CINXE.COM
Search results for: weld joints
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: weld joints</title> <meta name="description" content="Search results for: weld joints"> <meta name="keywords" content="weld joints"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="weld joints" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="weld joints"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 527</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: weld joints</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Vivet">L. Vivet</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Benabou"> L. Benabou</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Simon"> O. Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20structure" title="nanoporous structure">nanoporous structure</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20oxalate" title=" silver oxalate"> silver oxalate</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectronic%20packaging" title=" microelectronic packaging"> microelectronic packaging</a> </p> <a href="https://publications.waset.org/abstracts/158737/investigation-of-the-mechanical-and-thermal-properties-of-a-silver-oxalate-nanoporous-structured-sintered-joint-for-micro-joining-in-relation-to-the-sintering-process-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> A Study of the Weld Properties of Inconel 625 Based on Nb Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JongWon%20Han">JongWon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=NoHoon%20Kim"> NoHoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=HyoIk%20Ahn"> HyoIk Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=HaeWoo%20Lee"> HaeWoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, shielded metal arc welding was performed as a function of Nb content at 2.24 wt%, 3.25 wt%, and 4.26 wt%. The microstructure was observed using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and showed the development of a columnar dendrite structure in the specimen having the least Nb content. From the hardness test, the hardness value was confirmed to reduce with decreasing Nb content. From electron backscatter diffraction (EBSD) analysis, the largest grain size was found in the specimen with Nb content of 2.24 wt%. The potentiodynamic polarization test was carried out to determine the pitting corrosion resistance; there was no significant difference in the pitting corrosion resistance with increasing Nb content. To evaluate the degree of sensitization to intergranular corrosion, the Double Loop Electrochemical Potentiodynamic Reactivation(DL-EPR test) was conducted. A similar degree of sensitization was found in two specimens except with a Nb content of 2.24 wt%, while a relatively high degree of sensitization was found in the specimen with a Nb content of 2.24 wt%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inconel%20625" title="inconel 625">inconel 625</a>, <a href="https://publications.waset.org/abstracts/search?q=Nb%20content" title=" Nb content"> Nb content</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiodynamic%20test" title=" potentiodynamic test"> potentiodynamic test</a>, <a href="https://publications.waset.org/abstracts/search?q=DL-EPR%20test" title=" DL-EPR test"> DL-EPR test</a> </p> <a href="https://publications.waset.org/abstracts/85849/a-study-of-the-weld-properties-of-inconel-625-based-on-nb-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Gas Tungsten Arc Welded Joints of Cast Al-Mg-Sc Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Subbaiah">K. Subbaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Jeyakumar"> C. V. Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Koteswara%20Rao"> S. R. Koteswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cast Aluminum-Magnesium-Scandium alloy was Gas Tungsten Arc (GTA) welded, and the microstructure and mechanical properties of the joint and its component parts were examined and analyzed. The global joint fractured in the base metal, and thus possessed slightly greater tensile strength than the base metal. These results clearly show that Gas Tungsten Arc welding is an optimum / suitable welding process for cast Aluminum-Magnesium-Scandium alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast%20Al-Mg-Sc%20alloy" title="cast Al-Mg-Sc alloy">cast Al-Mg-Sc alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=GTAW" title=" GTAW"> GTAW</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/18496/gas-tungsten-arc-welded-joints-of-cast-al-mg-sc-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parth%20Prajapati">Parth Prajapati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Srinivas"> A. R. Srinivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics" title="dynamics">dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectors" title=" reflectors"> reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=statics" title=" statics"> statics</a> </p> <a href="https://publications.waset.org/abstracts/62942/lotus-mechanism-validation-of-deployment-mechanism-using-structural-and-dynamic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Development of 90y-Chitosan Complex for Radiosynovectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaei">A. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Athari-Allaf"> M. Athari-Allaf</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y-90" title=" Y-90"> Y-90</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosynovectomy" title=" radiosynovectomy"> radiosynovectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title=" biodistribution"> biodistribution</a> </p> <a href="https://publications.waset.org/abstracts/23149/development-of-90y-chitosan-complex-for-radiosynovectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Casagrande">Lorenzo Casagrande</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Bonati"> Antonio Bonati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdinando%20Auricchio"> Ferdinando Auricchio</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Occhiuzzi"> Antonio Occhiuzzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20technologies" title="advanced technologies">advanced technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=glazed%20curtain%20walls" title=" glazed curtain walls"> glazed curtain walls</a>, <a href="https://publications.waset.org/abstracts/search?q=non-structural%20elements" title=" non-structural elements"> non-structural elements</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic-action%20reduction" title=" seismic-action reduction"> seismic-action reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/58590/dynamic-high-rise-moment-resisting-frame-dissipation-performances-adopting-glazed-curtain-walls-with-superelastic-shape-memory-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djarot%20B.%20Darmadi">Djarot B. Darmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%20steels" title=" ferritic steels"> ferritic steels</a>, <a href="https://publications.waset.org/abstracts/search?q=SSPT" title=" SSPT"> SSPT</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled-TMM" title=" coupled-TMM"> coupled-TMM</a> </p> <a href="https://publications.waset.org/abstracts/39495/the-effect-of-material-properties-and-volumetric-changes-in-phase-transformation-to-the-final-residual-stress-of-welding-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaidour%20Mohamed">Zaidour Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghalem%20Ali%20Jr."> Ghalem Ali Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Achit%20Henni%20Mohamed"> Achit Henni Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%E2%80%93column%20joints" title="beam–column joints">beam–column joints</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=shearing%20force" title=" shearing force"> shearing force</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20joint" title=" damaged joint"> damaged joint</a> </p> <a href="https://publications.waset.org/abstracts/16216/behavior-of-beam-column-nodes-reinforced-concrete-in-earthquake-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mansour">Sayed Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20%20Aldoasri"> Mohammad Aldoasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagib%20Elmarzugi"> Nagib Elmarzugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Al-Mouallimi"> Nadia A. Al-Mouallimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resins" title="epoxy resins">epoxy resins</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20nanoparticles" title=" clay nanoparticles"> clay nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=re-assembly" title=" re-assembly"> re-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeological%20massive%20stones" title=" archaeological massive stones"> archaeological massive stones</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/107224/nanomaterials-for-archaeological-stone-conservation-re-assembly-of-archaeological-heavy-stones-using-epoxy-resin-modified-with-clay-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Anatomical Investigation of Superficial Fascia Relationships with the Skin and Underlying Tissue in the Greyhound Rump, Thigh, and Crus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oday%20A.%20Al-Juhaishi">Oday A. Al-Juhaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%60ad%20M.%20Ismail"> Sa`ad M. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Hsun%20Yen"> Hung-Hsun Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20M.%20Murray"> Christina M. Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20M.%20S.%20Davies"> Helen M. S. Davies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The functional anatomy of the fascia in the greyhound is still poorly understood, and incompletely described. The basic knowledge of fascia stems mainly from anatomical, histological and ultrastructural analyses. In this study, twelve specimens of hindlimbs from six fresh greyhound cadavers (3 male, 3 female) were used to examine the topographical relationships of the superficial fascia with the skin and underlying tissue. The first incision was made along the dorsal midline from the level of the thoracolumbar junction caudally to the level of the mid sacrum. The second incision was begun at the level of the first incision and extended along the midline of the lateral aspect of the hindlimb distally, to just proximal to the tarsus, and, the skin margins carefully separated to observe connective tissue links between the skin and superficial fascia, attachment points of the fascia and the relationships of the fascia with blood vessels that supply the skin. A digital camera was used to record the anatomical features as they were revealed. The dissections identified fibrous septa connecting the skin with the superficial fascia and deep fascia in specific areas. The presence of the adipose tissue was found to be very rare within the superficial fascia in these specimens. On the extensor aspects of some joints, a fusion between the superficial fascia and deep fascia was observed. This fusion created a subcutaneous bursa in the following areas: a prepatellar bursa of the stifle, a tarsal bursa caudal to the calcaneus bone, and an ischiatic bursa caudal to the ischiatic tuberosity. The evaluation of blood vessels showed that the perforating vessels passed through fibrous septa in a perpendicular direction to supply the skin, with the largest branch noted in the gluteal area. The attachment points between the superficial fascia and skin were mainly found in the region of the flexor aspect of the joints, such as caudal to the stifle joint. The numerous fibrous septa between the superficial fascia and skin that have been identified in some areas, may create support for the blood vessels that penetrate fascia and into the skin, while allowing for movement between the tissue planes. The subcutaneous bursae between the skin and the superficial fascia where it is fused with the deep fascia may be useful to decrease friction between moving areas. The adhesion points may be related to the integrity and loading of the skin. The attachment points fix the skin and appear to divide the hindlimb into anatomical compartments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attachment%20points" title="attachment points">attachment points</a>, <a href="https://publications.waset.org/abstracts/search?q=fibrous%20septa" title=" fibrous septa"> fibrous septa</a>, <a href="https://publications.waset.org/abstracts/search?q=greyhound" title=" greyhound"> greyhound</a>, <a href="https://publications.waset.org/abstracts/search?q=subcutaneous%20bursa" title=" subcutaneous bursa"> subcutaneous bursa</a>, <a href="https://publications.waset.org/abstracts/search?q=superficial%20fascia" title=" superficial fascia"> superficial fascia</a> </p> <a href="https://publications.waset.org/abstracts/74951/anatomical-investigation-of-superficial-fascia-relationships-with-the-skin-and-underlying-tissue-in-the-greyhound-rump-thigh-and-crus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Bae">S. H. Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Cho"> D. W. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Jeong"> W. B. Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Cho"> J. R. Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20testing" title="modal testing">modal testing</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20aging" title=" vibration aging"> vibration aging</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20structure" title=" welded structure"> welded structure</a> </p> <a href="https://publications.waset.org/abstracts/79035/study-on-the-dynamic-characteristics-change-of-welded-beam-due-to-vibration-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bum%20Yean%20Cho">Bum Yean Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Heung-Youl%20Kim"> Heung-Youl Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Seok%20Kwon"> Ki-Seok Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Su%20Kim"> Kang-Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFT%20%28concrete-filled%20tube%29%20column" title="CFT (concrete-filled tube) column">CFT (concrete-filled tube) column</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance%20performance" title=" fire resistance performance"> fire resistance performance</a>, <a href="https://publications.waset.org/abstracts/search?q=slot" title=" slot"> slot</a>, <a href="https://publications.waset.org/abstracts/search?q=weld" title=" weld"> weld</a> </p> <a href="https://publications.waset.org/abstracts/94352/experiment-and-analytical-study-on-fire-resistance-performance-of-slot-type-concrete-filled-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Baillie">Philip Baillie</a>, <a href="https://publications.waset.org/abstracts/search?q=Stuart%20W.%20Campbell"> Stuart W. Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Galloway"> Alexander M. Galloway</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20R.%20Cater"> Stephen R. Cater</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20McPherson"> Norman A. McPherson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20toughness" title="Charpy impact toughness">Charpy impact toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%28FSW%29" title=" friction stir welding(FSW)"> friction stir welding(FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-hardness" title=" micro-hardness"> micro-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/abstracts/7606/a-comparison-of-double-sided-friction-stir-welding-in-air-and-underwater-for-6mm-s275-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Kinematical Analysis of Normal Children in Different Age Groups during Gait </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawaf%20Al%20Khashram">Nawaf Al Khashram</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Arnold"> Graham Arnold</a>, <a href="https://publications.waset.org/abstracts/search?q=Weijie%20Wang"> Weijie Wang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20group" title="age group">age group</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title=" gait analysis"> gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics" title=" kinematics"> kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20children" title=" normal children"> normal children</a> </p> <a href="https://publications.waset.org/abstracts/116583/kinematical-analysis-of-normal-children-in-different-age-groups-during-gait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Modelling Magnetohydrodynamics to Investigate Variation of Shielding Gases on Arc Characteristics in the GTAW Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stuart%20W.%20Campbell">Stuart W. Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Galloway"> Alexander M. Galloway</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20McPherson"> Norman A. McPherson</a>, <a href="https://publications.waset.org/abstracts/search?q=Duncan%20Camilleri"> Duncan Camilleri</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Micallef"> Daniel Micallef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas tungsten arc welding requires a gas shield to be present in order to protect the arc area from contamination by atmospheric gases. As a result of each gas having its own unique thermophysical properties, the shielding gas selected can have a major influence on the arc stability, welding speed, weld appearance and geometry, mechanical properties and fume generation. Alternating shielding gases is a relatively new method of discreetly supplying two different shielding gases to the welding region in order to take advantage of the beneficial properties of each gas, as well as the inherent pulsing effects generated. As part of an ongoing process to fully evaluate the effects of this novel supply method, a computational fluid dynamics model has been generated to include the gas dependent thermodynamic and transport properties in order to evaluate the effects that an alternating gas supply has on the arc plasma. Experimental trials have also been conducted to validate the model arc profile predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alternating%20shielding%20gases" title="Alternating shielding gases">Alternating shielding gases</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title=" ANSYS CFX"> ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=Gas%20tungsten%20arc%20welding%28GTAW%29" title=" Gas tungsten arc welding(GTAW)"> Gas tungsten arc welding(GTAW)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics%28MHD%29" title=" magnetohydrodynamics(MHD)"> magnetohydrodynamics(MHD)</a> </p> <a href="https://publications.waset.org/abstracts/7607/modelling-magnetohydrodynamics-to-investigate-variation-of-shielding-gases-on-arc-characteristics-in-the-gtaw-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Chen">Y. J. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Yue"> T. M. Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20N.%20Guo"> Z. N. Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20direct%20joining" title="laser direct joining">laser direct joining</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%2FPET%20interface" title=" Ti/PET interface"> Ti/PET interface</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20energy" title=" laser energy"> laser energy</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS%20depth%20profiling" title=" XPS depth profiling"> XPS depth profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20bond" title=" chemical bond"> chemical bond</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20failure%20load" title=" tensile failure load"> tensile failure load</a> </p> <a href="https://publications.waset.org/abstracts/52818/effect-of-laser-input-energy-on-the-laser-joining-of-polyethylene-terephthalate-to-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Micro-Study of Dissimilar Welded Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezzeddin%20Anawa">Ezzeddin Anawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdol-Ghane%20Olabi"> Abdol-Ghane Olabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microharness" title="microharness ">microharness </a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20welding%20and%20dissimilar%20jointed%20materials." title=" laser welding and dissimilar jointed materials."> laser welding and dissimilar jointed materials.</a> </p> <a href="https://publications.waset.org/abstracts/6976/micro-study-of-dissimilar-welded-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armansyah">Armansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20P.%20Almanar"> I. P. Almanar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saiful%20Bahari%20Shaari"> M. Saiful Bahari Shaari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shamil%20Jaffarullah"> M. Shamil Jaffarullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frictions%20Stir%20Welding%20%28FSW%29" title="Frictions Stir Welding (FSW)">Frictions Stir Welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method%20%28FEM%29" title=" Finite Element Method (FEM)"> Finite Element Method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=altair%20hyperwork" title=" altair hyperwork"> altair hyperwork</a> </p> <a href="https://publications.waset.org/abstracts/21638/temperature-gradient-in-weld-zones-during-friction-stir-process-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasra%20Afsahi">Kasra Afsahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Soheilifar"> Maryam Soheilifar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hossein%20Hosseini"> S. Hossein Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of Covid-19 infection. Understanding novel treatment approaches are important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with virtual reality (VR) included. This game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with covid-19 related CVA. The safety of newly developed instruments for such cases provides new approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covid-19" title="covid-19">covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/145498/virtual-reality-in-covid-19-stroke-rehabilitation-preliminary-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Achieving Product Robustness through Variation Simulation: An Industrial Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Akhadkar">Narendra Akhadkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Delcambre"> Philippe Delcambre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometrical%20variation" title="geometrical variation">geometrical variation</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20robustness" title=" product robustness"> product robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance%20analysis" title=" tolerance analysis"> tolerance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20simulation" title=" variation simulation"> variation simulation</a> </p> <a href="https://publications.waset.org/abstracts/138415/achieving-product-robustness-through-variation-simulation-an-industrial-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20law" title=" Paris law"> Paris law</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a> </p> <a href="https://publications.waset.org/abstracts/23771/prediction-of-fatigue-crack-propagation-in-bonded-joints-using-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Gupta">Sakshi Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Agrawal"> Anupam Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekta%20Singla"> Ekta Singla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20mechanism" title="passive mechanism">passive mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=task-based%20synthesis" title=" task-based synthesis"> task-based synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=emulating%20human-motion" title=" emulating human-motion"> emulating human-motion</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a> </p> <a href="https://publications.waset.org/abstracts/101014/kinematic-modelling-and-task-based-synthesis-of-a-passive-architecture-for-an-upper-limb-rehabilitation-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Pushover Experiment of Traditional Dieh-Dou Timber Frame </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Zuo%20Wang">Ren Zuo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to investigate the joint behaviors of the Dieh-Dou structure. A pushover experiment of Dieh-Dou Jia-Dong is implemented. NDI, LVDT and image measurement system are used to measure displacements of joints and deformations of Dieh-Dou Jia-Dong. In addition, joint rotation-moment relationships of column restoring force, purlin-supporting, Dou-Shu, Dou-Gong brackets, primary beam-Gua Tong, secondary beam-Gua Tong, Tertiary beam are builied. From Jia-Dong experiments, formulations of joint rotation are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pushover%20experiment" title="pushover experiment">pushover experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=Dieh-Dou%20timber%20frame" title=" Dieh-Dou timber frame"> Dieh-Dou timber frame</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20measurement%20system" title=" image measurement system"> image measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20rotation-moment%20relationships" title=" joint rotation-moment relationships"> joint rotation-moment relationships</a> </p> <a href="https://publications.waset.org/abstracts/83391/pushover-experiment-of-traditional-dieh-dou-timber-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Structural Health Assessment of a Masonry Bridge Using Wireless</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalluri%20Lakshmi%20Ramu">Nalluri Lakshmi Ramu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Venkat%20Nihit"> C. Venkat Nihit</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Kumar"> Narayana Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dillep"> Dillep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry bridges are the iconic heritage transportation infrastructure throughout the world. Continuous increase in traffic loads and speed have kept engineers in dilemma about their structural performance and capacity. Henceforth, research community has an urgent need to propose an effective methodology and validate on real-time bridges. The presented research aims to assess the structural health of an Eighty-year-old masonry railway bridge in India using wireless accelerometer sensors. The bridge consists of 44 spans with length of 24.2 m each and individual pier is 13 m tall laid on well foundation. To calculate the dynamic characteristic properties of the bridge, ambient vibrations were recorded from the moving traffic at various speeds and the same are compared with the developed three-dimensional numerical model using finite element-based software. The conclusions about the weaker or deteriorated piers are drawn from the comparison of frequencies obtained from the experimental tests conducted on alternative spans. Masonry is a heterogeneous anisotropic material made up of incoherent materials (such as bricks, stones, and blocks). It is most likely the earliest largely used construction material. Masonry bridges, which were typically constructed of brick and stone, are still a key feature of the world's highway and railway networks. There are 1,47,523 railway bridges across India and about 15% of these bridges are built by masonry, which are around 80 to 100 year old. The cultural significance of masonry bridges cannot be overstated. These bridges are considered to be complicated due to the presence of arches, spandrel walls, piers, foundations, and soils. Due to traffic loads and vibrations, wind, rain, frost attack, high/low temperature cycles, moisture, earthquakes, river overflows, floods, scour, and soil under their foundations may cause material deterioration, opening of joints and ring separation in arch barrels, cracks in piers, loss of brick-stones and mortar joints, distortion of the arch profile. Few NDT tests like Flat jack Tests are being employed to access the homogeneity, durability of masonry structure, however there are many drawbacks because of the test. A modern approach of structural health assessment of masonry structures by vibration analysis, frequencies and stiffness properties is being explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20bridges" title="masonry bridges">masonry bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20assessment" title=" condition assessment"> condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensors" title=" wireless sensors"> wireless sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis%20modal%20frequencies" title=" numerical analysis modal frequencies"> numerical analysis modal frequencies</a> </p> <a href="https://publications.waset.org/abstracts/154207/structural-health-assessment-of-a-masonry-bridge-using-wireless" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Vakili-Farahani">Farzad Vakili-Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Lungershausen"> Joern Lungershausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilian%20Wasmer"> Kilian Wasmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wobbled%20laser%20beam%20welding" title="wobbled laser beam welding">wobbled laser beam welding</a>, <a href="https://publications.waset.org/abstracts/search?q=wobbling%20function" title=" wobbling function"> wobbling function</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20oscillation" title=" beam oscillation"> beam oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20welding" title=" micro welding"> micro welding</a> </p> <a href="https://publications.waset.org/abstracts/56603/wobbled-laser-beam-welding-for-macro-to-micro-fabrication-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Creative Mathematics – Action Research of a Professional Development Program in an Icelandic Compulsory School </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osk%20Dagsdottir">Osk Dagsdottir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—This study aims to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g., joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in the whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider the age group when analyzing the patients with lower limb disorders before any clinical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action%20research" title="action research">action research</a>, <a href="https://publications.waset.org/abstracts/search?q=creative%20learning" title=" creative learning"> creative learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics%20education" title=" mathematics education"> mathematics education</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20development" title=" professional development "> professional development </a> </p> <a href="https://publications.waset.org/abstracts/111445/creative-mathematics-action-research-of-a-professional-development-program-in-an-icelandic-compulsory-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ramezani">Ali Ramezani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balancing%20feeding%20system" title="balancing feeding system">balancing feeding system</a>, <a href="https://publications.waset.org/abstracts/search?q=family%20molding" title=" family molding"> family molding</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-cavity" title=" multi-cavity"> multi-cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=Moldflow" title=" Moldflow"> Moldflow</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20injection" title=" plastic injection "> plastic injection </a> </p> <a href="https://publications.waset.org/abstracts/126876/optimization-of-plastic-injection-molding-parameters-by-altering-gate-and-runner-of-feeding-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Chronic wrist pain among handstand practitioners. A questionnaire study.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martonovich%20Noa">Martonovich Noa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maman%20David"> Maman David</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfandari%20Liad"> Alfandari Liad</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrbalk%20Eyal."> Behrbalk Eyal.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The human body is designed for upright standing and walking, with the lower extremities and axial skeleton supporting weight-bearing. Constant weight-bearing on joints not meant for this action can lead to various pathologies, as seen in wheelchair users. Handstand practitioners use their wrists as weight-bearing joints during activities, but little is known about wrist injuries in this population. This study aims to investigate the epidemiology of wrist pain among handstand practitioners, as no such data currently exist. Methods: The study is a cross-sectional online survey conducted among athletes who regularly practice handstands. Participants were asked to complete a three-part questionnaire regarding their workout regimen, training habits, and history of wrist pain. The inclusion criteria were athletes over 18 years old who practice handstands more than twice a month for at least 4 months. All data were collected using Google Forms, organized and anonymized using Microsoft Excel, and analyzed using IBM SPSS 26.0. Descriptive statistics were calculated, and potential risk factors were tested using asymptotic t-tests and Fisher's tests. Differences were considered significant when p < 0.05. Results: This study surveyed 402 athletes who regularly practice handstands to investigate the prevalence of chronic wrist pain and potential risk factors. The participants had a mean age of 31.3 years, with most being male and having an average of 5 years of training experience. 56% of participants reported chronic wrist pain, and 14.4% reported a history of distal radial fracture. Yoga was the most practiced form, followed by Capoeira. No significant differences were found in demographic data between participants with and without chronic wrist pain, and no significant associations were found between chronic wrist pain prevalence and warm-up routines or protective aids. Conclusion: The lower half of the body is meant to handle weight-bearing and impact, while transferring the load to upper extremities can lead to various pathologies. Athletes who perform handstands are particularly prone to chronic wrist pain, which affects over half of them. Warm-up sessions and protective instruments like wrist braces do not seem to prevent chronic wrist pain, and there are no significant differences in age or training volume between athletes with and without the condition. Further research is needed to understand the causes of chronic wrist pain in athletes, given the growing popularity of sports and activities that can cause this type of injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=handstand" title="handstand">handstand</a>, <a href="https://publications.waset.org/abstracts/search?q=handbalance" title=" handbalance"> handbalance</a>, <a href="https://publications.waset.org/abstracts/search?q=wrist%20pain" title=" wrist pain"> wrist pain</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20and%20wrist%20surgery" title=" hand and wrist surgery"> hand and wrist surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=yoga" title=" yoga"> yoga</a>, <a href="https://publications.waset.org/abstracts/search?q=calisthenics" title=" calisthenics"> calisthenics</a>, <a href="https://publications.waset.org/abstracts/search?q=circus" title=" circus"> circus</a>, <a href="https://publications.waset.org/abstracts/search?q=capoeira" title=" capoeira"> capoeira</a>, <a href="https://publications.waset.org/abstracts/search?q=movement." title=" movement."> movement.</a> </p> <a href="https://publications.waset.org/abstracts/169542/chronic-wrist-pain-among-handstand-practitioners-a-questionnaire-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20A.%20M.%20Laudani">Antonio A. M. Laudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20O.%20Golosnoy"> Igor O. Golosnoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ole%20T.%20Thomsen"> Ole T. Thomsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibre%20reinforced%20polymer" title="carbon fibre reinforced polymer">carbon fibre reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=equipotential%20bonding" title=" equipotential bonding"> equipotential bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a>, <a href="https://publications.waset.org/abstracts/search?q=LPS" title=" LPS"> LPS</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title=" wind turbine blades"> wind turbine blades</a> </p> <a href="https://publications.waset.org/abstracts/93354/computational-analysis-of-thermal-degradation-in-wind-turbine-spars-equipotential-bonding-subjected-to-lightning-strikes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benhamena">A. Benhamena</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aminallah"> L. Aminallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aid"> A. Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benguediab"> M. Benguediab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amrouche"> A. Amrouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%202024-T3%20alloy" title="aluminum 2024-T3 alloy">aluminum 2024-T3 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=single-lap%20adhesive%20joints" title=" single-lap adhesive joints"> single-lap adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=Interface%20stress%20distributions" title=" Interface stress distributions"> Interface stress distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinear%20analysis" title=" material nonlinear analysis"> material nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20moment" title=" bending moment"> bending moment</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/16813/non-linear-finite-element-analysis-of-bonded-single-lap-joint-in-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=8" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=10" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>