CINXE.COM
Search results for: millimeter wave frequencies
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: millimeter wave frequencies</title> <meta name="description" content="Search results for: millimeter wave frequencies"> <meta name="keywords" content="millimeter wave frequencies"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="millimeter wave frequencies" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="millimeter wave frequencies"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2230</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: millimeter wave frequencies</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2230</span> Dual Band Shared Aperture Antenna for 5G Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zunnurain%20Ahmad">Zunnurain Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents design of a dual band antenna for the 5G communications in the millimeter wave band. As opposed to conventional patch antennas which are limited to single narrow band operation a shared aperture concept is utilized for this antenna. The patch aperture is coupled through two rectangular slots etched on a thin printed circuit board (100渭m). The patch is elevated in air thus avoiding excitation of surface waves and minimizing dielectric losses at millimeter wave frequencies. With this approach the radiator can cover lower band of 28 GHz and upper band of 37/ 39 GHz dedicated for the fifth generation communications. The simulated radiation efficiency of the antenna stays above 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave" title=" millimeter wave"> millimeter wave</a>, <a href="https://publications.waset.org/abstracts/search?q=5G" title=" 5G"> 5G</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/184487/dual-band-shared-aperture-antenna-for-5g-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2229</span> Substrate Coupling in Millimeter Wave Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Gerakis">Vasileios Gerakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fontounasios%20Christos"> Fontounasios Christos</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkis%20Hatzopoulos"> Alkis Hatzopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guard%20rings" title="guard rings">guard rings</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pad%20coupling" title=" metal pad coupling"> metal pad coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies" title=" millimeter wave frequencies"> millimeter wave frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20noise" title=" substrate noise"> substrate noise</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/26875/substrate-coupling-in-millimeter-wave-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2228</span> Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Wang">Chao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuxue%20Xia"> Zuxue Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhai%20Xia"> Wenhai Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang"> Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiayuan%20Hu"> Jiayuan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Cheng"> Rui Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20radar" title=" millimeter wave radar"> millimeter wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IWR1443%20sensor" title=" IWR1443 sensor"> IWR1443 sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud%20imaging" title=" point cloud imaging"> point cloud imaging</a> </p> <a href="https://publications.waset.org/abstracts/155483/three-dimensional-positioning-method-of-indoor-personnel-based-on-millimeter-wave-radar-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2227</span> Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subal%20Kar">Subal Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuja%20Ghosh"> Madhuja Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumik%20Das"> Soumik Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Antara%20Saha"> Antara Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FM%20sideband%20injection%20locking" title="FM sideband injection locking">FM sideband injection locking</a>, <a href="https://publications.waset.org/abstracts/search?q=master-slave%20injection%20locking" title=" master-slave injection locking"> master-slave injection locking</a>, <a href="https://publications.waset.org/abstracts/search?q=millimetre-wave%20signal%20generation" title=" millimetre-wave signal generation"> millimetre-wave signal generation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20heterodyning" title=" optical heterodyning"> optical heterodyning</a> </p> <a href="https://publications.waset.org/abstracts/9221/optical-heterodyning-of-injection-locked-laser-sources-a-novel-technique-for-millimeter-wave-signal-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2226</span> Ankh Key Broadband Array Antenna for 5G Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20M.%20Rashad">Noha M. Rashad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Swelam"> W. Swelam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Abd%20ElAzeem"> M. H. Abd ElAzeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G%20technology" title="5G technology">5G technology</a>, <a href="https://publications.waset.org/abstracts/search?q=array%20antenna" title=" array antenna"> array antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip" title=" microstrip"> microstrip</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave" title=" millimeter wave"> millimeter wave</a> </p> <a href="https://publications.waset.org/abstracts/65647/ankh-key-broadband-array-antenna-for-5g-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2225</span> Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokihiko%20Akita">Tokihiko Akita</a>, <a href="https://publications.waset.org/abstracts/search?q=Seiichi%20Mita"> Seiichi Mita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave%20radar" title="millimeter-wave radar">millimeter-wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20classification" title=" object classification"> object classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a> </p> <a href="https://publications.waset.org/abstracts/164634/accuracy-improvement-of-traffic-participant-classification-using-millimeter-wave-radar-by-leveraging-simulator-based-on-domain-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2224</span> Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najib%20Al-Fadhali">Najib Al-Fadhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Majid"> Huda Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-wideband" title="ultra-wideband">ultra-wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-band" title=" Q-band"> Q-band</a>, <a href="https://publications.waset.org/abstracts/search?q=SIW" title=" SIW"> SIW</a>, <a href="https://publications.waset.org/abstracts/search?q=mm-wave" title=" mm-wave"> mm-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20communications" title=" satellite communications"> satellite communications</a> </p> <a href="https://publications.waset.org/abstracts/145799/ultra-wideband-45-50-ghz-mm-wave-substrate-integrated-waveguide-cavity-slots-antenna-for-future-satellite-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2223</span> Millimeter Wave Antenna for 5G Mobile Communications Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hind%20Mestouri">Hind Mestouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study and simulation of a millimeter wave antenna for 5G mobile communication systems is the topic of this paper. We present at the beginning the general aspects of the 5G technology. We recall the objectives of the 5G standard, its architecture, and the parameters that characterize it. The proposed antenna model is designed using the CST Microwave Studio simulation software. Numerous methods are used at all steps of the design procedures, such as theoretical calculation of parameters, declaration of parameter values, and evaluation of the antenna through the obtained results. Initially, we were interested in the design of an antenna array at the 10 GHz frequency. Afterward, we also simulated and presented an antenna array at 2.5 GHz. For each antenna designed, a parametric study was conducted to understand and highlight the role and effects of the various parameters in order to optimize them and achieve a final efficient structure. The obtained results using CST Microwave Studio showed that the characteristics of the designed antennas (bandwidth, gain, radiation pattern) satisfy the specifications of 5G mobile communications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G" title="5G">5G</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title=" antenna array"> antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave" title=" millimeter wave"> millimeter wave</a>, <a href="https://publications.waset.org/abstracts/search?q=10%20GHz" title=" 10 GHz"> 10 GHz</a>, <a href="https://publications.waset.org/abstracts/search?q=CST%20Microwave%20Studio" title=" CST Microwave Studio"> CST Microwave Studio</a> </p> <a href="https://publications.waset.org/abstracts/159389/millimeter-wave-antenna-for-5g-mobile-communications-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2222</span> Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Abata">Maryam Abata</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulhime%20El%20Bekkali"> Moulhime El Bekkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mazer"> Said Mazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Algani"> Catherine Algani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Mehdi"> Mahmoud Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15渭m pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mm-wave%20band" title="Mm-wave band">Mm-wave band</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20oscillator" title=" local oscillator"> local oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrupler" title=" frequency quadrupler"> frequency quadrupler</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20amplifier" title=" buffer amplifier"> buffer amplifier</a> </p> <a href="https://publications.waset.org/abstracts/26079/design-of-a-phemt-buffer-amplifier-in-mm-wave-band-around-60-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2221</span> Dielectric Thickness Modulation Based Optically Transparent Leaky Wave Antenna Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Ali%20Khan">Waqar Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A leaky-wave antenna design is proposed which is based on the realization of a certain kind of surface impedance profile that allows the existence of a perturbed surface wave (fast wave) that radiates. The antenna is realized by using optically transparent material Plexiglas. Plexiglas behaves as a dielectric at radio frequencies and is transparent at optical frequencies. In order to have a ground plane for the microwave frequencies, metal strips are used parallel to the E field of the operating mode. The microwave wavelength chosen is large enough such that it does not resolve the metal strip ground plane and sees it to be a uniform ground plane. While, at optical frequencies, the metal strips do have some shadowing effect. However still, about 62% of optical power can be transmitted through the antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Plexiglass" title="Plexiglass">Plexiglass</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-wave" title=" surface-wave"> surface-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20transparent" title=" optically transparent"> optically transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20strip" title=" metal strip"> metal strip</a> </p> <a href="https://publications.waset.org/abstracts/143364/dielectric-thickness-modulation-based-optically-transparent-leaky-wave-antenna-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2220</span> Impairments Correction of Six-Port Based Millimeter-Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ohev%20Zion">Dan Ohev Zion</a>, <a href="https://publications.waset.org/abstracts/search?q=Alon%20Cohen"> Alon Cohen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=FMCW%20Radar" title=" FMCW Radar"> FMCW Radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IQ%20mismatch" title=" IQ mismatch"> IQ mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20port" title=" six port"> six port</a> </p> <a href="https://publications.waset.org/abstracts/117510/impairments-correction-of-six-port-based-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2219</span> Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bakry"> Ahmed Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title="semiconductor laser">semiconductor laser</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation" title=" modulation"> modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20distortion" title=" harmonic distortion"> harmonic distortion</a> </p> <a href="https://publications.waset.org/abstracts/10588/application-of-strong-optical-feedback-to-enhance-the-modulation-bandwidth-of-semiconductor-lasers-to-the-millimeter-wave-band" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">747</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2218</span> Millimeter-Wave Silicon Power Amplifiers for 5G Wireless Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoungwoon%20Kim">Kyoungwoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuong%20Huynh"> Cuong Huynh</a>, <a href="https://publications.waset.org/abstracts/search?q=Cam%20Nguyen"> Cam Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exploding demands for more data, faster data transmission speed, less interference, more users, more wireless devices, and better reliable service-far exceeding those provided in the current mobile communications networks in the RF spectrum below 6 GHz-has led the wireless communication industry to focus on higher, previously unallocated spectrums. High frequencies in RF spectrum near (around 28 GHz) or within the millimeter-wave regime is the logical solution to meet these demands. This high-frequency RF spectrum is of increasingly important for wireless communications due to its large available bandwidths that facilitate various applications requiring large-data high-speed transmissions, reaching up to multi-gigabit per second, of vast information. It also resolves the traffic congestion problems of signals from many wireless devices operating in the current RF spectrum (below 6 GHz), hence handling more traffic. Consequently, the wireless communication industries are moving towards 5G (fifth generation) for next-generation communications such as mobile phones, autonomous vehicles, virtual reality, and the Internet of Things (IoT). The U.S. Federal Communications Commission (FCC) proved on 14th July 2016 three frequency bands for 5G around 28, 37 and 39 GHz. We present some silicon-based RFIC power amplifiers (PA) for possible implementation for 5G wireless communications around 28, 37 and 39 GHz. The 16.5-28 GHz PA exhibits measured gain of more than 34.5 dB and very flat output power of 19.4卤1.2 dBm across 16.5-28 GHz. The 25.5/37-GHz PA exhibits gain of 21.4 and 17 dB, and maximum output power of 16 and 13 dBm at 25.5 and 37 GHz, respectively, in the single-band mode. In the dual-band mode, the maximum output power is 13 and 9.5 dBm at 25.5 and 37 GHz, respectively. The 10-19/23-29/33-40 GHz PA has maximum output powers of 15, 13.3, and 13.8 dBm at 15, 25, and 35 GHz, respectively, in the single-band mode. When this PA is operated in dual-band mode, it has maximum output powers of 11.4/8.2 dBm at 15/25 GHz, 13.3/3 dBm at 15/35 GHz, and 8.7/6.7 dBm at 25/35 GHz. In the tri-band mode, it exhibits 8.8/5.4/3.8 dBm maximum output power at 15/25/35 GHz. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Microwaves" title="Microwaves">Microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Millimeter%20waves" title=" Millimeter waves"> Millimeter waves</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20Amplifier" title=" Power Amplifier"> Power Amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=Wireless%20communications" title=" Wireless communications"> Wireless communications</a> </p> <a href="https://publications.waset.org/abstracts/78898/millimeter-wave-silicon-power-amplifiers-for-5g-wireless-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2217</span> Octagon Shaped Wearable Antenna for Band at 4GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khazini">M. Khazini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Damou"> M.Damou</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Souar"> Z. Souar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, octagon antenna ultra wideband (UWB) low band wearable antenna designs have been proposed for in-body to on-body communication channel of wireless. Single element antenna, dual elements, are designed and compared in free space and in body proximity. Conformal design has been focused. Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband" title="ultra wideband">ultra wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20antenna" title=" wearable antenna"> wearable antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20antenna" title=" slot antenna"> slot antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal%20polymer%20%28LCP%29" title=" liquid crystal polymer (LCP)"> liquid crystal polymer (LCP)</a>, <a href="https://publications.waset.org/abstracts/search?q=CST%20studio" title=" CST studio"> CST studio</a> </p> <a href="https://publications.waset.org/abstracts/43758/octagon-shaped-wearable-antenna-for-band-at-4ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2216</span> Design and Implementation of Wave-Pipelined Circuit Using Reconfigurable Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adhinarayanan%20Venkatasubramanian">Adhinarayanan Venkatasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For design of high speed digital circuit wave pipeline is the best approach this can be operated at higher operating frequencies by adjusting clock periods and skews so as latch the o/p of combinational logic circuit at the stable period. In this paper, there are two methods are proposed in automation task one is BIST (Built in self test) and second method is Reconfigurable technique. For the above two approaches dedicated AND gate (multiplier) by applying wave pipeline technique. BIST approach is implemented by Xilinx Spartan-II device. In reconfigurable technique done by ASIC. From the results, wave pipeline circuits are faster than nonpipeline circuit and area, power dissipation are reduced by reconfigurable technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOC" title="SOC">SOC</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-pipelining" title=" wave-pipelining"> wave-pipelining</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=self-testing" title=" self-testing"> self-testing</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=ASIC" title=" ASIC"> ASIC</a> </p> <a href="https://publications.waset.org/abstracts/15244/design-and-implementation-of-wave-pipelined-circuit-using-reconfigurable-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2215</span> Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzong-Ying%20Hao">Tzong-Ying Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20T.%20Rahmani"> Mohammad T. Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chile%20earthquake" title="Chile earthquake">Chile earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20response" title=" earthquake response"> earthquake response</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20response" title=" impulse response"> impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20shear%20beam" title=" layered shear beam"> layered shear beam</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Torre%20Central%20building" title=" Torre Central building"> Torre Central building</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20method" title=" wave method"> wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20travel%20time" title=" wave travel time"> wave travel time</a> </p> <a href="https://publications.waset.org/abstracts/26369/structural-health-monitoring-of-the-9-story-torre-central-building-using-recorded-data-and-wave-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2214</span> Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Gao">Ting Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingyue%20He"> Mingyue He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20intelligent%20surface" title=" reconfigurable intelligent surface"> reconfigurable intelligent surface</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/148896/channel-estimation-using-deep-learning-for-reconfigurable-intelligent-surfaces-assisted-millimeter-wave-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2213</span> RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zixian%20Zhang">Zixian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanliang%20Yao"> Shanliang Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zile%20Huang"> Zile Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaodong%20Wu"> Zhaodong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Zhu"> Xiaohui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yue"> Yong Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieming%20Ma"> Jieming Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inland%20waterways" title="inland waterways">inland waterways</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLO" title=" YOLO"> YOLO</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=self-attention" title=" self-attention"> self-attention</a> </p> <a href="https://publications.waset.org/abstracts/164399/rv-yolox-object-detection-on-inland-waterways-based-on-optimized-yolox-through-fusion-of-vision-and-31d-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2212</span> Magnetic and Optical Properties of Quaternary GaFeMnN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Benstaali"> W.Benstaali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title="optical properties">optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Spintronic" title=" Spintronic"> Spintronic</a>, <a href="https://publications.waset.org/abstracts/search?q=wave" title=" wave "> wave </a> </p> <a href="https://publications.waset.org/abstracts/19957/magnetic-and-optical-properties-of-quaternary-gafemnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2211</span> Using Coupled Oscillators for Implementing Frequency Diverse Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hasheminasab">Maryam Hasheminasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Cheldavi"> Ahmed Cheldavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Kishk"> Ahmed Kishk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle-changing%20rate" title="angle-changing rate">angle-changing rate</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20scanning%20beam" title=" auto scanning beam"> auto scanning beam</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-in%20range" title=" pull-in range"> pull-in range</a>, <a href="https://publications.waset.org/abstracts/search?q=hold-in%20range" title=" hold-in range"> hold-in range</a>, <a href="https://publications.waset.org/abstracts/search?q=locking%20range" title=" locking range"> locking range</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locked%20state" title=" mode locked state"> mode locked state</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20locked%20state" title=" frequency locked state"> frequency locked state</a> </p> <a href="https://publications.waset.org/abstracts/167866/using-coupled-oscillators-for-implementing-frequency-diverse-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2210</span> Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang">Linyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingjun%20Zhu"> Mingjun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang"> Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Jiang"> Hanyu Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mmWave" title="mmWave">mmWave</a>, <a href="https://publications.waset.org/abstracts/search?q=massive%20MIMO" title=" massive MIMO"> massive MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20precoding" title=" hybrid precoding"> hybrid precoding</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decompositing" title=" singular value decompositing"> singular value decompositing</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20channel" title=" equivalent channel"> equivalent channel</a> </p> <a href="https://publications.waset.org/abstracts/156149/digital-joint-equivalent-channel-hybrid-precoding-for-millimeterwave-massive-multiple-input-multiple-output-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2209</span> Energy Content and Spectral Energy Representation of Wave Propagation in a Granular Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Shrivastava">Rohit Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Luding"> Stefan Luding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder. For obtaining macroscopic/continuum properties, ensemble averaging has been used. Interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder leads to faster attenuation of the signal and decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies also increases. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits diffusive like propagation, which eventually becomes localized at long periods of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20elements" title="discrete elements">discrete elements</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20attenuation" title=" energy attenuation"> energy attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20disorder" title=" mass disorder"> mass disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20chain" title=" granular chain"> granular chain</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20energy" title=" spectral energy"> spectral energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/68891/energy-content-and-spectral-energy-representation-of-wave-propagation-in-a-granular-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2208</span> Noninvasive Technique for Measurement of Heartbeat in Zebrafish Embryos Exposed to Electromagnetic Fields at 27 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ignoto">Sara Ignoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20M.%20Scalisi"> Elena M. Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Sica"> Carmen Sica</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Contino"> Martina Contino</a>, <a href="https://publications.waset.org/abstracts/search?q=Greta%20Ferruggia"> Greta Ferruggia</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Salvaggio"> Antonio Salvaggio</a>, <a href="https://publications.waset.org/abstracts/search?q=Santi%20C.%20Pavone"> Santi C. Pavone</a>, <a href="https://publications.waset.org/abstracts/search?q=Gino%20Sorbello"> Gino Sorbello</a>, <a href="https://publications.waset.org/abstracts/search?q=Loreto%20Di%20Donato"> Loreto Di Donato</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Pecoraro"> Roberta Pecoraro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Brundo"> Maria V. Brundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new fifth generation technology (5G), which should favor high data-rate connections (1Gbps) and latency times lower than the current ones (<1ms), has the characteristic of working on different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus also exploiting higher frequencies than previous mobile radio generations (1G-4G). The higher frequency waves, however, have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern in recent years about the possible harmful effects on human health and several studies were published using several animal models. This study aimed to observe the possible short-term effects induced by 5G-millimeter waves on heartbeat of early life stages of Danio rerio using DanioScope software (Noldus). DanioScope is the complete toolbox for measurements on zebrafish embryos and larvae. The effect of substances can be measured on the developing zebrafish embryo by a range of parameters: earliest activity of the embryo鈥檚 tail, activity of the developing heart, speed of blood flowing through the vein, length and diameters of body parts. Activity measurements, cardiovascular data, blood flow data and morphometric parameters can be combined in one single tool. Obtained data are elaborate and provided by the software both numerical as well as graphical. The experiments were performed at 27 GHz by a no commercial high gain pyramidal horn antenna. According to OECD guidelines, exposure to 5G-millimeter waves was tested by fish embryo toxicity test within 96 hours post fertilization, Observations were recorded every 24h, until the end of the short-term test (96h). The results have showed an increase of heartbeat rate on exposed embryos at 48h hpf than control group, but this increase has not been shown at 72-96 h hpf. Nowadays, there is a scant of literature data about this topic, so these results could be useful to approach new studies and also to evaluate potential cardiotoxic effects of mobile radiofrequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danio%20rerio" title="Danio rerio">Danio rerio</a>, <a href="https://publications.waset.org/abstracts/search?q=DanioScope" title=" DanioScope"> DanioScope</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiotoxicity" title=" cardiotoxicity"> cardiotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20waves." title=" millimeter waves."> millimeter waves.</a> </p> <a href="https://publications.waset.org/abstracts/144206/noninvasive-technique-for-measurement-of-heartbeat-in-zebrafish-embryos-exposed-to-electromagnetic-fields-at-27-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2207</span> Lattice Dynamics of (ND4Br)x(KBr)1-x Mixed Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Tiwari">Alpana Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Gaur"> N. K. Gaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). The dynamical matrix of ETSM has been applied to compute the phonon frequencies of orientationally disordered mixed crystal (ND4Br)x(KBr)1-x in (q00), (qq0) and (qqq) symmetry directions for compositions 0.10≤x≤0.50 at T=300K.These frequencies are plotted as a function of wave vector k. An unusual acoustic mode softening is found along symmetry directions (q00) and (qq0) as a result of translation-rotation coupling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orientational%20glass" title="orientational glass">orientational glass</a>, <a href="https://publications.waset.org/abstracts/search?q=phonons" title=" phonons"> phonons</a>, <a href="https://publications.waset.org/abstracts/search?q=TR-coupling" title=" TR-coupling"> TR-coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20dynamics" title=" lattice dynamics"> lattice dynamics</a> </p> <a href="https://publications.waset.org/abstracts/6479/lattice-dynamics-of-nd4brxkbr1-x-mixed-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2206</span> Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameni%20Mejri">Ameni Mejri</a>, <a href="https://publications.waset.org/abstracts/search?q=Moufida%20Hajjaj"> Moufida Hajjaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Hasnaoui"> Salem Hasnaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternating%20minimization" title="alternating minimization">alternating minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20precoding" title=" hybrid precoding"> hybrid precoding</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20hard%20thresholding" title=" iterative hard thresholding"> iterative hard thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=low-complexity" title=" low-complexity"> low-complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20communication" title=" millimeter wave communication"> millimeter wave communication</a>, <a href="https://publications.waset.org/abstracts/search?q=partially-connected%20structure" title=" partially-connected structure"> partially-connected structure</a> </p> <a href="https://publications.waset.org/abstracts/66477/hybrid-precoder-design-based-on-iterative-hard-thresholding-algorithm-for-millimeter-wave-multiple-input-multiple-output-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2205</span> Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedrak%20Vardanyan">Sedrak Vardanyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20vibrational%20frequencies" title="bending vibrational frequencies">bending vibrational frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20space%20treatment" title=" exact space treatment"> exact space treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibrations" title=" free vibrations"> free vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20cylindrical%20shells" title=" magnetic cylindrical shells"> magnetic cylindrical shells</a> </p> <a href="https://publications.waset.org/abstracts/65224/vibrational-behavior-of-cylindrical-shells-in-axial-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2204</span> Lamb Waves Propagation in Elastic-Viscoelastic Three-Layer Adhesive Joints </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pezhman%20Taghipour%20Birgani">Pezhman Taghipour Birgani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Shekarzadeh"> Mehdi Shekarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the propagation of lamb waves in three-layer joints is investigated using global matrix method. Theoretical boundary value problem in three-layer adhesive joints with perfect bond and traction free boundary conditions on their outer surfaces is solved to find a combination of frequencies and modes with the lowest attenuation. The characteristic equation is derived by applying continuity and boundary conditions in three-layer joints using global matrix method. Attenuation and phase velocity dispersion curves are obtained with numerical solution of this equation by a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results of the characteristic equation, wave structure curves are plotted for a special mode in two different frequencies in the adhesive joint. The purpose of present paper is to find a combination of frequencies and modes with minimum attenuation in high and low frequencies. These frequencies and modes are recognizable by transducers in inspections with Lamb waves because of low attenuation level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-layer%20adhesive%20joints" title="three-layer adhesive joints">three-layer adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title=" lamb waves"> lamb waves</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20matrix%20method" title=" global matrix method"> global matrix method</a> </p> <a href="https://publications.waset.org/abstracts/33259/lamb-waves-propagation-in-elastic-viscoelastic-three-layer-adhesive-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2203</span> Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20U.%20Rahman">F. U. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Zhang"> R. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green鈥檚 function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green鈥檚 function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title="Green鈥檚 function">Green鈥檚 function</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20atom" title=" hydrogen atom"> hydrogen atom</a>, <a href="https://publications.waset.org/abstracts/search?q=Lippmann%20Schwinger%20equation" title=" Lippmann Schwinger equation"> Lippmann Schwinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave" title=" radial wave"> radial wave</a> </p> <a href="https://publications.waset.org/abstracts/42682/solution-of-the-nonrelativistic-radial-wave-equation-of-hydrogen-atom-using-the-greens-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2202</span> Investigation of Stoneley Waves in Multilayered Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Lu"> Tong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qiang"> Lei Qiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20equation" title="characteristic equation">characteristic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20waves" title=" interface waves"> interface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves" title=" Stoneley waves"> Stoneley waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20structure" title=" wave structure"> wave structure</a> </p> <a href="https://publications.waset.org/abstracts/45214/investigation-of-stoneley-waves-in-multilayered-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2201</span> Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingchen%20Yang">Yingchen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20rotation" title="unidirectional rotation">unidirectional rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20rotor" title=" vertical axis rotor"> vertical axis rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20conversion" title=" wave energy conversion"> wave energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-rotor%20interaction" title=" wave-rotor interaction"> wave-rotor interaction</a> </p> <a href="https://publications.waset.org/abstracts/121733/effect-of-blade-layout-on-unidirectional-rotation-of-a-vertical-axis-rotor-in-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=74">74</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>