CINXE.COM
Search results for: worsted suiting fabric
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: worsted suiting fabric</title> <meta name="description" content="Search results for: worsted suiting fabric"> <meta name="keywords" content="worsted suiting fabric"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="worsted suiting fabric" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="worsted suiting fabric"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 520</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: worsted suiting fabric</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Influence of Chemical Processing Treatment on Handle Properties of Worsted Suiting Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Lokhande">Priyanka Lokhande</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20P.%20Sawant"> Ram P. Sawant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Kakad"> Ganesh Kakad</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Kolhatkar"> Avinash Kolhatkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to evaluate the influence of chemical processing on low-stress mechanical properties and fabric hand of worsted cloth, eight worsted suiting fabric samples of balance plain and twill weave were studied. The Kawabata KES-FB system has been used for the measurement of low-stress mechanical properties of before and after chemically processed worsted suiting fabrics. Primary hand values and Total Hand Values (THV) of before and after chemically processed worsted suiting fabrics were calculated using the KES-FB test data. Upon statistical analysis, it is observed that chemical processing has considerable influence on the low-stress mechanical properties and thereby on handle properties of worsted suiting fabrics. Improvement in the Total Hand Values (THV) after chemical processing is experienced in most of fabric samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20stress%20mechanical%20properties" title="low stress mechanical properties">low stress mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20and%20twill%20weave" title=" plain and twill weave"> plain and twill weave</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20hand%20value%20%28THV%29" title=" total hand value (THV)"> total hand value (THV)</a>, <a href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric" title=" worsted suiting fabric"> worsted suiting fabric</a> </p> <a href="https://publications.waset.org/abstracts/62357/influence-of-chemical-processing-treatment-on-handle-properties-of-worsted-suiting-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Development of Knitted Seersucker Fabric for Improved Comfort Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Ashraf">Waqas Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nawab"> Yasir Nawab</a>, <a href="https://publications.waset.org/abstracts/search?q=Haritham%20Khan"> Haritham Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Awais"> Habib Awais</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20Ahmad"> Shahbaz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title="air permeability">air permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=knitted%20structure" title=" knitted structure"> knitted structure</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management" title=" moisture management"> moisture management</a>, <a href="https://publications.waset.org/abstracts/search?q=seersucker" title=" seersucker"> seersucker</a> </p> <a href="https://publications.waset.org/abstracts/33501/development-of-knitted-seersucker-fabric-for-improved-comfort-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> A Method for Measurement and Evaluation of Drape of Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Fridrichova">L. Fridrichova</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kn%C3%AD%C5%BEek"> R. Knížek</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bajz%C3%ADk"> V. Bajzík</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drape is one of the important visual characteristics of the fabric. This paper is introducing an innovative method of measurement and evaluation of the drape shape of the fabric. The measuring principle is based on the possibility of multiple vertical strain of the fabric. This method more accurately simulates the real behavior of the fabric in the process of draping. The method is fully automated, so the sample can be measured by using any number of cycles in any time horizon. Using the present method of measurement, we are able to describe the viscoelastic behavior of the fabric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drape" title="drape">drape</a>, <a href="https://publications.waset.org/abstracts/search?q=drape%20shape" title=" drape shape"> drape shape</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20drapemeter" title=" automated drapemeter"> automated drapemeter</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a> </p> <a href="https://publications.waset.org/abstracts/28487/a-method-for-measurement-and-evaluation-of-drape-of-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Conductive and Stretchable Graphene Nanoribbon Coated Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Gan">Lu Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Songmin%20Shang"> Songmin Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Chun%20Wah%20Yuen"> Marcus Chun Wah Yuen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A conductive and stretchable cotton fabric was prepared in this study through coating the graphene nanoribbon onto the cotton fabric. The mechanical and electrical properties of the prepared cotton fabric were then investigated. As shown in the results, the graphene nanoribbon coated cotton fabric had an improvement in both mechanical strength and electrical conductivity. Moreover, the resistance of the cotton fabric had a linear dependence on the strain applied to it. The prepared graphene nanoribbon coated cotton fabric has great application potentials in smart textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20fabric" title="conductive fabric">conductive fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoribbon" title=" graphene nanoribbon"> graphene nanoribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20properties" title=" enhanced properties"> enhanced properties</a> </p> <a href="https://publications.waset.org/abstracts/32101/conductive-and-stretchable-graphene-nanoribbon-coated-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Influence of Resin Finishes on Properties of Khadi Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivi%20Rastogi">Shivi Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Pant"> Suman Pant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Khadi is an Indian fabric and also known by another name “Khaddar”. During pre-independence era, the movement of khadi manufacturing gained momentum. Over the years, khadi fabrics that were generally considered as the “second skin” of the Swadesh revolutionists changed its uniqueness. It underwent a metamorphosis from that of a patriot’s fabric, and a farmer’s apparel, to become a “fashion fabric”. Drape of garment is governed by draping quality of fabric used. Drape is an essential parameter to decide both appearance and handle of fabric. It is also a secondary determinant of fabric mechanical properties as influenced by the low stress properties, like bending length, formability, tensile and shear properties and compressibility of the fabric. In finishing, fabric is treated to add something to coat the fabric or fiber and thereby temporarily or permanently fix. Film forming agents such as thermoplastic and thermosetting resins and other surface deposits alter hand. In this study, resins were used to modify fabric hand. Three types of resins have been applied on the khadi fabric at three concentration. The effect of these finishes on drapeability, crease recovery, stiffness, tearing strength and smoothness of khadi fabrics were assessed. Silicone gave good results in imparting properties specially drape, smoothness and softness and hand of cotton and khadi fabric. KES result also showed that silicone treated samples enhanced THV rating amongst all treated samples when compared to the control fabric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crease%20recovery" title="crease recovery">crease recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=drapeability" title=" drapeability"> drapeability</a>, <a href="https://publications.waset.org/abstracts/search?q=KES" title=" KES"> KES</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone" title=" silicone"> silicone</a>, <a href="https://publications.waset.org/abstracts/search?q=THV" title=" THV"> THV</a> </p> <a href="https://publications.waset.org/abstracts/47301/influence-of-resin-finishes-on-properties-of-khadi-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Analysis of Process for Solution of Fiber-Ends after Biopolishing on the Surface of Cotton Knit Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Altay">P. Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kartal"> G. Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kizilkaya"> B. Kizilkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kahraman"> S. Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Gursoy"> N. C. Gursoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biopolishing is applied to remove the fuzz or pills on the fiber or fabric surface which will reduce its tendency to pill or fuzz after repetitive launderings. After biopolishing process, the fuzzes ripped by cellulase enzymes cannot be thoroughly removed from fabric surface, they remain on the fabric or fiber surface; accordingly disturb the user and lead to decrease in productivity of drying process. The main objective of this study is to develop a method for removing weakened fuzz fibers and surface pills from biofinished fabric surface before drying process. Fuzzes in the lattice structure of fabric were completely removed from the internal structure of the fabric by air blowing. The presence of fuzzes leads to problems with formation of pilling and faded appearance; the removal of fuzzes from the fabric results in reduced tendency to pill formation, cleaner, smoother and softer surface, improved handling properties of fabric with maintaining original color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolishing" title="biopolishing">biopolishing</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzz%20fiber" title=" fuzz fiber"> fuzz fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=weakened%20fiber" title=" weakened fiber"> weakened fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=biofinished%20cotton%20fabric" title=" biofinished cotton fabric"> biofinished cotton fabric</a> </p> <a href="https://publications.waset.org/abstracts/56079/analysis-of-process-for-solution-of-fiber-ends-after-biopolishing-on-the-surface-of-cotton-knit-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Investigation on Hand-Woven School Uniform Initiative and Sustainability: The Kerala Model from India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhilash%20Balan%20Paleri">Abhilash Balan Paleri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hand woven fabric embellishes an exceptional identity in the social milieu of Kerala; still, the artisans and handloom sector is undergoing crisis due to various reasons. The hand woven school uniform initiative of Govt. of Kerala launched in 2016 aims at enhancing the sector, ensuring sustainability at artisan and end-user levels. The Kerala Government already distributed 23 lakhs meters of cloth (for shirting, suiting, and skirting) woven by 4085 artisans in their traditional looms covering 4.5 lakhs of students in the public education sector which covers cover 3,701 schools in the state. The 2019-20 year production is expected to be 42 Lakhs meters of hand woven clothing catering 8.6 lakhs of students in the primary sector. This particular investigation unveils the upshots of the initiative, and the observations are derived through systematic enquiry with artisans, authorities, and end-users. The findings show a remarkable positive impact in the livelihood of artisans and the entire handloom sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=handloom%20school%20uniform%20initiative%20of%20Kerala" title="handloom school uniform initiative of Kerala">handloom school uniform initiative of Kerala</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20woven%20fabric" title=" hand woven fabric"> hand woven fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=handloom%20weavers" title=" handloom weavers"> handloom weavers</a> </p> <a href="https://publications.waset.org/abstracts/122567/investigation-on-hand-woven-school-uniform-initiative-and-sustainability-the-kerala-model-from-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Fabric Drapemeter Development towards the Analysis of Its Behavior in 3-D Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aida%20Sheeta">Aida Sheeta</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nashat%20Fors"> M. Nashat Fors</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherwet%20El%20Gholmy"> Sherwet El Gholmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Issa"> Marwa Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globalization has raised the customer preferences not only towards the high-quality garments but also the right fitting, comfort and aesthetic apparels. This only can be accomplished by the good interaction between fabric mechanical and physical properties as well as the required style. Consequently, this paper provides an integrated review of the fabric drape terminology because it is considered as an essential feature in which the fabric can form folds with the help of the gravity. Moreover, an instrument has been fabricated in order to analyze the static and dynamic drape behaviors using different fabric types. In addition, the obtained results find out the parameters affecting the drape coefficient using digital image processing for various kind of commercial fabrics. This was found to be an essential first step in order to analyze the behavior of this fabric when it is fabricated in a certain 3-D garment design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloth%20fitting" title="cloth fitting">cloth fitting</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20drape%20nodes" title=" fabric drape nodes"> fabric drape nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=garment%20silhouette" title=" garment silhouette"> garment silhouette</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/84800/fabric-drapemeter-development-towards-the-analysis-of-its-behavior-in-3-d-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Innovative Textile Design Using in-situ Ag NPs incorporation into Natural Fabric Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rehan">M. Rehan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mashaly"> H. Mashaly</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Emam"> H. Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abou%20El-Kheir"> A. Abou El-Kheir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mowafi">S. Mowafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we will study a simple highly efficient technique to impart multi functional properties to different fabric substrates by in situ Ag NPs incorporation into fabric matrix. Ag NPs as a coloration and antimicrobial agent were prepared in situ incorporation into fabric matrix (Cotton and Wool) by using trisodium citrate as reducing and stabilizing agent. The Ag NPs treated fabric (Cotton and Wool) showed different color because of localized surface Plasmon resonance (LSPR) property of Ag NPs. The formation of Ag NPs was confirmed by UV/Vis spectra for the supernatant solutions and The Ag NPs treated fabric (Cotton and Wool) were characterized by scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS). The dependence of color properties characterized by colorimetric, fastness and antibacterial properties evaluated by Escherichia coli using counting method and the reaction parameters were studied. The results indicate that, the in situ Ag NPs incorporation into fabric matrix approach can simultaneously impart colorant and antimicrobial properties into different fabric substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20NPs" title="Ag NPs">Ag NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=coloration" title=" coloration"> coloration</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a> </p> <a href="https://publications.waset.org/abstracts/11113/innovative-textile-design-using-in-situ-ag-nps-incorporation-into-natural-fabric-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Journey of Striped Fabric in the History and Designs of Evening Dress from Striped Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filiz%20Erden">Filiz Erden</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Elhan%20%C3%96zus"> E. Elhan Özus</a>, <a href="https://publications.waset.org/abstracts/search?q=Melek%20Tufan"> Melek Tufan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If the history of clothing is examined, it is seen that clothing has gone through many stages from ancient times to present. Each nation has shaped its clothing according to its own traditions, customs, beliefs, living conditions. While clothes are being prepared, attributing different meanings to colors and patterns of the fabrics has become a common characteristic of many cultures. It is known that cloths worn in special days such as mourning, weddings, engagements, festivals and business vary according to their models, fabrics, colors and patterns. We witness use of cloth to differentiate people belonging to certain classes from nobles throughout the history. Striped fabric has carried many different meanings and uses throughout the history. In this study, place has been given to the important periods related to the history of striped fabric by examining current meaning of the striped fabric and dimensions of its meanings in the past. Also, evening dresses have been designed by using striped fabrics in order to reveal how striped fabric is liked and demanded after it coped with difficulties and being despised in its history. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=striped%20fabric" title="striped fabric">striped fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=clothing" title=" clothing"> clothing</a>, <a href="https://publications.waset.org/abstracts/search?q=fasion" title=" fasion"> fasion</a> </p> <a href="https://publications.waset.org/abstracts/31703/journey-of-striped-fabric-in-the-history-and-designs-of-evening-dress-from-striped-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Liu">J. L. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Wang"> L. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zhu"> B. Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zhou"> J. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20D.%20Gao"> W. D. Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric textures are very common in our daily life. However, we never explore the representation of fabric textures from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. Experimental results based on 140 classical fabric images indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency, and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20texture" title="fabric texture">fabric texture</a>, <a href="https://publications.waset.org/abstracts/search?q=receptive%20filed" title=" receptive filed"> receptive filed</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20cell" title=" simple cell"> simple cell</a>, <a href="https://publications.waset.org/abstracts/search?q=spare%20coding" title=" spare coding"> spare coding</a> </p> <a href="https://publications.waset.org/abstracts/22043/the-nature-of-the-complicated-fabric-textures-how-to-represent-in-primary-visual-cortex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Dakuri">Arjun Dakuri</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hayavadana"> J. Hayavadana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20properties" title=" comfort properties"> comfort properties</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management" title=" moisture management"> moisture management</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/76755/investigation-of-antibacterial-property-of-bamboo-in-terms-of-percentage-on-comparing-with-zno-treated-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> Strength Translation from Spun Yarns to Woven Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anindya%20Ghosh">Anindya Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural parameters, yarn to yarn friction, strength of ring, rotor, air-jet and open-end friction spun yarns and the strength of fabrics made from these yarns are measured. The ratio of fabric strip strength per yarn and corresponding single yarn strength is considered as a measure of quantifying the fabric assistance. Mechanism of yarn failure inside the fabric is different as that of single yarn and the former exhibit more fibre rupture. Fabrics made from weaker yarns have higher ratio of strip strength to single yarn strength than that made from stronger yarns due to larger increase in the percentage of rupture fibres in the former. The fabric assistance also depends to some extent on the degree of gripping of the yarns that is influenced by the yarn to yarn friction, extent of yarn flattening and yarn diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20assistance" title="fabric assistance">fabric assistance</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20strength" title=" fabric strength"> fabric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20diameter" title=" yarn diameter"> yarn diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20friction" title=" yarn friction"> yarn friction</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20strength" title=" yarn strength"> yarn strength</a> </p> <a href="https://publications.waset.org/abstracts/43748/strength-translation-from-spun-yarns-to-woven-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> A Comparison Study of Fabric Objective Measurement (FOM) Using KES-FB and PhabrOmeter System on Warp Knitted Fabrics Handle: Smoothness, Stiffness and Softness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ka-Yan%20Yim">Ka-Yan Yim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper conducts a comparison study using KES-FB and PhabrOmeter to measure 58 selected warp knitted fabric hand properties. Fabric samples were selected and measured by both KES-FB and PhabrOmeter. Results show differences between these two measurement methods. Smoothness and stiffness values obtained by KES-FB were found significant correlated (p value = 0.003 and 0.022) to the PhabrOmeter results while softness values between two measurement methods did not show significant correlation (p value = 0.828). Disagreements among these two measurement methods imply limitations on different mechanism principles when facing warp knitted fabrics. Subjective measurement methods and further studies are suggested in order to ascertain deeper investigation on the mechanisms of fabric hand perceptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20hand" title="fabric hand">fabric hand</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20objective%20measurement" title=" fabric objective measurement"> fabric objective measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=KES-FB" title=" KES-FB"> KES-FB</a>, <a href="https://publications.waset.org/abstracts/search?q=PhabrOmeter" title=" PhabrOmeter"> PhabrOmeter</a> </p> <a href="https://publications.waset.org/abstracts/13092/a-comparison-study-of-fabric-objective-measurement-fom-using-kes-fb-and-phabrometer-system-on-warp-knitted-fabrics-handle-smoothness-stiffness-and-softness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jawairia%20Umar">Jawairia Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Hussain"> Tanveer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfiqar%20Ali"> Zulfiqar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Maqsood"> Muhammad Maqsood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Compression" title="Compression">Compression</a>, <a href="https://publications.waset.org/abstracts/search?q=sportswear" title=" sportswear"> sportswear</a>, <a href="https://publications.waset.org/abstracts/search?q=stretch%20and%20recovery" title=" stretch and recovery"> stretch and recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20model" title=" statistical model"> statistical model</a>, <a href="https://publications.waset.org/abstracts/search?q=kikuhime" title=" kikuhime"> kikuhime</a> </p> <a href="https://publications.waset.org/abstracts/39290/prediction-modeling-of-compression-properties-of-a-knitted-sportswear-fabric-using-response-surface-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Material Characterization of Medical Grade Woven Bio-Fabric for Use in ABAQUS *FABRIC Material Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Wallace">Lewis Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Dempster"> William Dempster</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Nash"> David Nash</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Boukis"> Alexandros Boukis</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Maclean"> Craig Maclean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper, through traditional test methods and close adherence to international standards, presents a characterization study of a woven Polyethylene Terephthalate (PET). Testing is undergone in the axial, shear, and out-of-plane (bend) directions, and the results are fitted to the *FABRIC material model with ABAQUS FEA. The non-linear behaviors of the fabric in the axial and shear directions and behaviors on the macro scale are explored at the meso scale level. The medical grade bio-fabric is tested in untreated and heat-treated forms, and deviations are closely analyzed at the micro, meso, and macro scales to determine the effects of the process. The heat-treatment process was found to increase the stiffness of the fabric during axial and bending stiffness testing but had a negligible effect on the shear response. The ability of *FABRIC to capture behaviors unique to fabric deformation is discussed, whereby the unique phenomenological input can accurately represent the experimentally derived inputs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20techniques" title="experimental techniques">experimental techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA%20modelling" title=" FEA modelling"> FEA modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20characterization" title=" materials characterization"> materials characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=post-processing%20techniques" title=" post-processing techniques"> post-processing techniques</a> </p> <a href="https://publications.waset.org/abstracts/170670/material-characterization-of-medical-grade-woven-bio-fabric-for-use-in-abaqus-fabric-material-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> Digital Art Fabric Prints: Procedure, Process and Progress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Singh">Tripti Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20art" title="digital art">digital art</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20prints" title=" fabric prints"> fabric prints</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20fabric%20prints" title=" digital fabric prints"> digital fabric prints</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media" title=" new media"> new media</a> </p> <a href="https://publications.waset.org/abstracts/35137/digital-art-fabric-prints-procedure-process-and-progress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Integrated Finishing of Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetal%20Mahajan">Geetal Mahajan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Adivarekar"> R. V. Adivarekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an attempt has been made to develop integrated finish on textile fabrics. The demand for mosquito repellent, flame retardant, and water repellent finished fabric has increased. Integrated finishing was done using commercially available products. These finishing agents were first assessed individually for their functional properties and then used in combination with other agents. Dip-air dry and pad-dry-cure (PDC) were two different methods used for fabric finishing. The finished fabric was assessed using spray test, limiting oxygen index and mosquito repellence test. Integrated finished fabric is in great demand by the customers as it increases the aesthetic as well as the functional properties of the fabric with added benefit of water and energy conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title="flame retardant">flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20finishing" title=" integrated finishing"> integrated finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito%20repellent" title=" mosquito repellent"> mosquito repellent</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20repellent" title=" water repellent"> water repellent</a> </p> <a href="https://publications.waset.org/abstracts/46903/integrated-finishing-of-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Form-Finding of Tensioned Fabric Structure in Mathematical Monkey Saddle Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hooi%20Min">Yee Hooi Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi"> Abdul Hadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N."> M. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Kay%20Dora"> A. G. Kay Dora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and pre-stress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Monkey Saddle. Computational form-finding is frequently used to determine the possible form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Monkey Saddle applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface. Such in-sight will lead to improvement of rural basic infrastructure, economic gains, sustainability of built environment and green technology initiative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticlastic" title="anticlastic">anticlastic</a>, <a href="https://publications.waset.org/abstracts/search?q=curvatures" title=" curvatures"> curvatures</a>, <a href="https://publications.waset.org/abstracts/search?q=form-finding" title=" form-finding"> form-finding</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20equilibrium%20shape" title=" initial equilibrium shape"> initial equilibrium shape</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20surface" title=" minimal surface"> minimal surface</a>, <a href="https://publications.waset.org/abstracts/search?q=tensioned%20fabric%20structure" title=" tensioned fabric structure"> tensioned fabric structure</a> </p> <a href="https://publications.waset.org/abstracts/20781/form-finding-of-tensioned-fabric-structure-in-mathematical-monkey-saddle-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Quality Fabric Optimization Using Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halimi%20Mohamed%20Taher">Halimi Mohamed Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Kordoghli%20Bassem"> Kordoghli Bassem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Hassen%20Mohamed"> Ben Hassen Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakli%20Faouzi"> Sakli Faouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industry has been an important part of many developing countries economies such as Tunisia. This industry is confronted with a challenging and increasing competitive environment. Good quality management in production process is the key factor for retaining existence especially in raw material exploitation. The present work aims to develop an intelligent system for fabric inspection. In the first step, we have studied the method used for fabric control which takes into account the default length and localization in woven. In the second step, we have used a method based on the fuzzy logic to minimize the Demerit point indicator with appropriate total rollers length, so that the quality problem becomes multi-objective. In order to optimize the total fabric quality, we have applied the genetic algorithm (GA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20control" title="fabric control">fabric control</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20logic" title=" Fuzzy logic"> Fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a> </p> <a href="https://publications.waset.org/abstracts/31576/quality-fabric-optimization-using-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Water-Repellent Finishing on Cotton Fabric by SF₆ Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=We%27aam%20Alali">We'aam Alali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20Saffour"> Ziad Saffour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saker%20Saloum"> Saker Saloum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-pressure, sulfur hexafluoride (SF₆) remote radio-frequency (RF) plasma, ignited in a hollow cathode discharge (HCD-L300) plasma system, has been shown to be a powerful method in cotton fabric finishing to achieve water-repellent property. This plasma was ignited at an SF6 flow rate of (200 cm), low pressure (0.5 mbar), and radio frequency (13.56 MHz) with a power of (300 W). The contact angle has been measured as a function of the plasma exposure period using the water contact angle measuring device (WCA), and the changes in the morphology, chemical structure, and mechanical properties as tensile strength and elongation at the break of the fabric have also been investigated using the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier transform Infrared spectroscopy (ATR-FTIR), and tensile test device, respectively. In addition, weight loss of the fabric and the fastness of washing have been studied. It was found that the exposure period of the fabric to the plasma is an important parameter. Moreover, a good water-repellent cotton fabric can be obtained by treating it with SF₆ plasma for a short time (1 min) without degrading its mechanical properties. Regarding the modified morphology of the cotton fabric, it was found that grooves were formed on the surface of the fibers after treatment. Chemically, the fluorine atoms were attached to the surface of the fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title="cotton fabric">cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SF%E2%82%86%20plasma" title=" SF₆ plasma"> SF₆ plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=water-repellency" title=" water-repellency"> water-repellency</a> </p> <a href="https://publications.waset.org/abstracts/162085/water-repellent-finishing-on-cotton-fabric-by-sf6-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Synthesis, Characterization and Coating of the Zinc Oxide Nanoparticles on Cotton Fabric by Mechanical Thermo-Fixation Techniques to Impart Antimicrobial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imana%20Shahrin%20Tania">Imana Shahrin Tania</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali"> Mohammad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study reports the synthesis, characterization and application of nano-sized zinc-oxide (ZnO) particles on a cotton fabric surface. The aim of the investigations is to impart the antimicrobial activity on textile cloth. Nanoparticle is synthesized by wet chemical method from zinc sulphate and sodium hydroxide. SEM (scanning electron micrograph) images are taken to demonstrate the surface morphology of nanoparticles. XRD analysis is done to determine the crystal size of the nanoparticle. With the conformation of nanoformation, the cotton woven fabric is treated with ZnO nanoparticle by mechanical thermo-fixation (pad-dry-cure) technique. To increase the wash durability of nano treated fabric, an acrylic binder is used as a fixing agent. The treated fabric shows up to 90% bacterial reduction for S. aureus (Staphylococcus aureus) and 87% for E. coli (<em>Escherichia coli) </em>which is appreciable for bacteria protective clothing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder"> binder</a> </p> <a href="https://publications.waset.org/abstracts/115927/synthesis-characterization-and-coating-of-the-zinc-oxide-nanoparticles-on-cotton-fabric-by-mechanical-thermo-fixation-techniques-to-impart-antimicrobial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Najafi">N. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform%20infrared%20spectroscopy" title=" fourier transform infrared spectroscopy"> fourier transform infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=dozen%20printings" title=" dozen printings"> dozen printings</a> </p> <a href="https://publications.waset.org/abstracts/35339/characterization-of-inkjet-printed-carbon-nanotube-electrode-patterns-on-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Research on Residential Block Fabric: A Case Study of Hangzhou West Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Ye">Wang Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wei"> Wei Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential block construction of big cities in China began in the 1950s, and four models had far-reaching influence on modern residential block in its development process, including unit compound and residential district in 1950s to 1980s, and gated community and open community in 1990s to now. Based on analysis of the four models’ fabric, the article takes residential blocks in Hangzhou west area as an example and carries on the studies from urban structure level and block special level, mainly including urban road network, land use, community function, road organization, public space and building fabric. At last, the article puts forward semi-open sub-community strategy to improve the current fabric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hangzhou%20west%20area" title="Hangzhou west area">Hangzhou west area</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20block%20model" title=" residential block model"> residential block model</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20block%20fabric" title=" residential block fabric"> residential block fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-open%20sub-community%20strategy" title=" semi-open sub-community strategy"> semi-open sub-community strategy</a> </p> <a href="https://publications.waset.org/abstracts/3762/research-on-residential-block-fabric-a-case-study-of-hangzhou-west-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> Effect of Friction Parameters on the Residual Bagging Behaviors of Denim Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gazzah">M. Gazzah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jaouachi"> B. Jaouachi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sakli"> F. Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the yarn-to-yarn and metal-to-fabric friction effects on the residual bagging behavior expressed by residual bagging height, volume and recovery of some denim fabrics. The results show, that both residual bagging height and residual bagging volume, which is determined using image analysis method, are significantly affected due to the most influential fabric parameter variations, the weft yarns density and the mean frictional coefficients. After the applied number of fatigue cycles, the findings revealed that the weft yarn rigidity contributes on fabric bagging behavior accurately. Among the tested samples, our results show that the elastic fabrics present a high recovery ability to give low bagging height and volume values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging%20recovery" title="bagging recovery">bagging recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=denim%20fabric" title=" denim fabric"> denim fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-to-fabric%20friction" title=" metal-to-fabric friction"> metal-to-fabric friction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20bagging%20height" title=" residual bagging height"> residual bagging height</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn-to-yarn%20friction" title=" yarn-to-yarn friction"> yarn-to-yarn friction</a> </p> <a href="https://publications.waset.org/abstracts/25575/effect-of-friction-parameters-on-the-residual-bagging-behaviors-of-denim-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Reactive Dyed Superhydrophobic Cotton Fabric Production by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuddis%20B%C3%BCy%C3%BCkak%C4%B1ll%C4%B1">Kuddis Büyükakıllı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pretreated and bleached mercerized cotton fabric was dyed with reactive Everzol Brilliant Yellow 4GR (C.I. Yellow 160) dyestuff. Superhydrophobicity is provided to white and reactive dyed fabrics by using a nanotechnological sol-gel method with tetraethoxysilane and fluorcarbon water repellent agents by the two-step method. The effect of coating on color yield, fastness and functional properties of fabric was investigated. It was observed that water drop contact angles were higher in colorless coated fabrics compared to colored coated fabrics, there was no significant color change in colored superhydrophobic fabric and high color fastness values. Although there are no significant color losses in the fabrics after multiple washing and dry cleaning processes, water drop contact angles are greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorcarbon%20water%20repellent%20agent" title="fluorcarbon water repellent agent">fluorcarbon water repellent agent</a>, <a href="https://publications.waset.org/abstracts/search?q=colored%20cotton%20fabric" title=" colored cotton fabric"> colored cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/124211/reactive-dyed-superhydrophobic-cotton-fabric-production-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> A Bio-Inspired Approach to Produce Wettable Nylon Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujani%20B.%20Y.%20Abeywardena">Sujani B. Y. Abeywardena</a>, <a href="https://publications.waset.org/abstracts/search?q=Srimala%20Perera"> Srimala Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Nalin%20De%20Silva"> K. M. Nalin De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Walpalage"> S. Walpalage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface modifications are vital to accomplish the moisture management property in highly demanded synthetic fabrics. Biomimetic and bio-inspired surface modifications are identified as one of the fascinating areas of research. In this study, nature’s way of cooling elephants’ body temperature using mud bathing was mimicked to create a superior wettable nylon fabric with improved comfortability. For that, bentonite nanoclay was covalently grafted on nylon fabric using silane as a coupling agent. Fourier transform infrared spectra and Scanning electron microscopy images confirmed the successful grafting of nanoclay on nylon. The superior wettability of surface modified nylon was proved by standard protocols. This fabric coating strongly withstands more than 50 cycles of laundry. It is expected that this bio-inspired wettable nylon fabric may break the barrier of using nylon in various hydrophilic textile applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite%20nanoclay" title="bentonite nanoclay">bentonite nanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title=" biomimetic"> biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=covalent%20modification" title=" covalent modification"> covalent modification</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%20fabric" title=" nylon fabric"> nylon fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/77249/a-bio-inspired-approach-to-produce-wettable-nylon-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Comfort Evaluation of Summer Knitted Clothes of Tencel and Cotton Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Mohamed%20Shawkt%20Ragab">Mona Mohamed Shawkt Ragab</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Mohamed%20Darwish"> Heba Mohamed Darwish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Comfort properties of garments are crucial for the wearer, and with the increasing demand for cotton fabric, there is a need to explore alternative fabrics that can offer similar or superior comfort properties. This study focuses on comparing the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the aim of identifying fabrics that are more suitable for summer clothes. Research Aim: The aim of this study is to evaluate the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the goal of identifying fabrics that can serve as alternatives to cotton, considering their comfort properties for summer clothing. Methodology: An experimental, analytical approach was employed in this study. Two circular knitting machines were used to produce the fabrics, one with a 24 inches gauge and the other with a 28 inches gauge. Both fabrics were knitted with three different loop lengths (3.05 mm, 2.9 mm, and 2.6 mm) to obtain loose, medium, and tight fabrics for evaluation. Various comfort properties, including air permeability, water vapor permeability, wickability, and thermal resistance, were measured for both fabric types. Findings: The study found a significant difference in comfort properties between tencel/cotton single jersey fabric and cotton single jersey fabric. Tencel/cotton fabric exhibited higher air permeability, water vapor permeability, and wickability compared to cotton fabric. These findings suggest that tencel fabric is more suitable for summer clothes due to its superior ventilation and absorption properties. Theoretical Importance: This study contributes to the exploration of alternative fabrics to cotton by evaluating their comfort properties. By identifying fabrics that offer better comfort properties than cotton, particularly in terms of water usage, the study provides valuable insights into sustainable fabric choices for the fashion industry. Data Collection and Analysis Procedures: The comfort properties of the fabrics were measured using appropriate testing methods. Paired comparison t-tests were conducted to determine the significant differences between tencel/cotton fabric and cotton fabric in the measured properties. Correlation coefficients were also calculated to examine the relationships between the factors under study. Question Addressed: The study addresses the question of whether tencel/cotton single jersey fabric can serve as an alternative to cotton fabric for summer clothes, considering their comfort properties. Conclusion: The study concludes that tencel/cotton single jersey fabric offers superior comfort properties compared to cotton single jersey fabric, making it a suitable alternative for summer clothes. The findings also highlight the importance of considering fabric properties, such as air permeability, water vapor permeability, and wickability, when selecting materials for garments to enhance wearer comfort. This research contributes to the search for sustainable alternatives to cotton and provides valuable insights for the fashion industry in making informed fabric choices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20properties" title="comfort properties">comfort properties</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=tencel%20fabric" title=" tencel fabric"> tencel fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20jersey" title=" single jersey"> single jersey</a> </p> <a href="https://publications.waset.org/abstracts/169705/comfort-evaluation-of-summer-knitted-clothes-of-tencel-and-cotton-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Ozone Treatment in Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umut%20%C3%87%C4%B1nar">Umut Çınar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fact that ozone gas has color bleaching properties has made the use of ozone gas widespread in the textile sector as well as in many other sectors. Ozone gas, which is a strong oxidative agent on the fabric, causes the paint on the fabric to wear off and lighten its color with an aged appearance. Within the scope of this thesis, parameters affecting the bleaching properties of ozone gas on reactive dyed knitted fabric, which is rare in the literature, were investigated. Ozone concentration, time, and pH values were analyzed with the Box Behnken experimental design method, and optimum conditions were determined. After the experiments, wear and opacity values were measured with the help of a spectrophotometer. With the help of the Design Expert program, the graphics related to the data were prepared and interpreted with Box Behnken and ANOVA. These experiments on reactive dyed knitted fabric were tested on these parameters, and the spectrophotometric values of the fabric and optimum parameters in abrasion and opacity were revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozone" title="ozone">ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dye" title=" reactive dye"> reactive dye</a>, <a href="https://publications.waset.org/abstracts/search?q=bleaching" title=" bleaching"> bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=garment%20wash" title=" garment wash"> garment wash</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=washing" title=" washing"> washing</a>, <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken" title=" Box–Behnken"> Box–Behnken</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a> </p> <a href="https://publications.waset.org/abstracts/168203/ozone-treatment-in-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> A Study of Resin-Dye Fixation on Dyeing Properties of Cotton Fabrics Using Melamine Based Resins and a Reactive Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Ayeni">Nurudeen Ayeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Bello"> Kasali Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovi%20Abayeh"> Ovi Abayeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of dye–resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR 6) and its phosphate derivative (MPR 4) for resination. The highest degree of dye exhaustion was obtained at 400 C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fiber. Improved fastness properties was recorded which show a relatively higher stability of dye–resin–cellulose network formed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title="cotton fabric">cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dye" title=" reactive dye"> reactive dye</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=resination" title=" resination"> resination</a> </p> <a href="https://publications.waset.org/abstracts/18209/a-study-of-resin-dye-fixation-on-dyeing-properties-of-cotton-fabrics-using-melamine-based-resins-and-a-reactive-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=worsted%20suiting%20fabric&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>