CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–16 of 16 results for author: <span class="mathjax">Agarwal, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Agarwal%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Agarwal, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Agarwal%2C+N&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Agarwal, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03013">arXiv:2407.03013</a> <span> [<a href="https://arxiv.org/pdf/2407.03013">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Disentangling heterogeneity and disorder during ultrafast surface melting of orbital order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Monti%2C+M">Maurizio Monti</a>, <a href="/search/cond-mat?searchtype=author&query=Siddiqui%2C+K+M">Khalid M. Siddiqui</a>, <a href="/search/cond-mat?searchtype=author&query=Perez-Salinas%2C+D">Daniel Perez-Salinas</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Bremholm%2C+M">Martin Bremholm</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Babich%2C+D">Danylo Babich</a>, <a href="/search/cond-mat?searchtype=author&query=Sander%2C+M">Mathias Sander</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Y">Yunpei Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Lemke%2C+H+T">Henrik T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&query=Mankowsky%2C+R">Roman Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xuerong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wall%2C+S+E">Simon E. Wall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03013v1-abstract-short" style="display: inline;"> Understanding how light modifies long-range order is key to improve our ability to control material functionality on an ultrafast timescale. Transient spatial heterogeneity has been proposed in many materials, but isolating the dynamics of different regions experimentally has been challenging. Here we address this issue and measure the dynamics of orbital order melting in the layered manganite, La… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03013v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03013v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03013v1-abstract-full" style="display: none;"> Understanding how light modifies long-range order is key to improve our ability to control material functionality on an ultrafast timescale. Transient spatial heterogeneity has been proposed in many materials, but isolating the dynamics of different regions experimentally has been challenging. Here we address this issue and measure the dynamics of orbital order melting in the layered manganite, La0.5Sr1.5MnO4, and isolate the surface dynamics from the bulk for the first time. Bulk measurements show orbital order is rapidly suppressed, but the correlation length surprisingly increases. However, the surface dynamics, show a stronger suppression and a significant decrease in correlation length. By isolating the surface changes, we find that light preferentially melts a less ordered surface and the loss of long-range order is likely driven by the formation of local and disordered polarons. Melting the disordered surface effectively increases the average correlation of the bulk probed volume, resolving the contradictory response. These results show that surface scattering methods are necessary to understand both surface and bulk dynamics in heterogeneous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03013v1-abstract-full').style.display = 'none'; document.getElementById('2407.03013v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12250">arXiv:2406.12250</a> <span> [<a href="https://arxiv.org/pdf/2406.12250">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49942-2">10.1038/s41467-024-49942-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of stacking engineered magnetic phase transitions within moir茅 supercells of twisted van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&query=Sharmin%2C+A">Afsana Sharmin</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12250v1-abstract-short" style="display: inline;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12250v1-abstract-full" style="display: none;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moir茅 supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moir茅 supercell of small-angle twisted double trilayer CrI3. By measuring temperature dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the N茅el temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of the moir茅 superlattices. The presented results highlight twist engineering as a promising tuning knob to realize on-demand control of not only the nanoscale spin order of moir茅 quantum matter but also its dynamic magnetic responses, which may find relevant applications in developing transformative vdW electronic and magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'none'; document.getElementById('2406.12250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 5712 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01722">arXiv:2405.01722</a> <span> [<a href="https://arxiv.org/pdf/2405.01722">pdf</a>, <a href="https://arxiv.org/format/2405.01722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantifying spectral signatures of non-Markovianity beyond the Born-Redfield master equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Keefe%2C+A">A. Keefe</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Kamal%2C+A">A. Kamal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01722v2-abstract-short" style="display: inline;"> Memory or time-non-local effects in open quantum dynamics pose theoretical as well as practical challenges in the understanding and control of noisy quantum systems. While there has been a comprehensive and concerted effort towards developing diagnostics for non-Markovian dynamics, all existing measures rely on time-domain measurements which are typically slow and expensive as they require averagi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01722v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01722v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01722v2-abstract-full" style="display: none;"> Memory or time-non-local effects in open quantum dynamics pose theoretical as well as practical challenges in the understanding and control of noisy quantum systems. While there has been a comprehensive and concerted effort towards developing diagnostics for non-Markovian dynamics, all existing measures rely on time-domain measurements which are typically slow and expensive as they require averaging several runs to resolve small transient features on a broad background, and scale unfavorably with system size and complexity. In this work, we propose a spectroscopic measure of non-Markovianity which can detect persistent non-Markovianity in the system steady state. In addition to being experimentally viable, the proposed measure has a direct information theoretic interpretation: a large value indicates the information loss per unit bandwidth of making the Markov approximation. In the same vein, we derive a frequency-domain quantum master equation (FD-QME) that goes beyond the standard Born-Redfield description and retains the full memory of the state of the reduced system. Using the FD-QME and the proposed measure, we are able to reliably diagnose and quantify non-Markovianity in several system-environment settings including those with environmental correlations and retardation effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01722v2-abstract-full').style.display = 'none'; document.getElementById('2405.01722v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+ pages, 8 figures including 3 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04587">arXiv:2307.04587</a> <span> [<a href="https://arxiv.org/pdf/2307.04587">pdf</a>, <a href="https://arxiv.org/format/2307.04587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45711-3">10.1038/s41467-024-45711-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Endotaxial Stabilization of 2D Charge Density Waves with Long-range Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Baggari%2C+I+E">Ismail El Baggari</a>, <a href="/search/cond-mat?searchtype=author&query=Goh%2C+Y+M">Yin Min Goh</a>, <a href="/search/cond-mat?searchtype=author&query=Kezer%2C+P">Patrick Kezer</a>, <a href="/search/cond-mat?searchtype=author&query=Schnitzer%2C+N">Noah Schnitzer</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+W">Wenjian Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yuping Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&query=Heron%2C+J+T">John T. Heron</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04587v1-abstract-short" style="display: inline;"> Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined mono… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04587v1-abstract-full').style.display = 'inline'; document.getElementById('2307.04587v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04587v1-abstract-full" style="display: none;"> Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS$_2$. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS$_2$ are derived and consistent with the predicted emergence of vestigial quantum order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04587v1-abstract-full').style.display = 'none'; document.getElementById('2307.04587v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03876">arXiv:2307.03876</a> <span> [<a href="https://arxiv.org/pdf/2307.03876">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Revealing intrinsic domains and fluctuations of moir茅 magnetism by a wide-field quantum microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+G">Gerald Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+H">Hongchao Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+G">Gaihua Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+S">Shangjie Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+R">Rui He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03876v1-abstract-short" style="display: inline;"> Moir茅 magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir茅 magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03876v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03876v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03876v1-abstract-full" style="display: none;"> Moir茅 magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir茅 magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moir茅 domains of opposite magnetizations appear over arrays of moir茅 supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moir茅 magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03876v1-abstract-full').style.display = 'none'; document.getElementById('2307.03876v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08890">arXiv:2304.08890</a> <span> [<a href="https://arxiv.org/pdf/2304.08890">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202302550">10.1002/advs.202302550 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transient non-collinear magnetic state for all-optical magnetization switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Parchenko%2C+S">Sergii Parchenko</a>, <a href="/search/cond-mat?searchtype=author&query=Frej%2C+A">Antoni Frej</a>, <a href="/search/cond-mat?searchtype=author&query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/cond-mat?searchtype=author&query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/cond-mat?searchtype=author&query=Zvezdin%2C+A">Anatoly Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&query=Stupakiewicz%2C+A">Andrzej Stupakiewicz</a>, <a href="/search/cond-mat?searchtype=author&query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08890v1-abstract-short" style="display: inline;"> Resonant absorption of a photon by bound electrons in a solid can promote an electron to another orbital state or transfer it to a neighboring atomic site. Such a transition in a magnetically ordered material could affect the magnetic order. While this process is an obvious road map for optical control of magnetization, experimental demonstration of such a process remains challenging. Exciting a s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08890v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08890v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08890v1-abstract-full" style="display: none;"> Resonant absorption of a photon by bound electrons in a solid can promote an electron to another orbital state or transfer it to a neighboring atomic site. Such a transition in a magnetically ordered material could affect the magnetic order. While this process is an obvious road map for optical control of magnetization, experimental demonstration of such a process remains challenging. Exciting a significant fraction of magnetic ions requires a very intense incoming light beam, as orbital resonances are often weak compared to above-band-gap excitations. In the latter case, a sizeable reduction of the magnetization occurs as the absorbed energy increases the spin temperature, masking the non-thermal optical effects. Here, using ultrafast x-ray spectroscopy, we were able to resolve changes in the magnetization state induced by resonant absorption of infrared photons in Co-doped yttrium iron garnet, with negligible thermal effects. We found that the optical excitation of the Co ions affects the two distinct magnetic Fe sublattices differently, resulting in a transient non-collinear magnetic state. The present results indicate that the all-optical magnetization switching most likely occurs due to the creation of a transient, non-collinear magnetic state followed by coherent spin rotations of the Fe moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08890v1-abstract-full').style.display = 'none'; document.getElementById('2304.08890v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Sci. 10, 2302550 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04829">arXiv:2303.04829</a> <span> [<a href="https://arxiv.org/pdf/2303.04829">pdf</a>, <a href="https://arxiv.org/format/2303.04829">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023113">10.1103/PhysRevResearch.6.023113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Initial value formulation of a quantum damped harmonic oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishant Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Y">Yi-Zen Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04829v2-abstract-short" style="display: inline;"> The in-in formalism and its influence functional generalization are widely used to describe the out-of-equilibrium dynamics of unitary and open quantum systems, respectively. In this paper, we build on these techniques to develop an effective theory of a quantum damped harmonic oscillator and use it to study initial state-dependence, decoherence, and thermalization. We first consider a Gaussian in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04829v2-abstract-full').style.display = 'inline'; document.getElementById('2303.04829v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04829v2-abstract-full" style="display: none;"> The in-in formalism and its influence functional generalization are widely used to describe the out-of-equilibrium dynamics of unitary and open quantum systems, respectively. In this paper, we build on these techniques to develop an effective theory of a quantum damped harmonic oscillator and use it to study initial state-dependence, decoherence, and thermalization. We first consider a Gaussian initial state and quadratic influence functional and obtain general equations for the Green's functions of the oscillator. We solve the equations in the specific case of time-local dissipation and use the resulting Green's functions to obtain the purity and unequal-time two-point correlations of the oscillator. We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity and that the oscillator decoheres in time such that the late-time density operator is thermal. We show that the frequency spectrum or unequal-time correlations can, however, distinguish between the damped oscillator and an isolated oscillator in thermal equilibrium, and obtain a generalized fluctuation-dissipation relation for the damped oscillator. We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels. Lastly, we develop a double in-out path integral approach to go beyond Gaussian initial states and show that our equal-time results for time-local dissipation are in fact non-perturbative in the initial state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04829v2-abstract-full').style.display = 'none'; document.getElementById('2303.04829v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, including 2 appendices, 2 figures. Expanded discussion of Wick's theorem in section IIIA, updated discussion of fluctuation-dissipation relation in section IVC, added discussion of time-nonlocal dissipation in section V. Matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Res. 6, 023113 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02181">arXiv:2303.02181</a> <span> [<a href="https://arxiv.org/pdf/2303.02181">pdf</a>, <a href="https://arxiv.org/format/2303.02181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and localization in a discretized quantum field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chaykov%2C+S">Spasen Chaykov</a>, <a href="/search/cond-mat?searchtype=author&query=Bowen%2C+B">Brenden Bowen</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishant Agarwal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02181v1-abstract-short" style="display: inline;"> Localization marks the breakdown of thermalization in subregions of quantum many-body systems in the presence of sufficiently large disorder. In this paper, we use numerical techniques to study thermalization and localization in a many-body system of coupled quantum harmonic oscillators obtained by discretizing a scalar quantum field theory in Minkowski spacetime. We consider a Gaussian initial st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02181v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02181v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02181v1-abstract-full" style="display: none;"> Localization marks the breakdown of thermalization in subregions of quantum many-body systems in the presence of sufficiently large disorder. In this paper, we use numerical techniques to study thermalization and localization in a many-body system of coupled quantum harmonic oscillators obtained by discretizing a scalar quantum field theory in Minkowski spacetime. We consider a Gaussian initial state, constructed through a global mass quench, with a quadratic Hamiltonian, and solve for the system's exact dynamics without and with disorder in one and two spatial dimensions. We find that finite-size systems localize for sufficiently large disorder in both cases, such that the entanglement entropy of subregions retains its initial area-law behavior, and the system no longer develops long-range correlations. To probe the thermalization-to-localization transition further, we define a frequency gap ratio that measures adjacent gaps in the phase space eigenvalues of the Hamiltonian and study how it varies with disorder strength and system size. We find signatures of a chaotic regime at intermediate disorder in two spatial dimensions and argue that it is a finite-size effect, such that the system would localize for arbitrarily small disorder in the continuum in both one and two spatial dimensions, consistent with Anderson localization. Lastly, we use the frequency gap ratio to argue that in three spatial dimensions, on the other hand, the system would only localize for disorder strengths above a critical value in the continuum, again consistent with Anderson localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02181v1-abstract-full').style.display = 'none'; document.getElementById('2303.02181v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04265">arXiv:2211.04265</a> <span> [<a href="https://arxiv.org/pdf/2211.04265">pdf</a>, <a href="https://arxiv.org/format/2211.04265">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577523000619">10.1107/S1600577523000619 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Eschenlohr%2C+A">Andrea Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&query=Beye%2C+M">Martin Beye</a>, <a href="/search/cond-mat?searchtype=author&query=Schlotter%2C+W">William Schlotter</a>, <a href="/search/cond-mat?searchtype=author&query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&query=Carinan%2C+C">Cammille Carinan</a>, <a href="/search/cond-mat?searchtype=author&query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Elia%2C+A">Alessandro D'Elia</a>, <a href="/search/cond-mat?searchtype=author&query=Delitz%2C+J">Jan-Torben Delitz</a>, <a href="/search/cond-mat?searchtype=author&query=Ehsan%2C+W">Wajid Ehsan</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+R">Robin Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%B6hlisch%2C+A">Alexander F枚hlisch</a>, <a href="/search/cond-mat?searchtype=author&query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/cond-mat?searchtype=author&query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&query=Gerasimova%2C+N">Natalia Gerasimova</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04265v3-abstract-short" style="display: inline;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'inline'; document.getElementById('2211.04265v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04265v3-abstract-full" style="display: none;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'none'; document.getElementById('2211.04265v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2023). 30, 284-300 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13162">arXiv:2210.13162</a> <span> [<a href="https://arxiv.org/pdf/2210.13162">pdf</a>, <a href="https://arxiv.org/format/2210.13162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&query=Elhanoty%2C+M+F">Mohamed F. Elhanoty</a>, <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%A5n%C3%A4s%2C+O">Oscar Gr氓n盲s</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/cond-mat?searchtype=author&query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&query=Hansen%2C+K">Karsten Hansen</a>, <a href="/search/cond-mat?searchtype=author&query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/cond-mat?searchtype=author&query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&query=Kvashnin%2C+Y">Yaroslav Kvashnin</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13162v1-abstract-short" style="display: inline;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13162v1-abstract-full" style="display: none;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorption spectroscopy with ab initio time-dependent density functional theory we analyze the electronic structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distinguish transient broadening and energy shifts in the absorption spectra, which we demonstrate to be caused by electron repopulation and correlation-induced modifications of the electronic structure, respectively. Importantly, the theoretical description of this experimental result hence requires to take the local Coulomb interaction into account, revealing a temporal interplay between band formation, exchange interaction, and Coulomb repulsion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'none'; document.getElementById('2210.13162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03460">arXiv:2209.03460</a> <span> [<a href="https://arxiv.org/pdf/2209.03460">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L180102">10.1103/PhysRevB.107.L180102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferro-rotational domain walls revealed by electric quadrupole second harmonic generation microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xiaoyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Owen%2C+R">Rachel Owen</a>, <a href="/search/cond-mat?searchtype=author&query=Kaczmarek%2C+A">Austin Kaczmarek</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+X">Xiaochen Fang</a>, <a href="/search/cond-mat?searchtype=author&query=De%2C+C">Chandan De</a>, <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+Y">Youngjun Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Wei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03460v1-abstract-short" style="display: inline;"> Domain walls are ubiquitous in materials that undergo phase transitions driven by spontaneous symmetry breaking. Domain walls in ferroics and multiferroics have received tremendous attention recently due to their emergent properties distinct from their domain counterparts, for example, their high mobility and controllability, as well as their potential applications in nanoelectronics. However, it… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03460v1-abstract-full').style.display = 'inline'; document.getElementById('2209.03460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03460v1-abstract-full" style="display: none;"> Domain walls are ubiquitous in materials that undergo phase transitions driven by spontaneous symmetry breaking. Domain walls in ferroics and multiferroics have received tremendous attention recently due to their emergent properties distinct from their domain counterparts, for example, their high mobility and controllability, as well as their potential applications in nanoelectronics. However, it is extremely challenging to detect, visualize and study the ferro-rotational (FR) domain walls because the FR order, in contrast to ferromagnetism (FM) and ferroelectricity (FE), is invariant under both the spatial-inversion and the time-reversal operations and thus hardly couple with conventional experimental probes. Here, an FR candidate $\mathrm{NiTiO_{3}}$ is investigated by ultrasensitive electric quadrupole (EQ) second harmonic generation rotational anisotropy (SHG RA) to probe the point symmetries of the two degenerate FR domain states, showing their relation by the vertical mirror operations that are broken below the FR critical temperature. We then visualize the real-space FR domains by scanning EQ SHG microscopy, and further resolve the FR domain walls by revealing a suppressed SHG intensity at domain walls. By taking local EQ SHG RA measurements, we show the restoration of the mirror symmetry at FR domain walls and prove their unconventional nonpolar nature. Our findings not only provide a comprehensive insight into FR domain walls, but also demonstrate a unique and powerful tool for future studies on domain walls of unconventional ferroics, both of which pave the way towards future manipulations and applications of FR domain walls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03460v1-abstract-full').style.display = 'none'; document.getElementById('2209.03460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08585">arXiv:2202.08585</a> <span> [<a href="https://arxiv.org/pdf/2202.08585">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01848-w">10.1038/s41567-022-01848-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast X-ray imaging of the light-induced phase transition in VO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+A+S">Allan S. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%A9rez-Salinas%2C+D">Daniel P茅rez-Salinas</a>, <a href="/search/cond-mat?searchtype=author&query=Siddiqui%2C+K+M">Khalid M. Siddiqui</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sungwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+S">Sungwook Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Volckaert%2C+K">Klara Volckaert</a>, <a href="/search/cond-mat?searchtype=author&query=Majchrzak%2C+P+E">Paulina E. Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&query=Ulstrup%2C+S">S酶ren Ulstrup</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Hallman%2C+K">Kent Hallman</a>, <a href="/search/cond-mat?searchtype=author&query=Haglund%2C+R+F">Richard F. Haglund Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&query=Pfau%2C+B">Bastian Pfau</a>, <a href="/search/cond-mat?searchtype=author&query=Eisebitt%2C+S">Stefan Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&query=Fitzpatrick%2C+A">Ann Fitzpatrick</a>, <a href="/search/cond-mat?searchtype=author&query=Dhesi%2C+S">Sarnjeet Dhesi</a>, <a href="/search/cond-mat?searchtype=author&query=Gargiani%2C+P">Pierluigi Gargiani</a>, <a href="/search/cond-mat?searchtype=author&query=Valvidares%2C+M">Manuel Valvidares</a>, <a href="/search/cond-mat?searchtype=author&query=Artrith%2C+N">Nongnuch Artrith</a>, <a href="/search/cond-mat?searchtype=author&query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+H">Hyeongi Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+D">Dogeun Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Katoch%2C+A">Abhishek Katoch</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08585v2-abstract-short" style="display: inline;"> Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08585v2-abstract-full').style.display = 'inline'; document.getElementById('2202.08585v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08585v2-abstract-full" style="display: none;"> Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale heterogeneity has not been directly observed. Here we use time- and spectrally resolved coherent X-ray imaging to track the prototypical light induced insulator-to-metal phase transition in vanadium dioxide on the nanoscale with femtosecond time resolution. We show that the early-time dynamics are independent of the initial spatial heterogeneity and observe a 200 fs switch to the metallic phase. A heterogeneous response emerges only after hundreds of picoseconds. Through spectroscopic imaging, we reveal that the transient metallic phase is a highly orthorhombically strained rutile metallic phase, an interpretation that is in contrast to those based on spatially averaged probes. Our results demonstrate the critical importance of spatially and spectrally resolved measurements for understanding and interpreting the transient phases of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08585v2-abstract-full').style.display = 'none'; document.getElementById('2202.08585v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06350">arXiv:2201.06350</a> <span> [<a href="https://arxiv.org/pdf/2201.06350">pdf</a>, <a href="https://arxiv.org/format/2201.06350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522008414">10.1107/S1600577522008414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Kerber%2C+N">Nico Kerber</a>, <a href="/search/cond-mat?searchtype=author&query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&query=Parra%2C+E+B">Erick Burgos Parra</a>, <a href="/search/cond-mat?searchtype=author&query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&query=Seng%2C+B">Boris Seng</a>, <a href="/search/cond-mat?searchtype=author&query=Kammerbauer%2C+F">Fabian Kammerbauer</a>, <a href="/search/cond-mat?searchtype=author&query=Popescu%2C+H">Horia Popescu</a>, <a href="/search/cond-mat?searchtype=author&query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&query=Neeraj%2C+K">Kumar Neeraj</a>, <a href="/search/cond-mat?searchtype=author&query=Polley%2C+D">Debanjan Polley</a>, <a href="/search/cond-mat?searchtype=author&query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&query=Ovcharenko%2C+S">Sergei Ovcharenko</a>, <a href="/search/cond-mat?searchtype=author&query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&query=Ksenzov%2C+D">Dmitriy Ksenzov</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Pronin%2C+I">Igor Pronin</a>, <a href="/search/cond-mat?searchtype=author&query=Baidakova%2C+M">Marina Baidakova</a>, <a href="/search/cond-mat?searchtype=author&query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&query=Borchert%2C+M">Martin Borchert</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06350v2-abstract-short" style="display: inline;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we presen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06350v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06350v2-abstract-full" style="display: none;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'none'; document.getElementById('2201.06350v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. Supplementary Information as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2022), 29 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01649">arXiv:2111.01649</a> <span> [<a href="https://arxiv.org/pdf/2111.01649">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium self-assembly of spin-wave solitons in FePt nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Turenne%2C+D">D. Turenne</a>, <a href="/search/cond-mat?searchtype=author&query=Yaroslavtsev%2C+A">A. Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Unikandanuni%2C+V">V. Unikandanuni</a>, <a href="/search/cond-mat?searchtype=author&query=Vaskivskyi%2C+I">I. Vaskivskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Jal%2C+E">E. Jal</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R">R. Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/cond-mat?searchtype=author&query=Gort%2C+R">R. Gort</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Kuiken%2C+B">B. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&query=Mercadier%2C+L">L. Mercadier</a>, <a href="/search/cond-mat?searchtype=author&query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&query=Teichmann%2C+M">M. Teichmann</a>, <a href="/search/cond-mat?searchtype=author&query=Lomidze%2C+D">D. Lomidze</a>, <a href="/search/cond-mat?searchtype=author&query=Castoldi%2C+A">A. Castoldi</a>, <a href="/search/cond-mat?searchtype=author&query=Potorochin%2C+D">D. Potorochin</a>, <a href="/search/cond-mat?searchtype=author&query=Mukkattukavil%2C+D">D. Mukkattukavil</a>, <a href="/search/cond-mat?searchtype=author&query=Brock%2C+J">J. Brock</a>, <a href="/search/cond-mat?searchtype=author&query=Hagstr%C3%B6m%2C+N+Z">N. Z. Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+X">X. Shen</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01649v1-abstract-short" style="display: inline;"> Magnetic nanoparticles such as FePt in the L10-phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magneto-crystalline anisotropy. This in turn reduces the magnetic exchange length to just a few nanometers enabling magnetic structures to be induced within the na… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01649v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01649v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01649v1-abstract-full" style="display: none;"> Magnetic nanoparticles such as FePt in the L10-phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magneto-crystalline anisotropy. This in turn reduces the magnetic exchange length to just a few nanometers enabling magnetic structures to be induced within the nanoparticles. Here we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved X-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin-precession frequency of 0.1 THz positions this system as a platform to develop miniature devices capable of filling the THz gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01649v1-abstract-full').style.display = 'none'; document.getElementById('2111.01649v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, please check the "attachemnts" tab in the pdf file in order to see the movie</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07714">arXiv:2110.07714</a> <span> [<a href="https://arxiv.org/pdf/2110.07714">pdf</a>, <a href="https://arxiv.org/format/2110.07714">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.012211">10.1103/PhysRevA.105.012211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear Atomic Force Microscopy: Squeezing and Skewness of Micro-Mechanical Oscillators interacting with a Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Marzlin%2C+K">Karl-Peter Marzlin</a>, <a href="/search/cond-mat?searchtype=author&query=Canam%2C+B">Bryan Canam</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N+R">Nisha Rani Agarwal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07714v1-abstract-short" style="display: inline;"> We propose a two-frequency driving scheme in dynamic atomic force microscopy that maximizes the interaction time between tip and sample. Using a stochastic description of the cantilever dynamics, we predict large classical squeezing and a small amount of skewness of the tip's phase-space probability distribution. Strong position squeezing will require close contact between tip and surface, while m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07714v1-abstract-full').style.display = 'inline'; document.getElementById('2110.07714v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07714v1-abstract-full" style="display: none;"> We propose a two-frequency driving scheme in dynamic atomic force microscopy that maximizes the interaction time between tip and sample. Using a stochastic description of the cantilever dynamics, we predict large classical squeezing and a small amount of skewness of the tip's phase-space probability distribution. Strong position squeezing will require close contact between tip and surface, while momentum squeezing would also be possible in the van der Waals region of the tip-surface force. Employing a generalized Caldeira-Leggett model, we predict that surface-dependent dissipative forces may be the dominant source of quantum effects and propose a procedure to isolate quantum effects from thermal fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07714v1-abstract-full').style.display = 'none'; document.getElementById('2110.07714v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09999">arXiv:2106.09999</a> <span> [<a href="https://arxiv.org/pdf/2106.09999">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Optical control of 4f orbital state in rare-earth metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Thielemann-K%C3%BChn%2C+N">N. Thielemann-K眉hn</a>, <a href="/search/cond-mat?searchtype=author&query=Amrhein%2C+T">T. Amrhein</a>, <a href="/search/cond-mat?searchtype=author&query=Bronsch%2C+W">W. Bronsch</a>, <a href="/search/cond-mat?searchtype=author&query=Jana%2C+S">S. Jana</a>, <a href="/search/cond-mat?searchtype=author&query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+R+Y">R. Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Miedema%2C+P+S">P. S. Miedema</a>, <a href="/search/cond-mat?searchtype=author&query=Legut%2C+D">D. Legut</a>, <a href="/search/cond-mat?searchtype=author&query=Carva%2C+K">K. Carva</a>, <a href="/search/cond-mat?searchtype=author&query=Atxitia%2C+U">U. Atxitia</a>, <a href="/search/cond-mat?searchtype=author&query=van+Kuiken%2C+B+E">B. E. van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&query=Teichmann%2C+M">M. Teichmann</a>, <a href="/search/cond-mat?searchtype=author&query=Carley%2C+R+E">R. E. Carley</a>, <a href="/search/cond-mat?searchtype=author&query=Mercadier%2C+L">L. Mercadier</a>, <a href="/search/cond-mat?searchtype=author&query=Yaroslavtsev%2C+A">A. Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Gort%2C+R">R. Gort</a>, <a href="/search/cond-mat?searchtype=author&query=Scherz%2C+A">A. Scherz</a>, <a href="/search/cond-mat?searchtype=author&query=Dziarzhytski%2C+S">S. Dziarzhytski</a>, <a href="/search/cond-mat?searchtype=author&query=Brenner%2C+G">G. Brenner</a>, <a href="/search/cond-mat?searchtype=author&query=Pressacco%2C+F">F. Pressacco</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">R. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Schunck%2C+J+O">J. O. Schunck</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09999v4-abstract-short" style="display: inline;"> A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth (RE) elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09999v4-abstract-full').style.display = 'inline'; document.getElementById('2106.09999v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09999v4-abstract-full" style="display: none;"> A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth (RE) elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved X-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, alter the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals, and more general for the excitation of localized electronic states in correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09999v4-abstract-full').style.display = 'none'; document.getElementById('2106.09999v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript (23 pages, 5 figures) and Supplementary Information (32 pages, 10 figures)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>