CINXE.COM
Search results for: contact dynamics
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: contact dynamics</title> <meta name="description" content="Search results for: contact dynamics"> <meta name="keywords" content="contact dynamics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="contact dynamics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="contact dynamics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4630</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: contact dynamics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4630</span> Linear Complementary Based Approach for Unilateral Frictional Contact between Wheel and Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muskaan%20Sethi">Muskaan Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper aims to investigate a suitable contact between a wheel rolling over a flexible beam. A Linear Complementary (LCP) based approach has been adopted to simulate the contact dynamics for a rigid wheel traversing over a flexible Euler Bernoulli simply supported beam. The adopted methodology is suitable to incorporate the effect of frictional force acting at the wheel-beam interface. Moreover, the possibility of the generation of a gap between the two bodies has also been considered. The present method is based on a unilateral contact assumption which assumes that no penetration would occur when the two bodies come in contact. This assumption helps to predict the contact between wheels and beams in a more practical sense. The proposed methodology is validated with the previously published results and is found to be in good agreement. Further, this method is applied to simulate the contact between wheels and beams for various railway configurations. Moreover, different parametric studies are conducted to study the contact dynamics between the wheel and beam more thoroughly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20dynamics" title="contact dynamics">contact dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complementary%20problem" title=" linear complementary problem"> linear complementary problem</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20dynamics" title=" railway dynamics"> railway dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unilateral%20contact" title=" unilateral contact"> unilateral contact</a> </p> <a href="https://publications.waset.org/abstracts/156705/linear-complementary-based-approach-for-unilateral-frictional-contact-between-wheel-and-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4629</span> Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quy%20Dang%20Nguyen">Quy Dang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Nakhaie%20Jazar"> Reza Nakhaie Jazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quarter-car%20vibrations" title="quarter-car vibrations">quarter-car vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=tire-road%20separation" title=" tire-road separation"> tire-road separation</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20analysis" title=" separation analysis"> separation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20dynamics" title=" separation dynamics"> separation dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20comfort" title=" ride comfort"> ride comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=ADAMS%20validation" title=" ADAMS validation"> ADAMS validation</a> </p> <a href="https://publications.waset.org/abstracts/158498/numerical-simulation-and-experimental-validation-of-the-tire-road-separation-in-quarter-car-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4628</span> Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingcheng%20Ma">Jingcheng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20B.%20Weisensee"> Patricia B. Weisensee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20H.%20Shin"> Young H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Chang"> Yujin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjiao%20Tian"> Junjiao Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20P.%20King"> William P. King</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenad%20Miljkovic"> Nenad Miljkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20time" title="contact time">contact time</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20dynamics" title=" impact dynamics"> impact dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=pear-shape%20droplet" title=" pear-shape droplet"> pear-shape droplet</a> </p> <a href="https://publications.waset.org/abstracts/58337/water-droplet-impact-on-vibrating-rigid-superhydrophobic-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4627</span> Analysis of Contact Width and Contact Stress of Three-Layer Corrugated Metal Gasket</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Made%20Gatot%20Karohika">I. Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a>, <a href="https://publications.waset.org/abstracts/search?q=Didik%20Nurhadiyanto"> Didik Nurhadiyanto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/64226/analysis-of-contact-width-and-contact-stress-of-three-layer-corrugated-metal-gasket" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4626</span> Solid-Liquid-Solid Interface of Yakam Matrix: Mathematical Modeling of the Contact Between an Aircraft Landing Gear and a Wet Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trudon%20Kabangu%20Mpinga">Trudon Kabangu Mpinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Mutala"> Ruth Mutala</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaloom%20Mbambu"> Shaloom Mbambu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvette%20Kalubi%20Kashama"> Yvette Kalubi Kashama</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabeya%20Mukeba%20Yakasham"> Kabeya Mukeba Yakasham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is developed to describe the contact dynamics between the landing gear wheels of an aircraft and a wet pavement during landing. The model is based on nonlinear partial differential equations, using the Yakam Matrix to account for the interaction between solid, liquid, and solid phases. This framework incorporates the influence of environmental factors, particularly water or rain on the runway, on braking performance and aircraft stability. Given the absence of exact analytical solutions, our approach enhances the understanding of key physical phenomena, including Coulomb friction forces, hydrodynamic effects, and the deformation of the pavement under the aircraft's load. Additionally, the dynamics of aquaplaning are simulated numerically to estimate the braking performance limits on wet surfaces, thereby contributing to strategies aimed at minimizing risk during landing on wet runways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=yakam%20matrix" title=" yakam matrix"> yakam matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=contact" title=" contact"> contact</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20runway" title=" wet runway"> wet runway</a> </p> <a href="https://publications.waset.org/abstracts/194905/solid-liquid-solid-interface-of-yakam-matrix-mathematical-modeling-of-the-contact-between-an-aircraft-landing-gear-and-a-wet-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4625</span> A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cathal%20Ffrench">Cathal Ffrench</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Barrett"> Ryan Barrett</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Quayle"> Mike Quayle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=categorization" title="categorization">categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20dynamics" title=" group dynamics"> group dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20contact" title=" initial contact"> initial contact</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20social%20networks" title=" minimal social networks"> minimal social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=momentary%20contact" title=" momentary contact"> momentary contact</a> </p> <a href="https://publications.waset.org/abstracts/98661/a-mega-analysis-of-the-predictive-power-of-initial-contact-within-minimal-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4624</span> Relative Importance of Contact Constructs to Acute Respiratory Illness in General Population in Hong Kong</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kin%20On%20Kwok">Kin On Kwok</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivian%20Wei"> Vivian Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Cowling"> Benjamin Cowling</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Riley"> Steven Riley</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Read"> Jonathan Read</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The role of social contact behavior measured in different contact constructs in the transmission of respiratory pathogens with acute respiratory illness (ARI) remains unclear. We, therefore, aim to depict the individual pattern of ARI in the community and investigate the association between different contact dimensions and ARI in Hong Kong. Methods: Between June 2013 and September 2013, 620 subjects participated in the last two waves of recruitment of the population based longitudinal phone social contact survey. Some of the subjects in this study are from the same household. They are also provided with the symptom diaries to self-report any acute respiratory illness related symptoms between the two days of phone recruitment. Data from 491 individuals who were not infected on the day of phone recruitment and returned the symptom diaries after the last phone recruitment were used for analysis. Results: After adjusting different follow-up periods among individuals, the overall incidence rate of ARI was 1.77 per 100 person-weeks. Over 75% ARI episodes involve running nose, cough, sore throat, which are followed by headache (55%), malagia (35%) and fever (18%). Using a generalized estimating equation framework accounting for the cluster effect of subjects living in the same household, we showed that both daily number of locations visited with contacts and the number of contacts, explained the ARI incidence rate better than only one single contact construct. Conclusion: Our result suggests that it is the intertwining property of contact quantity (number of contacts) and contact intensity (ratio of subject-to-contact) that governs the infection risk by a collective set of respiratory pathogens. Our results provide empirical evidence that multiple contact constructs should be incorporated in the mathematical transmission models to feature a more realistic dynamics of respiratory disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20respiratory%20illness" title="acute respiratory illness">acute respiratory illness</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20study" title=" longitudinal study"> longitudinal study</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20contact" title=" social contact"> social contact</a>, <a href="https://publications.waset.org/abstracts/search?q=symptom%20diaries" title=" symptom diaries"> symptom diaries</a> </p> <a href="https://publications.waset.org/abstracts/72746/relative-importance-of-contact-constructs-to-acute-respiratory-illness-in-general-population-in-hong-kong" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4623</span> Ruthenium Based Nanoscale Contact Coatings for Magnetically Controlled MEMS Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20M.%20Karabanov">Sergey M. Karabanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Suvorov"> Dmitry V. Suvorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetically controlled microelectromechanical system (MCMEMS) switches is one of the directions in the field of micropower switching technology. MCMEMS switches are a promising alternative to Hall sensors and reed switches. The most important parameter for MCMEMS is the contact resistance, which should have a minimum value and is to be stable for the entire duration of service life. The value and stability of the contact resistance is mainly determined by the contact coating material. This paper presents the research results of a contact coating based on nanoscale ruthenium films obtained by electrolytic deposition. As a result of the performed investigations, the deposition modes of ruthenium films are chosen, the regularities of the contact resistance change depending on the number of contact switching, and the coating roughness are established. It is shown that changing the coating roughness makes it possible to minimize the contact resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20resistance" title="contact resistance">contact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20coating" title=" electrode coating"> electrode coating</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytic%20deposition" title=" electrolytic deposition"> electrolytic deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20controlled%20MEMS" title=" magnetically controlled MEMS"> magnetically controlled MEMS</a> </p> <a href="https://publications.waset.org/abstracts/99675/ruthenium-based-nanoscale-contact-coatings-for-magnetically-controlled-mems-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4622</span> Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama">Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20Gatot%20Karohika"> I Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinori%20Sato"> Akinori Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Didik%20Nurhadiyanto"> Didik Nurhadiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/42429/development-of-25a-size-three-layer-metal-gasket-by-using-fem-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4621</span> Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Truncated%20double-cone" title="Truncated double-cone">Truncated double-cone</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20and%20sliding" title=" rolling and sliding"> rolling and sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitational%20motor" title=" gravitational motor"> gravitational motor</a> </p> <a href="https://publications.waset.org/abstracts/54592/frictional-effects-on-the-dynamics-of-a-truncated-double-cone-gravitational-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4620</span> Dynamics of Hybrid Language in Urban and Rural Uttar Pradesh India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Pande">Divya Pande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamics of culture expresses itself in language. Even after India got independence in 1947 English subtly crept in the language of the masses with a silent and powerful flow towards the vernacular. The culture contact resulted in learning and emergence of a new language across the Hindi speaking belt of Northern and Central India. The hybrid words thus formed displaced the original word and got contextualized and absorbed in the language of the common masses. The research paper explores the interesting new vocabulary used extensively in the urban and rural districts of the state of Uttar- Pradesh which is the most populous state of India. The paper adopts a two way classification- formal and contextual for the analysis of the hybrid vocabulary of the linguistic items where one element is necessarily from the English language and the other from the Hindi. The new vocabulary represents languages of the wider world cutting across the geographical and the cultural barriers. The paper also broadly points out to the Hinglish commonly used in the state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assimilation" title="assimilation">assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=culture%20contact" title=" culture contact"> culture contact</a>, <a href="https://publications.waset.org/abstracts/search?q=Hinglish" title=" Hinglish"> Hinglish</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20words" title=" hybrid words"> hybrid words</a> </p> <a href="https://publications.waset.org/abstracts/59990/dynamics-of-hybrid-language-in-urban-and-rural-uttar-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4619</span> Scaling Analysis of the Contact Line and Capillary Interaction Induced by a Floating Tilted Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShiQing%20Gao">ShiQing Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=XingYi%20Zhang"> XingYi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=YouHe%20Zhou"> YouHe Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a floating tilted cylinder pierces a fluid interface, the fulfilment of constant-contact-angle condition along the cylinder results in shift, stretch and distortion of the contact line, thus leading to a capillary interaction. We perform an investigation of the scaling dependence of tilt angle, contact angle, and cylinder radius on the contact line profile and the corresponding capillary interaction by numerical simulation and experiment. Characterized by three characteristic parameters respectively, the dependences for each deformation mode are systematically analyzed. Both the experiment and simulation reveals an invariant structure that is independent of contact angle and radius to characterize the stretch of the contact line for every tilted case. Based on this observation, we then propose a general capillary force scaling law to incredibly grasp all the simulated results, by simply approximating the contact line profile as tilted ellipse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%2Fliquid-fluid%20interface" title="gas-liquid/liquid-fluid interface">gas-liquid/liquid-fluid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20particle" title=" colloidal particle"> colloidal particle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line%20shape" title=" contact line shape"> contact line shape</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20interaction" title=" capillary interaction"> capillary interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20evolver%20%28SE%29" title=" surface evolver (SE)"> surface evolver (SE)</a> </p> <a href="https://publications.waset.org/abstracts/53570/scaling-analysis-of-the-contact-line-and-capillary-interaction-induced-by-a-floating-tilted-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4618</span> Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abinash%20Tripathy">Abinash Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20Muralidharan"> Girish Muralidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Pramanik"> Amitava Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosenjit%20Sen"> Prosenjit Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle%20hysteresis" title=" contact angle hysteresis"> contact angle hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20time" title=" contact time"> contact time</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/45602/drop-impact-study-on-flexible-superhydrophobic-surface-containing-micro-nano-hierarchical-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4617</span> Social Contact Patterns among School-Age Children in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dih%20Ling%20Luh">Dih Ling Luh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Shih%20You"> Zhi Shih You</a>, <a href="https://publications.waset.org/abstracts/search?q=Szu%20Chieh%20Chen"> Szu Chieh Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social contact patterns among school-age children play an important role in the epidemiology of infectious disease. Since many of the greatest threats to human health are spread by direct person-to-person contact, understanding the spread of respiratory pathogens and patterns of human interactions are public health priorities. This study used social contact diaries to compare the number of contacts per day per participant across different flu/non-flu seasons and weekend/weekday. We also present contact properties such as sex, age, masking, setting, frequency, duration, and contact types among school-age children (grades 7–8). The sample size with pair-wise comparisons for the seasons (flu/non-flu) and stratification by location were 54 and 83, respectively. There was no difference in the number of contacts during the flu and non-flu seasons, with averages of 16.3 (S.D. = 12.9) and 14.6 (S.D. = 9.5) people, respectively. Weekdays were associated with 23% and 28% more contacts than weekend days during the non-flu and flu seasons, respectively (p < 0.001) (Wilcoxon signed-rank test). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20patterns" title="contact patterns">contact patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=influenza" title=" influenza"> influenza</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20mixing" title=" social mixing"> social mixing</a> </p> <a href="https://publications.waset.org/abstracts/42689/social-contact-patterns-among-school-age-children-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4616</span> Coalescence Cascade of Vertically-aligned Water Drops on a Super-hydrophobic Surface in Silicone Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Brik">M. Brik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Harmand"> S. Harmand</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Zaaroura"> I. Zaaroura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This report, an experimental investigation, concerns the sessile daughter drop remaining during the coalescence of water drops in a liquid-liquid (LL) system. The two drops are initially vertically aligned where the sessile drop is deposited on a chemically treated super-hydrophobic surface of a cube fill of silicone oil. In order to analyze the coalescence dynamics, a series of experiments have been performed using a generation droplets system (KRUSS) that measures contact angles as well coupled with a high-speed camera (Keyence VW-9000E) to record the process at a frame rate of 15000s-1. It’s depicted that in such configuration, the head drop volume has a primordial impact on the dynamics of the coalescence process, especially at the last stage. It’s found that for a sessile drop deposited on a super-hydrophobic surface, where the contact angle is about θ ≈ 145°, the coalescence process is remarked to be complete without any recoiling of the coalesced drop or a generation of a sessile daughter drop at the super-hydrophobic surface when the head drop volume is small enough (Vₐᵦ< Vₛ up to Vₐᵦ = 3Vₛ). On the other side, the coalescence process starts to be followed by jumping off the resulted drop as well as a remaining of a small sessile daughter drop on the bottom surface of the cube from a head drop volume Vₐᵦ of about 4 times than that of the sessile drop Vₛ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drops%20coalescence" title="drops coalescence">drops coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersed%20multiphase%20flow" title=" dispersed multiphase flow"> dispersed multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=drops%20dynamics" title=" drops dynamics"> drops dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20system" title=" liquid-liquid system"> liquid-liquid system</a> </p> <a href="https://publications.waset.org/abstracts/137757/coalescence-cascade-of-vertically-aligned-water-drops-on-a-super-hydrophobic-surface-in-silicone-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4615</span> The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Aela">Peyman Aela</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zong"> Lu Zong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Jing"> Guoqing Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20model" title=" contact model"> contact model</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a> </p> <a href="https://publications.waset.org/abstracts/131827/the-influence-of-contact-models-on-discrete-element-modeling-of-the-ballast-layer-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4614</span> The Contact Behaviors of Seals Under Combined Normal and Tangential Loading: A Multiscale Finite Element Contact Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Runliang%20Wang">Runliang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Liu"> Jianhua Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Duo%20Jia"> Duo Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Ding"> Xiaoyu Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact between sealing surfaces plays a vital role in guaranteeing the sealing performance of various seals. To date, analyses of sealing structures have rarely considered both structural parameters (macroscale) and surface roughness information (microscale) of sealing surfaces due to the complex modeling process. Meanwhile, most of the contact analyses applied to seals were conducted only under normal loading, which still existssome distance from real loading conditions in engineering. In this paper, a multiscale rough contact model, which took both macrostructural parameters of seals and surface roughness information of sealing surfaces into consideration for the cone-cone seal, was established. By using the finite element method (FEM), the combined normal and tangential loading was applied to the model to simulate the assembly process of the cone-cone seal. The evolution of the contact behaviors during the assembly process, such as the real contact area (RCA), the distribution of contact pressure, and contact status, are studied in detail. The results showed the non-linear relationship between the RCA and the load, which was different from the normal loading cases. In addition, the evolution of the real contact area of cone-cone seals with isotropic and anisotropic rough surfaces are also compared quantitatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20mechanics" title="contact mechanics">contact mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=randomly%20rough%20surface" title=" randomly rough surface"> randomly rough surface</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20contact%20area" title=" real contact area"> real contact area</a>, <a href="https://publications.waset.org/abstracts/search?q=sealing" title=" sealing"> sealing</a> </p> <a href="https://publications.waset.org/abstracts/140262/the-contact-behaviors-of-seals-under-combined-normal-and-tangential-loading-a-multiscale-finite-element-contact-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4613</span> Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Ouzandja">Djamel Ouzandja</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20gravity%20dam" title="concrete gravity dam">concrete gravity dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction" title=" dynamic soil-structure interaction"> dynamic soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20contact" title=" friction contact"> friction contact</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding" title=" sliding"> sliding</a> </p> <a href="https://publications.waset.org/abstracts/27934/two-dimensional-seismic-response-of-concrete-gravity-dams-including-base-sliding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4612</span> Cable Diameter Effect on the Contact Temperature of Power Automotive Connector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Beloufa">Amine Beloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amirat"> Mohamed Amirat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20temperature" title="contact temperature">contact temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20automotive%20connector" title=" power automotive connector"> power automotive connector</a> </p> <a href="https://publications.waset.org/abstracts/66274/cable-diameter-effect-on-the-contact-temperature-of-power-automotive-connector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4611</span> Complications of Contact Lens-Associated Keratitis: A Refresher for Emergency Departments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Selman">S. Selman</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gout"> T. Gout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial keratitis is a serious complication of contact lens wear that can be vision and eye-threatening. Diverse presentations relating to contact lens wear include dry corneal surface, corneal infiltrate, ulceration, scarring, and complete corneal melt leading to perforation. Contact lens wear is a major risk factor and, as such, is an important consideration in any patient presenting with a red eye in the primary care setting. This paper aims to provide an overview of the risk factors, common organisms, and spectrum of contact lens-associated keratitis (CLAK) complications. It will highlight some of the salient points relevant to the assessment and workup of patients suspected of CLAK in the emergency department based on the recent literature and therapeutic guidelines. An overview of the management principles will also be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20keratitis" title="microbial keratitis">microbial keratitis</a>, <a href="https://publications.waset.org/abstracts/search?q=corneal%20pathology" title=" corneal pathology"> corneal pathology</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20lens-associated%20complications" title=" contact lens-associated complications"> contact lens-associated complications</a>, <a href="https://publications.waset.org/abstracts/search?q=painful%20vision%20loss" title=" painful vision loss"> painful vision loss</a> </p> <a href="https://publications.waset.org/abstracts/153766/complications-of-contact-lens-associated-keratitis-a-refresher-for-emergency-departments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4610</span> Parents-Children Communication in College</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yin-Chen%20Liu">Yin-Chen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chun%20Wu"> Chih-Chun Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-He%20Shih"> Mei-He Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this technology society, using ICT(Information and communications technology) to contact each other is very common. Interpersonal ICT communication maintains social support. Therefore, the study investigated the ICT communication between undergraduates and their parents, and gender differences were also detected. The sample size was 1,209 undergraduates, including 624(51.6%) males, 584(48.3%) females, and 1 gender unidentified. In the sample, 91.8% of the sample used phones to contact their fathers and 93.8% of them use phones to contact their mothers. 78.5% and 87.6% of the sample utilized LINE to contact their fathers and mothers respectively. As for Facebook, only 13.4% and 16.5% of the sample would use to contact their fathers and mothers respectively. Aforementioned results implied that the undergraduates nowadays use phone and LINE to contact their parents more common than Facebook. According to results from Pearson correlations, the more undergraduates refused to add their fathers as their Facebook friends, the more they refused to add their mothers as Facebook friends. The possible reasons for it could be that to distinguish different social network such as family and friends. Another possible reason could be avoiding parents’ controlling. It could be why the kids prefer to use phone and LINE to Facebook when contacting their parents. Result from Pearson correlations showed that the more undergraduates actively contact their fathers, the more they actively contact their mothers. On the other hand, the more their fathers actively contact them, the more their mothers actively contact them. Based on the results, this study encourages both parents and undergraduates to contact each other, for any contact between any two family members is associated with contact between other two family members. Obviously, the contact between family members is bidirectional. Future research might want to investigate if this bidirectional contact is associated with the family relation. For gender differences, results from the independent t-tests showed that compared to sons, daughters actively contacted their parents more. Maybe it is because parents keep saying that it is dangerous out there for their daughters, so they build up the habit for their daughters to contact them more. Results from paired sample t-tests showed that the undergraduates agreed that talking to mother on the phone had more satisfaction, felt more intimacy and supported than fathers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=family%20ICT%20communication" title="family ICT communication">family ICT communication</a>, <a href="https://publications.waset.org/abstracts/search?q=parent-child%20ICT%20communication" title=" parent-child ICT communication"> parent-child ICT communication</a>, <a href="https://publications.waset.org/abstracts/search?q=FACEBOOK%20and%20LINE" title=" FACEBOOK and LINE"> FACEBOOK and LINE</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20differences" title=" gender differences"> gender differences</a> </p> <a href="https://publications.waset.org/abstracts/79540/parents-children-communication-in-college" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4609</span> Eye Contact Seen from Autism: A Descriptive Qualitative Multicenter Study into Visions and Experiences with Regard to Eye Contact, A Comparison between Adults with and without Autism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%20Boer">Jos Boer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nynke%20Boonstra"> Nynke Boonstra</a>, <a href="https://publications.waset.org/abstracts/search?q=Bram%20Sizoo"> Bram Sizoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20Kuipers"> Sonja Kuipers</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Vuijk"> Richard Vuijk</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Kronenberg"> Linda Kronenberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Eye contact in autism is said to be different than in all other populations worldwide. But despite decades of research on the nature of eye contact in autism, no definitive conclusions can be made. This while more understanding of this phenomenon could help overcome social problems that arise from atypical eye contact. One of the reasons for this lack of understanding could be that the visions and experiences of people with autism are barely taken into account. Aim: Aim is to compare visions and experiences related to eye contact in adults with and without autism in the Netherlands. Method: A descriptive qualitative multicenter study with the use of semi-structured interviews and thematic analysis. N=15 adults with autism who are getting treatment at different mental health institutions in the Netherlands (region of Zwolle, Rotterdam and Amsterdam) and N=15 adults without autism living all across the Netherlands. Adults with and without autism were matched based on characteristics: nationality, sex, age, educational degree and living situation. Results: Data analysis is almost complete. Preliminary conclusions that can be drawn are that adults with and without autism indeed have different opinions about what eye contact is and how it should be handled. Adults with and without autism also experience eye contact differently. The article is expected to be published early in 2025, after which the views and experiences of adults with and without autism can be explained in more detail. Implications for practice: Insight into the nature of eye contact in autism provides more guidance on how this can best be dealt with in the future. This makes it easier to work towards fewer problems in social interactions as a result of atypical eye contact in this population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20contact" title=" eye contact"> eye contact</a>, <a href="https://publications.waset.org/abstracts/search?q=experience" title=" experience"> experience</a>, <a href="https://publications.waset.org/abstracts/search?q=non-verbal" title=" non-verbal"> non-verbal</a> </p> <a href="https://publications.waset.org/abstracts/193160/eye-contact-seen-from-autism-a-descriptive-qualitative-multicenter-study-into-visions-and-experiences-with-regard-to-eye-contact-a-comparison-between-adults-with-and-without-autism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4608</span> Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Assefi">Mehdi Assefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Keihan%20Hataminezhad"> Keihan Hataminezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20ad-hoc%20networks" title="wireless ad-hoc networks">wireless ad-hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20selection" title=" contact selection"> contact selection</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20for%20CARD" title=" method for CARD"> method for CARD</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficient" title=" energy-efficient"> energy-efficient</a> </p> <a href="https://publications.waset.org/abstracts/4374/energy-efficient-contact-selection-method-for-card-in-wireless-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4607</span> Flame Dynamics in Small Scale Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mahmoud%20Osman%20Ahmed">Mohammed Mahmoud Osman Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Mohammad"> Akram Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flame dynamics in heated quartz glass channels of various aspect ratios (2,5,10,15) were experimentally investigated. A premixed Propane-air mixture was used for the reported experiments. Regarding micro-combustion, flame quenching is considered to be the most crucial problem to overcome first. Experiments were carried out on four channels with different aspect ratios. The results show that at a very low equivalence ratio ϕ=0.4, there is no flame inside the channels. The FREI condition (Flame with repetitive extinction and ignition) was overcome by increasing velocity and by making the channels more in contact with the external heater. The flame tested inside the channels at different locations for V=0.3 m/s or higher below V=0.65 m/s. The effects of equivalence ratio and flow velocity on the characteristics of combustion in the channels were examined. Different ways of flame propagation were observed in the current investigations based on how they appear as planar, concave and convex flames. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20stabilization" title="flame stabilization">flame stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20dynamics" title=" flame dynamics"> flame dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20channels" title=" small-scale channels"> small-scale channels</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20heater" title=" external heater"> external heater</a> </p> <a href="https://publications.waset.org/abstracts/166106/flame-dynamics-in-small-scale-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4606</span> Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20He">Chang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Tamura"> Hiroshi Tamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Katsuchi"> Hiroshi Katsuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaqi%20Wang"> Jiaqi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bolt%20joints" title="bolt joints">bolt joints</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20coefficient" title=" slip coefficient"> slip coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution" title=" Weibull distribution"> Weibull distribution</a> </p> <a href="https://publications.waset.org/abstracts/153579/slip-limit-prediction-of-high-strength-bolt-joints-based-on-local-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4605</span> A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsukasa%20Ogawa">Tsukasa Ogawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuhiro%20Okayasu"> Mitsuhiro Okayasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20generation" title="electric power generation">electric power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20ceramic" title=" piezoelectric ceramic"> piezoelectric ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20zirconate%20titanate%20ceramic" title=" lead zirconate titanate ceramic"> lead zirconate titanate ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20conditions" title=" loading conditions"> loading conditions</a> </p> <a href="https://publications.waset.org/abstracts/107843/a-study-of-electric-generation-characteristics-for-thin-film-piezoelectric-pbzrtio3-ceramic-plate-during-the-static-and-cyclic-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4604</span> Simulation the Stress Distribution of Wheel/Rail at Contact Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norie%20A.%20Akeel">Norie A. Akeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sajuri"> Z. Sajuri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Ariffin"> A. K. Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact" title=" rolling contact"> rolling contact</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20track" title=" rail track"> rail track</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life "> fatigue life </a> </p> <a href="https://publications.waset.org/abstracts/24766/simulation-the-stress-distribution-of-wheelrail-at-contact-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4603</span> Annealing of the Contact between Graphene and Metal: Electrical and Raman Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sakavi%C4%8Dius">A. Sakavičius</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Luk%C5%A1a"> A. Lukša</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nargelien%C4%97"> V. Nargelienė</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bukauskas"> V. Bukauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Astromskas"> G. Astromskas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C5%A0etkus"> A. Šetkus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Au%2FGraphene%20contacts" title="Au/Graphene contacts">Au/Graphene contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20force%20probe%20microscopy" title=" Kelvin force probe microscopy"> Kelvin force probe microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=NiC%2FGraphene%20contacts" title=" NiC/Graphene contacts"> NiC/Graphene contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2FGraphene%20contacts" title=" Ni/Graphene contacts"> Ni/Graphene contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/67751/annealing-of-the-contact-between-graphene-and-metal-electrical-and-raman-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4602</span> Majority through the Eyes of Minority: The Role of Social Norms in the Link between Intergroup Contact and Attitudes of the Roma toward Majority Society</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Koky">Roman Koky</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvie%20Graf"> Sylvie Graf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between the Roma and members of the majority is tense across Europe due to the fact that the Roma people are the most stigmatized minorities. Studies show that Roma is discriminated against on all levels of society. Improving intergroup relations between the Roma and members of the majority (i.e., non-Roma) is thus one of the most pressing issues of social psychological research. Intergroup contact theory is one of the most effective strategies for improving intergroup relations. However, current research has some limitations, such as the fact that most researchers focus primarily on the perspective of the majority, while the perspective of minorities (e.g., the Roma) is largely missing. Due to the persisting segregation of Roma, and thus the lack of opportunities for direct intergroup contact between the Roma and the majority, using direct intergroup contact as an intervention to reduce prejudice is difficult. In this research, we, therefore, focused on the effect of indirect forms of intergroup contact, particularly extended contact (i.e., experiences with outgroup members shared by fellow ingroup members such as friends or family). Extended contact functions as a descriptive social norm that informs about the actual amount of contact in one’s environment. In a group of Czech Roma (N = 226), the descriptive social norm was associated with ingroup injunctive social norm (e.g., the perceived support of intergroup contact with non-Roma by fellow ingroup members) and lower amount of prejudice toward the non-Roma. We discuss the findings with respect to possibilities to improve the relations between Roma and members of the majority across Europe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intergroup%20contact" title="intergroup contact">intergroup contact</a>, <a href="https://publications.waset.org/abstracts/search?q=prejudice" title=" prejudice"> prejudice</a>, <a href="https://publications.waset.org/abstracts/search?q=majority" title=" majority"> majority</a>, <a href="https://publications.waset.org/abstracts/search?q=minority" title=" minority"> minority</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20norms" title=" social norms"> social norms</a> </p> <a href="https://publications.waset.org/abstracts/163496/majority-through-the-eyes-of-minority-the-role-of-social-norms-in-the-link-between-intergroup-contact-and-attitudes-of-the-roma-toward-majority-society" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4601</span> A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johns%20Paul">Johns Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20J.%20Nalluveettil"> Santhosh J. Nalluveettil</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Purushothaman"> P. Purushothaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Premdas"> M. Premdas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title="honeycomb">honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20leg%20tripod" title=" landing leg tripod"> landing leg tripod</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20link" title=" primary link"> primary link</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20link" title=" secondary link"> secondary link</a> </p> <a href="https://publications.waset.org/abstracts/37327/a-mathematical-model-for-studying-landing-dynamics-of-a-typical-lunar-soft-lander" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=154">154</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=155">155</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contact%20dynamics&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>