CINXE.COM

Search results for: wastes drilling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wastes drilling</title> <meta name="description" content="Search results for: wastes drilling"> <meta name="keywords" content="wastes drilling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wastes drilling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wastes drilling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 888</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wastes drilling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Hadj%20Abbas">Abbas Hadj Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacini%20%20Massaoud"> Hacini Massaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiad%20Lahcen"> Aiad Lahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastes%20treatment" title="wastes treatment">wastes treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20oil%20pollution" title=" the oil pollution"> the oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20norms" title=" the norms"> the norms</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes%20drilling" title=" wastes drilling"> wastes drilling</a> </p> <a href="https://publications.waset.org/abstracts/52890/wastes-of-oil-drilling-treatment-techniques-and-their-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Research on Eco-Sustainable Recycling of Industrial Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Cr%C4%83c">Liliana Crăc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Giorgi"> Nicolae Giorgi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Fometescu"> Gheorghe Fometescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20solid%20wastes" title=" drilled solid wastes"> drilled solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slag" title=" metallurgical slag"> metallurgical slag</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/15190/research-on-eco-sustainable-recycling-of-industrial-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidoddin%20Yousife">Hamidoddin Yousife</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drlling" title="drlling">drlling</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a> </p> <a href="https://publications.waset.org/abstracts/142838/an-integrated-approach-for-optimizing-drillable-parameters-to-increase-drilling-performance-a-real-field-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Roseiro">L. Roseiro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Veiga"> C. Veiga</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maranha"> V. Maranha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Neto"> A. Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Laraqi"> N. Laraqi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ba%C3%AFri"> A. Baïri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Alilat"> N. Alilat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20necrosis" title="bone necrosis">bone necrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title=" bone drilling"> bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a> </p> <a href="https://publications.waset.org/abstracts/16605/induced-bone-tissue-temperature-in-drilling-procedures-a-comparative-laboratory-study-with-and-without-lubrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Larbi">Hammadi Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bergane%20Cheikh"> Bergane Cheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=organophilic%20clay" title=" organophilic clay"> organophilic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/157950/amelioration-of-stability-and-rheological-properties-of-a-crude-oil-based-drilling-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> A Method of Drilling a Ground Using a Robotic Arm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Beji">Lotfi Beji</a>, <a href="https://publications.waset.org/abstracts/search?q=Laredj%20Benchikh"> Laredj Benchikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20vibration" title=" resonant vibration"> resonant vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20arm" title=" robot arm"> robot arm</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/67952/a-method-of-drilling-a-ground-using-a-robotic-arm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Negahban">Sajjad Negahban</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruihe%20Wang"> Ruihe Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baojiang%20Sun"> Baojiang Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20pressure" title=" bubble pressure"> bubble pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-lift%20dual%20gradient%20drilling" title=" gas-lift dual gradient drilling"> gas-lift dual gradient drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20hydraulic%20model" title=" steady state hydraulic model"> steady state hydraulic model</a> </p> <a href="https://publications.waset.org/abstracts/55577/importance-of-solubility-and-bubble-pressure-models-to-predict-pressure-of-nitrified-oil-based-drilling-fluid-in-dual-gradient-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shaheen%20Shah">Md. Shaheen Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20Abugharara"> Abdelsalam Abugharara</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipesh%20Maharjan"> Dipesh Maharjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Imtiaz"> Syed Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Butt"> Stephen Butt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BHA" title="BHA">BHA</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20performance" title=" drilling performance"> drilling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=pVARD" title=" pVARD"> pVARD</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20penetration" title=" rate of penetration"> rate of penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=ROP" title=" ROP"> ROP</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20and%20shear%20fractures" title=" tensile and shear fractures"> tensile and shear fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/125086/evaluation-of-drilling-performance-through-bit-rock-interaction-using-passive-vibration-assisted-rotation-drilling-pvard-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Evaluation of Hard Rocks Destruction Effectiveness at Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Leusheva">Ekaterina Leusheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Morenov"> Valentin Morenov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Well drilling in hard rocks is coupled with high energy demands which negates the speed of the process and thus reduces overall effectiveness. Aim of this project is to develop the technique of experimental research, which would allow to select optimal washing fluid composition while adding special hardness reducing detergent reagents. Based on the analysis of existing references and conducted experiments, technique dealing with quantitative evaluation of washing fluid weakening influence on drilled rocks was developed, which considers laboratory determination of three mud properties (density, surface tension, specific electrical resistance) and three rock properties (ultimate stress, dynamic strength, micro-hardness). Developed technique can be used in the well drilling technologies and particularly while creating new compositions of drilling muds for increased destruction effectiveness of hard rocks. It can be concluded that given technique introduces coefficient of hard rocks destruction effectiveness that allows quantitative evaluation of different drilling muds on the drilling process to be taken. Correct choice of drilling mud composition with hardness reducing detergent reagents will increase drilling penetration rate and drill meterage per bit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detergent%20reagents" title="detergent reagents">detergent reagents</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20mud" title=" drilling mud"> drilling mud</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20process%20stimulation" title=" drilling process stimulation"> drilling process stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20rocks" title=" hard rocks"> hard rocks</a> </p> <a href="https://publications.waset.org/abstracts/33042/evaluation-of-hard-rocks-destruction-effectiveness-at-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> The Effect of Chisel Edge on Drilling-Induced Delamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parnian%20Kianfar">Parnian Kianfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi"> Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling is one of the most important machining operations as numerous holes must be drilled in order to install mechanical fasteners for assembly in composite structures. Delamination is a major problem associated with the drilling of fiber reinforced composite materials, which degrades the mechanical properties of these materials. In drilling, delamination is initiated when the drilling force exceeds a threshold value, particularly at the critical entry and exit locations of the drill bit. The chisel edge of twist drill is a major contributor to the thrust force which is the primary cause of delamination. The main objective of this paper is to study the effect of chisel edge and pilot hole on thrust force and delamination during drilling of glass fiber reinforced composites. For this purpose, two sets of experiments, with and without pilot hole, were conducted with different drilling conditions. The results show a great reduction in the thrust force when a pilot hole is present which removes the chisel edge contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=chisel%20edge" title=" chisel edge"> chisel edge</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a> </p> <a href="https://publications.waset.org/abstracts/36250/the-effect-of-chisel-edge-on-drilling-induced-delamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikoo%20Soleimani">Nikoo Soleimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20ultrasonic%20assisted%20drilling" title="torsional ultrasonic assisted drilling">torsional ultrasonic assisted drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title=" bone drilling"> bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a> </p> <a href="https://publications.waset.org/abstracts/99313/comparison-between-torsional-ultrasonic-assisted-drilling-and-conventional-drilling-of-bone-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Performance of Constant Load Feed Machining for Robotic Drilling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youji%20Miyake">Youji Miyake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constant%20load%20feed%20machining" title="constant load feed machining">constant load feed machining</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20drilling" title=" robotic drilling"> robotic drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20hole" title=" deep hole"> deep hole</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20drilling" title=" simultaneous drilling "> simultaneous drilling </a> </p> <a href="https://publications.waset.org/abstracts/137018/performance-of-constant-load-feed-machining-for-robotic-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> The Effects of Agricultural Waste Compost Applications on Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20S%C3%B6nmez">Ilker Sönmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kaplan"> Mustafa Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carnation%20wastes" title=" carnation wastes"> carnation wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20material" title=" organic material"> organic material</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20compost" title=" spent mushroom compost"> spent mushroom compost</a> </p> <a href="https://publications.waset.org/abstracts/28976/the-effects-of-agricultural-waste-compost-applications-on-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jahangir">S. Jahangir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20I.%20Jaffery"> S. H. I. Jaffery</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khan"> M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zareef"> Z. Zareef</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yar"> A. Yar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mubashir"> A. Mubashir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Butt"> S. Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ali"> L. Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composite%20%28MMC%29" title=" metal matrix composite (MMC)"> metal matrix composite (MMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a> </p> <a href="https://publications.waset.org/abstracts/38398/analysis-of-drilling-parameters-for-al-mg2-si-metal-matrix-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20Li">G. H. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Liu"> M. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Qi"> H. J. Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Zhu"> Q. Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20He"> W. Z. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2219%20aluminum%20alloy" title="2219 aluminum alloy">2219 aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20stacked%20plate" title=" thick stacked plate"> thick stacked plate</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20material" title=" tool material"> tool material</a> </p> <a href="https://publications.waset.org/abstracts/77104/experiment-study-on-the-influence-of-tool-materials-on-the-drilling-of-thick-stacked-plate-of-2219-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Design of Neural Predictor for Vibration Analysis of Drilling Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B0kbal%20Eski">İkbal Eski </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analyses" title=" vibration analyses"> vibration analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20machine" title=" drilling machine"> drilling machine</a>, <a href="https://publications.waset.org/abstracts/search?q=robust" title=" robust"> robust</a> </p> <a href="https://publications.waset.org/abstracts/30313/design-of-neural-predictor-for-vibration-analysis-of-drilling-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> A Review on the Usage of Ceramic Wastes in Concrete Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Zimbili">O. Zimbili</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Salim"> W. Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ndambuki"> M. Ndambuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended" title="blended">blended</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic" title=" pozzolanic"> pozzolanic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste "> waste </a> </p> <a href="https://publications.waset.org/abstracts/2534/a-review-on-the-usage-of-ceramic-wastes-in-concrete-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimanyu%20Chadha">Vimanyu Chadha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranganath%20M.%20Singari"> Ranganath M. Singari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title="analysis of variance">analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20reinforced%20plastic%20composites" title=" glass fiber reinforced plastic composites"> glass fiber reinforced plastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/58018/optimization-of-cutting-parameters-on-delamination-using-taguchi-method-during-drilling-of-gfrp-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devesh%20Motwani">Devesh Motwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amey%20Kashyap"> Amey Kashyap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economics" title="economics">economics</a>, <a href="https://publications.waset.org/abstracts/search?q=guargum" title=" guargum"> guargum</a>, <a href="https://publications.waset.org/abstracts/search?q=viscofier" title=" viscofier"> viscofier</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/14794/economic-viability-of-using-guar-gum-as-a-viscofier-in-water-based-drilling-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Al-Bazali">Talal Al-Bazali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20drilling" title="air drilling">air drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20penetration" title=" rate of penetration"> rate of penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20speed" title=" rotary speed"> rotary speed</a> </p> <a href="https://publications.waset.org/abstracts/65147/thermodynamically-predicting-the-impact-of-temperature-on-the-performance-of-drilling-bits-as-a-function-of-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Proprietary Blend Synthetic Rubber as Loss Circulation Material in Drilling Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zatil%20Afifah%20Omar">Zatil Afifah Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Izati%20Azmi"> Siti Nur Izati Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathi%20Swaran"> Kathi Swaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Kumar"> Navin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lost circulation has always been one of the greatest problems faced by drilling companies during drilling operations due to excessive drilling Fluids losses. Loss of circulation leads to Huge cost and non-productive time. The objective of this study is to evaluate the sealing efficiency of a proprietary blend of synthetic rubber as loss circulation material in comparison with a conventional product such as calcium carbonate, graphite, cellulosic, and nutshells. Sand Bed Tester with a different proprietary blend of synthetic rubber compositions has been used to determine the effectiveness of the LCM in preventing drilling fluids losses in a lab scale. Test results show the proprietary blend of synthetic rubber have good bridging properties and sealing Off fractures of various sizes. The finish product is environmentally friendly with lower production lead time and lower production cost compared to current conventional loss circulation materials used in current drilling operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loss%20circulation%20materials" title="loss circulation materials">loss circulation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20operation" title=" drilling operation"> drilling operation</a>, <a href="https://publications.waset.org/abstracts/search?q=sealing%20efficiency" title=" sealing efficiency"> sealing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=LCM" title=" LCM"> LCM</a> </p> <a href="https://publications.waset.org/abstracts/139528/proprietary-blend-synthetic-rubber-as-loss-circulation-material-in-drilling-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20F.%20Ettir">Abdulaziz F. Ettir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghait%20Bashir"> Ghait Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20S.%20Duzan"> Tarek S. Duzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20keys" title="optimum keys">optimum keys</a>, <a href="https://publications.waset.org/abstracts/search?q=namely%20opti-flow" title=" namely opti-flow"> namely opti-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=opti-clean" title=" opti-clean"> opti-clean</a>, <a href="https://publications.waset.org/abstracts/search?q=opti-slip%20and%20opti-nozzle" title=" opti-slip and opti-nozzle"> opti-slip and opti-nozzle</a> </p> <a href="https://publications.waset.org/abstracts/40041/practical-software-for-optimum-bore-hole-cleaning-using-drilling-hydraulics-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Aflatoxin Contamination of Abattoir Wastes in Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Gbadebo">A. F. Gbadebo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Atanda"> O. O. Atanda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Adetunji"> M. C. Adetunji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the level of aflatoxin contamination of abattoir wastes in Ogun State, Nigeria, due to continued complaints of poor hygiene of abattoir centers in the states as a result of improper disposal of abattoir wastes. Wastes from the three senatorial districts of the state were evaluated for their levels of aflatoxin contamination. The moisture content, total plate count, fungal counts, percentage frequency of fungal occurrence as well as the level of aflatoxin contamination of the abattoir wastes were determined by standard methods. The moisture content of the wastes ranged between 79.10-87.46 %, total plate count from 1.37-3.27×10³cfu/ml, and fungal counts from 2.73-3.30×10²cfu/ml. Four fungal species: Aspergillus niger, Aspergillus flavus, Aspergillus ochraceus, and Penicillium citrinum were isolated from the wastes, with Aspergillus flavus having the highest percentage frequency of occurrence of 29.76%. The aflatoxin content of the samples was found to range between 3.20-4.80 µg/kg. These findings showed that abattoir wastes from Ogun State are contaminated with aflatoxins and pose a health risk to humans and animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abattoir%20wastes" title="abattoir wastes">abattoir wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title=" aflatoxin"> aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogun%20state" title=" Ogun state"> Ogun state</a> </p> <a href="https://publications.waset.org/abstracts/156770/aflatoxin-contamination-of-abattoir-wastes-in-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi">Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a>, <a href="https://publications.waset.org/abstracts/search?q=Parnian%20Kianfar"> Parnian Kianfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20compressive%20strength" title=" residual compressive strength"> residual compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/36171/residual-compressive-strength-of-drilled-glass-fiber-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Plane of Equal Settlement above HDD’s Borehole before Operational Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shokoufeh%20Sadeghifard">Shokoufeh Sadeghifard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is a review of the nature of soil arching that develops in the upper layer of soil during drilling processes before pulling product pipe inside the hole. This study is based on the results of some parametric studies which are investigating the behavior of drained sandy soil above HDD borehole using Plaxis finite element solution. The influence of drilling mud injection in these series of analyses has been ignored. However, a suitable drilling mud pressure helps to achieve stable arch when the height of soil cover over the drilling borehole is not enough. In this study, the soil response to the formation of a HDD borehole is compared to arching theory developed by Terzaghi (1943). It is found that Terzaghi’s approach is capable of describing all of the behaviour seen when a stable arch forms. According to the numerical results, a suitable safe depth of 4D, D is borehole diameter, is suggested for typical range of HDD borehole in sandy soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HDD" title="HDD">HDD</a>, <a href="https://publications.waset.org/abstracts/search?q=Plaxis" title=" Plaxis"> Plaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=arching" title=" arching"> arching</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a> </p> <a href="https://publications.waset.org/abstracts/32947/plane-of-equal-settlement-above-hdds-borehole-before-operational-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranjal%20Srivastava">Pranjal Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyali%20Sengupta"> Piyali Sengupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling%20riser" title="drilling riser">drilling riser</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility" title=" fragility"> fragility</a> </p> <a href="https://publications.waset.org/abstracts/143313/derivation-of-fragility-functions-of-marine-drilling-risers-under-ocean-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husam%20Mohammed%20Saleh%20Alziyadi">Husam Mohammed Saleh Alziyadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=WBM" title=" WBM"> WBM</a>, <a href="https://publications.waset.org/abstracts/search?q=Drilling%20Fluid" title=" Drilling Fluid"> Drilling Fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a> </p> <a href="https://publications.waset.org/abstracts/154599/nanomaterials-assisted-drilling-fluids-for-application-in-oil-fields-challenges-and-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubarek%20Alpkiray">Mubarek Alpkiray</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Nguyen"> Tan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Arild%20Saasen"> Arild Saasen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20wells" title="geothermal wells">geothermal wells</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wellbore%20stresses" title=" wellbore stresses"> wellbore stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20fluid%20loss" title=" drilling fluid loss"> drilling fluid loss</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/143311/thermal-effects-on-wellbore-stability-and-fluid-loss-in-high-temperature-geothermal-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> A Case Study of Kick Control in Tough Potohar Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Raza">Iftikhar Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Well control is the management of the hazardous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling. Oil well control is one of the most important aspects of drilling operations. Improper handling of kicks in oil well control can result in blowouts with very grave consequences, including the loss of valuable resources. Even though the cost of a blowout (as a result of improper/no oil well control) can easily reach several millions of US dollars, the monetary loss is not as serious as the other damages that can occur: irreparable damage to the environment, waste of valuable resources, ruined equipment, and most importantly, the safety and lives of personnel on the drilling rig. In this paper, case study of a well is discussed with field data showing the properties of the well. The whole procedure of controlling this well is illustrated in this which may be helpful for professional dealing with such kind of problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kick%20control" title="kick control">kick control</a>, <a href="https://publications.waset.org/abstracts/search?q=kill%20sheet" title=" kill sheet"> kill sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20well" title=" oil well"> oil well</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20drilling" title=" gas drilling"> gas drilling</a> </p> <a href="https://publications.waset.org/abstracts/16120/a-case-study-of-kick-control-in-tough-potohar-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Agricultural Solid Wastes Generation in Nigeria and Their Recycling Potentials into Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Aliyu%20Jalam">Usman Aliyu Jalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuaibu%20Alolo%20Sumaila"> Shuaibu Alolo Sumaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%E2%80%99adiya%20Iliyasu%20Muhammed"> Sa’adiya Iliyasu Muhammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern building industry lays much emphasis on sophisticated materials that have high embodied energy with intrinsic distinctiveness for damaging the environment. But today, advances in solid waste management have resulted in alternative building materials as partial or complete replacement of the conventional materials like cement, aggregate etc particularly for low cost housing. Investigations carried out revealed that an estimated 18.0 million tonnes of agricultural solid wastes are being generated in Nigeria annually. This constitutes a problem not only to the natural environment but also to the built environment more particularly with the way the wastes are being dispose of. The paper has discussed the present status on the generation and utilisation of agricultural solid wastes, their recycling potentials and environmental implications. It further discovered that although considerable quantity of these wastes were found to have the potentials of being recycled as building materials, the availability of the appropriate technology remains a big challenge in the country. Moreover, majority of the wastes type have gained popularity as fuel. As such, the economic and environmental benefits of recycling the wastes and the use of the wastes as fuel need further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/6662/agricultural-solid-wastes-generation-in-nigeria-and-their-recycling-potentials-into-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastes%20drilling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10