CINXE.COM

Search results for: Surface plasmon polaritons

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Surface plasmon polaritons</title> <meta name="description" content="Search results for: Surface plasmon polaritons"> <meta name="keywords" content="Surface plasmon polaritons"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Surface plasmon polaritons" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Surface plasmon polaritons"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2085</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Surface plasmon polaritons</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2085</span> Design of One – Dimensional Tungsten Gratings for Thermophotovoltaic Emitters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samah.%20G.%20Babiker">Samah. G. Babiker</a>, <a href="https://publications.waset.org/search?q=Shuai%20Yong"> Shuai Yong</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Osman%20Sid-Ahmed%20Xie%20Ming"> Mohamed Osman Sid-Ahmed Xie Ming</a>, <a href="https://publications.waset.org/search?q=A.M.%20Abdelbagi"> A.M. Abdelbagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a one - dimensional microstructure tungsten grating (pyramids) is optimized for potential application as thermophotovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the rigorous coupled-wave analysis (RCWA).The results show that the spectral emittance is affected by the gratings geometrical parameters. The optimum parameters are grating period of 0.5&micro;m, a filling ratio of 0.8 and grating height of <em>h</em>=0.2&micro;m. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8&micro;m. The emittance drops below 0.2 at wavelengths above 1.8&micro;m. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermophotovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for a narrow band gap cell such as GaSb. The performance of this simple 1-D emitter proved to be superior to that from more complicated structures. Almost all the radiation from the emitter incident, at angles up to 40&deg;, on the cell, could be utilized to produce a photocurrent. There is no need for a filter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermophotovoltaic" title="Thermophotovoltaic">Thermophotovoltaic</a>, <a href="https://publications.waset.org/search?q=RCWA" title=" RCWA"> RCWA</a>, <a href="https://publications.waset.org/search?q=Grating" title=" Grating"> Grating</a>, <a href="https://publications.waset.org/search?q=Emittance" title=" Emittance"> Emittance</a>, <a href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons" title=" Surface plasmon polaritons"> Surface plasmon polaritons</a> </p> <a href="https://publications.waset.org/16909/design-of-one-dimensional-tungsten-gratings-for-thermophotovoltaic-emitters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16909/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16909/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16909/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16909/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16909/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16909/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16909/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16909/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16909/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16909/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2229</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2084</span> Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khachatur%20V.%20Nerkararyan">Khachatur V. Nerkararyan</a>, <a href="https://publications.waset.org/search?q=Sergey%20I.%20Bozhevolnyi"> Sergey I. Bozhevolnyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Metal%20nanoparticle" title="Metal nanoparticle">Metal nanoparticle</a>, <a href="https://publications.waset.org/search?q=Localized%20surface%20plasmon" title=" Localized surface plasmon"> Localized surface plasmon</a>, <a href="https://publications.waset.org/search?q=Quantum%20dipole%20emitter" title=" Quantum dipole emitter"> Quantum dipole emitter</a>, <a href="https://publications.waset.org/search?q=Relaxation%20dynamics." title=" Relaxation dynamics."> Relaxation dynamics.</a> </p> <a href="https://publications.waset.org/10001247/relaxation-dynamics-of-quantum-emitters-resonantly-coupled-to-a-localized-surface-plasmon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001247/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001247/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001247/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001247/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001247/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001247/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001247/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001247/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001247/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001247/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2353</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2083</span> Surface Plasmon Polariton Excitation by a Phase Shift Grating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Nakada">T. Nakada</a>, <a href="https://publications.waset.org/search?q=Y.%20Nakagawa"> Y. Nakagawa</a>, <a href="https://publications.waset.org/search?q=M.%20Haraguchi"> M. Haraguchi</a>, <a href="https://publications.waset.org/search?q=T.%20Okamotoi"> T. Okamotoi</a>, <a href="https://publications.waset.org/search?q=M.%20Flockert"> M. Flockert</a>, <a href="https://publications.waset.org/search?q=T.%20Isu"> T. Isu</a>, <a href="https://publications.waset.org/search?q=G.%20Shinomiya"> G. Shinomiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We focus on the excitation and propagation properties of surface plasmon polariton (SPP). We have developed a SPP excitation device in combination with a grating structures fabricated by using the scanning probe lithography. Perturbation approach was used to investigate the coupling properties of SPP with a spatial harmonic wave supported by a metallic grating. A phase shift grating SPP coupler has been fabricated and the optical property was evaluated by the Fraunhofer diffraction formula. We have been experimentally confirmed the induced stop band by diffraction measurement. We have also observed the wavenumber shift of the resonance condition of SPP owing to effect of a phase shift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Surface%20Plasmon%20Polariton" title="Surface Plasmon Polariton">Surface Plasmon Polariton</a>, <a href="https://publications.waset.org/search?q=phase%20shift%20grating" title=" phase shift grating"> phase shift grating</a>, <a href="https://publications.waset.org/search?q=scanning%20probe%20lithography" title="scanning probe lithography">scanning probe lithography</a> </p> <a href="https://publications.waset.org/6386/surface-plasmon-polariton-excitation-by-a-phase-shift-grating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6386/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6386/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6386/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6386/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6386/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6386/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6386/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6386/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6386/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6386/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1845</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2082</span> Plasmonic Absorption Enhancement in Au/CdS Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Easawi">K. Easawi</a>, <a href="https://publications.waset.org/search?q=M.%20Nabil"> M. Nabil</a>, <a href="https://publications.waset.org/search?q=T.%20Abdallah"> T. Abdallah</a>, <a href="https://publications.waset.org/search?q=S.%20Negm"> S. Negm</a>, <a href="https://publications.waset.org/search?q=H.%20Talaat"> H. Talaat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite nanostructures of metal core/semiconductor shell (Au/CdS) configuration were prepared using organometalic method. UV-Vis spectra for the Au/CdS colloids show initially two well separated bands, corresponding to surface plasmon of the Au core, and the exciton of CdS shell. The absorption of CdS shell is enhanced, while the Au plasmon band is suppressed as the shell thickness increases. The shell sizes were estimated from the optical spectra using the effective mass approximation model (EMA), and compared to the sizes of the Au core and CdS shell measured by high resolution transmission electron microscope (HRTEM). The changes in the absorption features are discussed in terms of gradual increase in the coupling strength of the Au core surface plasmon and the exciton in the CdS. leading to charge transfer and modification of electron oscillation in Au core. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanocomposites" title="Nanocomposites">Nanocomposites</a>, <a href="https://publications.waset.org/search?q=Plasmonics." title=" Plasmonics."> Plasmonics.</a> </p> <a href="https://publications.waset.org/9635/plasmonic-absorption-enhancement-in-aucds-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9635/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9635/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9635/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9635/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9635/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9635/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9635/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9635/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9635/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9635/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2463</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2081</span> Modeling of Sensitivity for SPR Biosensors- New Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Volodymyr%20Chegel">Volodymyr Chegel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The computer modeling is carried out for parameter of sensitivity of optoelectronic chemical and biosensors, using phenomena of surface plasmon resonance (SPR). The physical model of SPR-sensor-s is described with (or without) of modifications of sensitive gold film surface by a dielectric layer. The variants of increasing of sensitivity for SPR-biosensors, constructed on the principle gold – dielectric – biomolecular layer are considered. Two methods of mathematical treatment of SPR-curve are compared – traditional, with estimation of sensor-s response as shift of the SPRcurve minimum and proposed, for system with dielectric layer, using calculating of the derivative in the point of SPR-curve half-width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Surface%20Plasmon%20Resonance" title="Surface Plasmon Resonance">Surface Plasmon Resonance</a>, <a href="https://publications.waset.org/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/3893/modeling-of-sensitivity-for-spr-biosensors-new-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3893/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3893/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3893/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3893/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3893/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3893/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3893/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3893/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3893/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3893/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2072</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2080</span> Two-Photon Ionization of Silver Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Paployan">V. Paployan</a>, <a href="https://publications.waset.org/search?q=K.%20Madoyan"> K. Madoyan</a>, <a href="https://publications.waset.org/search?q=A.%20Melikyan"> A. Melikyan</a>, <a href="https://publications.waset.org/search?q=H.%20Minassian"> H. Minassian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we calculate the two-photon ionization (TPI) cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is assumed to be close to the surface plasmon (SP) energy of cluster in dielectric media. Due to this choice, the pump wave excites collective oscillations of electrons-SP and the probe wave causes ionization of the cluster. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The advantage of Ag clusters as compared to the other noble metals is that the SP resonance in silver cluster is much sharper because of peculiarities of its dielectric function. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows taking into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Resonance%20enhancement" title="Resonance enhancement">Resonance enhancement</a>, <a href="https://publications.waset.org/search?q=silver%20clusters" title=" silver clusters"> silver clusters</a>, <a href="https://publications.waset.org/search?q=surface%0D%0Aplasmon" title=" surface plasmon"> surface plasmon</a>, <a href="https://publications.waset.org/search?q=two-photon%20ionization." title=" two-photon ionization."> two-photon ionization.</a> </p> <a href="https://publications.waset.org/10003009/two-photon-ionization-of-silver-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003009/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003009/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003009/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003009/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003009/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003009/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003009/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003009/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003009/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003009/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1471</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2079</span> Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samah%20G.%20Babiker">Samah G. Babiker</a>, <a href="https://publications.waset.org/search?q=Yong%20Shuai"> Yong Shuai</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Osman%20Sid-Ahmed"> Mohamed Osman Sid-Ahmed</a>, <a href="https://publications.waset.org/search?q=Ming%20Xie"> Ming Xie</a>, <a href="https://publications.waset.org/search?q=Mu%20Lei"> Mu Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coherent%20thermal%20emission" title="Coherent thermal emission">Coherent thermal emission</a>, <a href="https://publications.waset.org/search?q=Polartons" title=" Polartons"> Polartons</a>, <a href="https://publications.waset.org/search?q=Reflectance" title=" Reflectance"> Reflectance</a>, <a href="https://publications.waset.org/search?q=Resonance%20frequency" title=" Resonance frequency"> Resonance frequency</a>, <a href="https://publications.waset.org/search?q=Rigorous%20coupled%20wave%20analysis%20%28RCWA%29." title=" Rigorous coupled wave analysis (RCWA)."> Rigorous coupled wave analysis (RCWA).</a> </p> <a href="https://publications.waset.org/16884/design-of-coherent-thermal-emission-source-by-excitation-of-magnetic-polaritons-between-metallic-gratings-and-an-opaque-metallic-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16884/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16884/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16884/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16884/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16884/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16884/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16884/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16884/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16884/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16884/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2170</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2078</span> Photodetector Engineering with Plasmonic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hasan%20Furkan%20Kurt">Hasan Furkan Kurt</a>, <a href="https://publications.waset.org/search?q=Tugba%20Nur%20Atabey"> Tugba Nur Atabey</a>, <a href="https://publications.waset.org/search?q=Onat%20Cavit%20Dereli"> Onat Cavit Dereli</a>, <a href="https://publications.waset.org/search?q=Ahmad%20Salmanogli"> Ahmad Salmanogli</a>, <a href="https://publications.waset.org/search?q=H.%20Selcuk%20Gecim"> H. Selcuk Gecim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles&#39; size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanoparticles" title="Nanoparticles">Nanoparticles</a>, <a href="https://publications.waset.org/search?q=plasmonic" title=" plasmonic"> plasmonic</a>, <a href="https://publications.waset.org/search?q=plasmon-plasmon%20interaction" title=" plasmon-plasmon interaction"> plasmon-plasmon interaction</a>, <a href="https://publications.waset.org/search?q=plasmonic%20photodetector." title=" plasmonic photodetector. "> plasmonic photodetector. </a> </p> <a href="https://publications.waset.org/10011880/photodetector-engineering-with-plasmonic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011880/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011880/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011880/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011880/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011880/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011880/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011880/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011880/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011880/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011880/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2077</span> Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Photiphitak">C. Photiphitak</a>, <a href="https://publications.waset.org/search?q=P.%20Rakkwamsuk"> P. Rakkwamsuk</a>, <a href="https://publications.waset.org/search?q=P.%20Muthitamongkol"> P. Muthitamongkol</a>, <a href="https://publications.waset.org/search?q=C.%20Sae-Kung"> C. Sae-Kung</a>, <a href="https://publications.waset.org/search?q=C.%20Thanachayanont"> C. Thanachayanont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Silver%20nanoparticle" title="Silver nanoparticle">Silver nanoparticle</a>, <a href="https://publications.waset.org/search?q=TiO2%2FAg%20composite%20films" title=" TiO2/Ag composite films"> TiO2/Ag composite films</a>, <a href="https://publications.waset.org/search?q=Optical%20properties" title=" Optical properties"> Optical properties</a>, <a href="https://publications.waset.org/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a> </p> <a href="https://publications.waset.org/15089/effect-of-silver-nanoparticles-size-prepared-by-photoreduction-method-on-optical-absorption-spectra-of-tio2agn719-dye-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15089/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15089/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15089/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15089/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15089/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15089/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15089/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15089/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15089/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15089/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2606</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2076</span> Modeling and Simulations of Surface Plasmon Waveguide Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Moussa%20Hamdan">Moussa Hamdan</a>, <a href="https://publications.waset.org/search?q=Abdulati%20Abdullah"> Abdulati Abdullah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation of the fabrication of the optical devices in terms of their characteristics based on the use of the electromagnetic waves. Planar waveguides are used to examine the field modes (bound modes) and the parameters required for this structure. The modifications are conducted on surface plasmons based waveguides. Simple symmetric dielectric slab structure is used and analyzed in terms of transverse electric mode (TE-Mode) and transverse magnetic mode (TM-Mode. The paper presents mathematical and numerical solutions for solving simple symmetric plasmons and provides simulations of surface plasmons for field confinement. Asymmetric TM-mode calculations for dielectric surface plasmons are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Surface%20plasmons" title="Surface plasmons">Surface plasmons</a>, <a href="https://publications.waset.org/search?q=optical%20waveguides" title=" optical waveguides"> optical waveguides</a>, <a href="https://publications.waset.org/search?q=semiconductor%20lasers" title=" semiconductor lasers"> semiconductor lasers</a>, <a href="https://publications.waset.org/search?q=refractive%20index" title=" refractive index"> refractive index</a>, <a href="https://publications.waset.org/search?q=slab%20dialectical." title=" slab dialectical."> slab dialectical.</a> </p> <a href="https://publications.waset.org/10004982/modeling-and-simulations-of-surface-plasmon-waveguide-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004982/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004982/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004982/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004982/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004982/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004982/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004982/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004982/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004982/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004982/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1665</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2075</span> Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xiaodong%20Zhou">Xiaodong Zhou</a>, <a href="https://publications.waset.org/search?q=Nan%20Zhang"> Nan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanocrescents and gold nanoholes with vertical sidewalls fabricated by dispersed NSL, and silver nanotriangles and gold nanocaps on silica nanospheres fabricated by closely pack NSL, have been reported for LSPR biosensing. This paper introduces several novel gold nanostructures fabricated by NSL in LSPR applications, including 3D nanostructures obtained by evaporating gold obliquely on dispersed nanospheres, nanoholes with slant sidewalls, and patchy nanoparticles on closely packed nanospheres, all of which render satisfactory sensitivity for LSPR sensing. Since the LSPR spectrum is very sensitive to the shape of the metal nanostructures, formulas are derived and software is developed for calculating the profiles of the obtainable metal nanostructures by NSL, for different nanosphere masks with different fabrication conditions. The simulated profiles coincide well with the profiles of the fabricated gold nanostructures observed under scanning electron microscope (SEM) and atomic force microscope (AFM), which proves that the software is a useful tool for the process design of different LSPR nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanosphere%20lithography" title="Nanosphere lithography">Nanosphere lithography</a>, <a href="https://publications.waset.org/search?q=localized%20surface%20plasmonresonance" title=" localized surface plasmonresonance"> localized surface plasmonresonance</a>, <a href="https://publications.waset.org/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/search?q=simulation." title=" simulation."> simulation.</a> </p> <a href="https://publications.waset.org/3102/profile-controlled-gold-nanostructures-fabricated-by-nanosphere-lithography-for-localized-surface-plasmon-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3102/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3102/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3102/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3102/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3102/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3102/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3102/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3102/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3102/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3102/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1894</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2074</span> MAS Simulations of Optical Antenna Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.Tavzarashvili">K.Tavzarashvili</a>, <a href="https://publications.waset.org/search?q=G.Ghvedashili"> G.Ghvedashili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=optical%20antenna" title="optical antenna">optical antenna</a>, <a href="https://publications.waset.org/search?q=channel%20plasmon-polariton" title=" channel plasmon-polariton"> channel plasmon-polariton</a>, <a href="https://publications.waset.org/search?q=computational%20physics" title="computational physics">computational physics</a>, <a href="https://publications.waset.org/search?q=Method%20of%20Auxiliary%20Sources" title=" Method of Auxiliary Sources"> Method of Auxiliary Sources</a> </p> <a href="https://publications.waset.org/12306/mas-simulations-of-optical-antenna-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12306/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12306/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12306/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12306/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12306/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12306/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12306/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12306/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12306/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12306/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1917</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2073</span> Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cherry%20Dhiman">Cherry Dhiman</a>, <a href="https://publications.waset.org/search?q=Ayushi%20Paliwal"> Ayushi Paliwal</a>, <a href="https://publications.waset.org/search?q=Mohd.%20Shahid%20Khan"> Mohd. Shahid Khan</a>, <a href="https://publications.waset.org/search?q=M.%20N.%20Reddy"> M. N. Reddy</a>, <a href="https://publications.waset.org/search?q=Vinay%20Gupta"> Vinay Gupta</a>, <a href="https://publications.waset.org/search?q=Monika%20Tomar"> Monika Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Laser%20induced%20breakdown%20spectroscopy" title="Laser induced breakdown spectroscopy">Laser induced breakdown spectroscopy</a>, <a href="https://publications.waset.org/search?q=rotating%20disk%20electrode%20optical%20emission%20spectroscopy" title=" rotating disk electrode optical emission spectroscopy"> rotating disk electrode optical emission spectroscopy</a>, <a href="https://publications.waset.org/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/search?q=ICCD%20spectrometer" title=" ICCD spectrometer"> ICCD spectrometer</a>, <a href="https://publications.waset.org/search?q=Nd%3AYAG%20laser" title=" Nd:YAG laser"> Nd:YAG laser</a>, <a href="https://publications.waset.org/search?q=engine%20oil." title=" engine oil."> engine oil.</a> </p> <a href="https://publications.waset.org/10010582/detailed-sensitive-detection-of-impurities-in-waste-engine-oils-using-laser-induced-breakdown-spectroscopy-rotating-disk-electrode-optical-emission-spectroscopy-and-surface-plasmon-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010582/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010582/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010582/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010582/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010582/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010582/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010582/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010582/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010582/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010582/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">756</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2072</span> Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Srinivas%20Bathini">Srinivas Bathini</a>, <a href="https://publications.waset.org/search?q=Duraichelvan%20Raju"> Duraichelvan Raju</a>, <a href="https://publications.waset.org/search?q=Simona%20Badilescu"> Simona Badilescu</a>, <a href="https://publications.waset.org/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exosomes" title="Exosomes">Exosomes</a>, <a href="https://publications.waset.org/search?q=gold%20nano-islands" title=" gold nano-islands"> gold nano-islands</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=plasmonic%20biosensing." title=" plasmonic biosensing. "> plasmonic biosensing. </a> </p> <a href="https://publications.waset.org/10009022/microfluidic-plasmonic-bio-sensing-of-exosomes-by-using-a-gold-nano-island-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009022/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009022/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009022/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009022/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009022/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009022/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009022/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009022/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009022/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009022/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1470</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2071</span> Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Maribel%20G.%20Guzm%C3%A1n">Maribel G. Guzmán</a>, <a href="https://publications.waset.org/search?q=Jean%20Dille"> Jean Dille</a>, <a href="https://publications.waset.org/search?q=Stephan%20Godet"> Stephan Godet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Silver nanoparticles were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and hydrazine hydrate as a reducing agent. The formation of the silver nanoparticles was monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanopart├&iexcl;cles by exhibing the typical surface plasmon absorption maxima at 418-420 nm from the UV&ndash;Vis spectrum. Comparison of theoretical (Mie light scattering theory) and experimental results showed that diameter of silver nanoparticles in colloidal solution is about 60 nm. We have used energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and, UV&ndash;Vis spectroscopy to characterize the nanoparticles obtained. The energy-dispersive spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal no peaks of other impurity were detected. The average size and morphology of silver nanoparticles were determined by transmission electron microscopy (TEM). TEM photographs indicate that the nanopowders consist of well dispersed agglomerates of grains with a narrow size distribution (40 and 60 nm), whereas the radius of the individual particles are between 10 and 20 nm. The synthesized nanoparticles have been structurally characterized by X-ray diffraction and transmission high-energy electron diffraction (HEED). The peaks in the XRD pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver (ICCD-JCPDS card no. 4-0787) and no peaks of other impurity crystalline phases were detected. Additionally, the antibacterial activity of the nanopart├&iexcl;culas dispersion was measured by Kirby-Bauer method. The nanoparticles of silver showed high antimicrobial and bactericidal activity against gram positive bacteria such as Escherichia Coli, Pseudimonas aureginosa and staphylococcus aureus which is a highly methicillin resistant strain.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Silver%20nanoparticles" title="Silver nanoparticles">Silver nanoparticles</a>, <a href="https://publications.waset.org/search?q=surface%20plasmon" title=" surface plasmon"> surface plasmon</a>, <a href="https://publications.waset.org/search?q=UV-Vis%20absorption%20spectrum" title=" UV-Vis absorption spectrum"> UV-Vis absorption spectrum</a>, <a href="https://publications.waset.org/search?q=chemicals%20reduction." title=" chemicals reduction."> chemicals reduction.</a> </p> <a href="https://publications.waset.org/6289/synthesis-of-silver-nanoparticles-by-chemical-reduction-method-and-their-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6289/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6289/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6289/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6289/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6289/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6289/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6289/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6289/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6289/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6289/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13114</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2070</span> Study of Optical Properties of a Glutathione Capped Gold Nanoparticles Using Linker (MHDA) by Fourier Transform Infra Red Spectroscopy and Surface Enhanced Raman Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Der%C4%99gowska">A. Deręgowska</a>, <a href="https://publications.waset.org/search?q=J.%20Depciuch"> J. Depciuch</a>, <a href="https://publications.waset.org/search?q=R.%20Wojnarowska"> R. Wojnarowska</a>, <a href="https://publications.waset.org/search?q=J.%20Polit"> J. Polit</a>, <a href="https://publications.waset.org/search?q=D.%20Broda"> D. Broda</a>, <a href="https://publications.waset.org/search?q=H.%20Nechai"> H. Nechai</a>, <a href="https://publications.waset.org/search?q=M.%20Gonchar"> M. Gonchar</a>, <a href="https://publications.waset.org/search?q=and%20E.%20Sheregii">and E. Sheregii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>16-Mercaptohexadecanoic acid (MHDA) and tripeptide glutathione conjugated with gold nanoparticles (Au-NPs) are characterized by Fourier Transform InfaRared (FTIR) spectroscopy combined with Surface-enhanced Raman scattering (SERS) spectroscopy. Surface Plasmon Resonance (SPR) technique based on FTIR spectroscopy has become an important tool in biophysics, which is perspective for the study of organic compounds. FTIR-spectra of MHDA shows the line at 2500 cm-1 attributed to thiol group which is modified by presence of Au-NPs, suggesting the formation of bond between thiol group and gold. We also can observe the peaks originate from characteristic chemical group. A Raman spectrum of the same sample is also promising. Our preliminary experiments confirm that SERS-effect takes place for MHDA connected with Au-NPs and enable us to detected small number (less than 106 cm-2) of MHDA molecules. Combination of spectroscopy methods: FTIR and SERS &ndash; enable to study optical properties of Au- NPs and immobilized bio-molecules in context of a bio-nano-sensors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Glutathione%3B%20gold%20nanoparticles" title="Glutathione; gold nanoparticles">Glutathione; gold nanoparticles</a>, <a href="https://publications.waset.org/search?q=Fourier%20transform%20infrared%20spectroscopy" title=" Fourier transform infrared spectroscopy"> Fourier transform infrared spectroscopy</a>, <a href="https://publications.waset.org/search?q=MHDA" title=" MHDA"> MHDA</a>, <a href="https://publications.waset.org/search?q=surface-enhanced%20Raman%20scattering." title=" surface-enhanced Raman scattering."> surface-enhanced Raman scattering.</a> </p> <a href="https://publications.waset.org/9077/study-of-optical-properties-of-a-glutathione-capped-gold-nanoparticles-using-linker-mhda-by-fourier-transform-infra-red-spectroscopy-and-surface-enhanced-raman-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9077/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9077/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9077/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9077/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9077/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9077/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9077/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9077/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9077/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9077/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3995</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2069</span> Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khamael%20M.%20Abualnaja">Khamael M. Abualnaja</a>, <a href="https://publications.waset.org/search?q=Lidija%20%C5%A0iller"> Lidija Šiller</a>, <a href="https://publications.waset.org/search?q=Benjamin%20R.%20Horrocks"> Benjamin R. Horrocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Metal-enhanced Luminescence of silicon nanocrystals (SiNCs) was determined using two different particle sizes of silver nanoparticles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to x9 and x3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Luminescence" title="Luminescence">Luminescence</a>, <a href="https://publications.waset.org/search?q=Silicon%20Nanocrystals" title=" Silicon Nanocrystals"> Silicon Nanocrystals</a>, <a href="https://publications.waset.org/search?q=Silver%0D%0ANanoparticles" title=" Silver Nanoparticles"> Silver Nanoparticles</a>, <a href="https://publications.waset.org/search?q=Surface%20Enhanced%20Raman%20Spectroscopy%20%28SERS%29." title=" Surface Enhanced Raman Spectroscopy (SERS)."> Surface Enhanced Raman Spectroscopy (SERS).</a> </p> <a href="https://publications.waset.org/9999696/silver-nanoparticles-enhanced-luminescence-spectra-of-silicon-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999696/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999696/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999696/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999696/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999696/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999696/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999696/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999696/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999696/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999696/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2821</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2068</span> Introduction to Electron Spectroscopy for Surfaces Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdelkader%20Benzian">Abdelkader Benzian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Spectroscopy is the study of the spectrum produced by the radiation-matter interaction which requires the study of electromagnetic radiation (or electrons) emitted, absorbed, or scattered by matter. Thus, the spectral analysis is using spectrometers which enables us to obtain curves that express the distribution of the energy emitted (spectrum). Analysis of emission spectra can therefore constitute several methods depending on the range of radiation energy. The most common methods used are Auger electron spectroscopy (AES) and Electron Energy Losses Spectroscopy (EELS), which allow the determination of the atomic structure on the surface. This paper focalized essentially on the Electron Energy Loss Spectroscopy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dielectric" title="Dielectric">Dielectric</a>, <a href="https://publications.waset.org/search?q=plasmon" title=" plasmon"> plasmon</a>, <a href="https://publications.waset.org/search?q=mean%20free%20path" title=" mean free path"> mean free path</a>, <a href="https://publications.waset.org/search?q=spectroscopy%20of%20electron%20energy%20losses." title=" spectroscopy of electron energy losses."> spectroscopy of electron energy losses.</a> </p> <a href="https://publications.waset.org/10012127/introduction-to-electron-spectroscopy-for-surfaces-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012127/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012127/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012127/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012127/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012127/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012127/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012127/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012127/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012127/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012127/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">777</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2067</span> Thermo-Mechanical Characterization of Skin Laser Soldering using Au Coated SiO2 Nanoshells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.S.Nourbakhsh">M.S.Nourbakhsh</a>, <a href="https://publications.waset.org/search?q=M.E.khosroshahi"> M.E.khosroshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gold coated silica core nanoparticles have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was to synthesize and use different concentration of gold nanoshells as exogenous material for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different concentration of gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells, Ns and decreasing Vs. It is therefore important to consider the trade off between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1610 gr/cm2 at I~ 60 Wcm-2, T ~ 65ºC, Ns =10 and Vs=0.2mms-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tissue%20soldering" title="Tissue soldering">Tissue soldering</a>, <a href="https://publications.waset.org/search?q=Diode%20laser" title=" Diode laser"> Diode laser</a>, <a href="https://publications.waset.org/search?q=Gold%20Nanoshells" title=" Gold Nanoshells"> Gold Nanoshells</a>, <a href="https://publications.waset.org/search?q=Tensile%20strength" title="Tensile strength">Tensile strength</a> </p> <a href="https://publications.waset.org/6586/thermo-mechanical-characterization-of-skin-laser-soldering-using-au-coated-sio2-nanoshells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6586/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6586/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6586/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6586/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6586/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6586/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6586/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6586/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6586/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6586/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1500</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2066</span> Field Investigation on Modification of Japanese Cedar Pollen Allergen in Urban Air-Polluted Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Qingyue%20Wang">Qingyue Wang</a>, <a href="https://publications.waset.org/search?q=Jun%20Morita"> Jun Morita</a>, <a href="https://publications.waset.org/search?q=Shinichi%20Nakamura"> Shinichi Nakamura</a>, <a href="https://publications.waset.org/search?q=Di%20Wu"> Di Wu</a>, <a href="https://publications.waset.org/search?q=Xiumin%20Gong"> Xiumin Gong</a>, <a href="https://publications.waset.org/search?q=Miho%20Suzuki"> Miho Suzuki</a>, <a href="https://publications.waset.org/search?q=Makoto%20Miwa"> Makoto Miwa</a>, <a href="https://publications.waset.org/search?q=Daisuke%20Nakajima"> Daisuke Nakajima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cry j 1 is a causative substance of Japanese cedar pollinosis, and it may deteriorate by Cry j 1 invasion to a lower respiratory tract. We observed airborne particles containing Cry j 1 by an immunofluorescence technique using a fluorescence microscope, and we clarified that Cry j 1 exist as aggregates of airborne fine particles (< 1.1 μm) in the urban atmosphere. Airborne Cry j 1 may react with air pollutants and be denature to a substance deteriorated Japanese cedar pollinosis. Therefore, we applied a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to evaluate a Cry j 1 reacted with various air pollutants by liquid phase reaction, and calculated kinetics constants of Cry j 1 extracted from pollens collected in various sites and airborne fine particles containing Cry j 1 by using a surface plasmon resonance (SPR) method. As a result, it is suggested that Cry j 1 may be denatured by air pollutants during the transportation to the urban atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cry%20j%201" title="Cry j 1">Cry j 1</a>, <a href="https://publications.waset.org/search?q=Japanese%20cedar%20pollinosis" title=" Japanese cedar pollinosis"> Japanese cedar pollinosis</a>, <a href="https://publications.waset.org/search?q=SDS-PAGE" title=" SDS-PAGE"> SDS-PAGE</a>, <a href="https://publications.waset.org/search?q=SPR" title=" SPR"> SPR</a> </p> <a href="https://publications.waset.org/12192/field-investigation-on-modification-of-japanese-cedar-pollen-allergen-in-urban-air-polluted-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12192/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12192/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12192/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12192/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12192/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12192/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12192/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12192/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12192/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12192/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2104</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2065</span> Preliminary Results of In-Vitro Skin Tissue Soldering using Gold Nanoshells and ICG Combination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20S.%20Nourbakhsh">M. S. Nourbakhsh</a>, <a href="https://publications.waset.org/search?q=M.%20E.%20Khosroshahi"> M. E. Khosroshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Laser soldering is based on applying some soldering material (albumin) onto the approximated edges of the cut and heating the solder (and the underlying tissues) by a laser beam. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. Gold nanoshells are new materials which have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was use combination of ICG and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2&times;20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength &sigma;t due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), &sigma;t of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns and decreasing Vs. It is therefore important to consider the tradeoff between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to &sigma;t =1800 gr/cm2 at I~ 47 Wcm-2, T ~ 85&ordm;C, Ns =10 and Vs=0.3mms-1.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tissue%20soldering" title="Tissue soldering">Tissue soldering</a>, <a href="https://publications.waset.org/search?q=gold%20nanoshells" title=" gold nanoshells"> gold nanoshells</a>, <a href="https://publications.waset.org/search?q=indocyanine%20green" title=" indocyanine green"> indocyanine green</a>, <a href="https://publications.waset.org/search?q=combination" title=" combination"> combination</a>, <a href="https://publications.waset.org/search?q=tensile%20strength." title=" tensile strength."> tensile strength.</a> </p> <a href="https://publications.waset.org/2838/preliminary-results-of-in-vitro-skin-tissue-soldering-using-gold-nanoshells-and-icg-combination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2838/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2838/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2838/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2838/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2838/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2838/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2838/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2838/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2838/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2838/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1505</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2064</span> Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Emanuela%20Paranhos%20Lima">Emanuela Paranhos Lima</a>, <a href="https://publications.waset.org/search?q=Vitaly%20F%C3%A9lix%20Rodr%C3%ADguez%20Esquerre"> Vitaly Félix Rodríguez Esquerre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Directional%20coupler" title="Directional coupler">Directional coupler</a>, <a href="https://publications.waset.org/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/search?q=metallic%0D%0Ananowire" title=" metallic nanowire"> metallic nanowire</a>, <a href="https://publications.waset.org/search?q=plasmonic" title=" plasmonic"> plasmonic</a>, <a href="https://publications.waset.org/search?q=surface%20plasmon%20polariton." title=" surface plasmon polariton."> surface plasmon polariton.</a> </p> <a href="https://publications.waset.org/10006428/numerical-analysis-and-design-of-dielectric-to-plasmonic-waveguides-couplers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006428/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006428/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006428/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006428/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006428/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006428/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006428/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006428/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006428/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006428/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2063</span> Analysis and Measuring Surface Roughness of Nonwovens Using Machine Vision Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dariush%20Semnani">Dariush Semnani</a>, <a href="https://publications.waset.org/search?q=Javad%20Yekrang"> Javad Yekrang</a>, <a href="https://publications.waset.org/search?q=Hossein%20Ghayoor"> Hossein Ghayoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerning the measurement of friction properties of textiles and fabrics using Kawabata Evaluation System (KES), whose output is constrained to the surface friction factor of fabric, and no other data would be generated; this research has been conducted to gain information about surface roughness regarding its surface friction factor. To assess roughness properties of light nonwovens, a 3-dimensional model of a surface has been simulated with regular sinuous waves through it as an ideal surface. A new factor was defined, namely Surface Roughness Factor, through comparing roughness properties of simulated surface and real specimens. The relation between the proposed factor and friction factor of specimens has been analyzed by regression, and results showed a meaningful correlation between them. It can be inferred that the new presented factor can be used as an acceptable criterion for evaluating the roughness properties of light nonwoven fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Surface%20roughness" title="Surface roughness">Surface roughness</a>, <a href="https://publications.waset.org/search?q=Nonwoven" title=" Nonwoven"> Nonwoven</a>, <a href="https://publications.waset.org/search?q=Machine%20vision" title=" Machine vision"> Machine vision</a>, <a href="https://publications.waset.org/search?q=Image%20processing." title="Image processing.">Image processing.</a> </p> <a href="https://publications.waset.org/10157/analysis-and-measuring-surface-roughness-of-nonwovens-using-machine-vision-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10157/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10157/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10157/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10157/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10157/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10157/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10157/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10157/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10157/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10157/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3096</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2062</span> Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yusuf%20S.%20Dambatta">Yusuf S. Dambatta</a>, <a href="https://publications.waset.org/search?q=Ahmed%20A.%20D.%20Sarhan"> Ahmed A. D. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Surface%20roughness" title="Surface roughness">Surface roughness</a>, <a href="https://publications.waset.org/search?q=fused%20deposition%20modelling" title=" fused deposition modelling"> fused deposition modelling</a>, <a href="https://publications.waset.org/search?q=adaptive%20neuro%20fuzzy%20inference%20system" title=" adaptive neuro fuzzy inference system"> adaptive neuro fuzzy inference system</a>, <a href="https://publications.waset.org/search?q=ANFIS" title=" ANFIS"> ANFIS</a>, <a href="https://publications.waset.org/search?q=orientation." title=" orientation."> orientation.</a> </p> <a href="https://publications.waset.org/10005342/surface-roughness-analysis-modelling-and-prediction-in-fused-deposition-modelling-additive-manufacturing-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005342/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005342/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005342/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005342/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005342/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005342/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005342/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005342/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005342/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005342/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1905</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2061</span> Effect of Jet Diameter on Surface Quenching at Different Spatial Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Agrawal">C. Agrawal</a>, <a href="https://publications.waset.org/search?q=R.%20Kumar"> R. Kumar</a>, <a href="https://publications.waset.org/search?q=A.%20Gupta"> A. Gupta</a>, <a href="https://publications.waset.org/search?q=B.%20Chatterjee"> B. Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800&plusmn;10 C initial temperature. A round water jet of 22 &plusmn; 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location. &nbsp;</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hot-Surface" title="Hot-Surface">Hot-Surface</a>, <a href="https://publications.waset.org/search?q=Jet%20Impingement" title=" Jet Impingement"> Jet Impingement</a>, <a href="https://publications.waset.org/search?q=Quenching" title=" Quenching"> Quenching</a>, <a href="https://publications.waset.org/search?q=Stagnation%20Point." title=" Stagnation Point."> Stagnation Point.</a> </p> <a href="https://publications.waset.org/9997005/effect-of-jet-diameter-on-surface-quenching-at-different-spatial-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997005/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997005/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997005/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997005/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997005/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997005/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997005/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997005/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997005/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997005/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2299</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2060</span> Mathematical Modeling of Surface Roughness in Surface Grinding Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.A.%20Kamely">M.A. Kamely</a>, <a href="https://publications.waset.org/search?q=S.M.%20Kamil"> S.M. Kamil</a>, <a href="https://publications.waset.org/search?q=C.W.%20Chong"> C.W. Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mathematical%20Modeling" title="Mathematical Modeling">Mathematical Modeling</a>, <a href="https://publications.waset.org/search?q=Response%20surfacemethodology" title=" Response surfacemethodology"> Response surfacemethodology</a>, <a href="https://publications.waset.org/search?q=Surface%20roughness" title=" Surface roughness"> Surface roughness</a>, <a href="https://publications.waset.org/search?q=Cylindrical%20Grinding." title=" Cylindrical Grinding."> Cylindrical Grinding.</a> </p> <a href="https://publications.waset.org/2707/mathematical-modeling-of-surface-roughness-in-surface-grinding-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2707/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2707/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2707/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2707/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2707/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2707/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2707/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2707/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2707/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2707/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3257</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> Influence of Machining Process on Surface Integrity of Plasma Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Zl%C3%A1mal">T. Zlámal</a>, <a href="https://publications.waset.org/search?q=J.%20Petr%C5%AF"> J. Petrů</a>, <a href="https://publications.waset.org/search?q=M.%20Pag%C3%A1%C4%8D"> M. Pagáč</a>, <a href="https://publications.waset.org/search?q=P.%20Krajkovi%C4%8D"> P. Krajkovič</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Machining" title="Machining">Machining</a>, <a href="https://publications.waset.org/search?q=plasma%20sprayed%20coating" title=" plasma sprayed coating"> plasma sprayed coating</a>, <a href="https://publications.waset.org/search?q=surface%20integrity" title=" surface integrity"> surface integrity</a>, <a href="https://publications.waset.org/search?q=strengthening." title=" strengthening."> strengthening.</a> </p> <a href="https://publications.waset.org/10008622/influence-of-machining-process-on-surface-integrity-of-plasma-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008622/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008622/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008622/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008622/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008622/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008622/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008622/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008622/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008622/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008622/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1015</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> Determination of Surface Roughness by Ball Burnishing Process Using Factorial Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20S.%20Dabeer">P. S. Dabeer</a>, <a href="https://publications.waset.org/search?q=G.%20K.%20Purohit"> G. K. Purohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Burnishing is a method of finishing and hardening machined parts by plastic deformation of the surface. Experimental work based on central composite second order rotatable design has been carried out on a lathe machine to establish the effects of ball burnishing parameters on the surface roughness of brass material. Analysis of the results by the analysis of variance technique and the F-test show that the parameters considered, have significant effects on the surface roughness.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ball%20burnishing" title="Ball burnishing">Ball burnishing</a>, <a href="https://publications.waset.org/search?q=Response%20surface%20Methodology." title=" Response surface Methodology."> Response surface Methodology.</a> </p> <a href="https://publications.waset.org/16441/determination-of-surface-roughness-by-ball-burnishing-process-using-factorial-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16441/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16441/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16441/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16441/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16441/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16441/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16441/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16441/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16441/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16441/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2479</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Moustafa%20Osman%20Mohammed">Moustafa Osman Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topologically order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for exchange photon energy with molecules without changes in topology (i.e., chemical transformation into products do not propagate any changes or variation in the network topology of physical configuration). The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure, and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies, which are automated, real-time, reliable, reproducible and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody–antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due the pathogenic archival architecture of cell clusters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=autopoiesis" title="autopoiesis">autopoiesis</a>, <a href="https://publications.waset.org/search?q=engineering%20topology" title=" engineering topology"> engineering topology</a>, <a href="https://publications.waset.org/search?q=photonic%20system%20molecular%20structure" title=" photonic system molecular structure"> photonic system molecular structure</a>, <a href="https://publications.waset.org/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/10012381/engineering-topology-of-photonic-systems-for-sustainable-molecular-structure-autopoiesis-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012381/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012381/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012381/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012381/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012381/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012381/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012381/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012381/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012381/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012381/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amoljit%20S.%20Gill">Amoljit S. Gill</a>, <a href="https://publications.waset.org/search?q=Sanjeev%20Kumar"> Sanjeev Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi&rsquo;s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input parameters in order to achieve high surface finish. Six input parameters are considered and their percentage contribution towards surface roughness is investigated by analysis of variances (ANOVA). Experimental results show that an hard alloyed surface (1.21% carbon, 2.14% chromium and 1.38% nickel) with surface roughness of 3.19&micro;m can be generated using EDM with PM tool. Additionally, techniques like Scanning Electron Microscope&nbsp;(SEM) and Energy Dispersive Spectroscopy (EDS) are used to analyze the machined surface and EDMed layer composition, respectively. The increase in machined surface micro-hardness (101%) may be related to the formation of carbides containing chromium.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrical%20Discharge%20Machining" title="Electrical Discharge Machining">Electrical Discharge Machining</a>, <a href="https://publications.waset.org/search?q=Surface%20Roughness" title=" Surface Roughness"> Surface Roughness</a>, <a href="https://publications.waset.org/search?q=Powder%20metallurgy%20compact%20tools" title=" Powder metallurgy compact tools"> Powder metallurgy compact tools</a>, <a href="https://publications.waset.org/search?q=Taguchi%20DOE%20technique." title=" Taguchi DOE technique. "> Taguchi DOE technique. </a> </p> <a href="https://publications.waset.org/9999010/surface-roughness-evaluation-for-edm-of-en31-with-cu-cr-ni-powder-metallurgy-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999010/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999010/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999010/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999010/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999010/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999010/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999010/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999010/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999010/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999010/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2876</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Surface%20plasmon%20polaritons&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10