CINXE.COM

Konjunktio (logiikka) – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="fi" dir="ltr"> <head> <meta charset="UTF-8"> <title>Konjunktio (logiikka) – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )fiwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"fi normal","wgMonthNames":["","tammikuu","helmikuu","maaliskuu","huhtikuu","toukokuu","kesäkuu","heinäkuu","elokuu","syyskuu","lokakuu","marraskuu","joulukuu"],"wgRequestId":"f06a3bd4-349c-4c47-a000-49d6725b44ee","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Konjunktio_(logiikka)","wgTitle":"Konjunktio (logiikka)","wgCurRevisionId":22787737,"wgRevisionId":22787737,"wgArticleId":501951,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view", "wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Käännetyt artikkelit","Logiikka"],"wgPageViewLanguage":"fi","wgPageContentLanguage":"fi","wgPageContentModel":"wikitext","wgRelevantPageName":"Konjunktio_(logiikka)","wgRelevantArticleId":501951,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":3}}},"wgStableRevisionId":22787737,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fi","pageLanguageDir":"ltr","pageVariantFallbacks":"fi"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q191081","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.hidePersonalSandboxEdits":"ready","ext.gadget.fiwiki_flaggedrevs_css_rcfix":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready", "wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.publicarttablesort","ext.gadget.ViikonKilpailu","ext.gadget.WikiLovesMonunmets","ext.gadget.ProtectionIndicator","ext.gadget.frwiki_infobox_v3","ext.gadget.linkeddata","ext.gadget.perustiedotwikidatassa","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fi&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=fi&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fi&amp;modules=ext.gadget.fiwiki_flaggedrevs_css_rcfix%2ChidePersonalSandboxEdits&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=fi&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/1200px-Venn0001.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="875"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/800px-Venn0001.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="583"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/640px-Venn0001.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="467"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Konjunktio (logiikka) – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fi.m.wikipedia.org/wiki/Konjunktio_(logiikka)"> <link rel="alternate" type="application/x-wiki" title="Muokkaa" href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (fi)"> <link rel="EditURI" type="application/rsd+xml" href="//fi.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fi.wikipedia.org/wiki/Konjunktio_(logiikka)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fi"> <link rel="alternate" type="application/atom+xml" title="Wikipedia-Atom-syöte" href="/w/index.php?title=Toiminnot:Tuoreet_muutokset&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Konjunktio_logiikka rootpage-Konjunktio_logiikka skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Konjunktio (logiikka)</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">Wikipediasta</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Siirry navigaatioon</a> <a class="mw-jump-link" href="#searchInput">Siirry hakuun</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fi" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/Tiedosto:Venn0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/220px-Venn0001.svg.png" decoding="async" width="220" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/330px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/440px-Venn0001.svg.png 2x" data-file-width="410" data-file-height="299" /></a><figcaption>Lausetta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8365200c858ceecb1357b8336aaec576cc379e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.576ex; height:1.843ex;" alt="{\displaystyle \scriptstyle A\land B}"></span> vastaava <a href="/wiki/Venn-diagrammi" title="Venn-diagrammi">Venn-diagrammi</a></figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/Tiedosto:Venn_0000_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/220px-Venn_0000_0001.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/330px-Venn_0000_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/440px-Venn_0000_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a><figcaption>Lausetta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle A\land B\land C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle A\land B\land C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8805277a42035a76e462c87444eeb65562e811da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.921ex; height:1.843ex;" alt="{\displaystyle \scriptstyle A\land B\land C}"></span> vastaava Venn-diagrammi</figcaption></figure> <p><b>Konjunktio</b> on <a href="/wiki/Propositiologiikka" title="Propositiologiikka">propositiologiikassa</a> kaksipaikkainen <a href="/wiki/Looginen_konnektiivi" class="mw-redirect" title="Looginen konnektiivi">looginen konnektiivi</a>, joka vastaa yleiskielen sanaa <i>ja</i>. Sillä muodostettu yhdistetty lause on tosi, jos molemmat sen yhdistämät lauseet ovat tosia, muussa tapauksessa epätosi. Lauseiden <i>A</i> ja <i>B</i> konjunktiolle käytetään merkintää <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span>. </p><p>Konjunktioon läheisesti liittyviä käsitteitä muissa yhteyksissä ovat: </p> <ul><li><a href="/wiki/Joukko-oppi" title="Joukko-oppi">joukko-opissa</a> <a href="/wiki/Leikkaus_(matematiikka)" title="Leikkaus (matematiikka)">leikkaus</a></li> <li><a href="/wiki/Predikaattilogiikka" title="Predikaattilogiikka">predikaattilogiikassa</a> <a href="/wiki/Universaalikvanttori" title="Universaalikvanttori">universaalikvanttori</a> eli kaikki-kvanttori</li> <li><a href="/wiki/Elektroniikka" title="Elektroniikka">elektroniikassa</a> konjunktiota vastaa <a href="/wiki/AND-portti" title="AND-portti">AND-portti</a>.</li></ul> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="fi" dir="ltr"><h2 id="mw-toc-heading">Sisällys</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Merkinnät"><span class="tocnumber">1</span> <span class="toctext">Merkinnät</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Totuustaulu"><span class="tocnumber">2</span> <span class="toctext">Totuustaulu</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Ominaisuudet"><span class="tocnumber">3</span> <span class="toctext">Ominaisuudet</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Sovellukset_tietotekniikassa"><span class="tocnumber">4</span> <span class="toctext">Sovellukset tietotekniikassa</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="#Biteittäinen_operaatio"><span class="tocnumber">4.1</span> <span class="toctext">Biteittäinen operaatio</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-6"><a href="#Leikkaus"><span class="tocnumber">5</span> <span class="toctext">Leikkaus</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Luonnolliset_kielet"><span class="tocnumber">6</span> <span class="toctext">Luonnolliset kielet</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#Katso_myös"><span class="tocnumber">7</span> <span class="toctext">Katso myös</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Lähteet"><span class="tocnumber">8</span> <span class="toctext">Lähteet</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Aiheesta_muualla"><span class="tocnumber">9</span> <span class="toctext">Aiheesta muualla</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Merkinnät"><span id="Merkinn.C3.A4t"></span>Merkinnät</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=1" title="Muokkaa osiota Merkinnät" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=1" title="Muokkaa osion lähdekoodia: Merkinnät"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Loogiselle konjunktiolle käytetään kirjallisuudessa useita eri symboleja. Sanan "ja" (<a href="/wiki/Englannin_kieli" title="Englannin kieli">engl.</a> <span lang="en"><i>and</i></span>) ohella sille käytetään yleisesti symbolia "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span>",<sup id="cite_ref-Hazewinkel_1-0" class="reference"><a href="#cite_note-Hazewinkel-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Esimerkiksi "<i>A</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> <i>B</i>&#160;" luetaan "<i>A</i> ja <i>B</i>". Tällainen konjunktio on tosi vain jos sekä <i>A</i> että <i>B</i> ovat tosia lauseita, muussa tapauksessa se on epätosi. </p><p>Kaikki seuraavat ovat konjunktiota: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475f4fcd67189aefd0849ac56030d0e1682c0be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.64ex; height:2.176ex;" alt="{\displaystyle \neg A\land B}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land \neg B\land \neg C\land D\land \neg E.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>C</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>D</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>E</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land \neg B\land \neg C\land D\land \neg E.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00ef21ecfe691d32b66e26233a5d0adf48baa086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.602ex; height:2.176ex;" alt="{\displaystyle A\land \neg B\land \neg C\land D\land \neg E.}"></span></dd></dl> <p><a href="/wiki/Boolen_algebra" title="Boolen algebra">Boolen algebrassa</a> konjunktiolle käytetään merkintää <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4279cdbd3cb8ec4c3423065d9a7d83a82cfc89e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A+B}"></span>. <a href="/w/index.php?title=Jan_Lukasiewicz&amp;action=edit&amp;redlink=1" class="new" title="Jan Lukasiewicz (sivua ei ole)">Jan Lukasiewiczin</a> <a href="/w/index.php?title=Puolalainen_notaatio&amp;action=edit&amp;redlink=1" class="new" title="Puolalainen notaatio (sivua ei ole)">prefiksinotaatiossa</a> disjunktion merkkinä käytetään K-kirjainta, joka on lyhenne <a href="/wiki/Puolan_kieli" title="Puolan kieli">puolan kielen</a> sanasta <i>koniunkcja</i>. Tällöin lauseiden <i>p</i> ja <i>q</i> konjunktio merkitään K<i>pq</i>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Eri <a href="/wiki/Ohjelmointikieli" title="Ohjelmointikieli">ohjelmointikielissä</a> konjunktiota vastaava operaattori merkitään tavallisimmin joko sanalla <code>and</code> tai kahdella <a href="/wiki/Et-merkki" class="mw-redirect" title="Et-merkki">et-merkillä</a> (<code>&amp;&amp;</code>). </p> <div class="mw-heading mw-heading2"><h2 id="Totuustaulu">Totuustaulu</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=2" title="Muokkaa osiota Totuustaulu" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=2" title="Muokkaa osion lähdekoodia: Totuustaulu"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Tiedosto:Variadic_logical_AND.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/250px-Variadic_logical_AND.svg.png" decoding="async" width="250" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/375px-Variadic_logical_AND.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/500px-Variadic_logical_AND.svg.png 2x" data-file-width="1807" data-file-height="1452" /></a><figcaption>Vasemmalla olevien argumenttien konjunktiot: arvon tosi saavat <a href="/wiki/Bitti" title="Bitti">bitit</a> muodostavat <a href="/wiki/Sierpinskin_kolmio" class="mw-redirect" title="Sierpinskin kolmio">Sierpinskin kolmion</a>.</figcaption></figure> <p>Operaation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ffc52129283289ffc1479f098112ff8712ed007" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.67ex; height:2.176ex;" alt="{\displaystyle ~A\land B}"></span> <a href="/wiki/Totuustaulu" title="Totuustaulu">totuustaulu</a> on seuraava:<sup id="cite_ref-Hazewinkel_1-1" class="reference"><a href="#cite_note-Hazewinkel-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" style="margin: 0 0 1em 1em"> <tbody><tr bgcolor="#ddeeff" align="center"> <td colspan="2"><b>LAUSEET</b></td> <td><b>KONJUNKTIO</b> </td></tr> <tr bgcolor="#ddeeff" align="center"> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span> </td></tr> <tr bgcolor="#ddffdd" align="center"> <td>tosi</td> <td>tosi</td> <td>tosi </td></tr> <tr bgcolor="#ddffdd" align="center"> <td>tosi</td> <td>epätosi</td> <td>epätosi </td></tr> <tr bgcolor="#ddffdd" align="center"> <td>epätosi</td> <td>tosi</td> <td>epätosi </td></tr> <tr bgcolor="#ddffdd" align="center"> <td>epätosi</td> <td>epätosi</td> <td>epätosi </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Ominaisuudet">Ominaisuudet</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=3" title="Muokkaa osiota Ominaisuudet" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=3" title="Muokkaa osion lähdekoodia: Ominaisuudet"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Looginen konjunktio noudattaa lasku­lakeja, jotka pitkälti ovat analogisia esi­merkiksi <a href="/wiki/Reaaliluku" title="Reaaliluku">reaalilukujen</a> lasku­säännöille. Se on <a href="/wiki/Vaihdannaisuus" title="Vaihdannaisuus">vaihdannainen</a> ja <a href="/wiki/Liit%C3%A4nn%C3%A4isyys" title="Liitännäisyys">liitännäinen</a>, ja sille pätee myös <a href="/wiki/Osittelulaki" title="Osittelulaki">osittelulaki</a>, kun toisena lasku­toimituksena on looginen <a href="/wiki/Disjunktio" title="Disjunktio">disjunktio</a>. Konjunktio on lisäksi <a href="/wiki/Idempotenssi" title="Idempotenssi">idem­potentti</a> eli minkä tahansa lauseen konjunktiolla itsensä kanssa on sama totuus­arvo kuin alku­peräisellä lauseella. Tätä havainnollistavat seuraavat kaaviot: </p> <ul><li><b>Vaihdannaisuus</b></li></ul> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\land A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\land A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5920298dbda4592b71e53822ce01829cd77f4190" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle B\land A}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" decoding="async" width="50" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/75px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" decoding="async" width="50" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/75px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td></tr></tbody></table> <ul><li><b>Liitännäisyys</b></li></ul> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\land C)}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f52ed2496dc4077efa433abb4685684a158d7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.347ex; height:2.176ex;" alt="{\displaystyle ~C}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0101_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/75px-Venn_0000_0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/100px-Venn_0000_0011.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/50px-Venn_0000_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/75px-Venn_0000_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/100px-Venn_0000_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_1111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/50px-Venn_0000_1111.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/75px-Venn_0000_1111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/100px-Venn_0000_1111.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td></tr></tbody></table> <ul><li><b>Osittelulaki loogisen disjunktion suhteen</b></li></ul> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\lor C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\lor C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c18aad468eb6ae0354f697dd4035fb970946d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\lor C)}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2228;<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0101_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0011_1111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/50px-Venn_0011_1111.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/75px-Venn_0011_1111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/100px-Venn_0011_1111.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/50px-Venn_0001_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/75px-Venn_0001_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/100px-Venn_0001_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2228;<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td></tr></tbody></table> <table class="collapsible collapsed" style="width: 100%; border: 1px solid #aaaaaa;"> <tbody><tr> <th bgcolor="#ccccff">muita </th></tr> <tr> <td> <p>liitännäisyys <a href="/w/index.php?title=Ekslusiivinen_disjunktio&amp;action=edit&amp;redlink=1" class="new" title="Ekslusiivinen disjunktio (sivua ei ole)">eksklusiivisen diskunktion</a> suhteen: </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\oplus C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2295;<!-- ⊕ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\oplus C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8d4800638f9d7524cd268e8e9443f12bf67afac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.18ex; height:2.843ex;" alt="{\displaystyle (B\oplus C)}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2295;<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0101_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0011_1100.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/50px-Venn_0011_1100.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/75px-Venn_0011_1100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/100px-Venn_0011_1100.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0100.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/50px-Venn_0001_0100.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/75px-Venn_0001_0100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/100px-Venn_0001_0100.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2295;<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td></tr></tbody></table> <p><br /> liitännäisyys materiaalisen <a href="/w/index.php?title=Nonimplikaatio&amp;action=edit&amp;redlink=1" class="new" title="Nonimplikaatio (sivua ei ole)">nonimplikaation</a> suhteen: </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\nrightarrow C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x219B;<!-- ↛ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\nrightarrow C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d881f71105d0587a2b95607cc353b2021b5b345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.954ex; height:2.843ex;" alt="{\displaystyle (B\nrightarrow C)}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x219B;<!-- ↛ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \nrightarrow }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0101_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0011_0000.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/50px-Venn_0011_0000.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/75px-Venn_0011_0000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/100px-Venn_0011_0000.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0000.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/50px-Venn_0001_0000.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/75px-Venn_0001_0000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/100px-Venn_0001_0000.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x219B;<!-- ↛ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \nrightarrow }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td></tr></tbody></table> <p>liitännäisyys itsensä kanssa: </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\land C)}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0101_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/75px-Venn_0000_0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/100px-Venn_0000_0011.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/50px-Venn_0000_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/75px-Venn_0000_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/100px-Venn_0000_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0001_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0101_1111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Venn_0101_1111.svg/50px-Venn_0101_1111.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Venn_0101_1111.svg/75px-Venn_0101_1111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/25/Venn_0101_1111.svg/100px-Venn_0101_1111.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td></tr></tbody></table> </td></tr></tbody></table> <ul><li><b>Idempotenssi</b></li></ul> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00229fc56bafa7e9b522aedb3bed5dca455bc561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.904ex; height:2.176ex;" alt="{\displaystyle ~A~}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\land ~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\land ~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78b7e7950527f71b3b15b62d8459c636df43065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.009ex;" alt="{\displaystyle ~\land ~}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00229fc56bafa7e9b522aedb3bed5dca455bc561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.904ex; height:2.176ex;" alt="{\displaystyle ~A~}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fc59051ffaf2eaace4f7b01f440b9067b722fb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle A~}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn01.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" decoding="async" width="36" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/54px-Venn01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/72px-Venn01.svg.png 2x" data-file-width="280" data-file-height="280" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\land ~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\land ~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78b7e7950527f71b3b15b62d8459c636df43065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.009ex;" alt="{\displaystyle ~\land ~}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn01.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" decoding="async" width="36" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/54px-Venn01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/72px-Venn01.svg.png 2x" data-file-width="280" data-file-height="280" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn01.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" decoding="async" width="36" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/54px-Venn01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/72px-Venn01.svg.png 2x" data-file-width="280" data-file-height="280" /></a></span> </td></tr></tbody></table> <ul><li><b><a href="/wiki/Monotoninen_funktio" title="Monotoninen funktio">Monotonisuus</a></b></li></ul> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\rightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\rightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23efef033def56a67de7ded823f14626de26d174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\rightarrow B}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \rightarrow }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\land C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\land C)}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_1011_1011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/50px-Venn_1011_1011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/75px-Venn_1011_1011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/100px-Venn_1011_1011.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_1111_1011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/50px-Venn_1111_1011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/75px-Venn_1111_1011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/100px-Venn_1111_1011.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \rightarrow }"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn_0000_0011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/75px-Venn_0000_0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/100px-Venn_0000_0011.svg.png 2x" data-file-width="200" data-file-height="200" /></a></span> </td></tr></tbody></table> <ul><li><b>Totuuden säilyttävä validiteetti</b></li></ul> <p>Kun kaikki konjunktiolla yhdistettävät lauseet ovat tosia, konjunktio on tosi. </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\lor B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\lor B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b9c9c90857c12727201dd9e47a4e7c8658fdbc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\lor B}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" decoding="async" width="50" height="36" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/75px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn0111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/60px-Venn0111.svg.png" decoding="async" width="60" height="44" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/90px-Venn0111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/120px-Venn0111.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <td> </td> <td> </td> <td><small>(kokeiltava)</small> </td></tr></tbody></table> <ul><li><b>Epätotuuden säilyttävä validiteetti</b></li></ul> <p>Kun kaikki konjunktiolla yhdistettävät lauseet ovat epätosia, disjunktio on epätosi. </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn0111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/60px-Venn0111.svg.png" decoding="async" width="60" height="44" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/90px-Venn0111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/120px-Venn0111.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td> <td>&#160;&#160;&#160;&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>&#160;&#160;&#160;&#160; </td> <td><span typeof="mw:File"><a href="/wiki/Tiedosto:Venn0111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/50px-Venn0111.svg.png" decoding="async" width="50" height="37" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/75px-Venn0111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/100px-Venn0111.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <td><small>(kokeiltava)</small> </td> <td> </td> <td> </td></tr></tbody></table> <ul><li><b><a href="/w/index.php?title=Hadamardin_muunnos&amp;action=edit&amp;redlink=1" class="new" title="Hadamardin muunnos (sivua ei ole)">Walshin spektri</a>: (1, -1, 1, -1)</b></li></ul> <ul><li><b>Epälineaarisuus: 1</b> (funktio on <a href="/w/index.php?title=Taivutettu_funktio&amp;action=edit&amp;redlink=1" class="new" title="Taivutettu funktio (sivua ei ole)">taivutettu</a>)</li></ul> <p>Jos totuusarvoille käytetään <a href="/wiki/Bin%C3%A4%C3%A4riluku" class="mw-redirect" title="Binääriluku">binäärilukumerkintöjä</a> 1 (tosi) ja 0 (epätosi), looginen konjunktio toimii samoin kuin näiden lukujen normaali kertolasku. </p> <div class="mw-heading mw-heading2"><h2 id="Sovellukset_tietotekniikassa">Sovellukset tietotekniikassa</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=4" title="Muokkaa osiota Sovellukset tietotekniikassa" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=4" title="Muokkaa osion lähdekoodia: Sovellukset tietotekniikassa"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Tiedosto:AND_Gate_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/150px-AND_Gate_diagram.svg.png" decoding="async" width="150" height="48" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/225px-AND_Gate_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/300px-AND_Gate_diagram.svg.png 2x" data-file-width="721" data-file-height="232" /></a><figcaption><a href="/wiki/AND-portti" title="AND-portti">AND-portti</a></figcaption></figure> <p>Useimmissa <a href="/wiki/Ohjelmointikieli" title="Ohjelmointikieli">ohjelmointikielissä</a> on konjunktiota vastaava operaattori. Se merkitään monissa ohjelmointikielissä <a href="/w/index.php?title=Varattu_sana&amp;action=edit&amp;redlink=1" class="new" title="Varattu sana (sivua ei ole)">varatulla sanalla</a> <code>and</code>, mutta esimerkiksi <a href="/wiki/C_(ohjelmointikieli)" title="C (ohjelmointikieli)">C:ssä</a> ja siihen pohjautuvissa ohjelmointikielissä kahdella <a href="/wiki/Et-merkki" class="mw-redirect" title="Et-merkki">et-merkillä</a> (<code>&amp;&amp;</code>). </p><p>Useimmissa ohjelmointi­kielissä looginen konjunktio antaa tulokseksi aina <a href="/w/index.php?title=Boolean&amp;action=edit&amp;redlink=1" class="new" title="Boolean (sivua ei ole)">boolean</a>-tyyppisen muuttujan, jolla on vain kaksi mahdollista arvoa: tosi (1) tai epätosi (0). Monissa <a href="/wiki/Vahva_tyypitys" class="mw-redirect" title="Vahva tyypitys">vahvasti tyypitetyissä</a> kielissä konjunktio voidaan sitä paitsi suorittaa vain, jos molemmat sillä yhdistettävät <a href="/wiki/Operandi" title="Operandi">operanditkin</a> ovat boolean-tyyppisiä. Joissakin heikosti tyypitetyissä kielissä, esimerkiksi <a href="/wiki/C_(ohjelmointikieli)" title="C (ohjelmointikieli)">C:ssä</a>, konjunktio voidaan kuitenkin suorittaa silloinkin, kun operandit ovat esimerkiksi kokonais- tai reaaliluku­tyyppisiä; tällöin tuloksena on 0 (epätosi), jos ainakin jompikumpi operandi on nolla, mulloin tuloksena on 1 (tosi). Tällöin siis operandien kaikkien muiden arvon kuin nollan katsotaan vastaavan totuus­arvoa tosi. </p><p>Konjunktiota vastaava <a href="/wiki/Looginen_portti" title="Looginen portti">looginen portti</a> on <a href="/wiki/AND-portti" title="AND-portti">AND-portti</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Biteittäinen_operaatio"><span id="Biteitt.C3.A4inen_operaatio"></span>Biteittäinen operaatio</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=5" title="Muokkaa osiota Biteittäinen operaatio" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=5" title="Muokkaa osion lähdekoodia: Biteittäinen operaatio"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Joissakin ohjelmointikielissä on määritelty myös <i>biteittäinen konjunktio'</i>. Tällöin operandit, jotka voivat olla esimerkiksi <a href="/wiki/Bin%C3%A4%C3%A4riluku" class="mw-redirect" title="Binääriluku">binäärisiä</a> <a href="/wiki/Kokonaisluku" title="Kokonaisluku">kokonaislukuja</a>, käydään läpi bitti bitiltä ja suoritetaan konjunktio-operaatiot kummankin operandin vastaavien bittien välillä. Tuloksena saadaan muuttuja, jossa kunkin bitin arvo riippuu operandien bittien arvoista seuraavasti: </p> <ul><li>0 <code>and</code> 0 = 0</li> <li>0 <code>and</code> 1 = 0</li> <li>1 <code>and</code> 0 = 0</li> <li>1 <code>and</code> 1 = 1</li></ul> <p>Käymällä bitit läpi esimerkiksi binääriluvuista 11001010 ja 10100011 saadaan tulokseksi 10000010. </p><p>Biteittäinen konjunktio on käytettävissä muun muassa <a href="/wiki/C_(ohjelmointikieli)" title="C (ohjelmointikieli)">C-kielessä</a>, jossa se merkitään yhdellä et-merkillä (<code>&amp;</code>). </p><p>Biteittäisellä konjunktiolla voidaan muun muassa selvittää, minkä annetussa bittijonossa on jonkin tietyn bitin arvo. Esimerkiksi laskutoimitus <code>10011101 AND 00001000</code> antaa tulokseksi bittijonon 00001000, joka osoittaa, että vasemmanpuoleisen luvun viidennen bitin arvo on 1. </p> <div class="mw-heading mw-heading2"><h2 id="Leikkaus">Leikkaus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=6" title="Muokkaa osiota Leikkaus" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=6" title="Muokkaa osion lähdekoodia: Leikkaus"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Konjunktiota vastaava operaatio <a href="/wiki/Joukko-oppi" title="Joukko-oppi">joukko-opissa</a> on <a href="/wiki/Leikkaus_(matematiikka)" title="Leikkaus (matematiikka)">leikkaus</a>. Kahden joukon leikkaus määritelläänkin konjunktion avulla: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34db77e79a0b73a2a10c23539c78c50966fdc28a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.16ex; height:2.176ex;" alt="{\displaystyle a\in A\cap B}"></span>, jos ja vain jos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in A\land a\in B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in A\land a\in B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a3ec79cade57b2f48ae360377ba9ea62296838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.231ex; height:2.176ex;" alt="{\displaystyle a\in A\land a\in B}"></span>. Toisin sanoen alkio <i>a</i> kuuluu joukkojen <i>A</i> ja <i>B</i> leikkaukseen, jos ja vain jos se kuuluu molempiin näistä joukoista, Tämän vuoksi joukko-opillinen leikkaus noudattaa pitkälti samoja sääntöjä kuin konjunktiokin: sillekin pätevät vaihdanta-, liitäntä-, osittelu- ja <a href="/wiki/De_Morganin_lait" title="De Morganin lait">de Morganin lait</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Luonnolliset_kielet">Luonnolliset kielet</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=7" title="Muokkaa osiota Luonnolliset kielet" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=7" title="Muokkaa osion lähdekoodia: Luonnolliset kielet"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Matemaattinen_logiikka" title="Matemaattinen logiikka">Matemaattisessa logiikassa</a> määritellyt käsitteet ovat merkitykseltään erilaisia kuin luonnollisen kielen sanat yleensä ovat. Suomen kielessä loogista konjunktiota vastaa lähinnä sana <a href="/wiki/Konjunktio_(kielitiede)" title="Konjunktio (kielitiede)">kieliopillinen konjunktio</a> <i>ja</i>. Tätä sanaa, samoin kuin sen vastineita useissa muissakin kielissä, käytetään kuitenkin myös tavoilla, jotka eivät vastaa loogisen konjunktion käsitettä. Toisinaan sillä ilmaistaan seurausta tai uhkausta, esimerkiksi: "vielä yksi sana, ja minä lähden", jonkin asian jatkamista huomattavan kauan, esimerkiksi "miettii ja miettii", tai sitä käytetään yhdistämään jonkin luvun tai määrän pienempää yksikköä suurempaan, esimerkiksi "kello 12 ja 50" (=12.50) tai <a href="/wiki/Tuhannen_ja_yhden_y%C3%B6n_tarinat" class="mw-redirect" title="Tuhannen ja yhden yön tarinat">Tuhannen ja yhden yön tarinat</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Katso_myös"><span id="Katso_my.C3.B6s"></span>Katso myös</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=8" title="Muokkaa osiota Katso myös" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=8" title="Muokkaa osion lähdekoodia: Katso myös"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Disjunktio" title="Disjunktio">Disjunktio</a></li> <li><a href="/wiki/AND-portti" title="AND-portti">AND-portti</a></li> <li><a href="/wiki/Propositiologiikka" title="Propositiologiikka">Propositiologiikka</a></li> <li><a href="/wiki/Boolen_algebra" title="Boolen algebra">Boolen algebra</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Lähteet"><span id="L.C3.A4hteet"></span>Lähteet</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=9" title="Muokkaa osiota Lähteet" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=9" title="Muokkaa osion lähdekoodia: Lähteet"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="viitteet-malline" class="viitteet-malline" style="list-style-type:decimal;"><ol class="references"> <li id="cite_note-Hazewinkel-1"><span class="mw-cite-backlink">↑ <a href="#cite_ref-Hazewinkel_1-0"><sup><i>a</i></sup></a> <a href="#cite_ref-Hazewinkel_1-1"><sup><i>b</i></sup></a></span> <span class="reference-text"><span class="kirjaviite" title="Kirjaviite">”Conjunction”,&#160;<i>Encyclopedia of Mathematics</i>.&#32;&#32;Springer, The European Mathematical Society.&#32;&#32;<a href="/wiki/Toiminnot:Kirjal%C3%A4hteet/978-1-55608-010-4" title="Toiminnot:Kirjalähteet/978-1-55608-010-4">ISBN&#160;978-1-55608-010-4</a>&#32; <a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php/Conjunction">Teoksen verkkoversio</a>.</span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="kirjaviite" title="Kirjaviite">Jósef Maria Bochenski:&#32;<i>A Précis of Mathematical Logic</i>.&#32; (Otto Bird kääntänyt englanniksi ranskalaiista ja saksalaisista laitoksista)&#32;&#32;Dordrecht&#58;&#32;&#32;D. Reidel, 1959.&#32;</span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><span class="kirjaviite" title="Kirjaviite">”Ja”,&#160;<i>Nykysuomen sanakirja, 1. osa (A-K), 11. painos</i>, s. 697.&#32;&#32;Suomalaisen kirjallisuuden seura, WSOY, 1989.&#32;&#32;<a href="/wiki/Toiminnot:Kirjal%C3%A4hteet/951-0-09105-7" title="Toiminnot:Kirjalähteet/951-0-09105-7">ISBN&#160;951-0-09105-7</a>&#32;</span></span> </li> </ol> </div> <div class="mw-heading mw-heading2"><h2 id="Aiheesta_muualla">Aiheesta muualla</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit&amp;section=10" title="Muokkaa osiota Aiheesta muualla" class="mw-editsection-visualeditor"><span>muokkaa</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit&amp;section=10" title="Muokkaa osion lähdekoodia: Aiheesta muualla"><span>muokkaa wikitekstiä</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="verkkoviite" title="Verkkoviite"><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/conjunction.html">Conjunction</a>&#32;MathWorld. Viitattu 9.4.2015.</span></li></ul> <div class="noprint noviewer" style="background-color: var( --background-color-neutral-subtle, #f8f9fa ); color: var( --color-emphasized, #101418 ); font-size: 90%; padding-left: 1em; padding-right: 1em; padding-top: 0.2em; padding-bottom: 0.5em; margin-top: 1em; margin-bottom: 0.5em; border: 1px solid var( --border-color-subtle, #c8ccd1 ); clear: both;"><figure class="mw-halign-left" typeof="mw:File"><a href="/wiki/Tiedosto:Translation_Latin_Alphabet.svg" class="mw-file-description" title="Käännös suomeksi"><img alt="Käännös suomeksi" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Translation_Latin_Alphabet.svg/60px-Translation_Latin_Alphabet.svg.png" decoding="async" width="60" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Translation_Latin_Alphabet.svg/90px-Translation_Latin_Alphabet.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Translation_Latin_Alphabet.svg/120px-Translation_Latin_Alphabet.svg.png 2x" data-file-width="475" data-file-height="150" /></a><figcaption>Käännös suomeksi</figcaption></figure> <div style="text-align: center; font-style:italic;">Tämä artikkeli tai sen osa on käännetty tai siihen on haettu tietoja muunkielisen Wikipedian artikkelista. <br />Alkuperäinen artikkeli: <a href="https://en.wikipedia.org/wiki/Logical_conjunction" class="extiw" title="en:Logical conjunction">en:Logical conjunction</a> </div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Noudettu kohteesta ”<a dir="ltr" href="https://fi.wikipedia.org/w/index.php?title=Konjunktio_(logiikka)&amp;oldid=22787737">https://fi.wikipedia.org/w/index.php?title=Konjunktio_(logiikka)&amp;oldid=22787737</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Toiminnot:Luokat" title="Toiminnot:Luokat">Luokka</a>: <ul><li><a href="/wiki/Luokka:Logiikka" title="Luokka:Logiikka">Logiikka</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Piilotettu luokka: <ul><li><a href="/wiki/Luokka:K%C3%A4%C3%A4nnetyt_artikkelit" title="Luokka:Käännetyt artikkelit">Käännetyt artikkelit</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigointivalikko</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Henkilökohtaiset työkalut</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="IP-osoitteesi käyttäjäsivu">Et ole kirjautunut</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Toiminnot:Oma_keskustelu" title="Keskustelu tämän IP-osoitteen muokkauksista [n]" accesskey="n"><span>Keskustelu</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Toiminnot:Omat_muokkaukset" title="Luettelo tästä IP-osoitteesta tehdyistä muokkauksista [y]" accesskey="y"><span>Muokkaukset</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Toiminnot:Luo_tunnus&amp;returnto=Konjunktio+%28logiikka%29" title="On suositeltavaa luoda käyttäjätunnus ja kirjautua sisään. Se ei kuitenkaan ole pakollista."><span>Luo tunnus</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Toiminnot:Kirjaudu_sis%C3%A4%C3%A4n&amp;returnto=Konjunktio+%28logiikka%29" title="On suositeltavaa kirjautua sisään. Se ei kuitenkaan ole pakollista. [o]" accesskey="o"><span>Kirjaudu sisään</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Nimiavaruudet</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Konjunktio_(logiikka)" title="Näytä sisältösivu [c]" accesskey="c"><span>Artikkeli</span></a></li><li id="ca-talk" class="new mw-list-item"><a href="/w/index.php?title=Keskustelu:Konjunktio_(logiikka)&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="Keskustele sisällöstä (sivua ei ole) [t]" accesskey="t"><span>Keskustelu</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">suomi</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Näkymät</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Konjunktio_(logiikka)"><span>Lue</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;veaction=edit" title="Muokkaa tätä sivua [v]" accesskey="v"><span>Muokkaa</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=edit" title="Muokkaa tämän sivun lähdekoodia [e]" accesskey="e"><span>Muokkaa wikitekstiä</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=history" title="Sivun aikaisemmat versiot [h]" accesskey="h"><span>Näytä historia</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Lisää valintoja" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Muut</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Haku</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Hae Wikipediasta" aria-label="Hae Wikipediasta" autocapitalize="sentences" title="Hae Wikipediasta [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Toiminnot:Haku"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Hae sivuilta tätä tekstiä" value="Hae"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Siirry sivulle, joka on tarkalleen tällä nimellä" value="Siirry"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Etusivu" title="Etusivu"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Valikko</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Etusivu" title="Siirry etusivulle [z]" accesskey="z"><span>Etusivu</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:Tietoja"><span>Tietoja Wikipediasta</span></a></li><li id="n-allarticles" class="mw-list-item"><a href="/wiki/Wikipedia:Selaa_luokittain"><span>Kaikki sivut</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Toiminnot:Satunnainen_sivu" title="Avaa satunnainen sivu [x]" accesskey="x"><span>Satunnainen artikkeli</span></a></li> </ul> </div> </nav> <nav id="p-interaction" class="mw-portlet mw-portlet-interaction vector-menu-portal portal vector-menu" aria-labelledby="p-interaction-label" > <h3 id="p-interaction-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Osallistuminen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Ohje:Sis%C3%A4llys" title="Ohjeita"><span>Ohje</span></a></li><li id="n-Kahvihuone" class="mw-list-item"><a href="/wiki/Wikipedia:Kahvihuone"><span>Kahvihuone</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Wikipedia:Ajankohtaista" title="Taustatietoa tämänhetkisistä tapahtumista"><span>Ajankohtaista</span></a></li><li id="n-Tuoreet-odottavat-muutokset" class="mw-list-item"><a href="//fi.wikipedia.org/wiki/Toiminnot:Tuoreet_muutokset?damaging=&amp;goodfaith=&amp;hideliu=0&amp;hideanons=0&amp;userExpLevel=&amp;hidemyself=0&amp;hidebyothers=0&amp;hidebots=1&amp;hidehumans=0&amp;hidepatrolled=1&amp;hideunpatrolled=0&amp;hideminor=0&amp;hidemajor=0&amp;hidepageedits=0&amp;hidenewpages=0&amp;hidecategorization=1&amp;hideWikibase=1&amp;hidelog=0&amp;highlight=1&amp;goodfaith__verylikelybad_color=c5&amp;goodfaith__likelybad_color=c4&amp;goodfaith__maybebad_color=c3&amp;damaging__verylikelybad_color=c5&amp;damaging__likelybad_color=c4&amp;damaging__maybebad_color=c3"><span>Tuoreet odottavat muutokset</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Toiminnot:Tuoreet_muutokset" title="Luettelo tuoreista muutoksista [r]" accesskey="r"><span>Tuoreet muutokset</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_fi.wikipedia.org&amp;uselang=fi" title="Tue meitä"><span>Lahjoitukset</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Työkalut</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Toiminnot:T%C3%A4nne_viittaavat_sivut/Konjunktio_(logiikka)" title="Lista sivuista, jotka viittaavat tänne [j]" accesskey="j"><span>Tänne viittaavat sivut</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Toiminnot:Linkitetyt_muutokset/Konjunktio_(logiikka)" rel="nofollow" title="Viimeisimmät muokkaukset sivuissa, joille viitataan tältä sivulta [k]" accesskey="k"><span>Linkitettyjen sivujen muutokset</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Toiminnot:Toimintosivut" title="Näytä toimintosivut [q]" accesskey="q"><span>Toimintosivut</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;oldid=22787737" title="Ikilinkki tämän sivun tähän versioon"><span>Ikilinkki</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;action=info" title="Enemmän tietoa tästä sivusta"><span>Sivun tiedot</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Toiminnot:Viittaus&amp;page=Konjunktio_%28logiikka%29&amp;id=22787737&amp;wpFormIdentifier=titleform" title="Tietoa tämän sivun lainaamisesta"><span>Viitetiedot</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Toiminnot:UrlShortener&amp;url=https%3A%2F%2Ffi.wikipedia.org%2Fwiki%2FKonjunktio_%28logiikka%29"><span>Lyhennä URL-osoite</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Toiminnot:QrCode&amp;url=https%3A%2F%2Ffi.wikipedia.org%2Fwiki%2FKonjunktio_%28logiikka%29"><span>Lataa QR-koodi</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Tulosta/vie</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Toiminnot:DownloadAsPdf&amp;page=Konjunktio_%28logiikka%29&amp;action=show-download-screen"><span>Lataa PDF-tiedostona</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Konjunktio_(logiikka)&amp;printable=yes" title="Tulostettava versio [p]" accesskey="p"><span>Tulostettava versio</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Muissa hankkeissa</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Logical_conjunction" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q191081" title="Linkki yhdistettyyn keskustietovaraston kohteeseen [g]" accesskey="g"><span>Wikidata-kohde</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Muilla kielillä</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar badge-Q70894304 mw-list-item" title=""><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%B7%D9%81_%D9%85%D9%86%D8%B7%D9%82%D9%8A" title="عطف منطقي — arabia" lang="ar" hreflang="ar" data-title="عطف منطقي" data-language-autonym="العربية" data-language-local-name="arabia" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Logika_konjungsi" title="Logika konjungsi — indonesia" lang="id" hreflang="id" data-title="Logika konjungsi" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesia" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Konjunkcija_sudova" title="Konjunkcija sudova — bosnia" lang="bs" hreflang="bs" data-title="Konjunkcija sudova" data-language-autonym="Bosanski" data-language-local-name="bosnia" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конюнкция — bulgaria" lang="bg" hreflang="bg" data-title="Конюнкция" data-language-autonym="Български" data-language-local-name="bulgaria" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Conjunci%C3%B3_l%C3%B2gica" title="Conjunció lògica — katalaani" lang="ca" hreflang="ca" data-title="Conjunció lògica" data-language-autonym="Català" data-language-local-name="katalaani" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Konjunkce_(logika)" title="Konjunkce (logika) — tšekki" lang="cs" hreflang="cs" data-title="Konjunkce (logika)" data-language-autonym="Čeština" data-language-local-name="tšekki" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Konjunktion_(logik)" title="Konjunktion (logik) — tanska" lang="da" hreflang="da" data-title="Konjunktion (logik)" data-language-autonym="Dansk" data-language-local-name="tanska" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Konjunktion_(Logik)" title="Konjunktion (Logik) — saksa" lang="de" hreflang="de" data-title="Konjunktion (Logik)" data-language-autonym="Deutsch" data-language-local-name="saksa" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Konjunktsioon" title="Konjunktsioon — viro" lang="et" hreflang="et" data-title="Konjunktsioon" data-language-autonym="Eesti" data-language-local-name="viro" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%B9%CE%BA%CE%AE_%CF%83%CF%8D%CE%B6%CE%B5%CF%85%CE%BE%CE%B7" title="Λογική σύζευξη — kreikka" lang="el" hreflang="el" data-title="Λογική σύζευξη" data-language-autonym="Ελληνικά" data-language-local-name="kreikka" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Congiunsi%C3%B2un_l%C3%B2gica" title="Congiunsiòun lògica — Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Congiunsiòun lògica" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Logical_conjunction" title="Logical conjunction — englanti" lang="en" hreflang="en" data-title="Logical conjunction" data-language-autonym="English" data-language-local-name="englanti" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Conjunci%C3%B3n_l%C3%B3gica" title="Conjunción lógica — espanja" lang="es" hreflang="es" data-title="Conjunción lógica" data-language-autonym="Español" data-language-local-name="espanja" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Konjunkcio_(logiko)" title="Konjunkcio (logiko) — esperanto" lang="eo" hreflang="eo" data-title="Konjunkcio (logiko)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Konjuntzio_logiko" title="Konjuntzio logiko — baski" lang="eu" hreflang="eu" data-title="Konjuntzio logiko" data-language-autonym="Euskara" data-language-local-name="baski" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%B7%D9%81_%D9%85%D9%86%D8%B7%D9%82%DB%8C" title="عطف منطقی — persia" lang="fa" hreflang="fa" data-title="عطف منطقی" data-language-autonym="فارسی" data-language-local-name="persia" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Conjonction_logique" title="Conjonction logique — ranska" lang="fr" hreflang="fr" data-title="Conjonction logique" data-language-autonym="Français" data-language-local-name="ranska" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%85%BC%EB%A6%AC%EA%B3%B1" title="논리곱 — korea" lang="ko" hreflang="ko" data-title="논리곱" data-language-autonym="한국어" data-language-local-name="korea" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%B8%D5%B6%D5%B5%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1" title="Կոնյունկցիա — armenia" lang="hy" hreflang="hy" data-title="Կոնյունկցիա" data-language-autonym="Հայերեն" data-language-local-name="armenia" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Congiunzione_logica" title="Congiunzione logica — italia" lang="it" hreflang="it" data-title="Congiunzione logica" data-language-autonym="Italiano" data-language-local-name="italia" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%95%D7%92%D7%9D_(%D7%9C%D7%95%D7%92%D7%99%D7%A7%D7%94)" title="וגם (לוגיקה) — heprea" lang="he" hreflang="he" data-title="וגם (לוגיקה)" data-language-autonym="עברית" data-language-local-name="heprea" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конъюнкция — kazakki" lang="kk" hreflang="kk" data-title="Конъюнкция" data-language-autonym="Қазақша" data-language-local-name="kazakki" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конъюнкция — kirgiisi" lang="ky" hreflang="ky" data-title="Конъюнкция" data-language-autonym="Кыргызча" data-language-local-name="kirgiisi" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Konjunkcija_(logika)" title="Konjunkcija (logika) — liettua" lang="lt" hreflang="lt" data-title="Konjunkcija (logika)" data-language-autonym="Lietuvių" data-language-local-name="liettua" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Dobi" title="Dobi — lombardi" lang="lmo" hreflang="lmo" data-title="Dobi" data-language-autonym="Lombard" data-language-local-name="lombardi" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Konjunkci%C3%B3_(logika)" title="Konjunkció (logika) — unkari" lang="hu" hreflang="hu" data-title="Konjunkció (logika)" data-language-autonym="Magyar" data-language-local-name="unkari" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%BA%D0%B0_%D0%BA%D0%BE%D0%BD%D1%98%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Логичка конјункција — makedonia" lang="mk" hreflang="mk" data-title="Логичка конјункција" data-language-autonym="Македонски" data-language-local-name="makedonia" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Logische_conjunctie" title="Logische conjunctie — hollanti" lang="nl" hreflang="nl" data-title="Logische conjunctie" data-language-autonym="Nederlands" data-language-local-name="hollanti" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%AB%96%E7%90%86%E7%A9%8D" title="論理積 — japani" lang="ja" hreflang="ja" data-title="論理積" data-language-autonym="日本語" data-language-local-name="japani" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Konjunksjon_(logikk)" title="Konjunksjon (logikk) — norjan bokmål" lang="nb" hreflang="nb" data-title="Konjunksjon (logikk)" data-language-autonym="Norsk bokmål" data-language-local-name="norjan bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Congionsion" title="Congionsion — piemonte" lang="pms" hreflang="pms" data-title="Congionsion" data-language-autonym="Piemontèis" data-language-local-name="piemonte" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Koniunkcja_(logika)" title="Koniunkcja (logika) — puola" lang="pl" hreflang="pl" data-title="Koniunkcja (logika)" data-language-autonym="Polski" data-language-local-name="puola" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Conjun%C3%A7%C3%A3o_l%C3%B3gica" title="Conjunção lógica — portugali" lang="pt" hreflang="pt" data-title="Conjunção lógica" data-language-autonym="Português" data-language-local-name="portugali" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конъюнкция — venäjä" lang="ru" hreflang="ru" data-title="Конъюнкция" data-language-autonym="Русский" data-language-local-name="venäjä" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Konjuksioni" title="Konjuksioni — albania" lang="sq" hreflang="sq" data-title="Konjuksioni" data-language-autonym="Shqip" data-language-local-name="albania" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Logical_conjunction" title="Logical conjunction — Simple English" lang="en-simple" hreflang="en-simple" data-title="Logical conjunction" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Konjunkcia_(logika)" title="Konjunkcia (logika) — slovakki" lang="sk" hreflang="sk" data-title="Konjunkcia (logika)" data-language-autonym="Slovenčina" data-language-local-name="slovakki" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Konjunkcija_(logika)" title="Konjunkcija (logika) — sloveeni" lang="sl" hreflang="sl" data-title="Konjunkcija (logika)" data-language-autonym="Slovenščina" data-language-local-name="sloveeni" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%BA%D0%B0_%D0%BA%D0%BE%D0%BD%D1%98%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Логичка конјункција — serbia" lang="sr" hreflang="sr" data-title="Логичка конјункција" data-language-autonym="Српски / srpski" data-language-local-name="serbia" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Logi%C4%8Dka_konjunkcija" title="Logička konjunkcija — serbokroaatti" lang="sh" hreflang="sh" data-title="Logička konjunkcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbokroaatti" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Konjunktion_(logik)" title="Konjunktion (logik) — ruotsi" lang="sv" hreflang="sv" data-title="Konjunktion (logik)" data-language-autonym="Svenska" data-language-local-name="ruotsi" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%8A%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%95%E0%B8%A3%E0%B8%A3%E0%B8%81%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C" title="การเชื่อมเชิงตรรกศาสตร์ — thai" lang="th" hreflang="th" data-title="การเชื่อมเชิงตรรกศาสตร์" data-language-autonym="ไทย" data-language-local-name="thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%27%D1%8E%D0%BD%D0%BA%D1%86%D1%96%D1%8F" title="Кон&#039;юнкція — ukraina" lang="uk" hreflang="uk" data-title="Кон&#039;юнкція" data-language-autonym="Українська" data-language-local-name="ukraina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%82%8F%E8%BC%AF%E8%88%87" title="邏輯與 — kantoninkiina" lang="yue" hreflang="yue" data-title="邏輯與" data-language-autonym="粵語" data-language-local-name="kantoninkiina" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E4%B8%8E" title="逻辑与 — kiina" lang="zh" hreflang="zh" data-title="逻辑与" data-language-autonym="中文" data-language-local-name="kiina" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q191081#sitelinks-wikipedia" title="Muokkaa kieltenvälisiä linkkejä" class="wbc-editpage">Muokkaa linkkejä</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Sivua on viimeksi muutettu 12. marraskuuta 2024 kello 21.10.</li> <li id="footer-info-copyright">Teksti on saatavilla <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fi">Creative Commons Attribution/Share-Alike</a> -lisenssillä; lisäehtoja voi sisältyä. Katso <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/fi">käyttöehdot</a>.<br /> Wikipedia&#174; on <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundationin</a> rekisteröimä tavaramerkki.<br /> <a href="/wiki/Wikipedia:Artikkelien_ongelmat" title="Wikipedia:Artikkelien ongelmat">Ongelma artikkelissa?</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Tietosuojakäytäntö</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Tietoja">Tietoja Wikipediasta</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Vastuuvapaus">Vastuuvapaus</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Käytössäännöstö</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Kehittäjät</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fi.wikipedia.org">Tilastot</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Evästekäytäntö</a></li> <li id="footer-places-mobileview"><a href="//fi.m.wikipedia.org/w/index.php?title=Konjunktio_(logiikka)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobiilinäkymä</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-pvdvh","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"0.143","walltime":"1.226","ppvisitednodes":{"value":795,"limit":1000000},"postexpandincludesize":{"value":3108,"limit":2097152},"templateargumentsize":{"value":74,"limit":2097152},"expansiondepth":{"value":7,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":5710,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 41.778 1 -total"," 59.26% 24.759 1 Malline:Viitteet"," 44.57% 18.620 3 Malline:Kirjaviite"," 13.49% 5.638 1 Malline:Verkkoviite"," 10.43% 4.358 1 Malline:K-en"," 5.42% 2.263 1 Malline:K"," 4.67% 1.952 1 Malline:Käännös"]},"scribunto":{"limitreport-timeusage":{"value":"0.005","limit":"10.000"},"limitreport-memusage":{"value":742901,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-78fc6dc798-dh5bq","timestamp":"20241120233743","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Konjunktio (logiikka)","url":"https:\/\/fi.wikipedia.org\/wiki\/Konjunktio_(logiikka)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q191081","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q191081","author":{"@type":"Organization","name":"Wikimedia-hankkeiden muokkaajat"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-03-26T17:33:46Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/99\/Venn0001.svg","headline":"konnektiivi propositiologiikassa"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10