CINXE.COM

Search results for: Steam gasification

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Steam gasification</title> <meta name="description" content="Search results for: Steam gasification"> <meta name="keywords" content="Steam gasification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Steam gasification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Steam gasification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 154</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Steam gasification</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Steam Gasification of Palm Kernel Shell (PKS): Effect of Fe/BEA and Ni/BEA Catalysts and Steam to Biomass Ratio on Composition of Gaseous Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.F.%20Mohamad">M.F. Mohamad</a>, <a href="https://publications.waset.org/search?q=Anita%20Ramli"> Anita Ramli</a>, <a href="https://publications.waset.org/search?q=S.E.E%20Misi"> S.E.E Misi</a>, <a href="https://publications.waset.org/search?q=S.%20Yusup"> S. Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the hydrogen production from steam gasification of palm kernel shell (PKS) at 700 oC in the presence of 5% Ni/BEA and 5% Fe/BEA as catalysts. The steam gasification was performed in two-staged reactors to evaluate the effect of calcinations temperature and the steam to biomass ratio on the product gas composition. The catalytic activity of Ni/BEA catalyst decreases with increasing calcinations temperatures from 500 to 700 oC. The highest H2 concentration is produced by Fe/BEA (600) with more than 71 vol%. The catalytic activity of the catalysts tested is found to correspond to its physicochemical properties. The optimum range for steam to biomass ratio if found to be between 2 to 4. Excess steam content results in temperature drop in the gasifier which is undesirable for the gasification reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydrogen" title="Hydrogen">Hydrogen</a>, <a href="https://publications.waset.org/search?q=Palm%20Kernel%20Shell" title=" Palm Kernel Shell"> Palm Kernel Shell</a>, <a href="https://publications.waset.org/search?q=Steam%20gasification" title=" Steam gasification"> Steam gasification</a>, <a href="https://publications.waset.org/search?q=Ni%2FBEA" title=" Ni/BEA"> Ni/BEA</a>, <a href="https://publications.waset.org/search?q=Fe%2FBEA" title=" Fe/BEA"> Fe/BEA</a> </p> <a href="https://publications.waset.org/12818/steam-gasification-of-palm-kernel-shell-pks-effect-of-febea-and-nibea-catalysts-and-steam-to-biomass-ratio-on-composition-of-gaseous-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12818/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12818/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12818/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12818/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12818/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12818/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12818/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12818/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12818/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12818/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2233</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20M.%20Ismail">T. M. Ismail</a>, <a href="https://publications.waset.org/search?q=M.%20Abd%20El-Salam"> M. Abd El-Salam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000&deg;C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler&minus;Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k&minus;&epsilon; turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/search?q=biomass%20fuel" title=" biomass fuel"> biomass fuel</a>, <a href="https://publications.waset.org/search?q=fixed%20bed%20gasifier" title=" fixed bed gasifier"> fixed bed gasifier</a> </p> <a href="https://publications.waset.org/9998128/a-numerical-model-simulation-for-an-updraft-gasifier-using-high-temperature-steam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998128/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998128/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998128/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998128/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998128/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998128/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998128/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998128/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998128/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998128/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2826</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Computational Tool for Techno-Economical Evaluation of Steam/Oxygen Fluidized Bed Biomass Gasification Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gabriela-Alina%20Dumitrel">Gabriela-Alina Dumitrel</a>, <a href="https://publications.waset.org/search?q=Teodor%20Todinca"> Teodor Todinca</a>, <a href="https://publications.waset.org/search?q=Carmen%20Holotescu"> Carmen Holotescu</a>, <a href="https://publications.waset.org/search?q=Cosmina-Mariana%20Militaru"> Cosmina-Mariana Militaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a computational tool developed for the evaluation of technical and economic advantages of an innovative cleaning and conditioning technology of fluidized bed steam/oxygen gasifiers outlet product gas. This technology integrates into a single unit the steam gasification of biomass and the hot gas cleaning and conditioning system. Both components of the computational tool, process flowsheet and economic evaluator, have been developed under IPSEpro software. The economic model provides information that can help potential users, especially small and medium size enterprises acting in the regenerable energy field, to decide the optimal scale of a plant and to better understand both potentiality and limits of the system when applied to a wide range of conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/search?q=CHP%20units" title=" CHP units"> CHP units</a>, <a href="https://publications.waset.org/search?q=economic%20evaluation" title=" economic evaluation"> economic evaluation</a>, <a href="https://publications.waset.org/search?q=gasification." title=" gasification."> gasification.</a> </p> <a href="https://publications.waset.org/7295/computational-tool-for-techno-economical-evaluation-of-steamoxygen-fluidized-bed-biomass-gasification-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7295/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7295/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7295/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7295/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7295/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7295/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7295/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7295/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7295/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7295/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1791</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.A.%20Rashidi">N.A. Rashidi</a>, <a href="https://publications.waset.org/search?q=S.%20Yusup"> S. Yusup</a>, <a href="https://publications.waset.org/search?q=M.M.%20Ahmad"> M.M. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass%20gasification" title="Biomass gasification">Biomass gasification</a>, <a href="https://publications.waset.org/search?q=Calcium%20oxide" title=" Calcium oxide"> Calcium oxide</a>, <a href="https://publications.waset.org/search?q=Carbon%0D%0Adioxide%20capture" title=" Carbon dioxide capture"> Carbon dioxide capture</a>, <a href="https://publications.waset.org/search?q=Sorbent%20flowability" title=" Sorbent flowability"> Sorbent flowability</a> </p> <a href="https://publications.waset.org/11776/parametric-analysis-on-hydrogen-production-using-mixtures-of-pure-cellulosic-and-calcium-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11776/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11776/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11776/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11776/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11776/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11776/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11776/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11776/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11776/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11776/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1845</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Hydrogen from Waste Tyres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ibrahim%20F.%20Elbaba">Ibrahim F. Elbaba</a>, <a href="https://publications.waset.org/search?q=Paul%20T.%20Williams"> Paul T. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is regarded to play an important role in future energy systems because it can be produced from abundant resources and its combustion only generates water. The disposal of waste tyres is a major problem in environmental management throughout the world. The use of waste materials as a source of hydrogen is particularly of interest in that it would also solve a waste treatment problem. There is much interest in the use of alternative feedstocks for the production of hydrogen since more than 95% of current production is from fossil fuels. The pyrolysis of waste tyres for the production of liquid fuels, activated carbons and gases has been extensively researched. However, combining pyrolysis with gasification is a novel process that can gasify the gaseous products from pyrolysis. In this paper, an experimental investigation into the production of hydrogen and other gases from the bench scale pyrolysis-gasification of tyres has been investigated. Experiments were carried using a two stage system consisting of pyrolysis of the waste tyres followed by catalytic steam gasification of the evolved gases and vapours in a second reactor. Experiments were conducted at a pyrolysis temperature of 500 °C using Ni/Al2O3 as a catalyst. The results showed that there was a dramatic increase in gas yield and the potential H2 production when the gasification temperature was increased from 600 to 900 oC. Overall, the process showed that high yields of hydrogen can be produced from waste tyres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Catalyst" title="Catalyst">Catalyst</a>, <a href="https://publications.waset.org/search?q=Hydrogen" title="Hydrogen">Hydrogen</a>, <a href="https://publications.waset.org/search?q=Pyrolysis" title=" Pyrolysis"> Pyrolysis</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Tyre" title=" Tyre"> Tyre</a>, <a href="https://publications.waset.org/search?q=Waste" title=" Waste"> Waste</a> </p> <a href="https://publications.waset.org/1863/hydrogen-from-waste-tyres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1863/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1863/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1863/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1863/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1863/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1863/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1863/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1863/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1863/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1863/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2958</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chaouki%20Ghenai">Chaouki Ghenai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending palm kernel shell (PKS) with polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Combustion" title=" Combustion"> Combustion</a>, <a href="https://publications.waset.org/search?q=Emissions" title=" Emissions"> Emissions</a>, <a href="https://publications.waset.org/search?q=Gas%20Turbine%0D%0ACombustor" title=" Gas Turbine Combustor"> Gas Turbine Combustor</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Solid%20Waste" title=" Solid Waste"> Solid Waste</a>, <a href="https://publications.waset.org/search?q=Syngas%20and%20Waste%20to%20Energy." title=" Syngas and Waste to Energy."> Syngas and Waste to Energy.</a> </p> <a href="https://publications.waset.org/10001646/combustion-and-emissions-performance-of-syngas-fuels-derived-from-palm-kernel-shell-and-polyethylene-pe-waste-via-catalytic-steam-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001646/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001646/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001646/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001646/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001646/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001646/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001646/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001646/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001646/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001646/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3652</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohd%20K.%20Yunus">Mohd K. Yunus</a>, <a href="https://publications.waset.org/search?q=Murni%20M.%20Ahmad"> Murni M. Ahmad</a>, <a href="https://publications.waset.org/search?q=Abrar%20Inayat"> Abrar Inayat</a>, <a href="https://publications.waset.org/search?q=Suzana%20Yusup"> Suzana Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass" title="Biomass">Biomass</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Hydrogen" title=" Hydrogen"> Hydrogen</a>, <a href="https://publications.waset.org/search?q=iCON." title=" iCON."> iCON.</a> </p> <a href="https://publications.waset.org/925/simulation-of-enhanced-biomass-gasification-for-hydrogen-production-using-icon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/925/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/925/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/925/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/925/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/925/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/925/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/925/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/925/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/925/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/925/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2608</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Hydrogen Production by Gasification of Biomass from Copoazu Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Emilio%20Delgado">Emilio Delgado</a>, <a href="https://publications.waset.org/search?q=William%20Aperador"> William Aperador</a>, <a href="https://publications.waset.org/search?q=Alis%20Pataquiva"> Alis Pataquiva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is becoming a large renewable resource for power generation; it is involved in higher frequency in environmentally clean processes, and even it is used for biofuels preparation. On the other hand, hydrogen – other energy source – can be produced in a variety of methods including gasification of biomass. In this study, the production of hydrogen by gasification of biomass waste is examined. This work explores the production of a gaseous mixture with high power potential from Amazonas´ specie known as copoazu, using a counter-flow fixed-bed bioreactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Copoazu" title="Copoazu">Copoazu</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Hydrogen%20production." title=" Hydrogen production."> Hydrogen production.</a> </p> <a href="https://publications.waset.org/3712/hydrogen-production-by-gasification-of-biomass-from-copoazu-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3712/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3712/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3712/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3712/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3712/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3712/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3712/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3712/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3712/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3712/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1777</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Steam Assisted Gravity Drainage: A Recipe for Success</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohsen%20Ebrahimi">Mohsen Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Steam Assisted Gravity Drainage (SAGD) is introduced and its advantages over ordinary steam injection is demonstrated. A simple simulation model is built and three scenarios of natural production, ordinary steam injection, and SAGD are compared in terms of their cumulative oil production and cumulative oil steam ratio. The results show that SAGD can significantly enhance oil production in quite a short period of time. However, since the distance between injection and production wells is short, the oil to steam ratio decreases gradually through time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermal%20recovery" title="Thermal recovery">Thermal recovery</a>, <a href="https://publications.waset.org/search?q=Steam%20injection" title=" Steam injection"> Steam injection</a>, <a href="https://publications.waset.org/search?q=SAGD" title=" SAGD"> SAGD</a>, <a href="https://publications.waset.org/search?q=Enhanced%20oil%20recovery" title=" Enhanced oil recovery"> Enhanced oil recovery</a> </p> <a href="https://publications.waset.org/3366/steam-assisted-gravity-drainage-a-recipe-for-success" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3366/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3366/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3366/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3366/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3366/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3366/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3366/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3366/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3366/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3366/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2186</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Evaluation of Biomass Introduction Methods in Coal Co-Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ruwaida%20Abdul%20Rasid">Ruwaida Abdul Rasid</a>, <a href="https://publications.waset.org/search?q=Kevin%20J.%20Hughes"> Kevin J. Hughes</a>, <a href="https://publications.waset.org/search?q=Peter%20J.%20Heggs"> Peter J. Heggs</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Pourkashanian"> Mohamed Pourkashanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aspen%20HYSYS" title="Aspen HYSYS">Aspen HYSYS</a>, <a href="https://publications.waset.org/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/search?q=co-gasification%0D%0Amodelling%20and%20simulation." title=" co-gasification modelling and simulation."> co-gasification modelling and simulation.</a> </p> <a href="https://publications.waset.org/9999953/evaluation-of-biomass-introduction-methods-in-coal-co-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999953/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999953/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999953/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999953/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999953/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999953/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999953/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999953/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999953/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999953/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2327</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Wine Grape Residues Gasification in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20Selvi%20G%C3%B6kkaya">D. Selvi Gökkaya</a>, <a href="https://publications.waset.org/search?q=M.%20Y%C3%BCksel"> M. Yüksel</a>, <a href="https://publications.waset.org/search?q=M.%20Sa%C4%9Flam"> M. Sağlam</a>, <a href="https://publications.waset.org/search?q=T.%20G%C3%BCng%C3%B6ren%20Madeno%C4%9Flu"> T. Güngören Madenoğlu</a>, <a href="https://publications.waset.org/search?q=N.%20Cengiz"> N. Cengiz</a>, <a href="https://publications.waset.org/search?q=T.%20%C3%87okkuvvetli"> T. Çokkuvvetli</a>, <a href="https://publications.waset.org/search?q=L.%20Ballice"> L. Ballice</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, production possibilities of hydrogen and/or methane via SCWG from black grape residues have been investigated. For this aim, grape residues which remain as a byproduct of the wine making process have been used. Since utilization from grape residues is limited due to the high moisture content, supercritical water gasification is the most convenient method. The effect of the gasification temperature and type of catalyst on supercritical water gasification have been investigated. Gasification experiments were performed in a batch autoclave at four different temperatures 300, 400, 500 and 600&deg;C. K2CO3 and Trona (NaHCO3.Na2CO3&middot;2H2O) were used as catalyst. Real biomass types of black grape residues have been successfully gasified and the product gas (hydrogen, methane, carbon dioxide, carbon monoxide and a small amount of ethane and ethylene) were identified by using gas chromatography. A TOC analyzer was used to determine total organic carbon (TOC) content of aqueous phase. The amounts of carboxylic acids, aldehydes, ketones, furfurals and phenols present in the aqueous solutions were analyzed by high performance liquid chromatography. When the temperature increased from 300&deg;C to 600&deg;C, mol% of H2 in gas products increased. The presence of catalysts improves the hydrogen yield. Trona showed gasification activity to be similar to that of K2CO3. It may be concluded that the use of Trona instead of commercially produced catalysts, can be preferably used in the gasification of biomass in supercritical water.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass" title="Biomass">Biomass</a>, <a href="https://publications.waset.org/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/search?q=grape%20residues." title=" grape residues."> grape residues.</a> </p> <a href="https://publications.waset.org/3881/wine-grape-residues-gasification-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3881/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3881/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3881/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3881/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3881/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3881/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3881/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3881/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3881/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3881/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2465</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> The Gasification of Fructose in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/search?q=H.%20Y.%20Cheng"> H. Y. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H<sub>2</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub>. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass" title="Biomass">Biomass</a>, <a href="https://publications.waset.org/search?q=Fructose" title=" Fructose"> Fructose</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Supercritical%20water." title=" Supercritical water."> Supercritical water.</a> </p> <a href="https://publications.waset.org/9998999/the-gasification-of-fructose-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998999/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998999/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998999/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998999/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998999/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998999/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998999/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998999/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998999/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998999/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2035</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sui%20Yan%20Wong">Sui Yan Wong</a>, <a href="https://publications.waset.org/search?q=Keat%20Ping%20Yeoh"> Keat Ping Yeoh</a>, <a href="https://publications.waset.org/search?q=Chi%20Wai%20Hui"> Chi Wai Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exergy" title="Exergy">Exergy</a>, <a href="https://publications.waset.org/search?q=pinch" title=" pinch"> pinch</a>, <a href="https://publications.waset.org/search?q=combined%20cycle%20power%20plant" title=" combined cycle power plant"> combined cycle power plant</a>, <a href="https://publications.waset.org/search?q=CCPP" title=" CCPP"> CCPP</a>, <a href="https://publications.waset.org/search?q=supercritical%20steam." title=" supercritical steam."> supercritical steam.</a> </p> <a href="https://publications.waset.org/10011981/pinch-analysis-of-triple-pressure-reheat-supercritical-combined-cycle-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011981/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011981/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011981/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011981/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011981/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011981/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011981/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011981/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011981/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011981/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ya%C4%9Fmur%20Karaku%C5%9F">Yağmur Karakuş</a>, <a href="https://publications.waset.org/search?q=Fatih%20Aynac%C4%B1"> Fatih Aynacı</a>, <a href="https://publications.waset.org/search?q=Ekin%20K%C4%B1p%C3%A7ak"> Ekin Kıpçak</a>, <a href="https://publications.waset.org/search?q=Mesut%20Akg%C3%BCn"> Mesut Akgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=2-Propanol" title="2-Propanol">2-Propanol</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Ni%2FAl2O3" title=" Ni/Al2O3"> Ni/Al2O3</a>, <a href="https://publications.waset.org/search?q=Pt%2FAl2O3" title=" Pt/Al2O3"> Pt/Al2O3</a>, <a href="https://publications.waset.org/search?q=Supercritical%20water." title=" Supercritical water."> Supercritical water.</a> </p> <a href="https://publications.waset.org/2019/hydrogen-rich-fuel-gas-production-from-2-propanol-using-ptal2o3-and-nial2o3-catalysts-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2019/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2019/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2019/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2019/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2019/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2019/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2019/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2019/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2019/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2019/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2052</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Thermodynamic Performance Assessment of Steam-Injection Gas-Turbine Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a>, <a href="https://publications.waset.org/search?q=Giman%20Kim"> Giman Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The cycles of the steam-injection gas-turbine systems are studied. The analyses of the parametric effects and the optimal operating conditions for the steam-injection gas-turbine (STIG) system and the regenerative steam-injection gas-turbine (RSTIG) system are investigated to ensure the maximum performance. Using the analytic model, the performance parameters of the system such as thermal efficiency, fuel consumption and specific power, and also the optimal operating conditions are evaluated in terms of pressure ratio, steam injection ratio, ambient temperature and turbine inlet temperature (TIT). It is shown that the computational results are presented to have a notable enhancement of thermal efficiency and specific power.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/search?q=RSTIG" title=" RSTIG"> RSTIG</a>, <a href="https://publications.waset.org/search?q=steam%20injection" title=" steam injection"> steam injection</a>, <a href="https://publications.waset.org/search?q=STIG" title=" STIG"> STIG</a>, <a href="https://publications.waset.org/search?q=thermal%20efficiency." title=" thermal efficiency."> thermal efficiency.</a> </p> <a href="https://publications.waset.org/13296/thermodynamic-performance-assessment-of-steam-injection-gas-turbine-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13296/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13296/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13296/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13296/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13296/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13296/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13296/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13296/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13296/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13296/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2544</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.L.Deghal.Cheridi">A.L.Deghal.Cheridi</a>, <a href="https://publications.waset.org/search?q=A.Chaker"> A.Chaker</a>, <a href="https://publications.waset.org/search?q=A.Loubar"> A.Loubar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Radiant%20steam%20boiler" title="Radiant steam boiler">Radiant steam boiler</a>, <a href="https://publications.waset.org/search?q=Relap5%2FMod3.2%20code%20system" title=" Relap5/Mod3.2 code system"> Relap5/Mod3.2 code system</a>, <a href="https://publications.waset.org/search?q=Steady-state%20simulation" title="Steady-state simulation">Steady-state simulation</a>, <a href="https://publications.waset.org/search?q=Transient%20simulation" title=" Transient simulation"> Transient simulation</a>, <a href="https://publications.waset.org/search?q=Loss%20of%20feedwateraccident" title=" Loss of feedwateraccident"> Loss of feedwateraccident</a> </p> <a href="https://publications.waset.org/13101/simulation-of-loss-of-flow-transient-in-a-radiant-steam-boiler-with-relap5mod32" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13101/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13101/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13101/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13101/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13101/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13101/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13101/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13101/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13101/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13101/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2222</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ekin%20K%C4%B1p%C3%A7ak">Ekin Kıpçak</a>, <a href="https://publications.waset.org/search?q=Ya%C4%9Fmur%20Karaku%C5%9F"> Yağmur Karakuş</a>, <a href="https://publications.waset.org/search?q=Mesut%20Akg%C3%BCn"> Mesut Akgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract">Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water.<o:p></o:p></p> <p class="Abstract" style="margin-top:0cm">Above its critical point (374.8<sup>o</sup>C and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water.<o:p></o:p></p> <p class="Abstract" style="margin-top:0cm">In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al<sub>2</sub>O<sub>3 </sub>was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600<sup>o</sup>C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.<o:p></o:p></p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=2-Propanol" title="2-Propanol">2-Propanol</a>, <a href="https://publications.waset.org/search?q=Gasification" title=" Gasification"> Gasification</a>, <a href="https://publications.waset.org/search?q=Ru%2FAl2O3" title=" Ru/Al2O3"> Ru/Al2O3</a>, <a href="https://publications.waset.org/search?q=Supercritical%20water." title=" Supercritical water. "> Supercritical water. </a> </p> <a href="https://publications.waset.org/16858/hydrogen-and-biofuel-production-from-2-propanol-over-rual2o3-catalyst-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16858/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16858/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16858/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16858/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16858/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16858/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16858/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16858/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16858/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16858/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2131</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20P.%20Makwana">J. P. Makwana</a>, <a href="https://publications.waset.org/search?q=A.%20K.%20Joshi"> A. K. Joshi</a>, <a href="https://publications.waset.org/search?q=Rajesh%20N.%20Patel"> Rajesh N. Patel</a>, <a href="https://publications.waset.org/search?q=Darshil%20Patel"> Darshil Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 &deg;C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 &deg;C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Sized%20biomass" title="Sized biomass">Sized biomass</a>, <a href="https://publications.waset.org/search?q=fluidized%20bed%20gasifier" title=" fluidized bed gasifier"> fluidized bed gasifier</a>, <a href="https://publications.waset.org/search?q=equivalence%20ratio" title=" equivalence ratio"> equivalence ratio</a>, <a href="https://publications.waset.org/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a>, <a href="https://publications.waset.org/search?q=gas%20composition." title=" gas composition."> gas composition.</a> </p> <a href="https://publications.waset.org/10004571/effect-of-equivalence-ratio-on-performance-of-fluidized-bed-gasifier-run-with-sized-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004571/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004571/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004571/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004571/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004571/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004571/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004571/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004571/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004571/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004571/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1736</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Processes Simulation Study of Coal to Methanol Based on Gasification Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Po-Chuang%20Chen">Po-Chuang Chen</a>, <a href="https://publications.waset.org/search?q=Hsiu-Mei%20Chiu"> Hsiu-Mei Chiu</a>, <a href="https://publications.waset.org/search?q=Yau-Pin%20Chyou"> Yau-Pin Chyou</a>, <a href="https://publications.waset.org/search?q=Chiou-Shia%20Yu"> Chiou-Shia Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study presents a simulation model for converting coal to methanol, based on gasification technology with the commercial chemical process simulator, Pro/II&reg; V8.1.1. The methanol plant consists of air separation unit (ASU), gasification unit, gas clean-up unit, and methanol synthetic unit. The clean syngas is produced with the first three operating units, and the model has been verified with the reference data from United States Environment Protection Agency. The liquid phase methanol (LPMEOHTM) process is adopted in the methanol synthetic unit. Clean syngas goes through gas handing section to reach the reaction requirement, reactor loop/catalyst to generate methanol, and methanol distillation to get desired purity over 99.9 wt%. The ratio of the total energy combined with methanol and dimethyl ether to that of feed coal is 78.5% (gross efficiency). The net efficiency is 64.2% with the internal power consumption taken into account, based on the assumption that the efficiency of electricity generation is 40%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gasification" title="Gasification">Gasification</a>, <a href="https://publications.waset.org/search?q=Methanol" title=" Methanol"> Methanol</a>, <a href="https://publications.waset.org/search?q=LPMEOH" title=" LPMEOH"> LPMEOH</a>, <a href="https://publications.waset.org/search?q=System-levelsimulation." title=" System-levelsimulation."> System-levelsimulation.</a> </p> <a href="https://publications.waset.org/13214/processes-simulation-study-of-coal-to-methanol-based-on-gasification-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13214/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13214/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13214/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13214/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13214/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13214/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13214/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13214/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13214/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13214/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5359</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Experimental Study on Effects of Addition of Rice Husk on Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Bharath">M. Bharath</a>, <a href="https://publications.waset.org/search?q=Vasudevan%20Raghavan"> Vasudevan Raghavan</a>, <a href="https://publications.waset.org/search?q=B.%20V.%20S.%20S.%20S.%20Prasad"> B. V. S. S. S. Prasad</a>, <a href="https://publications.waset.org/search?q=S.%20R.%20Chakravarthy"> S. R. Chakravarthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H<sub>2</sub> remain almost unchanged and CO<sub>2</sub> decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm<sup>3</sup>. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubbling%20fluidized%20bed%20reactor" title="Bubbling fluidized bed reactor">Bubbling fluidized bed reactor</a>, <a href="https://publications.waset.org/search?q=coal%20gasification" title=" coal gasification"> coal gasification</a>, <a href="https://publications.waset.org/search?q=calorific%20value" title=" calorific value"> calorific value</a>, <a href="https://publications.waset.org/search?q=rice%20husk." title=" rice husk."> rice husk.</a> </p> <a href="https://publications.waset.org/10008717/experimental-study-on-effects-of-addition-of-rice-husk-on-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008717/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008717/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008717/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008717/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008717/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008717/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008717/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008717/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008717/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008717/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1464</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Hafdhi">F. Hafdhi</a>, <a href="https://publications.waset.org/search?q=T.%20Khir"> T. Khir</a>, <a href="https://publications.waset.org/search?q=A.%20Ben%20Yahia"> A. Ben Yahia</a>, <a href="https://publications.waset.org/search?q=A.%20Ben%20Brahim"> A. Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Steam%20turbine%20generator" title="Steam turbine generator">Steam turbine generator</a>, <a href="https://publications.waset.org/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/search?q=exergy%0D%0Aefficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/search?q=phosphoric%20acid%20plant." title=" phosphoric acid plant."> phosphoric acid plant.</a> </p> <a href="https://publications.waset.org/10003334/exergetic-analysis-of-steam-turbine-power-plant-operated-in-chemical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003334/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003334/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003334/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003334/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003334/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003334/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003334/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003334/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003334/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003334/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2596</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Experimental Study on a Solar Heat Concentrating Steam Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Qiangqiang%20Xu">Qiangqiang Xu</a>, <a href="https://publications.waset.org/search?q=Xu%20Ji"> Xu Ji</a>, <a href="https://publications.waset.org/search?q=Jingyang%20Han"> Jingyang Han</a>, <a href="https://publications.waset.org/search?q=Changchun%20Yang"> Changchun Yang</a>, <a href="https://publications.waset.org/search?q=Ming%20Li"> Ming Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system&#39;s structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m<sup>2</sup>, the effective heat collecting area is 7.6 m<sup>2</sup> and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m<sup>2</sup>, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20concentrating" title="Heat concentrating">Heat concentrating</a>, <a href="https://publications.waset.org/search?q=heat%20loss" title=" heat loss"> heat loss</a>, <a href="https://publications.waset.org/search?q=medium%20temperature" title=" medium temperature"> medium temperature</a>, <a href="https://publications.waset.org/search?q=solar%20steam%20production." title=" solar steam production. "> solar steam production. </a> </p> <a href="https://publications.waset.org/10008819/experimental-study-on-a-solar-heat-concentrating-steam-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008819/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008819/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008819/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008819/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008819/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008819/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008819/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008819/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008819/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008819/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1105</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaing%20Yadana%20Swe">Khaing Yadana Swe</a>, <a href="https://publications.waset.org/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>At present, the cascade PID control is widely used to control the superheating temperature (main steam temperature). As Main Steam Temperature has the characteristics of large inertia, large time-delay and time varying, etc., conventional PID control strategy cannot achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) - P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Model%20free%20Adaptive%20Control" title="Model free Adaptive Control">Model free Adaptive Control</a>, <a href="https://publications.waset.org/search?q=Cascade%20Control" title=" Cascade Control"> Cascade Control</a>, <a href="https://publications.waset.org/search?q=Adaptive%20Control" title=" Adaptive Control"> Adaptive Control</a>, <a href="https://publications.waset.org/search?q=PID." title=" PID."> PID.</a> </p> <a href="https://publications.waset.org/10000811/application-of-model-free-adaptive-control-in-main-steam-temperature-system-of-thermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000811/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000811/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000811/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000811/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000811/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000811/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000811/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000811/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000811/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000811/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2801</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Igor%20Nedelkovski">Igor Nedelkovski</a>, <a href="https://publications.waset.org/search?q=Ilios%20Vilos"> Ilios Vilos</a>, <a href="https://publications.waset.org/search?q=Tale%20Geramitcioski"> Tale Geramitcioski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Navier-Stokes" title="Navier-Stokes">Navier-Stokes</a>, <a href="https://publications.waset.org/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/search?q=condensers" title=" condensers"> condensers</a>, <a href="https://publications.waset.org/search?q=steam." title=" steam."> steam.</a> </p> <a href="https://publications.waset.org/13926/finite-element-solution-of-navier-stokes-equations-for-steam-flow-and-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13926/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13926/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13926/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13926/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13926/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13926/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13926/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13926/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13926/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13926/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2266</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nurhani%20Kasuan">Nurhani Kasuan</a>, <a href="https://publications.waset.org/search?q=Zakariah%20Yusuf"> Zakariah Yusuf</a>, <a href="https://publications.waset.org/search?q=Mohd%20Nasir%20Taib"> Mohd Nasir Taib</a>, <a href="https://publications.waset.org/search?q=Mohd%20Hezri%20Fazalul%20Rahiman"> Mohd Hezri Fazalul Rahiman</a>, <a href="https://publications.waset.org/search?q=Nazurah%20Tajuddin"> Nazurah Tajuddin</a>, <a href="https://publications.waset.org/search?q=Mohd%20Azri%20Abdul%20Aziz"> Mohd Azri Abdul Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20Logic%20controller" title="Fuzzy Logic controller">Fuzzy Logic controller</a>, <a href="https://publications.waset.org/search?q=steam%20temperature" title=" steam temperature"> steam temperature</a>, <a href="https://publications.waset.org/search?q=steam%20distillation" title=" steam distillation"> steam distillation</a>, <a href="https://publications.waset.org/search?q=real%20time%20control." title=" real time control."> real time control.</a> </p> <a href="https://publications.waset.org/759/robust-steam-temperature-regulation-for-distillation-of-essential-oil-extraction-process-using-hybrid-fuzzy-pd-plus-pid-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/759/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/759/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/759/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/759/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/759/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/759/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/759/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/759/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/759/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/759/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2841</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Atmospheric Fluid Bed Gasification of Different Biomass Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Martin%20Lis%C3%BD">Martin Lisý</a>, <a href="https://publications.waset.org/search?q=Marek%20Bal%C3%A1%C5%A1"> Marek Baláš</a>, <a href="https://publications.waset.org/search?q=Michal%20%C5%A0pil%C3%A1%C4%8Dek"> Michal Špiláček</a>, <a href="https://publications.waset.org/search?q=Zden%C4%9Bk%20Sk%C3%A1la"> Zdeněk Skála</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper shortly describes various types of biomass and a growing number of facilities utilizing the biomass in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequently used types of biomass and results of their gasification testing. Sixteen most used &quot;Czech&quot; woody plants and grasses were selected; raw, element and biochemical analyses were performed and basic calorimetric values, ash composition, and ash characteristic temperatures were identified. Later, each biofuel was tested in a fluidized bed gasifier. The essential part of this paper provides results of the gasification of selected biomass types. Operating conditions are described in detail with a focus on individual fuels properties. Gas composition and impurities content are also identified. In terms of operating conditions and gas quality, the essential difference occurred mainly between woody plants and grasses. The woody plants were evaluated as more suitable fuels for fluidized bed gasifiers. Testing results significantly help with a decision-making process regarding suitability of energy plants for growing and with a selection of optimal biomass-treatment technology.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass%20Growing" title="Biomass Growing">Biomass Growing</a>, <a href="https://publications.waset.org/search?q=Biomass%20Types" title=" Biomass Types"> Biomass Types</a>, <a href="https://publications.waset.org/search?q=Gasification." title=" Gasification."> Gasification.</a> </p> <a href="https://publications.waset.org/10001085/atmospheric-fluid-bed-gasification-of-different-biomass-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001085/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001085/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001085/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001085/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001085/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001085/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001085/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001085/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001085/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001085/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1923</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/search?q=Anunaya%20Saraswat"> Anunaya Saraswat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m<sup>2</sup> and 19<sup>o</sup>C respectively on this day.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Evacuated%20tube" title="Evacuated tube">Evacuated tube</a>, <a href="https://publications.waset.org/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/search?q=hot%20water" title=" hot water"> hot water</a>, <a href="https://publications.waset.org/search?q=steam%20generation." title=" steam generation. "> steam generation. </a> </p> <a href="https://publications.waset.org/10004361/an-experimental-study-on-evacuated-tube-solar-collector-for-steam-generation-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004361/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004361/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004361/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004361/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004361/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004361/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004361/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004361/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004361/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004361/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2712</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nabil%20M.%20Muhaisen">Nabil M. Muhaisen</a>, <a href="https://publications.waset.org/search?q=Rajab%20Abdullah%20Hokoma"> Rajab Abdullah Hokoma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boiler" title="Boiler">Boiler</a>, <a href="https://publications.waset.org/search?q=Calculation" title=" Calculation"> Calculation</a>, <a href="https://publications.waset.org/search?q=Efficiency" title=" Efficiency"> Efficiency</a>, <a href="https://publications.waset.org/search?q=Performance.%20Steam" title=" Performance. Steam"> Performance. Steam</a> </p> <a href="https://publications.waset.org/15720/calculating-the-efficiency-of-steam-boilers-based-on-its-most-effecting-factors-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15720/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15720/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15720/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15720/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15720/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15720/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15720/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15720/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15720/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15720/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3515</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pilanee%20Vaithanomsat">Pilanee Vaithanomsat</a>, <a href="https://publications.waset.org/search?q=Waraporn%20Apiwatanapiwat"> Waraporn Apiwatanapiwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vanillin" title="Vanillin">Vanillin</a>, <a href="https://publications.waset.org/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/search?q=Jatropha%20curcas%20stem" title=" Jatropha curcas stem"> Jatropha curcas stem</a>, <a href="https://publications.waset.org/search?q=steam%0Aexplosion." title=" steam explosion."> steam explosion.</a> </p> <a href="https://publications.waset.org/15930/feasibility-study-on-vanillin-production-from-jatropha-curcas-stem-using-steam-explosion-as-a-pretreatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15930/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15930/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15930/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15930/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15930/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15930/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15930/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15930/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15930/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15930/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2381</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mahmoud%20Amer">Mahmoud Amer</a>, <a href="https://publications.waset.org/search?q=Ibrahim%20El-Sharkawy"> Ibrahim El-Sharkawy</a>, <a href="https://publications.waset.org/search?q=Shinichi%20Ookawara"> Shinichi Ookawara</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Elwardany"> Ahmed Elwardany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20simulation" title="Numerical simulation">Numerical simulation</a>, <a href="https://publications.waset.org/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/search?q=reactor" title=" reactor"> reactor</a>, <a href="https://publications.waset.org/search?q=biomass." title=" biomass."> biomass.</a> </p> <a href="https://publications.waset.org/10011446/numerical-simulation-of-different-configurations-for-a-combined-gasificationcarbonization-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011446/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011446/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011446/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011446/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011446/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011446/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011446/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011446/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011446/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011446/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">725</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steam%20gasification&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steam%20gasification&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steam%20gasification&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steam%20gasification&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steam%20gasification&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steam%20gasification&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10