CINXE.COM

Search results for: spray nozzles

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spray nozzles</title> <meta name="description" content="Search results for: spray nozzles"> <meta name="keywords" content="spray nozzles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spray nozzles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spray nozzles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 392</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spray nozzles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Cleaner Technology for Stone Crushers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ahuja">S. M. Ahuja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are about 12000 stone crusher units in India and are located in clusters around urban areas to the stone quarries. These crushers create lot of fugitive dust emissions and noise pollution which is a major health hazard for the people working in the crushers and also living in its vicinity. Ambient air monitoring was carried out near various stone crushers and it has been observed that fugitive emission varied from 300 to 8000 mg/Nm3. A number of stone crushers were thoroughly studied and their existing pollution control devices were examined. Limitations in the existing technology were also studied. A technology consisting of minimal effective spray nozzles to reduce the emissions at source followed by a containment cum control system having modular cyclones as air pollution control device has been conceived. Besides preliminary energy audit has also been carried out in some of the stone crushers which indicates substantial potential for energy saving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20crushers" title="stone crushers">stone crushers</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20nozzles" title=" spray nozzles"> spray nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20audit" title=" energy audit"> energy audit</a> </p> <a href="https://publications.waset.org/abstracts/32058/cleaner-technology-for-stone-crushers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamud%20Ali%20Ibrahim">Mohamud Ali Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayat"> Ali Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bolat"> Ali Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20defoliant" title="cotton defoliant">cotton defoliant</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20induction%20nozzle" title=" air induction nozzle"> air induction nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20pattern%20nozzle" title=" dual pattern nozzle"> dual pattern nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20flat%20fan%20nozzle" title=" standard flat fan nozzle"> standard flat fan nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage%20rate" title=" coverage rate"> coverage rate</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20deposition" title=" spray deposition"> spray deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=boll%20opening%20rate" title=" boll opening rate"> boll opening rate</a>, <a href="https://publications.waset.org/abstracts/search?q=leaves%20falling%20rate" title=" leaves falling rate"> leaves falling rate</a> </p> <a href="https://publications.waset.org/abstracts/141813/performance-of-different-spray-nozzles-in-the-application-of-defoliant-on-cotton-plants-gossypium-hirsutum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Cold Spray Coating and Its Application for High Temperature </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Sidhu">T. S. Sidhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spray%20coating" title="cold spray coating">cold spray coating</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20corrosion" title=" hot corrosion"> hot corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spray%20coating" title=" thermal spray coating"> thermal spray coating</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20materials" title=" high-temperature materials "> high-temperature materials </a> </p> <a href="https://publications.waset.org/abstracts/89039/cold-spray-coating-and-its-application-for-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hrabovsk%C3%BD">J. Hrabovský</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chabi%C4%8Dovsk%C3%BD"> M. Chabičovský</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Horsk%C3%BD"> J. Horský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20layer" title=" oxide layer"> oxide layer</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20cooling" title=" spray cooling"> spray cooling</a> </p> <a href="https://publications.waset.org/abstracts/15544/the-effect-of-discontinued-water-spray-cooling-on-the-heat-transfer-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bolat">Ali Bolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayat"> Ali Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gullu"> Mustafa Gullu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20assisted%20sprayer" title="air assisted sprayer">air assisted sprayer</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20nozzles" title=" drift nozzles"> drift nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20efficiency" title=" biological efficiency"> biological efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20plant" title=" maize plant"> maize plant</a> </p> <a href="https://publications.waset.org/abstracts/79987/determination-of-biological-efficiency-values-of-some-pesticide-application-methods-under-second-crop-maize-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Lanzerstorfer">C. Lanzerstorfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20flow%20nozzles" title=" dual flow nozzles"> dual flow nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20equation" title=" flow equation"> flow equation</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20data" title=" operation data"> operation data</a> </p> <a href="https://publications.waset.org/abstracts/60820/condition-monitoring-for-twin-fluid-nozzles-with-internal-mixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Fluid Flow and Heat Transfer Characteristics Investigation in Spray Cooling Systems Using Nanofluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Derk%20Huan">Lee Derk Huan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Irmawati"> Nur Irmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to investigate the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title="numerical investigation">numerical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20cooling" title=" spray cooling"> spray cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a> </p> <a href="https://publications.waset.org/abstracts/31663/fluid-flow-and-heat-transfer-characteristics-investigation-in-spray-cooling-systems-using-nanofluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Design and Analysis of a Clustered Nozzle Configuration and Comparison of Its Thrust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi%20Butt">Abdul Hadi Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Asfandyar%20Arshad"> Asfandyar Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study the thrust variation in different configurations of clustered nozzles. It involves the design and analysis of clustered configuration of nozzles using Ansys fluent. Clustered nozzles with different configurations are simulated and compared on basis of effective exhaust thrust. Mixing length for the flow interaction is also calculated. Further clustered configurations are analyzed over different altitudes. An optimum value of the thrust among different configurations is proposed at the end of comparisons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD%20nozzle" title="CD nozzle">CD nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster" title=" cluster"> cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/47169/design-and-analysis-of-a-clustered-nozzle-configuration-and-comparison-of-its-thrust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Quantitative Characterization of Single Orifice Hydraulic Flat Spray Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Khoo">Y. C. Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Lai"> W. T. Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The single orifice hydraulic flat spray nozzle was evaluated with two global imaging techniques to characterize various aspects of the resulting spray. The two techniques were high resolution flow visualization and Particle Image Velocimetry (PIV). A CCD camera with 29 million pixels was used to capture shadowgraph images to realize ligament formation and collapse as well as droplet interaction. Quantitative analysis was performed to give the sizing information of the droplets and ligaments. This camera was then applied with a PIV system to evaluate the overall velocity field of the spray, from nozzle exit to droplet discharge. PIV images were further post-processed to determine the inclusion angle of the spray. The results from those investigations provided significant quantitative understanding of the spray structure. Based on the quantitative results, detailed understanding of the spray behavior was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spray" title="spray">spray</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title=" flow visualization"> flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=shadowgraph" title=" shadowgraph"> shadowgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20sizing" title=" quantitative sizing"> quantitative sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20field" title=" velocity field"> velocity field</a> </p> <a href="https://publications.waset.org/abstracts/11794/quantitative-characterization-of-single-orifice-hydraulic-flat-spray-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Sea-Spray Calculations Using the MESO-NH Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alix%20Limoges">Alix Limoges</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Bruch"> William Bruch</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Yohia"> Christophe Yohia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Piazzola"> Jacques Piazzola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20models" title="atmospheric models">atmospheric models</a>, <a href="https://publications.waset.org/abstracts/search?q=sea-spray%20source" title=" sea-spray source"> sea-spray source</a>, <a href="https://publications.waset.org/abstracts/search?q=sea-spray%20dynamics" title=" sea-spray dynamics"> sea-spray dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosols" title=" aerosols"> aerosols</a> </p> <a href="https://publications.waset.org/abstracts/148639/sea-spray-calculations-using-the-meso-nh-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kanmaniraja">R. Kanmaniraja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Freshipali"> R. Freshipali</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Abdullah"> J. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Niranjan"> K. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Balasubramani"> K. Balasubramani</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20nozzle" title="supersonic nozzle">supersonic nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=Chevron" title=" Chevron"> Chevron</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20level" title=" acoustic level"> acoustic level</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization%20of%20Chevron%20nozzles" title=" shape optimization of Chevron nozzles"> shape optimization of Chevron nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20noise%20suppression" title=" jet noise suppression"> jet noise suppression</a> </p> <a href="https://publications.waset.org/abstracts/15252/3d-numerical-studies-on-jets-acoustic-characteristics-of-chevron-nozzles-for-aerospace-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20M.%20Ammar">N. M. M. Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mustaqim"> S. M. Mustaqim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Nadzir"> N. M. Nadzir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important problem occurs on oil spills in sea water is to reduce the oil spills size. This study deals with the development of high pressurized nozzle using dispersion method for oil leakage in offshore. 3D numerical simulation results were obtained using ANSYS Fluent 13.0 code and correlate with the experimental data for validation. This paper studies the contribution of the process on flow speed and pressure of the flow from two different geometrical designs of nozzles and to generate a spray pattern suitable for dispersant application. Factor of size distribution of droplets generated by the nozzle is calculated using pressures ranging from 2 to 6 bars. Results obtain from both analyses shows a significant spray pattern and flow distribution as well as distance. Results also show a significant contribution on the effect of oil leakage in terms of the diameter of the oil spills break up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arc%20nozzle" title="arc nozzle">arc nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title=" CFD simulation"> CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets" title=" droplets"> droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a> </p> <a href="https://publications.waset.org/abstracts/8542/effect-of-highly-pressurized-dispersion-arc-nozzle-on-breakup-of-oil-leakage-in-offshore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Effect of Humidity on In-Process Crystallization of Lactose During Spray Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirali%20Ebrahimi">Amirali Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20G.%20Langrish"> T. A. G. Langrish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactose" title="lactose">lactose</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=humid%20air" title=" humid air"> humid air</a> </p> <a href="https://publications.waset.org/abstracts/7244/effect-of-humidity-on-in-process-crystallization-of-lactose-during-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Press Hardening of Tubes with Additional Interior Spray Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Behrens">B. A. Behrens</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Maier"> H. J. Maier</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Neumann"> A. Neumann</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Moritz"> J. Moritz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H%C3%BCbner"> S. Hübner</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gretzki"> T. Gretzki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N%C3%BCrnberger"> F. Nürnberger</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Spiekermeier"> A. Spiekermeier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=22MnB5" title="22MnB5">22MnB5</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20hardening" title=" press hardening"> press hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=water-air%20spray%20cooling" title=" water-air spray cooling"> water-air spray cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20profiles" title=" hollow profiles"> hollow profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=tubes" title=" tubes"> tubes</a> </p> <a href="https://publications.waset.org/abstracts/22942/press-hardening-of-tubes-with-additional-interior-spray-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20Momoh">Musa Momoh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Moreh"> A. U. Moreh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Bayawa"> A. M. Bayawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanusi%20Abdullahi"> Sanusi Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Atiku"> I. Atiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rf%20sputtering" title=" rf sputtering"> rf sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/54183/comparative-studies-on-thin-film-of-zno-deposited-by-spray-pyrolysis-and-sputtering-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Colour Formation and Maillard Reactions in Spray-Dried Milk Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelin%20Zhou">Zelin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Langrish"> Timothy Langrish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colour%20formation" title="colour formation">colour formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maillard%20reactions" title=" Maillard reactions"> Maillard reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=skim%20milk%20powder" title=" skim milk powder"> skim milk powder</a> </p> <a href="https://publications.waset.org/abstracts/120841/colour-formation-and-maillard-reactions-in-spray-dried-milk-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Effect of Temperature and Feed Solution on Microencapsulation of Quercetin by Spray Drying Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lekhavat">S. Lekhavat</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Srimongkoluk"> U. Srimongkoluk</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ratanachamnong"> P. Ratanachamnong</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Laungsopapun"> G. Laungsopapun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quercetin was encapsulated with whey protein and high methoxyl pectin by spray drying technique. Feed solution, consisting of 0.1875 0.125 and 0.0625 % w/w quercetin, respectively, was prepared and then sprays at outlet temperature of 70, 80 and 90 °C. Quercetin contents either in feed solution or in spray dried powder were determined by HPLC technique. Physicochemical properties such as viscosity and total soluble solid of feed solution as well as moisture content and water activity of spray dried powder were examined. Particle morphology was imaged using scanning electron microscope. The results showed that feed solution has total soluble solid and viscosity in range of 1.73-5.60 ºBrix and 2.58-8.15 cP, in that order. After spray drying, the moisture content and water activity value of powder are in range of 0.58-2.72 % and 0.18-0.31, respectively. Quercetin content in dried sample increased along with outlet drying temperature but decreased when total soluble solid increased. It was shown that particles are likely to shrivel when spray drying at high temperature. The suggested conditions for encapsulation of quercetin are feed solution with 0.0625 % (w/w) quercetin and spray drying at drying outlet temperature of 90°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying%20temperature" title="drying temperature">drying temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20morphology" title=" particle morphology"> particle morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a> </p> <a href="https://publications.waset.org/abstracts/53309/effect-of-temperature-and-feed-solution-on-microencapsulation-of-quercetin-by-spray-drying-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjing%20Ding">Wenjing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Shan"> Weiwei Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijuan"> Zijuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang"> Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20He"> Chao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is &plusmn;1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20spray" title="liquid nitrogen spray">liquid nitrogen spray</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20regulating%20system" title=" temperature regulating system"> temperature regulating system</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/73604/numerical-simulation-and-analysis-on-liquid-nitrogen-spray-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> The Physics of Cold Spray Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionel%20Botef">Ionel Botef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies show that, for qualitative coatings, the knowledge of cold spray technology must focus on a variety of interdisciplinary fields and a framework for problem solving. The integrated disciplines include, but are not limited to, engineering, material sciences, and physics. Due to its importance, the purpose of this paper is to summarize the state of the art of this technology alongside its theoretical and experimental studies, and explore the role and impact of physics upon cold spraying technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20engineering" title="surface engineering">surface engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20spray" title=" cold spray"> cold spray</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/24726/the-physics-of-cold-spray-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Design Optimization of Chevron Nozzles for Jet Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Manikandan">E. Manikandan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Chilambarasan"> C. Chilambarasan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sulthan%20Ariff%20Rahman"> M. Sulthan Ariff Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kanagaraj"> S. Kanagaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The noise regulations around the major airports and rocket launching stations due to the environmental concern have made jet noise a crucial problem in the present day aero-acoustics research. The three main acoustic sources in jet nozzles are aerodynamics noise, noise from craft systems and engine and mechanical noise. Note that the majority of engine noise is due to the jet noise coming out from the exhaust nozzle. The previous studies reveal that the potential of chevron nozzles for aircraft engines noise reduction is promising owing to the fact that the jet noise continues to be the dominant noise component, especially during take-off. In this paper parametric analytical studies have been carried out for optimizing the number of chevron lobes, the lobe length and tip shape, and the level of penetration of the chevrons into the flow over a variety of flow conditions for various aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, SST k-ω turbulence model with enhanced wall functions. In the numerical study, a fully implicit finite volume scheme of the compressible, Navier–Stokes equations is employed. We inferred that the geometry optimization of an environmental friendly chevron nozzle with a suitable number of chevron lobes with aerodynamically efficient tip contours for facilitating silent exit flow will enable a commendable sound reduction without much thrust penalty while comparing with the conventional supersonic nozzles with same area ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chevron%20nozzle" title="chevron nozzle">chevron nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20acoustic%20level" title=" jet acoustic level"> jet acoustic level</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20noise%20suppression" title=" jet noise suppression"> jet noise suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization%20of%20chevron%20nozzles" title=" shape optimization of chevron nozzles"> shape optimization of chevron nozzles</a> </p> <a href="https://publications.waset.org/abstracts/89210/design-optimization-of-chevron-nozzles-for-jet-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surendra%20Kumar%20Chourasiya">Surendra Kumar Chourasiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Singh"> Devendra Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-6Si-1Mg-1Graphite" title="Al-6Si-1Mg-1Graphite">Al-6Si-1Mg-1Graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20forming" title=" spray forming"> spray forming</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20rolling" title=" warm rolling"> warm rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/77455/tribological-behavior-of-warm-rolled-spray-formed-al-6si-1mg-1graphite-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Development of Surface Modification Technology for Control Element Drive Mechanism Nozzle and Fatigue Enhancement of Ni-Based Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auezhan%20Amanov">Auezhan Amanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Cho"> Inho Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Sik%20Pyun"> Young-Sik Pyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control element drive mechanism (CEDM) nozzle is manufactured as welded on the reactor vessel and currently uses Alloy 690 material. The top of the reactor is equipped with about 100 CEDM nozzles with an internal diameter of about 70 mm. Relatively large Inlet/Outlet nozzles are equipped with two outlet nozzles and four inlet nozzles on the reactor wall. The inner diameter of the nozzle is vulnerable to stress corrosion cracking (SCC), and in order to solve this problem, an ultrasonic nanocrystal surface modification (UNSM) treatment is performed on the inner diameter of the nozzle and the weld surface. The ultimate goal is to improve the service life of parts by applying compressive residual stress and suppressing primary water stress corrosion cracking (PWSCC). The main purpose is to design and fabricate a UNSM treatment device for the internal diameter processing of CEDM nozzles and inlet/outlet nozzles. In order to develop the system, the basic technology such as the development of UNSM tooling is developed and the mechanical properties and fatigue performance of before and after UNSM treatment of reactor nozzle material made of Ni-based alloys using the specimen are compared and evaluated. The inner diameter of the nozzle was treated by a newly developed UNSM treatment under the optimized treatment parameters. It was found that the mechanical properties and fatigue performance of nozzle were improved in comparison with the untreated nozzle, which may be attributed to the increase in hardness, induced compressive residual stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20element%20drive%20mechanism%20nozzle" title="control element drive mechanism nozzle">control element drive mechanism nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-based%20alloy" title=" Ni-based alloy"> Ni-based alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20nanocrystal%20surface%20modification" title=" ultrasonic nanocrystal surface modification"> ultrasonic nanocrystal surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=UNSM" title=" UNSM"> UNSM</a> </p> <a href="https://publications.waset.org/abstracts/112191/development-of-surface-modification-technology-for-control-element-drive-mechanism-nozzle-and-fatigue-enhancement-of-ni-based-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Technology of Thermal Spray Coating Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petr%C5%AF">Jana Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Zl%C3%A1mal"> Tomáš Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cep"> Robert Čep</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C4%8Cepov%C3%A1"> Lenka Čepová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/2535/technology-of-thermal-spray-coating-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> The Effect of Water Droplets Size in Fire Fighting Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tassadit%20Tabouche">Tassadit Tabouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplets" title="droplets">droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20spray" title=" water spray"> water spray</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets%20size" title=" water droplets size"> water droplets size</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/7533/the-effect-of-water-droplets-size-in-fire-fighting-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeongdo%20Jeong">Hyeongdo Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kook%20Lee"> Jong Kook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zirconia" title="zirconia">zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20content" title=" solid content"> solid content</a>, <a href="https://publications.waset.org/abstracts/search?q=granulation" title=" granulation"> granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a> </p> <a href="https://publications.waset.org/abstracts/88232/granule-morphology-of-zirconia-powder-with-solid-content-on-two-fluid-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Mandliya">Shubham Mandliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Pandey"> Pooja Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Mishra"> H. N. Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amla%20powder" title="Amla powder">Amla powder</a>, <a href="https://publications.waset.org/abstracts/search?q=physiochemical%20properties" title=" physiochemical properties"> physiochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a> </p> <a href="https://publications.waset.org/abstracts/100795/preparation-of-amla-phyllanthus-emblica-powder-using-spray-drying-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Effect of Drop Impact Behavior on Spray Retention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassina%20Hafida%20Boukhalfa">Hassina Hafida Boukhalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Massinon"> Mathieu Massinon</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9deric%20Lebeau"> Fréderic Lebeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belhamra"> Mohamed Belhamra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drop behaviour during impact affects retention. The increase of adhesion is usually seen as the objective when applying crop protection products, while bouncing and shattering are seen as detrimental to spray retention. However, observation of drop impacts using high speed shadow graphy shows that fragmentation can occur in Wenzel wetting regime. In this case, a part of the drop sticks on the surface, what contributes to retention. Using simultaneous measurements of drop impacts with high speed imaging and of retention with fluorometry for 3 spray mixtures on excised barley leaves allowed us to observe that about 50% of the drops fragmented in Wenzel state remain on the leaf. Depending on spray mixture, these impact outcomes accounted for 25 to 50% of retention, the higher contribution being correlated with bigger VMD (Volume Median Diameter). This contribution is non-negligible and should be considered when a modelling of spray retention process is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop%20impact" title="drop impact">drop impact</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorometry" title=" fluorometry"> fluorometry</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20imaging" title=" high speed imaging"> high speed imaging</a> </p> <a href="https://publications.waset.org/abstracts/47237/effect-of-drop-impact-behavior-on-spray-retention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nadeem">M. Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Chang"> Y. K. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Diallo"> C. Diallo</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Venkatadri"> U. Venkatadri</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Havard"> P. Havard</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nguyen-Quang"> T. Nguyen-Quang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=quantifying%20the%20water%20volume%20from%20nozzle" title=" quantifying the water volume from nozzle"> quantifying the water volume from nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=spraying%20pattern" title=" spraying pattern"> spraying pattern</a> </p> <a href="https://publications.waset.org/abstracts/53254/determining-water-quantity-from-sprayer-nozzle-using-particle-image-velocimetry-piv-and-image-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Latif">Rizwan Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan%20Qasim"> Syed Adnan Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzaffar%20Ali"> Muzaffar Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20collision" title="droplet collision">droplet collision</a>, <a href="https://publications.waset.org/abstracts/search?q=coalescence" title=" coalescence"> coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed" title=" low speed"> low speed</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20fuel" title=" diesel fuel"> diesel fuel</a> </p> <a href="https://publications.waset.org/abstracts/75629/modeling-and-simulating-drop-interactions-in-spray-structure-of-high-torque-low-speed-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Javaid">Ali Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Latif"> Rizwan Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan%20Qasim"> Syed Adnan Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Shafi"> Imran Shafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=HEM%20model" title=" HEM model"> HEM model</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20flow" title=" nozzle flow"> nozzle flow</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20foam" title=" open foam"> open foam</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/75407/modeling-and-simulation-of-turbulence-induced-in-nozzle-cavitation-and-its-effects-on-internal-flow-in-a-high-torque-low-speed-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spray%20nozzles&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10