CINXE.COM
Search results for: fault tolerant control
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fault tolerant control</title> <meta name="description" content="Search results for: fault tolerant control"> <meta name="keywords" content="fault tolerant control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fault tolerant control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fault tolerant control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11399</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fault tolerant control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11399</span> Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Loukil">R. Loukil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chtourou"> M. Chtourou</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Damak"> T. Damak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation%20FDI" title="fault detection and isolation FDI">fault detection and isolation FDI</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control%20FTC" title=" fault tolerant control FTC"> fault tolerant control FTC</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer" title=" sliding mode observer"> sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title=" nonlinear system"> nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/41716/actuator-fault-detection-and-fault-tolerant-control-of-a-nonlinear-system-using-sliding-mode-observer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11398</span> Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmen%20Bouguerra">Abderrahmen Bouguerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Kara"> Kamel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Saigaa"> Djamel Saigaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Zeghlache"> Samir Zeghlache</a>, <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Loukal"> Keltoum Loukal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title="fuzzy control">fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=gain-adaptive%20PID" title=" gain-adaptive PID"> gain-adaptive PID</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20model" title=" helicopter model"> helicopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20control" title=" PID control"> PID control</a>, <a href="https://publications.waset.org/abstracts/search?q=TRMS%20system" title=" TRMS system"> TRMS system</a> </p> <a href="https://publications.waset.org/abstracts/21698/fault-tolerant-fuzzy-gain-adaptive-pid-control-for-a-2-dof-helicopter-trms-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11397</span> Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Hashemi">Seyed Mohammad Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Barati"> Shahrokh Barati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control" title="fault tolerant control">fault tolerant control</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20fault" title=" actuator fault"> actuator fault</a>, <a href="https://publications.waset.org/abstracts/search?q=unknown%20input%20observer" title=" unknown input observer"> unknown input observer</a> </p> <a href="https://publications.waset.org/abstracts/36532/fault-tolerant-control-of-the-dynamical-systems-based-on-internal-structure-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11396</span> Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghodbane%20Azeddine">Ghodbane Azeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Maarouf"> Saad Maarouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Boland%20Jean-Francois"> Boland Jean-Francois</a>, <a href="https://publications.waset.org/abstracts/search?q=Thibeault%20Claude"> Thibeault Claude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator%20faults" title="actuator faults">actuator faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20diagnosis" title=" fault detection and diagnosis"> fault detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20flight%20control" title=" fault tolerant flight control"> fault tolerant flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20time%20scale%20approximation" title=" multiple time scale approximation"> multiple time scale approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20approach%20for%20fault%20reconstruction" title=" geometric approach for fault reconstruction"> geometric approach for fault reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title=" lyapunov stability"> lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/50753/fault-tolerant-control-system-using-a-multiple-time-scale-smc-technique-and-a-geometric-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11395</span> Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yushuai%20Wang">Yushuai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junbo%20Tan"> Junbo Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueqian%20Wang"> Xueqian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liang"> Bin Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying" title=" linear parameter varying"> linear parameter varying</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=set%20theory" title=" set theory"> set theory</a> </p> <a href="https://publications.waset.org/abstracts/134234/sensor-fault-tolerant-model-predictive-control-for-linear-parameter-varying-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11394</span> Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Rodriguez-Guerra">Jorge Rodriguez-Guerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Calleja"> Carlos Calleja</a>, <a href="https://publications.waset.org/abstracts/search?q=Aron%20Pujana"> Aron Pujana</a>, <a href="https://publications.waset.org/abstracts/search?q=Iker%20Elorza"> Iker Elorza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Macarulla"> Ana Maria Macarulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20control" title="fault-tolerant control">fault-tolerant control</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-hydraulic%20actuator" title=" electro-hydraulic actuator"> electro-hydraulic actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20re-design" title=" control re-design"> control re-design</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a> </p> <a href="https://publications.waset.org/abstracts/99692/fault-tolerant-control-study-and-classification-case-study-of-a-hydraulic-press-model-simulated-in-real-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11393</span> Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Masoud%20Barakati">S. Masoud Barakati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Rahmani%20Haredasht"> Mohsen Rahmani Haredasht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-type%20nested%20neutral%20point%20clamped%20converter" title="T-type nested neutral point clamped converter">T-type nested neutral point clamped converter</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20operation" title=" continuous operation"> continuous operation</a>, <a href="https://publications.waset.org/abstracts/search?q=open-circuit%20faults" title=" open-circuit faults"> open-circuit faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20converters" title=" fault-tolerant converters"> fault-tolerant converters</a> </p> <a href="https://publications.waset.org/abstracts/158448/fault-tolerant-configuration-for-t-type-nested-neutral-point-clamped-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11392</span> Fault-Tolerant Predictive Control for Polytopic LPV Systems Subject to Sensor Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Bououden">Sofiane Bououden</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyes%20Boulkaibet"> Ilyes Boulkaibet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a robust fault-tolerant predictive control (FTPC) strategy is proposed for systems with linear parameter varying (LPV) models and input constraints subject to sensor faults. Generally, virtual observers are used for improving the observation precision and reduce the impacts of sensor faults and uncertainties in the system. However, this type of observer lacks certain system measurements which substantially reduce its accuracy. To deal with this issue, a real observer is then designed based on the virtual observer, and consequently a real observer-based robust predictive control is designed for polytopic LPV systems. Moreover, the proposed observer can entirely assure that all system states and sensor faults are estimated. As a result, and based on both observers, a robust fault-tolerant predictive control is then established via the Lyapunov method where sufficient conditions are proposed, for stability analysis and control purposes, in linear matrix inequalities (LMIs) form. Finally, simulation results are given to show the effectiveness of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying%20systems" title="linear parameter varying systems">linear parameter varying systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20predictive%20control" title=" fault-tolerant predictive control"> fault-tolerant predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=observer-based%20control" title=" observer-based control"> observer-based control</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20faults" title=" sensor faults"> sensor faults</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20constraints" title=" input constraints"> input constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a> </p> <a href="https://publications.waset.org/abstracts/139019/fault-tolerant-predictive-control-for-polytopic-lpv-systems-subject-to-sensor-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11391</span> Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghodbane">A. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Boland"> J. F. Boland</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thibeault"> C. Thibeault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators%E2%80%99%20faults" title="actuators’ faults">actuators’ faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20diagnosis" title=" fault detection and diagnosis"> fault detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20flight%20control" title=" fault tolerant flight control"> fault tolerant flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20approach%20for%20fault%20reconstruction" title=" geometric approach for fault reconstruction"> geometric approach for fault reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title=" Lyapunov stability"> Lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/7903/applied-actuator-fault-accommodation-in-flight-control-systems-using-fault-reconstruction-based-fdd-and-smc-reconfiguration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11390</span> Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Jain">Madhu Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar%20Meena"> Rakesh Kumar Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant" title="fault tolerant">fault tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20repair" title=" machine repair"> machine repair</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20recovery%20policy" title=" threshold recovery policy"> threshold recovery policy</a>, <a href="https://publications.waset.org/abstracts/search?q=imperfect%20%20coverage" title=" imperfect coverage"> imperfect coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable%20technique" title=" supplementary variable technique"> supplementary variable technique</a> </p> <a href="https://publications.waset.org/abstracts/65696/queueing-modeling-of-mg1-fault-tolerant-system-with-threshold-recovery-and-imperfect-coverage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11389</span> Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Sobhani-Tehrani">E. Sobhani-Tehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khorasani"> K. Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Meskin"> N. Meskin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fault%20diagnosis" title="hybrid fault diagnosis">hybrid fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20neural%20networks" title=" dynamic neural networks"> dynamic neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20observer" title=" fault tolerant observer"> fault tolerant observer</a> </p> <a href="https://publications.waset.org/abstracts/23088/fault-diagnosis-of-nonlinear-systems-using-dynamic-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11388</span> Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramish">Ramish</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhan%20%20Khalique%20Awan"> Farhan Khalique Awan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant" title="fault tolerant">fault tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20matrix" title=" Graham matrix"> Graham matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobian" title=" Jacobian"> Jacobian</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics" title=" kinematics"> kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange-Euler" title=" Lagrange-Euler"> Lagrange-Euler</a> </p> <a href="https://publications.waset.org/abstracts/79710/design-and-development-of-an-optimal-fault-tolerant-3-degree-of-freedom-robotic-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11387</span> Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhimanyu%20Kumar">Abhimanyu Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chirag%20Gupta"> Chirag Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20harmonic%20distortion" title="total harmonic distortion">total harmonic distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=MLI" title=" MLI"> MLI</a> </p> <a href="https://publications.waset.org/abstracts/172530/fuzzy-logic-based-fault-tolerant-model-predictive-mli-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11386</span> Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrhamane%20Jarou">Abderrhamane Jarou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20%20Sauter"> Dominique Sauter</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Aubrun"> Christophe Aubrun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilinear%20systems" title="bilinear systems">bilinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20control" title=" fault-tolerant control"> fault-tolerant control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-zones%20building" title=" multi-zones building"> multi-zones building</a> </p> <a href="https://publications.waset.org/abstracts/136860/fault-diagnosis-and-fault-tolerant-control-of-bilinear-systems-application-to-heating-ventilation-and-air-conditioning-systems-in-multi-zone-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11385</span> A Fault-Tolerant Full Adder in Double Pass CMOS Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelmonaem%20Ayachi">Abdelmonaem Ayachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgacem%20Hamdi"> Belgacem Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a fault-tolerant implementation for adder schemes using the dual duplication code. To prove the efficiency of the proposed method, the circuit is simulated in double pass transistor CMOS 32nm technology and some transient faults are voluntary injected in the Layout of the circuit. This fully differential implementation requires only 20 transistors which mean that the proposed design involves 28.57% saving in transistor count compared to standard CMOS technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20electronics" title="digital electronics">digital electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20circuits" title=" integrated circuits"> integrated circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20adder" title=" full adder"> full adder</a>, <a href="https://publications.waset.org/abstracts/search?q=32nm%20CMOS%20tehnology" title=" 32nm CMOS tehnology"> 32nm CMOS tehnology</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20pass%20transistor%20technology" title=" double pass transistor technology"> double pass transistor technology</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20toleance" title=" fault toleance"> fault toleance</a>, <a href="https://publications.waset.org/abstracts/search?q=self-checking" title=" self-checking"> self-checking</a> </p> <a href="https://publications.waset.org/abstracts/40794/a-fault-tolerant-full-adder-in-double-pass-cmos-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11384</span> Application of Neural Petri Net to Electric Control System Fault Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20J.%20Abou-Loukh">Sadiq J. Abou-Loukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petri%20net" title="petri net">petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20petri%20net" title=" neural petri net"> neural petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20control%20system" title=" electric control system"> electric control system</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/16653/application-of-neural-petri-net-to-electric-control-system-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11383</span> Fault Detection and Isolation in Sensors and Actuators of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Barati">Shahrokh Barati</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ramezani"> Reza Ramezani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDI" title="FDI">FDI</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors%20and%20actuators%20faults" title=" sensors and actuators faults"> sensors and actuators faults</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/39446/fault-detection-and-isolation-in-sensors-and-actuators-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11382</span> Asynchronous Sequential Machines with Fault Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seong%20Woo%20Kwak">Seong Woo Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Min%20Yang"> Jung-Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20sequential%20machines" title="asynchronous sequential machines">asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis%20and%20tolerance" title=" fault diagnosis and tolerance"> fault diagnosis and tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detector" title=" fault detector"> fault detector</a> </p> <a href="https://publications.waset.org/abstracts/53634/asynchronous-sequential-machines-with-fault-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11381</span> A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jude%20Inwumoh">Jude Inwumoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20P.%20R.%20Taylor"> Adam P. R. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosala%20Gunawardane"> Kosala Gunawardane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MMC-HVDC" title="MMC-HVDC">MMC-HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20faults" title=" DC faults"> DC faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20current%20limiters" title=" fault current limiters"> fault current limiters</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20scheme" title=" control scheme"> control scheme</a> </p> <a href="https://publications.waset.org/abstracts/113483/a-review-of-hvdc-modular-multilevel-converters-subjected-to-dc-and-ac-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11380</span> Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghasemi">S. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khorasani"> K. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component" title="component">component</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20flight%20of%20satellites" title=" formation flight of satellites"> formation flight of satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20fault" title=" actuator fault"> actuator fault</a> </p> <a href="https://publications.waset.org/abstracts/26418/fault-detection-and-isolation-in-attitude-control-subsystem-of-spacecraft-formation-flying-using-extended-kalman-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11379</span> Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ning%20Gong%03">Ning Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Korostelev%03"> Michael Korostelev</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiangguo%20Ren%03"> Qiangguo Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Bai%03"> Li Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20K.%20Biswas%03"> Saroj K. Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Ferrese">Frank Ferrese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28n" title="(n">(n</a>, <a href="https://publications.waset.org/abstracts/search?q=k%29-star%20topology" title="k)-star topology">k)-star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20diagnosability" title=" conditional diagnosability"> conditional diagnosability</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20power%20system" title=" automated power system"> automated power system</a> </p> <a href="https://publications.waset.org/abstracts/17249/fault-tolerant-nk-star-power-network-topology-for-multi-agent-communication-in-automated-power-distribution-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11378</span> Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ning%20Gong">Ning Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Korostelev"> Michael Korostelev</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiangguo%20Ren"> Qiangguo Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Bai"> Li Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Biswas"> Saroj Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Ferrese"> Frank Ferrese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28n" title="(n">(n</a>, <a href="https://publications.waset.org/abstracts/search?q=k%29-star%20topology" title=" k)-star topology"> k)-star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20diagnosability" title=" conditional diagnosability"> conditional diagnosability</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20power%20system" title=" automated power system "> automated power system </a> </p> <a href="https://publications.waset.org/abstracts/23400/fault-tolerant-n-k-star-power-network-topology-for-multi-agent-communication-in-automated-power-distribution-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11377</span> Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Pareek">Vishal Pareek</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Gupta"> Shubham Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Chandra%20Jain"> Sushil Chandra Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parity%20preserving%20gate" title="parity preserving gate">parity preserving gate</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=flip-flop" title=" flip-flop"> flip-flop</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20reversible%20logic" title=" sequential reversible logic"> sequential reversible logic</a> </p> <a href="https://publications.waset.org/abstracts/12069/fault-tolerant-and-testable-designs-of-reversible-sequential-building-blocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11376</span> Characteristic Matrix Faults for Flight Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Nga%20Thai">Thanh Nga Thai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20identification" title="fault detection and identification">fault detection and identification</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20faults" title=" sensor faults"> sensor faults</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20faults" title=" actuator faults"> actuator faults</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control%20system" title=" flight control system"> flight control system</a> </p> <a href="https://publications.waset.org/abstracts/18549/characteristic-matrix-faults-for-flight-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11375</span> Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cao%20Xiaopeng">Cao Xiaopeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Linkai"> Shi Linkai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=practical%20byzantine" title="practical byzantine">practical byzantine</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus%20algorithm" title=" consensus algorithm"> consensus algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency%20analysis" title=" consistency analysis"> consistency analysis</a> </p> <a href="https://publications.waset.org/abstracts/128883/research-on-dynamic-practical-byzantine-fault-tolerance-consensus-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11374</span> Effect of Fault Depth on Near-Fault Peak Ground Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Yu">Yanyan Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiping%20Ding"> Haiping Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengjun%20Chen"> Pengjun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiou%20Sun"> Yiou Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20depth" title="fault depth">fault depth</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault" title=" near-fault"> near-fault</a>, <a href="https://publications.waset.org/abstracts/search?q=PGV" title=" PGV"> PGV</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/73475/effect-of-fault-depth-on-near-fault-peak-ground-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11373</span> [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Albert%20Alexander%20Stonier">Albert Alexander Stonier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20photovoltaic" title="solar photovoltaic">solar photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20electronics" title=" power electronics"> power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a> </p> <a href="https://publications.waset.org/abstracts/57879/keynote-talk-analysis-of-intelligent-based-fault-tolerant-capability-system-for-solar-photovoltaic-energy-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11372</span> Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungsik%20Jo">Sungsik Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeonwoo%20Kim"> Hyeonwoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iksu%20Choi"> Iksu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunmo%20Kim"> Hunmo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20hybrid%20powerpack%20%28SHP%29" title="smart hybrid powerpack (SHP)">smart hybrid powerpack (SHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20hydraulic%20actuator%20%28EHA%29" title=" electro hydraulic actuator (EHA)"> electro hydraulic actuator (EHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20sensor%20fault%20tolerance" title=" permanent sensor fault tolerance"> permanent sensor fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer%20%28SMO%29" title=" sliding mode observer (SMO)"> sliding mode observer (SMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20user%20interface%20%28GUI%29" title=" graphic user interface (GUI)"> graphic user interface (GUI)</a> </p> <a href="https://publications.waset.org/abstracts/9250/design-of-permanent-sensor-fault-tolerance-algorithms-by-sliding-mode-observer-for-smart-hybrid-powerpack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11371</span> On Fault Diagnosis of Asynchronous Sequential Machines with Parallel Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Min%20Yang">Jung-Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault diagnosis of composite asynchronous sequential machines with parallel composition is addressed in this paper. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The objective is to characterize the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state is impossible since the current state is inaccessible and the output feedback is given as the form of burst. A simple example is provided to demonstrate the proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20sequential%20machines" title="asynchronous sequential machines">asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20composition" title=" parallel composition"> parallel composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a> </p> <a href="https://publications.waset.org/abstracts/76606/on-fault-diagnosis-of-asynchronous-sequential-machines-with-parallel-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11370</span> Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liqin%20Zhang">Liqin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Yan"> Liang Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consensus%20control" title="consensus control">consensus control</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20follow" title=" distributed follow"> distributed follow</a>, <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20control" title=" fault-tolerant control"> fault-tolerant control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-motor%20system" title=" multi-motor system"> multi-motor system</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20synchronization" title=" speed synchronization"> speed synchronization</a> </p> <a href="https://publications.waset.org/abstracts/113686/network-based-speed-synchronization-control-for-multi-motor-via-consensus-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=379">379</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=380">380</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>