-dumpsites-on-soil-chemical-and-microbial-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Trihatmoko">John Trihatmoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Luky%20Handoko"> Luky Handoko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20temperature" title="curing temperature">curing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20clay" title=" organic clay"> organic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title=" bagasse ash"> bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbide%20residue" title=" calcium carbide residue"> calcium carbide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/123381/effect-of-curing-temperature-on-unconfined-compression-strength-of-bagasse-ash-calcium-carbide-residue-treated-organic-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Microstructure Characterization on Silicon Carbide Formation from Natural Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Leha%20Abdul%20Rahman">Noor Leha Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Koay%20Mei%20Hyie"> Koay Mei Hyie</a>, <a href="https://publications.waset.org/abstracts/search?q=Anizah%20Kalam"> Anizah Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20Elias"> Husna Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wang%20Dung"> Teng Wang Dung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD "> XRD </a> </p> <a href="https://publications.waset.org/abstracts/30071/microstructure-characterization-on-silicon-carbide-formation-from-natural-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Comparison of the Hydration Products of Commercial and Experimental Calcium Silicate Cement: The Preliminary Observational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Woo%20Chang">Seok Woo Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of this study was to compare and evaluate the hydration products of commercial and experimental calcium silicate cement. Materials and Methods: The commercial calcium silicate cement (ProRoot MTA, Dentsply) and experimental calcium silicate cement (n=10) were mixed with distilled water (water/powder ratio = 20 w/w) and stirred at room temperature for 10 hours. These mixtures were dispersed on wafer and dried for 12 hours at room temperature. Thereafter, the dried specimens were examined with Scanning Electron Microscope (SEM). Electron Dispersive Spectrometry (EDS) was also carried out. Results: The commercial calcium silicate cement (ProRoot MTA) and experimental calcium silicate cement both showed precipitation of rod-like and globule-like crystals. Based on EDS analysis, these precipitates were supposed to be calcium hydroxide or calcium silicate hydrates. The degree of formation of these precipitates was higher in commercial MTA. Conclusions: Based on the results, both commercial and experimental calcium silicate cement had ability to produce calcium hydroxide or calcium silicate hydrate precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20cement" title="calcium silicate cement">calcium silicate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=ProRoot%20MTA" title=" ProRoot MTA"> ProRoot MTA</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20hydroxide" title=" calcium hydroxide"> calcium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20hydrate" title=" calcium silicate hydrate"> calcium silicate hydrate</a> </p> <a href="https://publications.waset.org/abstracts/8741/comparison-of-the-hydration-products-of-commercial-and-experimental-calcium-silicate-cement-the-preliminary-observational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Wei-Ting">Wu Wei-Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Po-Yen"> Liu Po-Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Chin-Tzu"> Chang Chin-Tzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Wei-Chun"> Cheng Wei-Chun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite" title="austenite">austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=austenite%20twin%20layers" title=" austenite twin layers"> austenite twin layers</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BA-carbide" title=" κ-carbide"> κ-carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=twins" title=" twins"> twins</a> </p> <a href="https://publications.waset.org/abstracts/72110/the-study-of-aluminum-effects-layer-austenite-twins-adjacent-to-k-carbide-plates-in-the-cellular-structure-of-a-mn-al-alloy-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Lv">C. C. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Sun"> Y. L. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Zuo"> D. W. Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20balls" title="cemented carbide balls">cemented carbide balls</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentric%20lapping" title=" eccentric lapping"> eccentric lapping</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20precision" title=" high precision"> high precision</a>, <a href="https://publications.waset.org/abstracts/search?q=lapping%20tracks" title=" lapping tracks"> lapping tracks</a>, <a href="https://publications.waset.org/abstracts/search?q=V-groove" title=" V-groove"> V-groove</a> </p> <a href="https://publications.waset.org/abstracts/20023/a-novel-eccentric-lapping-method-with-two-rotatable-lapping-plates-for-finishing-cemented-carbide-balls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Can Bone Resorption Reduce with Nanocalcium Particles in Astronauts?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Teja%20Mandapaka">Ravi Teja Mandapaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20Kukkamalla"> Prasanna Kumar Kukkamalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor absorption of calcium, elevated levels in serum and loss of bone are major problems of astronauts during space travel. Supplementation of calcium could not reveal this problem. In normal condition only 33% of calcium is absorbed from dietary sources. In this paper effect of space environment on calcium metabolism was discussed. Many surprising study findings were found during literature survey. Clinical trials on ovariectomized mice showed that reduction of calcium particles to nano level make them more absorbable and bioavailable. Control of bone loss in astronauts in critical important In Fortification of milk with nana calcium particles showed reduces urinary pyridinoline, deoxypyridinoline levels. Dietary calcium and supplementation do not show much retention of calcium in zero gravity environment where absorption is limited. So, the fortification of foods with nano calcium particles seemed beneficial for astronauts during and after space travel in their speedy recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20calcium" title="nano calcium">nano calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=astronauts" title=" astronauts"> astronauts</a>, <a href="https://publications.waset.org/abstracts/search?q=fortification" title=" fortification"> fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementation" title=" supplementation"> supplementation</a> </p> <a href="https://publications.waset.org/abstracts/30899/can-bone-resorption-reduce-with-nanocalcium-particles-in-astronauts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Theoretical Method for Full Ab-Initio Calculation of Rhenium Carbide Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.Rached">D.Rached</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Rabah"> M.Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First principles calculations are carried out to investigate the structural, electronic, and elastic properties of the utraincompressible materials, namely, noble metal carbide of Rhenium carbide (ReC) in four phases, the rocksalt (NaCl-B1), zinc blende (ZB-B2), the tungsten carbide(Bh) (WC), and the nickel arsenide (NiAs-B8).The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus its pressure derivate, and the hardness of ReC in these phases are systematically predicted by calculations from first–principles. The corresponding calculated bulk modulus is comparable with that of diamond, especially for the B8 –type rhenium carbide (ReC), the incompressibility along the c axis is demonstrated to exceed the linear incompressibility of diamond. Our calculations confirm in the nickel arsenide (B8) structure the ReC is found to be stable with a large bulk modulus B=440 GPa and the tungsten carbide (WC) structure becomes the most more favourable with to respect B3 and B1 structures, which ReC- WC is meta-stable. Furthermore, the highest bulk modulus values in the zinc blende (B3), rock salt (B1), tungsten carbide (WC), and the nickel arsenide (B8) structures (294GPa, 401GPa, 415GPa and 447 GPa, respectively) indicates that ReC is a hard material, and is superhard compound H(B8)= 36 GPa compared with the H(diamond)=96 GPa and H(c BN)=63.10 GPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-LMTO" title=" FP-LMTO"> FP-LMTO</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20material" title=" hard material"> hard material</a> </p> <a href="https://publications.waset.org/abstracts/13995/theoretical-method-for-full-ab-initio-calculation-of-rhenium-carbide-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Singh">Nisha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeru%20Adlakha"> Neeru Adlakha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20signalling" title="calcium signalling">calcium signalling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=inositol%201" title=" inositol 1"> inositol 1</a>, <a href="https://publications.waset.org/abstracts/search?q=4" title=" 4"> 4</a>, <a href="https://publications.waset.org/abstracts/search?q=5-triphosphate" title=" 5-triphosphate"> 5-triphosphate</a> </p> <a href="https://publications.waset.org/abstracts/68214/numerical-model-to-study-calcium-and-inositol-145-trisphosphate-dynamics-in-a-myocyte-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20Ploetz">Steven Ploetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Lohmueller"> Andreas Lohmueller</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20F.%20Singer"> Robert F. Singer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composites" title="aluminum matrix composites">aluminum matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title=" boron carbide"> boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a> </p> <a href="https://publications.waset.org/abstracts/64924/effect-of-alloying-elements-on-particle-incorporation-of-boron-carbide-reinforced-aluminum-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Effect of Flux Salts on the Recovery Extent and Quality of Metal Values from Spent Rechargeable Lead Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A%20Rabah">Mahmoud A Rabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20M.%20Abelbasir"> Sabah M. Abelbasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-calcium alloy containing up to 0.10% calcium was recovered from spent rechargeable sealed acid lead batteries. Two techniques were investigated to explore the effect of flux salts on the extent and quality of the recovered alloy, pyro-metallurgical and electrochemical methods. About 10 kg of the spent batteries were collected for testing. The sample was washed with hot water and dried. The plastic cases of the batteries were mechanically cut, and the contents were dismantled manually, the plastic containers were shredded for recycling. The electrode plates were freed from the loose powder and placed in SiC crucible and covered with alkali chloride salts. The loaded crucible was heated in an electronically controlled chamber furnace type Nabertherm C3 at temperatures up to 800 °C. The obtained metals were analyzed. The effect of temperature, rate of heating, atmospheric conditions, composition of the flux salts on the extent and quality of the recovered products were studied. Results revealed that the spent rechargeable batteries contain 6 blocks of 6 plates of Pb-Ca alloy each. Direct heating of these plates in a silicon carbide crucible under ambient conditions produces lead metal poor in calcium content ( < 0.07%) due to partial oxidation of the alloying calcium element. Rate of temperature increase has a considerable effect on the yield of the lead alloy extraction. Flux salts composition benefits the recovery process. Sodium salts are more powerful as compared to potassium salts. Lead calcium alloy meeting the standard specification was successfully recovered from the spent rechargeable acid lead batteries with a very competitive cost to the same alloy prepared from primary resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rechargeable%20lead%20batteries" title="rechargeable lead batteries">rechargeable lead batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-calcium%20alloy" title=" lead-calcium alloy"> lead-calcium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title=" waste recovery"> waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20salts" title=" flux salts"> flux salts</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20recovery" title=" thermal recovery"> thermal recovery</a> </p> <a href="https://publications.waset.org/abstracts/78511/effect-of-flux-salts-on-the-recovery-extent-and-quality-of-metal-values-from-spent-rechargeable-lead-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almontas%20Vilutis">Almontas Vilutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vytenis%20Jankauskas"> Vytenis Jankauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide" title=" carbide"> carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a> </p> <a href="https://publications.waset.org/abstracts/170669/friction-behavior-of-wood-plastic-composites-against-uncoated-cemented-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Combinatory Nutrition Supplementation: A Case of Synergy for Increasing Calcium Bioavailability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20C.%20S.%20Lim">Daniel C. S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Y.%20M.%20Yeo"> Eric Y. M. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Tan"> W. Y. Tan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an overview of how calcium interacts with the various essential nutrients within an environment of cellular and hormonal interactions for the purpose of increasing bioavailability to the human body. One example of such interactions can be illustrated with calcium homeostasis. This paper gives an in-depth discussion on the possible interactive permutations with various nutrients and factors leading to the promotion of calcium bioavailability to the body. The review hopes to provide further insights into how calcium supplement formulations can be improved to better influence its bioavailability in the human body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20of%20cellular%20and%20hormonal%20interactions" title=" environment of cellular and hormonal interactions"> environment of cellular and hormonal interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20combinations" title=" nutritional combinations"> nutritional combinations</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic" title=" synergistic"> synergistic</a> </p> <a href="https://publications.waset.org/abstracts/61759/combinatory-nutrition-supplementation-a-case-of-synergy-for-increasing-calcium-bioavailability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yukinori%20Taniguchi">Yukinori Taniguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuyoshi%20Kurita"> Kazuyoshi Kurita</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Mizuta"> Kohei Mizuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Keigo%20Nishitani"> Keigo Nishitani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryuichi%20Fukuda"> Ryuichi Fukuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tungsten%20carbide" title="tungsten carbide">tungsten carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle%20process" title=" recycle process"> recycle process</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title=" compression test"> compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-wear%20ability" title=" anti-wear ability"> anti-wear ability</a> </p> <a href="https://publications.waset.org/abstracts/51013/application-of-recycled-tungsten-carbide-powder-for-fabrication-of-iron-based-powder-metallurgy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiaxu%20Huang">Jiaxu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crushing%20atmosphere" title="crushing atmosphere">crushing atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20methods" title=" cooling methods"> cooling methods</a>, <a href="https://publications.waset.org/abstracts/search?q=sieving%20particle%20size" title=" sieving particle size"> sieving particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=TiC" title=" TiC"> TiC</a> </p> <a href="https://publications.waset.org/abstracts/108634/the-study-on-treatment-technology-of-fused-carbonized-blast-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Waichman">Sharon Waichman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahaf%20Froim"> Shahaf Froim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ido%20Zukerman"> Ido Zukerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Barzilai"> Shmuel Barzilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmual%20Hayun"> Shmual Hayun</a>, <a href="https://publications.waset.org/abstracts/search?q=Avi%20Raveh"> Avi Raveh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide%20coatings" title=" boron carbide coatings"> boron carbide coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%2Fmetal%20bond" title=" ceramic/metal bond"> ceramic/metal bond</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20layer" title=" intermediate layer"> intermediate layer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed-DC%20magnetron%20sputtering" title=" pulsed-DC magnetron sputtering"> pulsed-DC magnetron sputtering</a> </p> <a href="https://publications.waset.org/abstracts/107246/adhesion-enhancement-of-boron-carbide-coatings-on-aluminum-substrates-utilizing-an-intermediate-adhesive-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Sulfate Attack on Pastes Made with Different C3A and C4AF Contents and Stored at 5°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Sotiriadis">Konstantinos Sotiriadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rados%C5%82aw%20Mr%C3%B3z"> Radosław Mróz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work the internal sulfate attack on pastes made from pure clinker phases was studied. Two binders were produced: (a) a binder with 2% C3A and 18% C4AF content; (b) a binder with 10% C3A and C4AF content each. Gypsum was used as the sulfate bearing compound, while calcium carbonate added to differentiate the binders produced. The phases formed were identified by XRD analysis. The results showed that ettringite was the deterioration phase detected in the case of the low C3A content binder. Carbonation occurred in the specimen without calcium carbonate addition, while portlandite was observed in the one containing calcium carbonate. In the case of the high C3A content binder, traces of thaumasite were detected when calcium carbonate was not incorporated in the binder. A solid solution of thaumasite and ettringite was found when calcium carbonate was added. The amount of C3A had not fully reacted with sulfates, since its corresponding peaks were detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20aluminate" title="tricalcium aluminate">tricalcium aluminate</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20aluminate%20ferrite" title=" calcium aluminate ferrite"> calcium aluminate ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20attack" title=" sulfate attack"> sulfate attack</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature" title=" low temperature"> low temperature</a> </p> <a href="https://publications.waset.org/abstracts/12814/sulfate-attack-on-pastes-made-with-different-c3a-and-c4af-contents-and-stored-at-5c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> One Step Synthesis of Molybdenum Carbide Nanoparticles for Efficient Hydrogen Evolution Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Upadhyay">Sanjay Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Prakash%20Pandey"> Om Prakash Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen has been promoted as an alternative source of energy, which is renewable, cost-effective, and nature-friendly. Hydrogen evolution reaction (HER) can be used for mass production of hydrogen at a very low cost through electrochemical water splitting. An active and efficient electrocatalyst is required to perform this reaction. Till date, platinum (Pt) is a stable and efficient electrocatalyst towards HER. But its high cost and low abundance hiders its large scale uses. Molybdenum carbide having a similar electronic structure to platinum can be a great alternative to costly platinum. In this study, pure phase molybdenum carbide (Mo₂C) has been synthesized in a single step. Synthesis temperature and holding time have been optimized to obtain pure phases of Mo₂C. The surface, structural and morphological properties of as-synthesized compounds have been studied. The HER activity of as-synthesized compounds has been explored in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20fuel" title=" hydrogen fuel"> hydrogen fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum%20carbide" title=" molybdenum carbide"> molybdenum carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/140482/one-step-synthesis-of-molybdenum-carbide-nanoparticles-for-efficient-hydrogen-evolution-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20A.%20Soto-Bear">Jessica A. Soto-Bear</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Gonz%C3%A1lez-V%C3%A9lez"> Virginia González-Vélez</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20Casta%C3%B1eda-Villa"> Norma Castañeda-Villa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amparo%20Gil"> Amparo Gil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inner%20hair%20cells" title="inner hair cells">inner hair cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20algorithm" title=" Monte Carlo algorithm"> Monte Carlo algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Otoferlin" title=" Otoferlin"> Otoferlin</a>, <a href="https://publications.waset.org/abstracts/search?q=secretion" title=" secretion"> secretion</a> </p> <a href="https://publications.waset.org/abstracts/96568/stochastic-modeling-of-secretion-dynamics-in-inner-hair-cells-of-the-auditory-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Assessment of Trace Metal Concentration of Soils Contaminated with Carbide in Abraka, Delta State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.M.%20Agbogidi">O.M. Agbogidi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.M.%20Onochie"> I.M. Onochie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation was carried out on trace metal concentration of soils contaminated with carbide in Abraka, Delta State, Nigeria in 2014 with a view to providing baseline formation on their status relative to the control plants and to the tolerable limits recommended by World standard bodies including WHO and FAO. The metals were analyzed using the Atomic Absorption Spectrophotometer which showed an elevated level when compared with the control plots. High level of metals including Fe, Pb, Zn, Cu, Cd, Ni, Cr and arsenic were recorded and these values were significantly different (P<0.05) from values obtained from the control plots. These results are indicative of the fact that carbide polluted soil had higher level of trace metals and because these metals are non-biodegradable elements in the ecosystem, a rise to their lethal levels in food chains is envisaged due to the interdependency of plants and animals stemming from soil-water organisms interrelationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-concentration" title="bio-concentration">bio-concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20contaminated%20soils" title=" carbide contaminated soils"> carbide contaminated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/31776/assessment-of-trace-metal-concentration-of-soils-contaminated-with-carbide-in-abraka-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansha%20Kotwani">Mansha Kotwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffers" title="buffers">buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=IP3R" title=" IP3R"> IP3R</a>, <a href="https://publications.waset.org/abstracts/search?q=ER%20flux" title=" ER flux"> ER flux</a>, <a href="https://publications.waset.org/abstracts/search?q=SERCA%20pump" title=" SERCA pump"> SERCA pump</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20amplitude" title=" source amplitude"> source amplitude</a> </p> <a href="https://publications.waset.org/abstracts/19236/two-dimensional-finite-element-model-to-study-calcium-dynamics-in-fibroblast-cell-with-excess-buffer-approximation-involving-er-flux-and-serca-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Parametric Study and Modelling of Orthogonal Cutting Process for AISI 4340 and Ti-6Al-4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purnank%20Bhatt">Purnank Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mit%20Shah"> Mit Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Nagda"> Pawan Nagda</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimal%20Jasoliya"> Vimal Jasoliya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of parameters like velocity and depth of cut on cutting forces is investigated for the empirical relation of the coefficient of friction derived for CRS 1018 for different materials like AISI 4340 and Ti6Al4V. For this purpose, turning tests were carried out on the above materials using coated cemented carbide tool inserts for steel grade and uncoated cemented carbide cutting tool inserts for Titanium with different chip breaker geometries. The cutting forces were measured using a Kistler dynamometer where the multiplication factor taken is 200.The effect of cutting force variation was analyzed experimentally and are compared with the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title="cutting forces">cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20friction" title=" coefficient of friction"> coefficient of friction</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20tool%20inserts" title=" carbide tool inserts"> carbide tool inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/66438/parametric-study-and-modelling-of-orthogonal-cutting-process-for-aisi-4340-and-ti-6al-4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Effects of Magnetic Field on 4H-SiC P-N Junctions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khimmatali%20Nomozovich%20Juraev">Khimmatali Nomozovich Juraev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC<Ni> p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC<Ni> p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC<Ni> p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4H-SiC" title="4H-SiC">4H-SiC</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20Ni" title=" diffusion Ni"> diffusion Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=effects%20of%20magnetic%20field" title=" effects of magnetic field"> effects of magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V%20characteristics" title=" I-V characteristics"> I-V characteristics</a> </p> <a href="https://publications.waset.org/abstracts/161026/effects-of-magnetic-field-on-4h-sic-p-n-junctions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Modification of Toothpaste Formula Using Pineapple Cobs and Eggshell Waste as a Way to Decrease Dental Caries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achmad%20Buhori">Achmad Buhori</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Imam%20Pratama"> Reza Imam Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tissa%20Wiraatmaja"> Tissa Wiraatmaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanti%20Megawati"> Wanti Megawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data from many countries indicates that there is a marked increase of dental caries. The increases in caries appear to occur in lower socioeconomic groups. It is possible that the benefits of prevention of dental caries are not reaching these groups. However, there is a way to decrease dental caries by adding 5% of bromelain and calcium as an active agent in toothpaste. Bromelain can break glutamine-alanine bond and arginine-alanine bond which is a constituent of amino acid that causes dental plague which is one of the factors of dental caries. Calcium help rebuilds the teeth by strengthening and repairing enamel. Bromelain can be found from the extraction of pineapple (Ananas comosus) cobs (88.86-94.22 % of bromelain recovery during extraction based on the enzyme unit) and calcium can be taken from eggshell (95% of dry eggshell consist of calcium). The aim of this experiment is to make a toothpaste which contains bromelain and calcium as an effective, cheap, and healthy way to decrease dental caries around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bromelain" title="bromelain">bromelain</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20plague" title=" dental plague"> dental plague</a>, <a href="https://publications.waset.org/abstracts/search?q=toothpaste" title=" toothpaste"> toothpaste</a> </p> <a href="https://publications.waset.org/abstracts/54683/modification-of-toothpaste-formula-using-pineapple-cobs-and-eggshell-waste-as-a-way-to-decrease-dental-caries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Impact of Different Ripening Accelerators on the Microbial Load and Proximate Composition of Plantain (Musa paradisiaca) and Banana (Musa sapientum), during the Ripening Process, and the Nutrition Implication for Food Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisdom%20Robert%20Duruji">Wisdom Robert Duruji</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwasegun%20Christopher%20Akinleye"> Oluwasegun Christopher Akinleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports on the impact of different ripening accelerators on the microbial load and proximate composition of plantain (Musa paradisiaca) and Banana (Musa sapientum) during the ripening process, and the nutrition implication for food security. The study comprised of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening accelerator was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating and enumerating their micro flora using pour plate method; and also, their proximate composition was determined using standard methods. The result indicated that the bacteria count of plantain increased from 3.25 ± 0.33 for unripe to 5.31 ± 0.30 log cfu/g for (treated) ripened, and that of banana increased from 3.69 ± 0.11 for unripe to 5.26 ± 0.21 log cfu/g for ripened. Also, the fungal count of plantain increased from 3.20 ± 0.16 for unripe to 4.88 ± 0.22 log sfu/g for ripened; and that of banana increased from 3.61 ± 0.19 for unripe to 5.43 ± 0.26 for ripened. Ripened plantain fingers without any ripening accelerator (control) had significantly (p < 0.05) higher values of crude protein 3.56 ± 0.06%, crude fat 0.42 ± 0.04%, total ash 2.74 ± 0.15 and carbohydrate 31.10 ± 0.20; but with significantly lower value of moisture 62.14 ± 0.07% when compared with treated plantain. The proximate composition trend of treated and banana fingers control is similar to that of treated and plantain control, except that higher moisture content of 75.11 ± 0.07% and lesser protein, crude fat, total ash and carbohydrate were obtained from treated and ripened banana control when the treatments were compared with that of plantain. The study concluded that plantain is more nutritious (mealy) than a banana; also, the ripening accelerators increased the microbial load and reduced the nutritional status of plantain and banana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20nutrition" title="food nutrition">food nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbide" title=" calcium carbide"> calcium carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=rvingia%20gabonensis" title=" rvingia gabonensis"> rvingia gabonensis</a>, <a href="https://publications.waset.org/abstracts/search?q=newbouldia%20laevis" title=" newbouldia laevis"> newbouldia laevis</a>, <a href="https://publications.waset.org/abstracts/search?q=plantain" title=" plantain"> plantain</a>, <a href="https://publications.waset.org/abstracts/search?q=banana" title=" banana"> banana</a> </p> <a href="https://publications.waset.org/abstracts/48032/impact-of-different-ripening-accelerators-on-the-microbial-load-and-proximate-composition-of-plantain-musa-paradisiaca-and-banana-musa-sapientum-during-the-ripening-process-and-the-nutrition-implication-for-food-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Evaluation of Re-mineralization Ability of Nanohydroxyapatite and Coral Calcium with Different Concentrations on Initial Enamel Carious Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdelnabi">Ali Abdelnabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nermeen%20Hamza"> Nermeen Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coral calcium is a boasting natural product and dietary supplement which is considered a source of alkaline calcium carbonate, this study is a comparative study, comparing the remineralization effect of the new product of coral calcium with that of nano-hydroxyapatite. Methodology: a total of 35 extracted molars were collected, examined and sectioned to obtain 70 sound enamel discs, all discs were numbered and examined by scanning electron microscope coupled with Energy Dispersive Analysis of X-rays(EDAX) for mineral content, subjected to artificial caries, and mineral content was re-measured, discs were divided into seven groups according to the remineralizing agent used, where groups 1 to 3 used 10%, 20%, 30% nanohydroxyapatite gel respectively, groups 4 to 6 used 10%, 20%, 30% coral calcium gel and group 7 with no remineralizing agent (control group). All groups were re-examined by EDAX after remineralization; data were calculated and tabulated. Results: All groups showed a statistically significant drop in calcium level after artificial caries; all groups showed a statistically significant rise in calcium content after remineralization except for the control group; groups 1 and 5 showed the highest increase in calcium level after remineralization. Conclusion: coral calcium can be considered a comparative product to nano-hydroxyapatite regarding the remineralization of enamel initial carious lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20caries" title="artificial caries">artificial caries</a>, <a href="https://publications.waset.org/abstracts/search?q=coral%20calcium" title=" coral calcium"> coral calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohydroxyapatite" title=" nanohydroxyapatite"> nanohydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=re-mineralization" title=" re-mineralization"> re-mineralization</a> </p> <a href="https://publications.waset.org/abstracts/116242/evaluation-of-re-mineralization-ability-of-nanohydroxyapatite-and-coral-calcium-with-different-concentrations-on-initial-enamel-carious-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Suwanprateeb">J. Suwanprateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Thammarakcharoen"> F. Thammarakcharoen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title="biomimetic">biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Calcium%20Phosphate%20Coating" title=" Calcium Phosphate Coating"> Calcium Phosphate Coating</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/13016/enhancing-protein-incorporation-in-calcium-phosphate-coating-on-titanium-by-rapid-biomimetic-co-precipitation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> The Impact of Foliar Application of the Calcium-Containing Compounds in Increasing Resistance to Blue Mold on Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Baghalian">Masoud Baghalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Arshad"> Musa Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the effect of foliar application of calcium chloride on the resistance of fruits such as Red and Golden Lebanese apple varieties to blue mold, a split plot experiment in time and space, based on accidental blocks, with three replications under foliar application were done (Control, one in a thousand, two in thousands) and the results of the variance analysis showed that there is a significant difference between the levels of foliar and variety at 5% level and between time, there is significant difference in interaction of variety × time and three way interaction of foliar×variety×time, at 1% level. The highest resistance to the blue mold disease in foliar application was observed at two in thousands calcium (calcium chloride) level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple" title="apple">apple</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20mold" title=" blue mold"> blue mold</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20calcium" title=" foliar calcium"> foliar calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/45553/the-impact-of-foliar-application-of-the-calcium-containing-compounds-in-increasing-resistance-to-blue-mold-on-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Bourenane">Karima Bourenane</a>, <a href="https://publications.waset.org/abstracts/search?q=Aissa%20Keffous"> Aissa Keffous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title="silicon carbide">silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemical%20etching" title=" Chemical etching"> Chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/184641/a-dissolution-mechanism-of-the-silicon-carbide-in-hfk2cr2o7-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Study of the Formation Mechanism of Dipalmitoylphosphatidylcholine Liposomes and Calcium Ion Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mdzinarashvili">T. Mdzinarashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khvedelidze"> M. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Shekiladze"> E. Shekiladze</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chinchaladze"> S. Chinchaladze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mdzinarashvili"> M. Mdzinarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the possible interaction between calcium ions and lipids is of great importance for the studies of complexes of calcium drug-carrying nanoparticles. We prepared calcium-containing complex liposomes from Dipalmitoylphosphatidylcholine (DPPC) lipids and studied their thermodynamic properties. In calorimetric studies, we determined that the phase transition temperature of these complexes is close to 420 C. It was shown that both hydrophobic and hydrophilic connections take part in the formation of calcium nanoparticles. We were interested in hydrophilic bonds represented by hydrogen bonds. We have shown that these hydrogen bonds are formed between the phospholipid heads, and the main contributor is the oxygen atoms in the phosphoric acid residues. In addition, based on the amount of heat absorbed during the breaking of hydrogen bonds formed between calcium-containing nanoparticle complexes, it can be concluded that the hydrogen atoms in the head of DPPC lipids form hydrogen bonds between P=O and P-O groups of phosphate. The energy of heat absorption measured by the calorimeter is of the order obtained by breaking the hydrogen bonds we have specified. Thus, we conclude that our approach to the model of liposome formation from lipids is correct. As for calcium atoms - due to the fact that it is present in the form of positive ions in the liposome, they will connect only with negatively charged phosphorus ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPPC" title="DPPC">DPPC</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20nanoparticles" title=" complex nanoparticles"> complex nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/154573/study-of-the-formation-mechanism-of-dipalmitoylphosphatidylcholine-liposomes-and-calcium-ion-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20carbide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10