CINXE.COM
Search results for: red sweet pepper powder
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: red sweet pepper powder</title> <meta name="description" content="Search results for: red sweet pepper powder"> <meta name="keywords" content="red sweet pepper powder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="red sweet pepper powder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="red sweet pepper powder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1113</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: red sweet pepper powder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> Quality Evaluation of Bread Enriched with Red Sweet Pepper Powder (Capsicum annuum)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Kaur">Ramandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaljit%20Kaur"> Kamaljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Ahluwalia"> Preeti Ahluwalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam%20A.%20Sachdev"> Poonam A. Sachdev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bread is an ideal vehicle to impart bioactive compounds to the consumers in a convenient manner. This study evaluated bread enriched with red sweet pepper powder (RSP) at 2, 4, 6, 8, 10% and compared to control bread (without RSP). The bread crumbs were assayed for bioactive, physical, nutritional, textural, color, and sensory properties. Bread supplemented with RSP improved its color, nutritional, and bioactive properties. The low moisture content and increased hardness were observed at higher levels of RSP. Color intensity (expressed as L*, a*, b* values) of bread with 2 and 4% RSP were lower than those of high levels, and the same trend was observed for protein, fibre and ash content of bread. Significant (p < 0.05) increases were recorded for bioactive compounds such as total phenols (0.145 to 235 mg GAE/g), antioxidant activity (56% to 78%) and flavonoids (0.112 to 0.379 mg/g) as the level of powder increased. Bread enriched with 8% RSP showed improved sensory profile as compared to control, whereas a further increase in RSP decreased the sensory and textural properties. Thus, RSP act as a natural colorant and functional food that enhanced the functional and nutritional properties of bread and can be used to customize bread for specific health needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breads" title="breads">breads</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder" title=" red sweet pepper powder"> red sweet pepper powder</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20scores" title=" sensory scores"> sensory scores</a> </p> <a href="https://publications.waset.org/abstracts/109389/quality-evaluation-of-bread-enriched-with-red-sweet-pepper-powder-capsicum-annuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> Comparison of Aflatoxin B1 Levels in Iranian and Indian Spices by ELISA Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sasan%20Mozaffari%20Nejad">Amir Sasan Mozaffari Nejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to detect the presence of aflatoxin B1 (AFB1) in 36 samples of spices from Iran and India that was included of chilli powder (n=12), black pepper powder (n=12) and whole black pepper (n=12). Enzyme-linked immunosorbent assay (ELISA) method was used for analysing the samples. Aflatoxin B1 was found in all the spices samples, the concentration of AFB1 in Iranian samples was ranged from 63.16 to 626.81 ng/kg and in Indian samples was ranged from 31.15 to 245.94 ng/kg. The mean of AFB1 concentration in the chilli powder was significantly higher (P < 0.05) than the whole and powdered black pepper. However, none of the samples exceeded the maximum prescribed limit i.e. 5 µg/kg of European Union regulations for aflatoxin B1. The occurrence of AFB1 in spices samples could be a potential hazard for public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20B1" title="Aflatoxin B1">Aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=chilli" title=" chilli"> chilli</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/2110/comparison-of-aflatoxin-b1-levels-in-iranian-and-indian-spices-by-elisa-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Antioxidant Properties, Ascorbic Acid and Total Carotenoids Values of Sweet and Hot Red Pepper Paste: A Traditional Food in Turkish Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Sayin">Kubra Sayin</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Arslan"> Derya Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red pepper (Capsicum annum L.) has long been recognized as a good source of antioxidants, being rich in ascorbic acid and other phytochemicals. In Turkish cuisine red pepper is sometimes consumed raw in salads and baked as a garnish, but its most wide consumption type is red pepper paste. The processing of red pepper into pepper paste includes various thermal treatment steps such as heating and pasteurizing. There are reports demonstrating an enhancement or reduction in antioxidant activity of vegetables after thermal treatment. So this study was conducted to investigate the total phenolics, ascorbic acid and total carotenoids as well as free radical scavenging activity of raw red pepper and various red pepper pastes obtainable on the market. The samples were analyzed for radical-scavenging activity (RSA) and total polyphenol (TP) content using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Folin-Ciocalteu methods, respectively. They were also evaluated for ascorbic acid content (AsA) by HPLC. Total carotenoids content was determined spectrophotometrically. Results suggest that there is no significant (P > 0.05) difference in RSA, TP, AsA and total carotenoids content between various red pepper paste products. However, red pepper paste showed marked differences (P < 0.05) in the RSA, TP and AsA contents compared with raw red pepper. It is concluded that the red pepper paste, that has a wide range of consumption in Turkish cuisine, presents a good dose of phenolic compounds and antioxidant capacity and it should be regarded as a functional food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20pepper%20paste" title="red pepper paste">red pepper paste</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title=" antioxidant properties"> antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carotenoids" title=" total carotenoids"> total carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics "> total phenolics </a> </p> <a href="https://publications.waset.org/abstracts/23623/antioxidant-properties-ascorbic-acid-and-total-carotenoids-values-of-sweet-and-hot-red-pepper-paste-a-traditional-food-in-turkish-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Akay">O. E. Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G%C3%BCzel"> E. Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20%C3%96zcan"> M. T. Özcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20simulation" title="kinematic simulation">kinematic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20bar%20linkage" title=" four bar linkage"> four bar linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=harvest%20mechanization" title=" harvest mechanization"> harvest mechanization</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper%20harvest" title=" pepper harvest"> pepper harvest</a> </p> <a href="https://publications.waset.org/abstracts/44062/development-of-a-harvest-mechanism-for-the-kahramanmaras-chili-pepper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> Designing Price Stability Model of Red Cayenne Pepper Price in Wonogiri District, Centre Java, Using ARCH/GARCH Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fauzia%20Dianawati">Fauzia Dianawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Riska%20W.%20Purnomo"> Riska W. Purnomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food and agricultural sector become the biggest sector contributing to inflation in Indonesia. Especially in Wonogiri district, red cayenne pepper was the biggest sector contributing to inflation on 2016. A national statistic proved that in recent five years red cayenne pepper has the highest average level of fluctuation among all commodities. Some factors, like supply chain, price disparity, production quantity, crop failure, and oil price become the possible factor causes high volatility level in red cayenne pepper price. Therefore, this research tries to find the key factor causing fluctuation on red cayenne pepper by using ARCH/GARCH method. The method could accommodate the presence of heteroscedasticity in time series data. At the end of the research, it is statistically found that the second level of supply chain becomes the biggest part contributing to inflation with 3,35 of coefficient in fluctuation forecasting model of red cayenne pepper price. This model could become a reference to the government to determine the appropriate policy in maintaining the price stability of red cayenne pepper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARCH%2FGARCH" title="ARCH/GARCH">ARCH/GARCH</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20cayenne%20pepper" title=" red cayenne pepper"> red cayenne pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=volatility" title=" volatility"> volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/79137/designing-price-stability-model-of-red-cayenne-pepper-price-in-wonogiri-district-centre-java-using-archgarch-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Effects of Fatty Acid Salts and Spices on Dermatophagoides farinae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumeho%20Obata">Yumeho Obata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dermatophagoides farinae is major mite allergens in indoors. D. farinae is often swarm over powder products (e.g. wheat flour), because it feeds on starch or protein that are included in them. Eating powder products which are mixed D.farinae causes various allergic symptoms. Therefore, the creation of food additive agents with high safety and control of mite effect is required. Fatty acid salts and spices are known that have pesticidal activities. This study describes the effects of fatty acid salts and spices against Dermatophagoides farinae. Materials and Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. C12Cu and C12Zn were selected as other fatty acid salts. Cayenne pepper, habanero, Japanese pepper, mustard, jalapeno pepper, curry aroma and cinnamon were selected as spices. D. farina, have been cultured in laboratory. To rear the mites, double-soled dishes containing of sterilized food were put on the big plastic container (30.0 × 20.0 × 20.0cm) which had 100% ammonium nitrate solution in the bottom. Plastic container was placed on incubator at 25 °C and 64 % relative humidity (RH) under dark condition. Sterilized food composed of dried bonito flakes and dried yeast (Ebios), 1:1 by weight. The antiproliferative method, sample and medium culture were mixed in double-soled dish and kept at 25 °C and 64 % RH. Decrease rates were determined 1 week and 4 week after treatment under microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that the fatty acids potassium showed no antiproliferative effects against D. farinae. On the other hand, Japanese pepper, mustard, curry aroma and cinnamon were effective to decrease propagative rate (over 80 %) after treatment for 1 week against D. farina. Japanese pepper, curry aroma and cinnamon were effective to decrease propagative rate (approximately 100 %) after treatment for 4 weeks against D. farina. Especially, Japanese pepper and cinnamon showed the fasted and the most consecutive antiproliferative effects. These results indicate that Japanese pepper and cinnamon have high antiproliferative effects against D. farina and suggest spices will be used as a food additive agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title="fatty acid salts">fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20effects" title=" antiproliferative effects"> antiproliferative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophagoides%20farinae" title=" dermatophagoides farinae"> dermatophagoides farinae</a> </p> <a href="https://publications.waset.org/abstracts/49384/effects-of-fatty-acid-salts-and-spices-on-dermatophagoides-farinae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Diversification of Sweet Potato Blends and Utilization for Malnutrition and Poverty Alleviation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ladele%20Ademola%20A.">Ladele Ademola A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nkiru%20T.%20Meludu"> Nkiru T. Meludu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufunke%20Ezekiel"> Olufunke Ezekiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaoye%20Taye%20F."> Olaoye Taye F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Okanlowan%20Oluwatoyin%20M."> Okanlowan Oluwatoyin M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Value addition to agricultural produce is of possible potential in reducing poverty, improving food security and malnutrition, therefore the need to develop small and micro-enterprises of sweet potato production. The study was carried out in Nigeria to determine the acceptability of blends sweet potato (Ipomea batatas) and commodities yellow maize (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), bambara groundnut (Vigna subterranean), guinea corn (Sorghum vulgare), wheat (Triticum aestivum), and roselle (Hibiscus sabdariffa) through sensory evaluation. Sweet potato (Ipomea batatas) roots were processed using two methods. The first method involved the use of a fabricated gas powered cabinet dryer to dry sulphited chips and the second method was the use of traditional sun drying method without the addition of the chemical. The blends were also assessed in terms of functional, chemical and color properties. Most acceptable blends include BAW (80:20 of sweet potato/wheat), BBC (80:20 of sweet potato/guinea corn), AAB (60:40 of sweet potato/guinea corn), YTE (100% soybean), TYG (100% sweet potato), KTN (100% wheat flour), XGP (80:20 of sweet potato/soybean), XAX (60:40 of sweet potato/wheat), LSS (100% Roselle), CHK (100% Guinea corn), and ABC (60:40% of sweet potato/ yellow maize). In addition, chemical analysis carried out revealed that sweet potato has high percentage of vitamins A and C, potassium (K), manganese (Mn), calcium (Ca), magnesium (Mg) and iron (Fe) and fibre content. There is also an increase of vitamin A and Iron in the blended products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blends" title="blends">blends</a>, <a href="https://publications.waset.org/abstracts/search?q=diversification" title=" diversification"> diversification</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20potato" title=" sweet potato"> sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a> </p> <a href="https://publications.waset.org/abstracts/26905/diversification-of-sweet-potato-blends-and-utilization-for-malnutrition-and-poverty-alleviation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Opportunity Cost of Producing Sugarcane, Sweet Orange and Soybean in Sri Lankan Context: An Economic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tharsinithevy%20Kirupananthan">Tharsinithevy Kirupananthan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzed the decision on growing three different crops which suit dry zone of Sri Lanka using the opportunity cost concept in economics. The variable cost of production of sugar cane, sweet orange, and soybean was 112,418.76, 13,463 and 10,928.08 Sri Lankan Rs. (LKR) per acre in the dry zone of Sri Lanka. The yield of the sugar cane, sweet orange, and soybean were 49.33 tons, 25,595 fruits, and 1032 kg per acre. The market price of the sugar cane, sweet orange, and soybean were 4200 LKR/ton, LKR 14.66 per fruit and LKR 89.69 per kg. The market value or the total income of the sugar cane, sweet orange, and soybean were LKR 207194.4, 283090.74, and 92560.08. The accounting profit of the sugar cane, sweet orange, and soybean was 94,775.64, 269,627.74, and 81,632 LKR per acre. Therefore, the opportunity cost of sugarcane per acre in terms of accounting profit was LKR. 269,627.74 from sweet orange and LKR 81,632 from soybean. The highest opportunity cost per acre in terms of accounting profit was found when soybean is produced instead of sweet orange. The opportunity cost which compared among the crops in terms of market value for sugar cane per acre was LKR 283090.74 of sweet orange and LKR 92560.08 of soybean. The highest opportunity cost both in terms of accounting profit and market value was found when growing soybean instead of sweet orange by using the resource per acre of land. The economic profit of sugar cane production in place of sweet orange was LKR -188315.1 per acre. The highest economic profit LKR 177067.66 was found when sweet orange is produced in place of soybean. A positive value of economic profit was found in all combination of sweet orange production without considering the first harvest duration of the crop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20economics" title="agricultural economics">agricultural economics</a>, <a href="https://publications.waset.org/abstracts/search?q=crop" title=" crop"> crop</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunity%20cost" title=" opportunity cost"> opportunity cost</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/91254/opportunity-cost-of-producing-sugarcane-sweet-orange-and-soybean-in-sri-lankan-context-an-economic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> Effect of Ginger, Red Pepper, and Their Mixture in Diet on Growth Performance and Body Composition of Oscar, Astronotus ocellatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Jorjani">Sarah Jorjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Ghelichi"> Afshin Ghelichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazyar%20Kamali"> Mazyar Kamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to estimate the effect of addition of ginger and red pepper and their mixture in diet on growth performance, survival rate and body composition of Astronotus ocellatus (Oscar fish). This study had been carried out for 8 weeks. For this reason 132 oscar fishes with intial weight of 2.44±0.26 (gr) were divided into 4 treatments with three replicate as compeletly randomize design test and fed by 100% Biomar diet (T1), Biomar + red pepper (55 mg/kg) (T2), Biomar + ginger (1%) (T3) and Biomar + mixture of red pepper and ginger (T4).The fish were fed in 5% of their body weight. The results showed T2 have significant differences in most of growth parameters in compare with other treatments, such as PBWI, SGR, PER and SR (P < 0.05), but there were no significant differences between treatments in FCR and FE (P > 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20pepper" title="red pepper">red pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=oscar%20fish" title=" oscar fish"> oscar fish</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a> </p> <a href="https://publications.waset.org/abstracts/37622/effect-of-ginger-red-pepper-and-their-mixture-in-diet-on-growth-performance-and-body-composition-of-oscar-astronotus-ocellatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Production of Alcohol from Sweet Potato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20S.%20Shete">Abhishek S. Shete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is nothing new in the use of alcohol made from root crops as a motor fuel. Alcohol is an excellent alternative motor fuel for petrol engines. The reason alcohol fuel has not been fully exploited is that, up until now; gasoline has been cheap, available, and easy to produce. However, nowadays, crude oil is getting scarce, and the historic price difference between alcohol and gasoline is getting narrower. Alcohol fuel can be an important part of the solution for Rwanda because there is tremendous scope to use bulk production of sweet potato into alcohol. The total sweet potato production in both seasons is found to be 1.607.296 tones/year. The average productivity of sweet potato in the country irrespective of seasons is found to be 8.9 tones/ha. If all of the available agricultural surplus were converted to ethanol, alcohol would supply less than 5% of motor fuel needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=root%20crops" title="root crops">root crops</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20potato" title=" sweet potato"> sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=surplus" title=" surplus"> surplus</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol" title=" alcohol"> alcohol</a> </p> <a href="https://publications.waset.org/abstracts/1974/production-of-alcohol-from-sweet-potato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> Nutritional Composition of Maize-Based Snack Fortified with Kidney Beans and Alligator Pepper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20E.%20Adeyanju">B. E. Adeyanju</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Bolade"> M. K. Bolade</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Enijuigha"> V. N. Enijuigha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work examined the nutritional composition of maize-based snack (kango) fortified with kidney beans (Phaseolus vulgaris) and alligator pepper (Aframomum melegueta). The snack is essentially traditional food being consumed by all ages in the southwestern part of Nigeria. Three varieties of maize were obtained from the Institute of Agricultural Research and Training (IAR&T), Ibadan, Nigeria, namely: ART-98-SW06-W, Br 9943-DMR-SR-W and SUWAN-1-SR-Y. Flour blends were obtained using the Response Surface Methodology (RSM) which resulted in appropriate blending ratios of maize, kidney beans and alligator pepper. Kango was prepared by milling maize grain into flour; ingredients such as pepper, onion, salt and water were added to the maize flour, mixed together to make a slurry. The slurry was fried in hot groundnut oil at a temperature of 126°C for 8 minutes. The incorporation of kidney bean and alligator pepper in maize flour was observed to increase the water and oil absorption capacities of the resultant blends thereby giving 109.21 to 156.90 ml/mg and 110.68 to 136.67 ml/mg respectively for kango. The pasting properties of the maize flour blends were also enhanced due to the incorporation of kidney bean and alligator pepper. The peak viscosity of the flour blends ranged from 3.24 to 7.67 RVU. The incorporation of kidney bean and alligator pepper in the production of the snacks increased the protein contents from 9.63 to 16.37%. The mineral contents (sodium, potassium, calcium, magnesium, iron and zinc) of the snacks were equally increased due to the incorporation of kidney bean and alligator pepper. A general increase was observed for vitamin B1 (0.69- 1.25 mg/100g), B2 (0.09 - 0.46 mg/100g) and B3 (0.11 - 0.72 mg/100g) in the snacks due to the incorporation of kidney bean and alligator pepper. This research work showed that kango produced from the composited maize flour, kidney bean and alligator pepper had better functional properties and higher nutritional contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title="functional properties">functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=kango" title=" kango"> kango</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20composition" title=" nutritional composition"> nutritional composition</a>, <a href="https://publications.waset.org/abstracts/search?q=snack" title=" snack"> snack</a> </p> <a href="https://publications.waset.org/abstracts/86836/nutritional-composition-of-maize-based-snack-fortified-with-kidney-beans-and-alligator-pepper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Effect of Sodium Chloride Replacement with Potassium Chloride on Qualities of Longan Seasoning Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narin%20Charoenphun">Narin Charoenphun</a>, <a href="https://publications.waset.org/abstracts/search?q=Praopen%20Rattanadee"> Praopen Rattanadee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiporn%20Phaephiromrat"> Chaiporn Phaephiromrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important intricacies of cooking is seasoning which is the process of adding salt, herbs, or spices to food to enhance the flavor. Sodium chloride (NaCl) was added in seasoning powder for taste-improving and shelf life of products. However, the raised blood pressure caused by eating too much NaCl may damage the arteries leading to the heart. Interestingly, NaCl replacement with other substance is essential for consumer. The objective of this study was to investigate the effects of NaCl replacement with potassium chloride (KCl) on the sensory characteristics and physiochemical properties of longan seasoning powder. Five longan seasoning Powder were replaced sodium chloride with KCl at 0, 25, 50 75 and 100%. Mixture design with 2 replications was performed. Sensory characteristics on overall flavor, saltiness, sweetness, bitterness and overall liking were investigated using 12 descriptive trained panelists. Results revealed that NaCl and KCl had effects on saltiness, bitterness and overall liking. As the level of KCl substituted increased, the overall flavor and sweetness of powdered seasoning from longan were not significantly (p < 0.05). This resulted in the decrease of overall liking of the products. In addition, increasing the level of KCl substituted resulted in the drop of saltiness but out of bitterness of the products. Saltiness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Bitterness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Moreover, consumer acceptance test was conducted (n=100). In conclusion, the optimum formulation contained of 32.0% longan powder, 28.0% sugar, 15.0% NaCl, 5% KCl, 16.0% pork powder, 3.0% pepper powder, and 3.0% garlic powder that would meet acceptability scores of at least 7 or like moderately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=longan" title="longan">longan</a>, <a href="https://publications.waset.org/abstracts/search?q=seasoning" title=" seasoning"> seasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=NaCl" title=" NaCl"> NaCl</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a> </p> <a href="https://publications.waset.org/abstracts/68520/effect-of-sodium-chloride-replacement-with-potassium-chloride-on-qualities-of-longan-seasoning-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilis%20Kistriyani">Lilis Kistriyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dine%20Olisvia"> Dine Olisvia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfa%20Rahmawati"> Lutfa Rahmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20mask" title="face mask">face mask</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a> </p> <a href="https://publications.waset.org/abstracts/89490/antioxidant-face-mask-from-purple-sweet-potato-ipomea-batatas-with-oleum-cytrus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> Effect of Tree Age on Fruit Quality of Different Cultivars of Sweet Orange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran">Muhammad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Faheem%20Khadija"> Faheem Khadija</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahoor%20Hussain"> Zahoor Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Raheel%20Anwar"> Raheel Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nawaz%20Khan"> M. Nawaz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Raza%20Salik"> M. Raza Salik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst citrus species, sweet orange (Citrus sinensis L. Osbeck) occupies a dominant position in the orange producing countries in the world. Sweet orange is widely consumed both as fresh fruit as well as juice and its global demand is attributed due to higher vitamin C and antioxidants. Fruit quality is most important for the external appearance and marketability of sweet orange fruit, especially for fresh consumption. There are so many factors affecting fruit quality, tree age is the most important one, but remains unexplored so far. The present study, we investigated the role of tree age on fruit quality of different cultivars of sweet oranges. The difference between fruit quality of 5-year young and 15-year old trees was discussed in the current study. In case of fruit weight, maximum fruit weight (238g) was recorded in 15-year old sweet orange cv. Sallustiana cultivar while minimum fruit weight (142g) was recorded in 5-year young tree of Succari sweet orange fruit. The results of the fruit diameter showed that the maximum fruit diameter (77.142mm) was recorded in 15-year old Sallustiana orange but the minimum fruit diameter (66.046mm) was observed in 5-year young tree of sweet orange cv. Succari. The minimum value of rind thickness (4.142mm) was noted in 15-year old tree of cv. Red blood. On the other hand maximum value of rind thickness was observed in 5-year young tree of cv. Sallustiana. The data regarding total soluble solids (TSS), acidity (TA), TSS/TA, juice content, rind, flavedo thickness, pH and fruit diameter have also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivars" title=" cultivars"> cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit" title=" fruit"> fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20orange%20%28Citrus%20Sinensis%20L.%20Osbeck%29" title=" sweet orange (Citrus Sinensis L. Osbeck)"> sweet orange (Citrus Sinensis L. Osbeck)</a> </p> <a href="https://publications.waset.org/abstracts/88189/effect-of-tree-age-on-fruit-quality-of-different-cultivars-of-sweet-orange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Oke">M. O. Oke</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Workneh"> T. S. Workneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sweet%20potato%20slice" title="sweet potato slice">sweet potato slice</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20models" title=" drying models"> drying models</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20ratio" title=" moisture ratio"> moisture ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20diffusivity" title=" moisture diffusivity"> moisture diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/16844/convective-hot-air-drying-of-different-varieties-of-blanched-sweet-potato-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboul-Nasr%20Amal">Aboul-Nasr Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabry%20Soraya"> Sabry Soraya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Mayada"> Sabra Mayada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arbuscular%20mycorrhizal%20fungus" title="arbuscular mycorrhizal fungus">arbuscular mycorrhizal fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20basil" title=" sweet basil"> sweet basil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20composition" title=" oil composition"> oil composition</a> </p> <a href="https://publications.waset.org/abstracts/71861/role-of-arbuscular-mycorrhiza-in-heavy-metal-tolerance-in-sweet-basil-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Product Development of Standard Multi-Layer Sweet (Khanom- Chan) Recipe to Healthy for Thai Dessert</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tidarat%20Sanphom">Tidarat Sanphom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of this research is to development of Standard Layer pudding (Khanom-Chan) recipe to healthy Thai dessert. The objective are to study about standard recipe in multi-layer sweet. It was found that the appropriate recipe in multi-layer sweet, was consisted of rice starch 56 grams, tapioca starch 172 grams, arrowroot flour 98 grams, mung been-flour 16 grams, coconut milk 774 grams, fine sugar 374 grams, pandan leaf juice 47 grams and oil 5 grams.Then the researcher studied about the ratio of rice-berries flour to rice starch in multi-layer sweet at level of 30:70, 50:50, and only rice-berry flour 100 percentage. Result sensory evaluation, it was found the ratio of rice-berry flour to rice starch 30:70 had well score. The result of multi-layer sweet with rice-berry flour reduced sugar 20, 40 and 60 percentage found that 20 percentage had well score. Calculated total calories and calories from fat in Sweet layer cake with rice-berry flour reduced sugar 20 percentage had 250.04 kcal and 65.16 kcal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20sweet%20%28Khanom-Chan%29" title="multi-layer sweet (Khanom-Chan)">multi-layer sweet (Khanom-Chan)</a>, <a href="https://publications.waset.org/abstracts/search?q=rice-berry%20flour" title=" rice-berry flour"> rice-berry flour</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20juice" title=" leaf juice"> leaf juice</a>, <a href="https://publications.waset.org/abstracts/search?q=desert" title=" desert"> desert</a> </p> <a href="https://publications.waset.org/abstracts/16506/product-development-of-standard-multi-layer-sweet-khanom-chan-recipe-to-healthy-for-thai-dessert" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Mahdian">Elham Mahdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karazhian"> Reza Karazhian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahele%20Dehghan%20Tanha"> Rahele Dehghan Tanha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title="carotenoids">carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper" title=" pepper"> pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/32193/effect-of-ultrasound-on-carotenoids-extraction-from-pepper-and-process-optimization-using-response-surface-methodology-rsm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Analysis of the Recovery of Burnility Index and Reduction of CO2 for Cement Manufacturing Utilizing Waste Cementitious Powder as Alternative Raw Material of Limestone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwon%20Eunhee">Kwon Eunhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Dongcheon"> Park Dongcheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Jaemin"> Jung Jaemin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In countries around the world, environmental regulations are being strengthened, and Korea is no exception to this trend, which means that environment pollution and the environmental load have recently become a significant issue. For this reason, in this study limestone was replaced with cementitious powder to reduce the volume of construction waste as well as the emission of carbon dioxide caused by Tal-carbonate reaction. The research found that cementitious powder can be used as a substitute for limestone. However, the mix proportions of fine aggregate and powder included in the cementitious powder appear to have a great effect on substitution. Thus, future research should focus on developing a technology that can effectively separate and discharge fine aggregate and powder in the cementitious powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20cementitious%20powder" title="waste cementitious powder">waste cementitious powder</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate%20powder" title=" fine aggregate powder"> fine aggregate powder</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonation%20reaction" title=" decarbonation reaction"> decarbonation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=calcining%20process" title=" calcining process "> calcining process </a> </p> <a href="https://publications.waset.org/abstracts/17362/analysis-of-the-recovery-of-burnility-index-and-reduction-of-co2-for-cement-manufacturing-utilizing-waste-cementitious-powder-as-alternative-raw-material-of-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean%20Paul%20Hategekimana">Jean Paul Hategekimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Dukuzumuremyi%20Yvonne"> Dukuzumuremyi Yvonne</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukeshimana%20Marthe"> Mukeshimana Marthe</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Niyonshima"> Alexandre Niyonshima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZECC" title="ZECC">ZECC</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20fleshed%20sweet%20potato" title=" orange fleshed sweet potato"> orange fleshed sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sacs" title=" perforated sacs"> perforated sacs</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20conditions" title=" storage conditions"> storage conditions</a> </p> <a href="https://publications.waset.org/abstracts/182278/comparison-of-storage-facilities-on-different-varieties-of-orange-fleshed-sweet-potato-grown-in-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Effects of Five Local Spices on the Mortality and Development of Larvae of Dermestes Maculatusdegeer (Coleoptera: Dermestidae) Reared on Dried Smoked Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jatau">A. Jatau</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Majeed"> Q. Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Bandiya"> H. M. Bandiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficacy of five local spices, namely; Hot pepper (Capsicum annum L.), Black pepper (Piper guinese Schum and Thonn), Sweet basil (Occimum canum Sim), African nut-meg (Monodora myristica Dunal), and Ginger (Zingiber officianale Ross) with conventional insecticide against the D. maculatus was studied under ambient laboratory conditions. The plants were pulverized into powders and applied at the rate of 1.0, 2.0 and 3.0g per 25g of disinfected dried fish. The same amount of fish (25g) was treated with 5ml of 1.0, 2.0 and 3.0 percent solution of conventional insecticide (dichlorvos) and air dried for 2hrs. Ten newly hatched 1st instar larvae (24hrs old) were introduced into each powdered smoked fish in separate beakers. Untreated control was also set up. Observation on the mortality and development were recorded daily until the larvae pupated. Each of the treated smoked fish showed significant (p<0.05) effect on the larval mortality and development when compared with the control. The Piper guinense was as efficacious as dichlorvos in killing all the larvae (100%) at all concentrations before pupation. Ocimum Canunm gave the second best results (50.00, 63.33 and 100%), while the other three spices resulted in less than 50% mortalities at all rate of application. The spice powders were also observed to have extended the larval developmental period. Thus, the spices tested can be recommended for the control of D. maculatus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=dermestes%20maculatus" title=" dermestes maculatus"> dermestes maculatus</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide" title=" insecticide"> insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20spices" title=" local spices"> local spices</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/11659/effects-of-five-local-spices-on-the-mortality-and-development-of-larvae-of-dermestes-maculatusdegeer-coleoptera-dermestidae-reared-on-dried-smoked-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20Pevicharova"> Galina Pevicharova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20potatoes" title=" sweet potatoes"> sweet potatoes</a>, <a href="https://publications.waset.org/abstracts/search?q=uptake" title=" uptake"> uptake</a> </p> <a href="https://publications.waset.org/abstracts/100108/study-on-accumulation-of-heavy-metals-in-sweet-potato-grown-in-industrially-polluted-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Comparative Study on the Thickening/Viscosity of Ogbono Seed Powder from Irvingia gabonenesis and Irvingia wombolu Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orlando%20Ketebu">Orlando Ketebu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ogbono seed is the seed obtained from African bush mango (Irvingia gabonenesis) and bitter bush mango (Irvingia wombolu). Irvingia gabonenesis is known for its sweet edible pulp while Irvingia wombolu has a bitter pulp. Their seed powder is used in cooking soup known as ogbono soup in Nigeria and in West Africa. The powder thickens when cooked and researches have shown that it has medicinal uses such as lowering cholesterol; aiding weight loss and helps in improving diabetes control. The nutritional composition of the seeds indicated that Irvingia gabonenesis contains 8.60% protein, 13.8% carbohydrate, 2.0% moisture, 1.5% crude fiber, 16.4% ash, and Irvingia wombolu contains 7.38% protein, 25.75% carbohydrate, 11.7% moisture, 0.84% crude fiber, 2.50% ash. Solvent extraction of these seeds has shown that the seed of the two species are oil seeds with approximately 70 % and 52 % for Irvingia gabonenesis and Irvingia wombolu respectively. One major setback using ogbono seed powder in cooking soup is identifying the specie of ogbono seed powder that thickens most within the same cooking condition and how temperature affects the thickness of ogbono seed powder which determines its viscosity and in turn affects the quality of the soup and its nutrients. This research work monitored how the viscosity of ogbono species after being sun dried for one week changes with temperature. The result showed that heating 20 grams of powdered Irvingia gabonenesis and Irvingia wombolu at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95OC respectively in 200 ml beaker mixed with 100 ml of water, the viscosity of both species decreases with increase temperature with Irvingia wombolu having higher average viscosity in Pascal seconds (Pa.s) of 1.059, 1.042, 0.961, 0.778, 0.684, 0.675, and 0.495 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively compared to Irvingia gabonenesis with result 0.982, 0.920, 0.720, 0.646, 0.597 and 0.446 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively. Also from the experiment carried out it was found out that the viscosity of both species decreases with ageing of the seeds and the quantity of ogbono seed powder used and amount of water added also affected the viscosity of both species. In conclusion, it was observed that under the same cooking conditions (temperature range, quantity of water added, time and quantity of ogbono seed powder used), Irvingia wombolu had higher viscosity which is a measure of its thickness and quality of nutrients compared to Irvingia gabonenesis and the viscosity of both species decreases with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ogbono%20seed%20powder" title="ogbono seed powder">ogbono seed powder</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity "> viscosity </a>, <a href="https://publications.waset.org/abstracts/search?q=soup" title=" soup"> soup</a> </p> <a href="https://publications.waset.org/abstracts/84017/comparative-study-on-the-thickeningviscosity-of-ogbono-seed-powder-from-irvingia-gabonenesis-and-irvingia-wombolu-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Bio-Genetic Activities Associated with Resistant in Peppers to Phytophthora capsici</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Nasr-Esfahani">Mehdi Nasr-Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Mohammad%20Bagheri"> Leila Mohammad Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ava%20Nasr-Esfahani"> Ava Nasr-Esfahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. In this study, a diverse collection of 37 commercial edible and ornamental pepper genotypes infected with P. capsici were investigated for biomass parameters and enzymatic activity of peroxidase or peroxide reductases (EC), superoxide dismutase (SOD), polyphenol oxidase (PPOs), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Seven candidate DEG genes were also evaluated on resistant and susceptible pepper cultivars, through measuring product formation, using spectrophotometry and real-time polymerase chain reaction. All the five enzymes and seven defense-gene candidates were up-regulated in all inoculated pepper accessions to P. capsici. But, the enzymes and DEG genes were highly expressed in resistant cv. 19OrnP-PBI, 37ChillP-Paleo, and “23CherryP-Orsh". The expression level of enzymes were 1.5 to 5.6-fold higher in the resistant peppers, than the control non-inoculated genotypes. Also, the transcriptional levels of related candidate DEG genes were 3.16 to 5.90-fold higher in the resistant genotypes. There was a direct and high correlation coefficient between resistance, bio-mass parameters, enzymatic activity, and resistance gene expression. The related enzymes and candidate genes expressed herein will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AP2%2FERF" title="AP2/ERF">AP2/ERF</a>, <a href="https://publications.waset.org/abstracts/search?q=cDNA" title=" cDNA"> cDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=MIP%20gene" title=" MIP gene"> MIP gene</a>, <a href="https://publications.waset.org/abstracts/search?q=q-RTPCR" title=" q-RTPCR"> q-RTPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=XLOC" title=" XLOC"> XLOC</a> </p> <a href="https://publications.waset.org/abstracts/119322/bio-genetic-activities-associated-with-resistant-in-peppers-to-phytophthora-capsici" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizza%20Mala">Azizza Mala</a>, <a href="https://publications.waset.org/abstracts/search?q=Babo%20Fadlalla"> Babo Fadlalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Elnour%20Mohamed"> Elnour Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Siran%20Wang"> Siran Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junfeng%20Li"> Junfeng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Shao"> Tao Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=pediococcus%20acidilactic" title=" pediococcus acidilactic"> pediococcus acidilactic</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20sorghum" title=" sweet sorghum"> sweet sorghum</a> </p> <a href="https://publications.waset.org/abstracts/162237/effect-of-lactic-acid-bacteria-inoculant-on-fermentation-quality-of-sweet-sorghum-silage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Juhos">Katalin Juhos</a>, <a href="https://publications.waset.org/abstracts/search?q=Enik%C5%91%20Papdi"> Enikő Papdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%B3ri%C3%A1n%20Kov%C3%A1cs"> Flórián Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20P.%20Vasileiadis"> Vasileios P. Vasileiadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Veres"> Andrea Veres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucosidase" title="β-glucosidase">β-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=DHA%20enzyme%20activity%3B%20labile%20carbon" title=" DHA enzyme activity; labile carbon"> DHA enzyme activity; labile carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=straw%20mulch%3B%20plastic%20mulch" title=" straw mulch; plastic mulch"> straw mulch; plastic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspira-tion%20coefficient" title=" evapotranspira-tion coefficient"> evapotranspira-tion coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title=" soil temperature"> soil temperature</a> </p> <a href="https://publications.waset.org/abstracts/161122/the-effect-of-wool-mulch-on-plant-development-in-the-light-of-soil-physical-and-soil-biological-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> The Effect of the Incorporation of Glass Powder into Cement Sorel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Zgueb">Rim Zgueb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20sorel" title="cement sorel">cement sorel</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20deflection%20technique" title=" photothermal deflection technique"> photothermal deflection technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/59649/the-effect-of-the-incorporation-of-glass-powder-into-cement-sorel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Effect of Pretreatment and Drying Method on Selected Quality Parameters of Dried Bell Pepper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toyosi%20Yewande%20Tunde-Akintunde">Toyosi Yewande Tunde-Akintunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Oluwatoyin%20Ogunlakin"> Grace Oluwatoyin Ogunlakin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bosede%20Folake%20Olanipekun"> Bosede Folake Olanipekun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peppers are excellent sources of nutrients but its high moisture content makes it susceptible to spoilage. Drying, a common processing method, results in a reduction of these nutrients in the final product. Pre-treatment of pepper before drying can be used to reduce the level of degradation of nutrients. Thus this study investigated the effect of pre-treatment (hot water blanching and soaking in brine-sodium chloride) and drying methods (oven, microwave and sun) on selected quality parameters (proximate composition, capsaicin, reducing sugar and phenolic content, pH, total solid (TS), Titratable acidity (TA), water absorption capacity (WAC) and colour) of pepper. The protein and moisture content value ranged from 9.09 to 10.23% and 5.63 to 8.48% respectively. Sun dried samples had the highest value while oven dried samples had the lowest. Brine treated samples had higher protein but lower moisture content than blanched samples. Capsaicin, reducing sugar and phenolic content values ranged from 0.68 to 0.87 mg/dm3; 3.18 to 3.79 µg/ml; and 40.67 to 84.01 mg GAE/100 g d.m respectively. The sun dried samples had higher values while the lowest values were from microwave dried samples. The brine treated samples had higher values in capsaicin while the blanched samples had higher reducing sugar and phenolic contents. The values of L, a* and b* for the dried pepper varied from 58.76 to 63.13; 7.09 to 7.34; and 11.79 to 12.36 respectively. Oven dried samples had the lowest values for a*, while its L values were the highest. The L and a* values for brine treated samples were higher than blanched samples. The pre-treatment and drying method considered resulted in different values of the quality parameters considered which indicates that drying and pre-treatment has an effect on the quality of the final dried pepper samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bell%20pepper" title="Bell pepper">Bell pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying"> microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20drying" title=" oven drying"> oven drying</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20drying" title=" sun drying"> sun drying</a> </p> <a href="https://publications.waset.org/abstracts/28237/effect-of-pretreatment-and-drying-method-on-selected-quality-parameters-of-dried-bell-pepper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Risk Assessment of Lead Element in Red Peppers Collected from Marketplaces in Antalya, Southern Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serpil%20Kilic">Serpil Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20Burak%20Cam"> Ihsan Burak Cam</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Kilic"> Murat Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Tongur"> Timur Tongur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interest in the lead (Pb) has considerably increased due to knowledge about the potential toxic effects of this element, recently. Exposure to heavy metals above the acceptable limit affects human health. Indeed, Pb is accumulated through food chains up to toxic concentrations; therefore, it can pose an adverse potential threat to human health. A sensitive and reliable method for determination of Pb element in red pepper were improved in the present study. Samples (33 red pepper products having different brands) were purchased from different markets in Turkey. The selected method validation criteria (linearity, Limit of Detection, Limit of Quantification, recovery, and trueness) demonstrated. Recovery values close to 100% showed adequate precision and accuracy for analysis. According to the results of red pepper analysis, all of the tested lead element in the samples was determined at various concentrations. A Perkin- Elmer ELAN DRC-e model ICP-MS system was used for detection of Pb. Organic red pepper was used to obtain a matrix for all method validation studies. The certified reference material, Fapas chili powder, was digested and analyzed, together with the different sample batches. Three replicates from each sample were digested and analyzed. The results of the exposure levels of the elements were discussed considering the scientific opinions of the European Food Safety Authority (EFSA), which is the European Union’s (EU) risk assessment source associated with food safety. The Target Hazard Quotient (THQ) was described by the United States Environmental Protection Agency (USEPA) for the calculation of potential health risks associated with long-term exposure to chemical pollutants. THQ value contains intake of elements, exposure frequency and duration, body weight and the oral reference dose (RfD). If the THQ value is lower than one, it means that the exposed population is assumed to be safe and 1 < THQ < 5 means that the exposed population is in a level of concern interval. In this study, the THQ of Pb was obtained as < 1. The results of THQ calculations showed that the values were below one for all the tested, meaning the samples did not pose a health risk to the local population. This work was supported by The Scientific Research Projects Coordination Unit of Akdeniz University. Project Number: FBA-2017-2494. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead%20analyses" title="lead analyses">lead analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20pepper" title=" red pepper"> red pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20exposure" title=" daily exposure"> daily exposure</a> </p> <a href="https://publications.waset.org/abstracts/94639/risk-assessment-of-lead-element-in-red-peppers-collected-from-marketplaces-in-antalya-southern-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alhajeri">Ali Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Makki"> Tarig Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosa%20Almutahhar"> Mosa Almutahhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed"> Mohammed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPBF" title="LPBF">LPBF</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-5553" title=" Ti-5553"> Ti-5553</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20powder" title=" metal powder"> metal powder</a>, <a href="https://publications.waset.org/abstracts/search?q=AM" title=" AM"> AM</a> </p> <a href="https://publications.waset.org/abstracts/151600/a-brief-review-of-titanium-powders-used-in-laser-powder-bed-fusion-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=red%20sweet%20pepper%20powder&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>