CINXE.COM
Search results for: uniform flow
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: uniform flow</title> <meta name="description" content="Search results for: uniform flow"> <meta name="keywords" content="uniform flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="uniform flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="uniform flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5503</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: uniform flow</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5503</span> Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghenaim">A. Ghenaim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Terfous"> A. Terfous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluvial%20beds" title="fluvial beds">fluvial beds</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20flow%20conditions" title=" uniform flow conditions"> uniform flow conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium%20condition" title=" nonequilibrium condition"> nonequilibrium condition</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20disposition" title=" sediment disposition"> sediment disposition</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a> </p> <a href="https://publications.waset.org/abstracts/156505/experimental-study-of-the-modifications-of-the-bed-of-a-river-under-extreme-flow-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5502</span> Oxygenation in Turbulent Flows over Block Ramps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thendiyath%20Roshni">Thendiyath Roshni</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Pagliara"> Stefano Pagliara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20ramps" title=" block ramps"> block ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygenation" title=" oxygenation"> oxygenation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a> </p> <a href="https://publications.waset.org/abstracts/98618/oxygenation-in-turbulent-flows-over-block-ramps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5501</span> MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Yan">Yue Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20duct" title="curved duct">curved duct</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20channel%20insert" title=" flow channel insert"> flow channel insert</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-metal" title=" liquid-metal"> liquid-metal</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a> </p> <a href="https://publications.waset.org/abstracts/25447/mhd-flow-in-a-curved-duct-with-fci-under-a-uniform-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5500</span> Numerical Solution of Manning's Equation in Rectangular Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20design" title="channel design">channel design</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20engineering" title=" hydraulic engineering"> hydraulic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Manning%27s%20equation" title=" Manning's equation"> Manning's equation</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20depth" title=" normal depth"> normal depth</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20flow" title=" uniform flow"> uniform flow</a> </p> <a href="https://publications.waset.org/abstracts/72618/numerical-solution-of-mannings-equation-in-rectangular-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5499</span> Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20W.%20Lawal">O. W. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20Ahmed"> L. O. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Ali"> Y. K. Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20decaying%20pressure%20gradient" title="exponential decaying pressure gradient">exponential decaying pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20flow" title=" Poiseuille flow"> Poiseuille flow</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20grade%20fluid" title=" third grade fluid"> third grade fluid</a> </p> <a href="https://publications.waset.org/abstracts/30709/effect-of-magnetic-field-on-unsteady-mhd-poiseuille-flow-of-a-third-grade-fluid-under-exponential-decaying-pressure-gradient-with-ohmic-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5498</span> Computational Study of Passive Scalar Diffusion of a Counterflowing round Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Amamou">Amani Amamou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Round jets have been widely studied due to their important application in industry. Many configurations of round jet were encountered in literature as free jet, co-flow jet, couterflowing jet and cross flow jet. In this paper, we are concerned with turbulent round jet in uniform counterflow stream which is known to enhance mixing and dispersion efficiency owing to flow reversal. This type of flow configuration is a typical application in environmental engineering such as the disposal of wastewater into seas or rivers. A computational study of a turbulent circular jet discharging into a uniform counterflow is conducted in order to investigate the characteristics of the diffusion field of the jet effluent. The investigation is carried out for three different cases of jet-to-current velocity ratios; low, medium and high velocity ratios. The Reynolds Stress Model (RSM) is used in the comparison with available experimental measurements. The decay of the center line velocity and the dynamic proprieties of the flow together with the centerline dilution of the passive scalar and the other characteristics of the concentration field are computationally analyzed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Counterflow%20stream" title="Counterflow stream">Counterflow stream</a>, <a href="https://publications.waset.org/abstracts/search?q=jet" title=" jet"> jet</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/17299/computational-study-of-passive-scalar-diffusion-of-a-counterflowing-round-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5497</span> Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Ki%20Lee">Doo Ki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar"> Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Jae%20Song"> In Jae Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title="pressure drop">pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20mixer" title=" static mixer"> static mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20mixing" title=" turbulent mixing"> turbulent mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformity%20index" title=" uniformity index"> uniformity index</a> </p> <a href="https://publications.waset.org/abstracts/64041/effect-of-swirling-mixer-on-the-exhaust-flow-in-a-diesel-scr-aftertreatment-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">935</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5496</span> Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Amamou">Amani Amamou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bournot"> Philippe Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet" title="jet">jet</a>, <a href="https://publications.waset.org/abstracts/search?q=counterflow" title=" counterflow"> counterflow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20inclination" title=" jet inclination"> jet inclination</a> </p> <a href="https://publications.waset.org/abstracts/42541/numerical-investigation-of-a-slightly-oblique-round-jet-flowing-into-a-uniform-counterflow-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5495</span> Marine Propeller Cavitation Analysis Using BEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Yari">Ehsan Yari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a numerical study of sheet cavitation has been performed on DTMB4119 and E779A marine propellers with the boundary element method. In propeller design, various parameters of geometry and fluid are incorporated. So a program is needed to solve the flow taking the whole parameters changing into account. The capability of analyzing the wetted and cavitation flow around propellers in steady, unsteady, uniform, and non-uniform conditions while decreasing computational time compared to numerical finite volume methods with acceptable precision are the characteristic features of the present method. Moreover, modifying the position of the detachment point and its corresponding potential value has been considered. Numerical results have been validated with experimental data, showing a good conformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=BEM" title=" BEM"> BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=DTMB4119" title=" DTMB4119"> DTMB4119</a>, <a href="https://publications.waset.org/abstracts/search?q=E779A" title=" E779A"> E779A</a> </p> <a href="https://publications.waset.org/abstracts/182003/marine-propeller-cavitation-analysis-using-bem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5494</span> Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdalla">Mohamed Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruixue%20Cheng"> Ruixue Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianyong%20Zhang"> Jianyong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20sensitivity" title="spatial sensitivity">spatial sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20sensor" title=" electrostatic sensor"> electrostatic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20conveying" title=" pneumatic conveying"> pneumatic conveying</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys%20Fluent%20software" title=" Ansys Fluent software"> Ansys Fluent software</a> </p> <a href="https://publications.waset.org/abstracts/12584/improving-the-uniformity-of-electrostatic-meters-spatial-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5493</span> Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin">N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20M.%20Isa"> S. P. M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok"> N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Ali"> F. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title="forced convection">forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Casson%20fluids" title=" Casson fluids"> Casson fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20flat%20plate" title=" moving flat plate"> moving flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/13001/forced-convection-boundary-layer-flow-of-a-casson-fluid-over-a-moving-permeable-flat-plate-beneath-a-uniform-free-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5492</span> Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandari%20Shankar">Bandari Shankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yohannes%20Yirga"> Yohannes Yirga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unsteady" title="unsteady">unsteady</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=manetohydrodynamics" title=" manetohydrodynamics"> manetohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20heat%20source%2Fsink" title=" non-uniform heat source/sink"> non-uniform heat source/sink</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20sheet" title=" stretching sheet"> stretching sheet</a> </p> <a href="https://publications.waset.org/abstracts/3374/unsteady-heat-and-mass-transfer-in-mhd-flow-of-nanofluids-over-stretching-sheet-with-a-non-uniform-heat-sourcesink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5491</span> Simulation of the Flow in Bilayer Coextrusion Dies with Gradually Changing Calibrator Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Gupta">Mahesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal in the design of a die for extrusion of a complex profile is to obtain a uniform velocity at the die exit. If the velocity at the exit of an extrusion die is not uniform, the shape of the extrudate profile can change significantly after the polymer exits the die. To rectify the extrudate distortion caused by non-uniform exit velocity, calibrators and sizers are often installed along the extrudate cooling system. Furthermore, the profile shape in calibrators and sizers is sometimes gradually changed to intentionally deform the extrudate to the required final product shape. This is exploited to simplify extrusion die design, because a relatively simple profile at the die exit can be modified to obtain a more complex profile by deforming it in calibrators or sizers. The gradual change in the shape of calibrator or sizer profiles can also be used to extrude slightly different profiles from the same die. In the present work, a combined flow, thermal and structural analysis is used to accurately predict distortion of extrudate profile after the polymer leaves a die. Simulations of the flow and extrudate deformation in two different bilayer coextrusion dies with gradually changing profile shape in successive calibrators and sizers will be presented. The effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coextrusion" title="coextrusion">coextrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20die%20design" title=" extrusion die design"> extrusion die design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/185818/simulation-of-the-flow-in-bilayer-coextrusion-dies-with-gradually-changing-calibrator-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5490</span> Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Saad">Tahseen Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Halim%20Ceylan"> Halim Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Weaver"> Jonathan Weaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Nuri%20%C3%87elik"> Osman Nuri Çelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Gungor%20Sahin"> Onur Gungor Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20traffic%20control" title="area traffic control">area traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title=" differential evolution"> differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20periodic%20function" title=" sinusoidal periodic function"> sinusoidal periodic function</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20delay" title=" uniform delay"> uniform delay</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20variable" title=" offset variable"> offset variable</a> </p> <a href="https://publications.waset.org/abstracts/154334/offset-dependent-uniform-delay-mathematical-optimization-model-for-signalized-traffic-network-using-differential-evolution-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5489</span> Thermomagnetic Convection of a Ferrofluid in a Non-Uniform Magnetic Field Induced a Current Carrying Wire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Vatani">Ashkan Vatani</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Woodfield"> Peter Woodfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam-Trung%20Nguyen"> Nam-Trung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzung%20Dao"> Dzung Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermomagnetic convection of a ferrofluid flow induced by the non-uniform magnetic field around a current-carrying wire was theoretically analyzed and experimentally tested. To show this phenomenon, the temperature rise of a hot wire, immersed in DIW and Ferrofluid, as a result of joule heating has been measured using a transient hot-wire technique. When current is applied to the wire, a temperature gradient is imposed on the magnetic fluid resulting in non-uniform magnetic susceptibility of the ferrofluid that results in a non-uniform magnetic body force which makes the ferrofluid flow as a bulk suspension. For the case of the wire immersed in DIW, free convection is the only means of cooling, while for the case of ferrofluid a combination of both free convection and thermomagnetic convection is expected to enhance the heat transfer from the wire beyond that of DIW. Experimental results at different temperatures and for a range of constant currents applied to the wire show that thermomagnetic convection becomes effective for the currents higher than 1.5A at all temperatures. It is observed that the onset of thermomagnetic convection is directly proportional to the current applied to the wire and that the thermomagnetic convection happens much faster than the free convection. Calculations show that a 35% enhancement in heat transfer can be expected for the ferrofluid compared to DIW, for a 3A current applied to the wire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling" title="cooling">cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection" title=" thermomagnetic convection"> thermomagnetic convection</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/62634/thermomagnetic-convection-of-a-ferrofluid-in-a-non-uniform-magnetic-field-induced-a-current-carrying-wire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5488</span> A Numerical Study on the Flow in a Pipe with Perforated Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myeong%20Hee%20Jeong">Myeong Hee Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of perforated plate and tubes is common in applications such as vehicle exhaust silencers, attenuators in air moving ducts and duct linings in jet engines. Also, perforated plate flow conditioners designed to improve flow distribution upstream of an orifice plate flow meter typically have 50–60% free area but these generally employ a non-uniform distribution of holes of several sizes to encourage the formation of a fully developed pipe flow velocity distribution. In this study, therefore, numerical investigations on the flow characteristics with the various perforated plates have been performed and then compared to the case without a perforated plate. Three different models are adopted such as a flat perforated plate, a convex perforated plate in the direction of the inlet, and a convex perforated plate in the direction of the outlet. Simulation results show that the pressure drop with and without perforated plates are similar each other. However, it can be found that that the different shaped perforated plates influence the velocity contour, flow uniformity index, and location of the fully developed fluid flow. These results can be used as a practical guide to the best design of pipe with the perforated plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perforated%20plate" title="perforated plate">perforated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20uniformity" title=" flow uniformity"> flow uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20turbulent%20flow" title=" pipe turbulent flow"> pipe turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28Computational%20Fluid%20Dynamics%29" title=" CFD (Computational Fluid Dynamics) "> CFD (Computational Fluid Dynamics) </a> </p> <a href="https://publications.waset.org/abstracts/23752/a-numerical-study-on-the-flow-in-a-pipe-with-perforated-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5487</span> Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20S.%20Ansari">Md. S. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Motsa"> S. S. Motsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20radiation" title=" nonlinear radiation"> nonlinear radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20heat%20source%2Fsink" title=" non-uniform heat source/sink"> non-uniform heat source/sink</a>, <a href="https://publications.waset.org/abstracts/search?q=similar%20solution" title=" similar solution"> similar solution</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20local%20linearisation%20method" title=" spectral local linearisation method"> spectral local linearisation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosseland%20diffusion%20approximation" title=" Rosseland diffusion approximation"> Rosseland diffusion approximation</a> </p> <a href="https://publications.waset.org/abstracts/10974/magnetohydrodynamic-flow-of-viscoelastic-nanofluid-and-heat-transfer-over-a-stretching-surface-with-non-uniform-heat-sourcesink-and-non-linear-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5486</span> Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudassir%20Ghafoor">Mudassir Ghafoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Irsalan%20Arif"> Irsalan Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuaib%20Salamat"> Shuaib Salamat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bump%20intake" title="bump intake">bump intake</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diverter-less%20supersonic%20inlet" title=" diverter-less supersonic inlet"> diverter-less supersonic inlet</a> </p> <a href="https://publications.waset.org/abstracts/62246/flow-field-analysis-of-different-intake-bump-compression-surface-configurations-on-a-supersonic-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5485</span> Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meimei%20Wen">Meimei Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX" title="CFX">CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20metal" title=" liquid metal"> liquid metal</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a> </p> <a href="https://publications.waset.org/abstracts/25429/numerical-analysis-of-liquid-metal-magnetohydrodynamic-flows-in-a-manifold-with-three-sub-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5484</span> CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Abbaszadeh%20Molaei">Esmaeil Abbaszadeh Molaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongyan%20Zhou"> Zongyan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipsoid" title=" ellipsoid"> ellipsoid</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidization" title=" fluidization"> fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=non-spherical" title=" non-spherical"> non-spherical</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/58426/cfd-dem-modelling-of-liquid-fluidizations-of-ellipsoidal-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5483</span> Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengqi%20Zhu">Mengqi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX" title="CFX">CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-metal%20magnetohydrodynamic%20flows" title=" liquid-metal magnetohydrodynamic flows"> liquid-metal magnetohydrodynamic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=misaligned%20duct" title=" misaligned duct"> misaligned duct</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop "> pressure drop </a> </p> <a href="https://publications.waset.org/abstracts/25443/magnetohydrodynamic-flows-in-a-misaligned-duct-under-a-uniform-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5482</span> Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20%C3%87e%C5%9Fme">Murat Çeşme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20research" title="experimental research">experimental research</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20dual%20bridge%20piers" title=" inclined dual bridge piers"> inclined dual bridge piers</a>, <a href="https://publications.waset.org/abstracts/search?q=footing%20safety" title=" footing safety"> footing safety</a>, <a href="https://publications.waset.org/abstracts/search?q=scour%20depth" title=" scour depth"> scour depth</a>, <a href="https://publications.waset.org/abstracts/search?q=clear%20water%20condition" title=" clear water condition"> clear water condition</a> </p> <a href="https://publications.waset.org/abstracts/120060/investigation-of-several-parameters-on-local-scour-around-inclined-dual-bridge-piers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5481</span> Heat Transfer of an Impinging Jet on a Plane Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu">Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flux" title="flux">flux</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20impinging%20jet" title=" free impinging jet"> free impinging jet</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-surface" title=" solid-surface"> solid-surface</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20wall%20temperature" title=" uniform wall temperature"> uniform wall temperature</a> </p> <a href="https://publications.waset.org/abstracts/20862/heat-transfer-of-an-impinging-jet-on-a-plane-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5480</span> The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Jyothi">P. N. Jyothi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shailesh%20Rao"> A. Shailesh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Jagath"> M. C. Jagath</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Channakeshavalu"> K. Channakeshavalu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20flow" title=" metal flow"> metal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/4057/the-effect-of-increase-in-aluminium-content-on-fluidity-of-za-alloys-processed-by-centrifugal-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5479</span> Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaru%20Sumida">Masaru Sumida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20dispersion" title="fiber dispersion">fiber dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=headbox" title=" headbox"> headbox</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20liquid" title=" pulp liquid"> pulp liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20flow" title=" wake flow"> wake flow</a> </p> <a href="https://publications.waset.org/abstracts/62014/experimental-study-of-the-fiber-dispersion-of-pulp-liquid-flow-in-channels-with-application-to-papermaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5478</span> Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huirui%20Han">Huirui Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Zhang"> Chao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=rod%20bundle" title=" rod bundle"> rod bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20temperature" title=" wall temperature"> wall temperature</a> </p> <a href="https://publications.waset.org/abstracts/156856/effects-of-the-flow-direction-on-the-fluid-flow-and-heat-transfer-in-the-rod-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5477</span> A Family of Distributions on Learnable Problems without Uniform Convergence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20Garza">César Garza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20learning%20theory" title="statistical learning theory">statistical learning theory</a>, <a href="https://publications.waset.org/abstracts/search?q=learnability" title=" learnability"> learnability</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20convergence" title=" uniform convergence"> uniform convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=regularized%20loss%20minimization" title=" regularized loss minimization"> regularized loss minimization</a> </p> <a href="https://publications.waset.org/abstracts/151038/a-family-of-distributions-on-learnable-problems-without-uniform-convergence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5476</span> The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Sharma">Pooja Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a> </p> <a href="https://publications.waset.org/abstracts/36305/the-effect-of-radiation-on-unsteady-mhd-flow-past-a-vertical-porous-plate-in-the-presence-of-heat-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5475</span> Influence of Optical Fluence Distribution on Photoacoustic Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Metwally">Mohamed K. Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20H.%20El-Gohary"> Sherif H. El-Gohary</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Min%20Byun"> Kyung Min Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Moo%20Han"> Seung Moo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Yeol%20Lee"> Soo Yeol Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hyoung%20Cho"> Min Hyoung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gon%20Khang"> Gon Khang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsung%20Cho"> Jinsung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Seong%20Kim"> Tae-Seong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluence%20distribution" title=" fluence distribution"> fluence distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20imaging" title=" photoacoustic imaging"> photoacoustic imaging</a> </p> <a href="https://publications.waset.org/abstracts/12607/influence-of-optical-fluence-distribution-on-photoacoustic-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5474</span> Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Srivastava">Anuj Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuldeep%20Kumar"> Kuldeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor%20volute" title="centrifugal compressor volute">centrifugal compressor volute</a>, <a href="https://publications.waset.org/abstracts/search?q=tongue%20geometry" title=" tongue geometry"> tongue geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-back" title=" pull-back"> pull-back</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20performance" title=" compressor performance"> compressor performance</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20instability" title=" flow instability"> flow instability</a> </p> <a href="https://publications.waset.org/abstracts/105516/effect-of-volute-tongue-shape-and-position-on-performance-of-turbo-machinery-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=183">183</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=184">184</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uniform%20flow&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>