CINXE.COM

Document Zbl 1539.62345 - zbMATH Open

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>Document Zbl 1539.62345 - zbMATH Open</title> <meta name="viewport" content="width=device-width, minimum-scale=0.1, maximum-scale=5.0"> <meta name="robots" content="noarchive, noindex"> <meta name="referrer" content="origin-when-cross-origin"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap-theme.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.css" rel="stylesheet" media="screen,print"> <link rel="stylesheet" href="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/css/bootstrap-select.min.css"> <link href="/static/css/smoothness/jquery-ui-1.10.1.custom.min.css" rel="stylesheet" media="screen"> <link href="/static/styles.css?v=20241024" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/zbMathJax/v0.1.38/zbmathjax.css" rel="stylesheet" media="screen,print"> <link rel="shortcut icon" href="/static/zbmath.ico"> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "Organization", "url": "https://zbmath.org/", "logo": "https://zbmath.org/static/zbMATH.png" } </script> </head> <body> <div id="line"></div> <span id="clear" style="cursor: pointer;">&times;</span> <div id="page"> <div id="head"> <nav id="menu" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#zbnav" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open logo"> </a> </div> <div id="zbnav" class="collapse navbar-collapse"> <ul class="nav navbar-nav pages"> <li class="about"> <a href="/about/">About</a> </li> <li class="frequently-asked-questions"> <a href="/frequently-asked-questions/">FAQ</a> </li> <li class="general-help"> <a href="/general-help/">General Help</a> </li> <li class="reviewer-service"> <a href="https://zbmath.org/reviewer-service/" target="_self" >Reviewer Service</a> </li> <li> <a href="/tools-and-resources/">Tools &amp; Resources</a> </li> <li class="contact"> <a href="/contact/">Contact</a> </li> </ul> <ul class="nav navbar-nav navbar-right prefs"> <li class="preferences dropdown"> <a data-toggle="dropdown" href="#">Preferences <i class="caret"></i></a> <ul class="dropdown-menu preferences"> <li> <form id="preferences" class="navbar-form" method="post" action="/preferences/" onsubmit="return confirm('This website uses cookies for the purposes of storing preference information on your device. Do you agree to this?\n\nPlease refer to our Privacy Policy to learn more about our use of cookies.')" > <input type="hidden" name="path" value="/1539.62345?"> <span class=""> <label class="title">Search Form</label> <div class="form-group"> <input id="search-multi-line" type="radio" name="search" value="multi-line" checked> <label for="search-multi-line" class="radio">Multi-Line Search (default)</label> </div> <div class="form-group"> <input id="search-one-line" type="radio" name="search" value="one-line"> <label for="search-one-line" class="radio">One-Line Search</label> </div> </span> <span class="count"> <label class="title">Hits per Page</label> <div class="form-group"> <input id="count-10" type="radio" name="count" value="10"> <label for="count-10" class="radio">10</label> </div> <div class="form-group"> <input id="count-20" type="radio" name="count" value="20"> <label for="count-20" class="radio">20</label> </div> <div class="form-group"> <input id="count-50" type="radio" name="count" value="50"> <label for="count-50" class="radio">50</label> </div> <div class="form-group"> <input id="count-100" type="radio" name="count" value="100" checked> <label for="count-100" class="radio">100 (default)</label> </div> <div class="form-group"> <input id="count-200" type="radio" name="count" value="200"> <label for="count-200" class="radio">200</label> </div> </span> <span class="format"> <label class="title">Display Format</label> <div class="form-group"> <input id="format-mathjax" type="radio" name="format" value="mathjax" checked> <label for="format-mathjax" class="radio">MathJax (default)</label> </div> <div class="form-group"> <input id="format-amstex" type="radio" name="format" value="latex"> <label for="format-amstex" class="radio">LaTeX</label> </div> </span> <span class="ranking"> <label class="title">Documents Sorting</label> <div class="form-group"> <input id="documents-ranking-default" type="radio" name="documents_ranking" value="date" checked> <label for="documents-ranking-default" class="radio">Newest first (default)</label> </div> <div class="form-group"> <input id="documents-ranking-references" type="radio" name="documents_ranking" value="references"> <label for="documents-ranking-references" class="radio">Citations</label> </div> <div class="form-group"> <input id="documents-ranking-relevance" type="radio" name="documents_ranking" value="relevance"> <label for="documents-ranking-relevance" class="radio">Relevance</label> </div> </span> <span class="ranking"> <label class="title">Authors Sorting</label> <div class="form-group"> <input id="authors-ranking-default" type="radio" name="authors_ranking" value="alpha" checked> <label for="authors-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="authors-ranking-references" type="radio" name="authors_ranking" value="references"> <label for="authors-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Serials Sorting</label> <div class="form-group"> <input id="serials-ranking-default" type="radio" name="serials_ranking" value="alpha" checked> <label for="serials-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="serials-ranking-references" type="radio" name="serials_ranking" value="references"> <label for="serials-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Software Sorting</label> <div class="form-group"> <input id="software-ranking-default" type="radio" name="software_ranking" value="references" checked> <label for="software-ranking-default" class="radio">Citations (default)</label> </div> <div class="form-group"> <input id="software-ranking-alpha" type="radio" name="software_ranking" value="alpha"> <label for="software-ranking-alpha" class="radio">Alphabetically</label> </div> </span> <button type="submit" class="btn btn-default">OK</button> <div class="clearfix"> </form> </li> </ul> </li> </ul> </div> </div> </nav> <div id="tabs"> <h1 class="logo"> <a class="logo" href="/"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open &mdash; the first resource for mathematics" > </a> </h1> <nav> <ul class="nav nav-tabs"> <li class="tab-documents active"> <a href="/">Documents</a> </li> <li class="tab-authors"> <a href="/authors/">Authors</a> </li> <li class="tab-serials"> <a href="/serials/">Serials</a> </li> <li class="tab-software"> <a href="/software/">Software</a> </li> <li class="tab-classification"> <a href="/classification/">Classification</a> </li> <li class="tab-formulae"> <a href="/formulae/">Formulæ</a> </li> </ul> </nav> <div class="clearfix"></div> </div> <div class="content-fixed"> <div class="content-formular"> <div style="display: none;"> <div class="row ml-0"id="multi-line-new-line" style="display: none;"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-0-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-0-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input"> <span class="multi-line-value" id="multi-line-type-range"><span style="padding-left: 5px;">from</span> <input name="ml-0-v1" class="form-control multi-line-input" type="text" value="" aria-label="value"> until <input name="ml-0-v2" class="form-control multi-line-input" type="text" value="" aria-label="value"></span> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-la" placeholder="use name or ISO code"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-rv" placeholder="enter name or zbMATH reviewer number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-an" placeholder="Zbl, JFM or ERAM number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-en" placeholder="e.g. DOI, ISBN, arXiv ID"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-sw" placeholder="use * to find all documents using software"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-br" placeholder="find documents about the life or work of a person"> <span class="multi-line-value" id="multi-line-type-multiselect-db"> <select class="multi-line-selectpicker" data-width="100%" multiple> <option value="zbl">Zbl</option> <option value="arxiv">arXiv</option> <option value="jfm">JFM</option> <option value="eram">ERAM</option> </select> <input type="hidden" class="multi-line-input" name="ml-0-v" value=""> </span> </div> <form name="documents" method="GET" action="/" autocomplete="off"> <div class="documents multi-line" style="display: none;"> <div class="forms"> <ul class="nav forms"> <li class="one-line"> <span tabindex="0" class="glyphicon glyphicon-question-sign" title="One-Line Search allows for free logical combinations of search fields" aria-label="One-Line Search allows for free logical combinations of search fields" data-placement="bottom"></span>&nbsp;<a style="display: inline-block;" href="#">One-Line Search <span class="glyphicon glyphicon-search"></span></a> </li> </ul> </div> <div class="clearfix"></div> <div class="container-fluid"> <input type="hidden" id="multi-line-ml" name="ml" value="3"> <div id="multi-line-row-wrapper"> <div class="row ml-1"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-1-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-1-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-1-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-2"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-2-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au" selected>Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-2-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-2-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-3"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-3-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti" selected>Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-3-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><div id="multi-line-plus"> <a href="#"><span class="glyphicon glyphicon-plus" aria-hidden="true"></span> add line</a> </div></div> </div> </div> <div class="row"> <div class="col-xs-12 form-inline"> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-test" style="visibility: hidden; position: fixed;"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label title="search for Articles in Journals"> <input type="checkbox" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label title="search for arXiv Preprints"> <input type="checkbox" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-real"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label for="dt-j" title="search for Articles in Journals"> <input type="checkbox" id="dt-j" name="dt" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label for="dt-a" title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" id="dt-a" name="dt" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label for="dt-b" title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" id="dt-b" name="dt" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label for="dt-p" title="search for arXiv Preprints"> <input type="checkbox" id="dt-p" name="dt" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> </div> </div> <div class="row"> <div class="col-xs-12 buttons"> <a tabindex="0" class="btn btn-default clear-all">Reset all <span class="glyphicon glyphicon-remove"></span></a> <div class="submit"> <button class="btn btn-default search" type="submit">Search <span class="glyphicon glyphicon-search"></span></button> </div> </div> </div> </div> </div> </form> <form class="form-inline" name="documents" method="GET" action="/"> <div class="documents one-line" style="display: block;"> <div class="forms"> <ul class="nav forms"> <li class="multi-line"><a href="#">New Multi-Line Search <span class="glyphicon glyphicon-list"></span></a></li> </ul> </div> <div id="search-row" class="input-group box"> <span> <div id="search-field"> <input class="query form-control" type="text" name="q" value="an:1539.62345" aria-label="Search for documents" placeholder="Search for documents" autocomplete="off"> </div> <div class="search-buttons input-group-btn"> <div class="btn-group"> <button class="btn btn-default search" type="submit"><span class="virtual">Search</span> <span class="glyphicon glyphicon-search" style="top: 2px;"></span></button> </div> </div> </span> <span> <div class="search-buttons input-group-btn"> <div class="btn-group"> <div class="btn-group fields"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Fields <i class="caret"></i></button> <ul id="fields" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">any:</span><span>&nbsp;</span>anywhere (default)</a></li> <li><a href="#"><span class="token item">ab:</span><span>&nbsp;&nbsp;</span>review text</a></li> <li><a href="#"><span class="token item">an:</span><span>&nbsp;&nbsp;</span>zbmath id</a></li> <li><a href="#"><span class="token item">any:</span><span>&nbsp;&nbsp;</span>anywhere</a></li> <li><a href="#"><span class="token item">au:</span><span>&nbsp;&nbsp;</span>contributor name</a></li> <li><a href="#"><span class="token item">br:</span><span>&nbsp;&nbsp;</span>biographic reference name</a></li> <li><a href="#"><span class="token item">cc:</span><span>&nbsp;&nbsp;</span>msc title</a></li> <li><a href="#"><span class="token item">dt:</span><span>&nbsp;&nbsp;</span>document type</a></li> <li><a href="#"><span class="token item">doi:</span><span>&nbsp;&nbsp;</span>doi</a></li> <li><a href="#"><span class="token item">en:</span><span>&nbsp;&nbsp;</span>external id</a></li> <li><a href="#"><span class="token item">la:</span><span>&nbsp;&nbsp;</span>language</a></li> <li><a href="#"><span class="token item">pu:</span><span>&nbsp;&nbsp;</span>publisher</a></li> <li><a href="#"><span class="token item">py:</span><span>&nbsp;&nbsp;</span>year</a></li> <li><a href="#"><span class="token item">rv:</span><span>&nbsp;&nbsp;</span>reviewer name</a></li> <li><a href="#"><span class="token item">so:</span><span>&nbsp;&nbsp;</span>source</a></li> <li><a href="#"><span class="token item">sw:</span><span>&nbsp;&nbsp;</span>software name</a></li> <li><a href="#"><span class="token item">ti:</span><span>&nbsp;&nbsp;</span>title</a></li> <li><a href="#"><span class="token item">ut:</span><span>&nbsp;&nbsp;</span>keyword</a></li> </ul> </div> <div class="btn-group operators"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Operators <i class="caret"></i></button> <ul id="operators" class="dropdown-menu pull-right"> <li><a href="#"><span class="token">a&nbsp;<span class="item">&</span>&nbsp;b&nbsp;</span><span>&nbsp;</span>logical and (default)</a></li> <li><a href="#"><span class="token">a&nbsp;<span class="item">|</span>&nbsp;b&nbsp;</span><span>&nbsp;</span>logical or</a></li> <li><a href="#"><span class="token"><span class="item">!</span>ab&nbsp;&nbsp;&nbsp;</span><span>&nbsp;</span>logical not</a></li> <li><a href="#"><span class="token">abc<span class="item">*</span>&nbsp;&nbsp;</span><span>&nbsp;</span>right wildcard</a></li> <li><a href="#"><span class="token"><span class="item">"</span>ab&nbsp;c<span class="item">"</span></span><span>&nbsp;</span>phrase</a></li> <li><a href="#"><span class="token"><span class="item">(</span>ab&nbsp;c<span class="item">)</span></span><span>&nbsp;</span>parentheses</a></li> </ul> </div> </div> </div> <div class="special"> <ul class="nav help-button"> <li class="dropdown pull-right"> <a href="#">Help <i class="caret"></i></a> </li> </ul> </div> </span> </div> <div class="help"><h2>Examples</h2> <div id="help-terms" role="table"> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Geometry">Geometry</a></span> <span class="search-explanation" role="cell" role="cell">Search for the term <em>Geometry</em> in <strong>any</strong> field. Queries are <strong>case-independent</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Funct%2A">Funct*</a></span> <span class="search-explanation" role="cell"><strong>Wildcard</strong> queries are specified by <strong><u>*</u></strong> (e.g. <em>functions</em>, <em>functorial</em>, etc.). Otherwise the search is <strong>exact</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Topological+group%22">"Topological group"</a></span> <span class="search-explanation" role="cell"><strong>Phrases</strong> (multi-words) should be set in <u>"</u>straight quotation marks<u>"</u>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=au%3A+Bourbaki+%26+ti%3A+Algebra">au: Bourbaki &amp; ti: Algebra</a></span> <span class="search-explanation" role="cell">Search for <strong><u>au</u>thor</strong> and <strong><u>ti</u>tle</strong>. The <strong>and-operator &amp;</strong> is default and can be omitted.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Chebyshev+%7C+Tschebyscheff">Chebyshev | Tschebyscheff</a></span> <span class="search-explanation" role="cell">The <strong>or-operator |</strong> allows to search for <em>Chebyshev</em> or <em>Tschebyscheff</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Quasi%2A+map%2A+py%3A+1989">Quasi* map* py: 1989</a></span> <span class="search-explanation" role="cell">The resulting documents have <strong><u>p</u>ublication <u>y</u>ear</strong> <em>1989</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=so%3A+Eur%2A+J%2A+Mat%2A+Soc%2A+cc%3A+14">so: Eur* J* Mat* Soc* cc: 14</a></span> <span class="search-explanation" role="cell">Search for publications in a particular <strong><u>so</u>urce</strong> with a <strong>Mathematics Subject <u>C</u>lassification <u>c</u>ode (<u>cc</u>)</strong> in <em>14</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Partial+diff%2A+eq%2A%22+%21+elliptic">"Partial diff* eq*" ! elliptic</a></span> <span class="search-explanation" role="cell">The <strong>not</strong>-operator <strong>!</strong> eliminates all results containing the word <em>elliptic</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=dt%3A+b+%26+au%3A+Hilbert">dt: b &amp; au: Hilbert</a></span> <span class="search-explanation" role="cell">The <strong><u>d</u>ocument <u>t</u>ype</strong> is set to books; alternatively: <u>j</u> for <strong>journal articles</strong>, <u>a</u> for <strong>book articles</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=py%3A+2000-2015+cc%3A+%2894A+%7C+11T%29">py: 2000-2015 cc: (94A | 11T)</a></span> <span class="search-explanation" role="cell">Number <strong>ranges</strong> are accepted. Terms can be grouped within <strong><u>(</u>parentheses<u>)</u></strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=la%3A+chinese">la: chinese</a></span> <span class="search-explanation" role="cell">Find documents in a given <strong><u>la</u>nguage</strong>. <a href="http://en.wikipedia.org/wiki/ISO_639-1">ISO 639-1</a> language codes can also be used.</span> </div> </div> <div id="help-fields"> <h2>Fields</h2> <table> <tr> <td class="nowrap padding" role="rowheader"><strong>any</strong></td> <td class="padding">anywhere</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>an</strong></td> <td class="padding">internal document identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>au</strong></td> <td class="padding">author, editor</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ai</strong></td> <td class="padding">internal author identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ti</strong></td> <td class="padding">title</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>la</strong></td> <td class="padding">language</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>so</strong></td> <td class="padding">source</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ab</strong></td> <td class="padding">review, abstract</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>py</strong></td> <td class="padding">publication year</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>rv</strong></td> <td class="padding">reviewer</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>cc</strong></td> <td class="padding">MSC code</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ut</strong></td> <td class="padding">uncontrolled term</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>dt</strong></td> <td class="padding" colspan="4">document type (<strong>j</strong>: journal article; <strong>b</strong>: book; <strong>a</strong>: book article)</td> </tr> </table> </div> <div id="help-operators"> <h2>Operators</h2> <table> <tr> <td class="nowrap padding" role="rowheader">a <strong>&amp;</strong> b</td> <td class="padding">logic and</td> </tr> <tr> <td class="nowrap padding" role="rowheader">a <strong>|</strong> b</td> <td class="padding">logic or</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>!</strong>ab</td> <td class="padding">logic not</td> </tr> <tr> <td class="nowrap padding" role="rowheader">abc<strong>*</strong></td> <td class="padding">right wildcard</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>"</strong>ab c<strong>"</strong></td> <td class="padding">phrase</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>(</strong>ab c<strong>)</strong></td> <td class="padding">parentheses</td> </tr> </table> </div> <p> See also our <a href="/general-help/">General Help</a>. </p></div> </div> </form> <div class="clearfix"></div> </div> <div class="content-shadow"></div> </div> </div> <div id="body"> <div id="main"> <div class="messages"> </div> <div id="documents"> <div class="content-main"> <div class="content-item"><div class="item"> <article> <div class="author"><a href="/authors/gao.yuan.4" title="Author Profile">Gao, Yuan</a>; <a href="/authors/?q=ai%3Aliu.weidong%7Cliu.weidong.2" title="Author Profile">Liu, Weidong</a>; <a href="/authors/wang.hansheng" title="Author Profile">Wang, Hansheng</a>; <a href="/authors/wang.xiaozhou" title="Author Profile">Wang, Xiaozhou</a>; <a href="/authors/yan.yibo" title="Author Profile">Yan, Yibo</a>; <a href="/authors/zhang.riquan" title="Author Profile">Zhang, Riquan</a></div> <h2 class="title"> <strong>A review of distributed statistical inference.</strong> <i>(English)</i> <a class="label nowrap" href="/1539.62345">Zbl 1539.62345</a> </h2> <div class="source"> <a href="/serials/9637" title="Journal Profile">Stat. Theory Relat. Fields</a> <a href="/?q=in%3A493897" title="Articles in this Issue">6, No. 2, 89-99 (2022)</a>. </div> <div class="abstract">Summary: The rapid emergence of massive datasets in various fields poses a serious challenge to traditional statistical methods. Meanwhile, it provides opportunities for researchers to develop novel algorithms. Inspired by the idea of divide-and-conquer, various distributed frameworks for statistical estimation and inference have been proposed. They were developed to deal with large-scale statistical optimization problems. This paper aims to provide a comprehensive review for related literature. It includes parametric models, nonparametric models, and other frequently used models. Their key ideas and theoretical properties are summarized. The trade-off between communication cost and estimate precision together with other concerns is discussed.</div> <div class="clear"></div> <br> <div class="citations"><div class="clear"><a href="/?q=ci%3A7660291">Cited in <strong>6</strong> Reviews</a></div><div class="clear"><a href="/?q=rf%3A7660291">Cited in <strong>8</strong> Documents</a></div></div> <div class="classification"> <h3>MSC:</h3> <table><tr> <td> <a class="mono" href="/classification/?q=cc%3A62R07" title="MSC2020">62R07</a> </td> <td class="space"> Statistical aspects of big data and data science </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A62-02" title="MSC2020">62-02</a> </td> <td class="space"> Research exposition (monographs, survey articles) pertaining to statistics </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A62G05" title="MSC2020">62G05</a> </td> <td class="space"> Nonparametric estimation </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A62H25" title="MSC2020">62H25</a> </td> <td class="space"> Factor analysis and principal components; correspondence analysis </td> </tr></table> </div><div class="keywords"> <h3>Keywords:</h3><a href="/?q=ut%3Adistributed+computing">distributed computing</a>; <a href="/?q=ut%3Adivide-and-conquer">divide-and-conquer</a>; <a href="/?q=ut%3Acommunication-efficiency">communication-efficiency</a>; <a href="/?q=ut%3Ashrinkage+methods">shrinkage methods</a>; <a href="/?q=ut%3Anonparametric+estimation">nonparametric estimation</a>; <a href="/?q=ut%3Aprincipal+component+analysis">principal component analysis</a>; <a href="/?q=ut%3Afeature+screening">feature screening</a>; <a href="/?q=ut%3Abootstrap">bootstrap</a></div> <!-- Modal used to show zbmath metadata in different output formats--> <div class="modal fade" id="metadataModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">Cite</h4> </div> <div class="modal-body"> <div class="form-group"> <label for="select-output" class="control-label">Format</label> <select id="select-output" class="form-control" aria-label="Select Metadata format"></select> </div> <div class="form-group"> <label for="metadataText" class="control-label">Result</label> <textarea class="form-control" id="metadataText" rows="10" style="min-width: 100%;max-width: 100%"></textarea> </div> <div id="metadata-alert" class="alert alert-danger" role="alert" style="display: none;"> <!-- alert for connection errors etc --> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" onclick="copyMetadata()">Copy to clipboard</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="functions clearfix"> <div class="function"> <!-- Button trigger metadata modal --> <a type="button" class="btn btn-default btn-xs pdf" data-toggle="modal" data-target="#metadataModal" data-itemtype="Zbl" data-itemname="Zbl 1539.62345" data-ciurl="/ci/07660291" data-biburl="/bibtex/07660291.bib" data-amsurl="/amsrefs/07660291.bib" data-xmlurl="/xml/07660291.xml" > Cite </a> <a class="btn btn-default btn-xs pdf" data-container="body" type="button" href="/pdf/07660291.pdf" title="Zbl 1539.62345 as PDF">Review PDF</a> </div> <div class="fulltexts"> <span class="fulltext">Full Text:</span> <a class="btn btn-default btn-xs" type="button" href="https://doi.org/10.1080/24754269.2021.1974158" aria-label="DOI for “A review of distributed statistical inference”" title="10.1080/24754269.2021.1974158">DOI</a> <a class="btn btn-default btn-xs" type="button" href="https://arxiv.org/abs/2304.06245"title="Note: arXiv document may differ from published version">arXiv</a> </div> <div class="sfx" style="float: right;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" title="Open Access License" class="cc-license-link no-new-tab-icon"> <img src="https://static.zbmath.org/contrib/img/cc/svg/icons/cc.svg" alt="Creative Commons CC license icon" class="cc-license-icon"> <img src="https://static.zbmath.org/contrib/img/cc/svg/icons/by.svg" alt="Creative Commons BY license icon" class="cc-license-icon"> </a> </div> </div> <div class="references"> <h3>References:</h3> <table><tr> <td>[1]</td> <td class="space">Agarwal, N., Suresh, A. T., Yu, F., Kumar, S., &amp; McMahan, H. B. (2018). cpsgd: Communication-efficient and differentially-private distributed sgd. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 7575-7586). Curran Associates Inc.</td> </tr><tr> <td>[2]</td> <td class="space">Battey, H.; Fan, J.; Liu, H.; Lu, J.; Zhu, Z., Distributed testing and estimation under sparse high dimensional models, Annals of Statistics, 46, 3, 1352-1382 (2018) &middot; <a href="/1392.62060" class="nowrap">Zbl 1392.62060</a>&nbsp;&middot; <a href="https://doi.org/10.1214/17-AOS1587" class="nowrap">doi:10.1214/17-AOS1587</a></td> </tr><tr> <td>[3]</td> <td class="space">Berlinet, A.; Thomas-Agnan, C., Reproducing Kernel Hilbert Spaces in Probability and Statistics (2011), Springer Science &amp; Business Media</td> </tr><tr> <td>[4]</td> <td class="space">Bickel, P. J., Götze, F., &amp; van Zwet, W. R. (2012). Resampling fewer than n observations: Gains, losses, and remedies for losses. In Selected Works of Willem van Zwet (pp. 267-297). Springer. &middot; <a href="/1373.62173" class="nowrap">Zbl 1373.62173</a></td> </tr><tr> <td>[5]</td> <td class="space">Chang, X.; Lin, S.-B.; Wang, Y., Divide and conquer local average regression, Electronic Journal of Statistics, 11, 1, 1326-1350 (2017) &middot; <a href="/1362.62085" class="nowrap">Zbl 1362.62085</a>&nbsp;&middot; <a href="https://doi.org/10.1214/17-EJS1265" class="nowrap">doi:10.1214/17-EJS1265</a></td> </tr><tr> <td>[6]</td> <td class="space">Chang, X.; Lin, S.-B.; Zhou, D.-X., Distributed semi-supervised learning with kernel ridge regression, The Journal of Machine Learning Research, 18, 1, 1493-1514 (2017) &middot; <a href="/1431.68106" class="nowrap">Zbl 1431.68106</a></td> </tr><tr> <td>[7]</td> <td class="space">Chen, L.; Zhou, Y., Quantile regression in big data: A divide and conquer based strategy, Computational Statistics &amp; Data Analysis, 144 (2020) &middot; <a href="/1504.62048" class="nowrap">Zbl 1504.62048</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.csda.2019.106892" class="nowrap">doi:10.1016/j.csda.2019.106892</a></td> </tr><tr> <td>[8]</td> <td class="space">Chen, X.; Lee, J. D.; Li, H.; Yang, Y., Distributed estimation for principal component analysis: An enlarged eigenspace analysis, Journal of the American Statistical Association, 1-31 (2021) &middot; <a href="/1514.68244" class="nowrap">Zbl 1514.68244</a>&nbsp;&middot; <a href="https://doi.org/10.1080/01621459.2021.1886937" class="nowrap">doi:10.1080/01621459.2021.1886937</a></td> </tr><tr> <td>[9]</td> <td class="space">Chen, X.; Liu, W.; Mao, X.; Yang, Z., Distributed high-dimensional regression under a quantile loss function, Journal of Machine Learning Research, 21, 182, 1-43 (2020) &middot; <a href="/1542.62099" class="nowrap">Zbl 1542.62099</a></td> </tr><tr> <td>[10]</td> <td class="space">Chen, X.; Liu, W.; Zhang, Y., Quantile regression under memory constraint, The Annals of Statistics, 47, 6, 3244-3273 (2019) &middot; <a href="/1436.62134" class="nowrap">Zbl 1436.62134</a>&nbsp;&middot; <a href="https://doi.org/10.1214/18-AOS1777" class="nowrap">doi:10.1214/18-AOS1777</a></td> </tr><tr> <td>[11]</td> <td class="space">Chen, X.; Liu, W.; Zhang, Y., First-order newton-type estimator for distributed estimation and inference, Journal of the American Statistical Association, 1-40 (2021) &middot; <a href="/1515.62051" class="nowrap">Zbl 1515.62051</a>&nbsp;&middot; <a href="https://doi.org/10.1080/01621459.2021.1891925" class="nowrap">doi:10.1080/01621459.2021.1891925</a></td> </tr><tr> <td>[12]</td> <td class="space">Chen, X.; Xie, M.-G., A split-and-conquer approach for analysis of extraordinarily large data, Statistica Sinica, 1655-1684 (2014) &middot; <a href="/1480.62258" class="nowrap">Zbl 1480.62258</a>&nbsp;&middot; <a href="https://doi.org/10.5705/ss.2013.088" class="nowrap">doi:10.5705/ss.2013.088</a></td> </tr><tr> <td>[13]</td> <td class="space">Duchi, J. C., Jordan, M. I., Wainwright, M. J., &amp; Zhang, Y. (2014). Optimality guarantees for distributed statistical estimation. arXiv preprint arXiv:1405.0782.</td> </tr><tr> <td>[14]</td> <td class="space">Dwork, C. (2008). Differential privacy: A survey of results. In International Conference on Theory and Applications of Models of Computation (pp. 1-19). Springer. &middot; <a href="/1139.68339" class="nowrap">Zbl 1139.68339</a></td> </tr><tr> <td>[15]</td> <td class="space">Fan, J.; Gijbels, I., Local polynomial modelling and its applications: Monographs on statistics and applied probability 66, Vol. 66 (1996), CRC Press &middot; <a href="/0873.62037" class="nowrap">Zbl 0873.62037</a></td> </tr><tr> <td>[16]</td> <td class="space">Fan, J., Guo, Y., &amp; Wang, K. (2019a). Communication-efficient accurate statistical estimation. arXiv preprint arXiv:1906.04870. &middot; <a href="/07707218" class="nowrap">Zbl 07707218</a></td> </tr><tr> <td>[17]</td> <td class="space">Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 456, 1348-1360 (2001) &middot; <a href="/1073.62547" class="nowrap">Zbl 1073.62547</a>&nbsp;&middot; <a href="https://doi.org/10.1198/016214501753382273" class="nowrap">doi:10.1198/016214501753382273</a></td> </tr><tr> <td>[18]</td> <td class="space">Fan, J.; Lv, J., Sure independence screening for ultrahigh dimensional feature space, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 5, 849-911 (2008) &middot; <a href="/1411.62187" class="nowrap">Zbl 1411.62187</a>&nbsp;&middot; <a href="https://doi.org/10.1111/rssb.2008.70.issue-5" class="nowrap">doi:10.1111/rssb.2008.70.issue-5</a></td> </tr><tr> <td>[19]</td> <td class="space">Fan, J.; Wang, D.; Wang, K.; Zhu, Z., Distributed estimation of principal eigenspaces, The Annals of Statistics, 47, 6, 3009-3031 (2019) &middot; <a href="/1450.62067" class="nowrap">Zbl 1450.62067</a>&nbsp;&middot; <a href="https://doi.org/10.1214/18-AOS1713" class="nowrap">doi:10.1214/18-AOS1713</a></td> </tr><tr> <td>[20]</td> <td class="space">Guo, Z.-C.; Lin, S.-B.; Shi, L., Distributed learning with multi-penalty regularization, Applied and Computational Harmonic Analysis, 46, 3, 478-499 (2019) &middot; <a href="/1431.68107" class="nowrap">Zbl 1431.68107</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.acha.2017.06.001" class="nowrap">doi:10.1016/j.acha.2017.06.001</a></td> </tr><tr> <td>[21]</td> <td class="space">Hastie, T.; Tibshirani, R.; Wainwright, M., Statistical Learning with Sparsity: The Lasso and Generalizations (2015), CRC press &middot; <a href="/1319.68003" class="nowrap">Zbl 1319.68003</a></td> </tr><tr> <td>[22]</td> <td class="space">Huang, C., &amp; Huo, X. (2015). A distributed one-step estimator. arXiv preprint arXiv:1511.01443.</td> </tr><tr> <td>[23]</td> <td class="space">Javanmard, A.; Montanari, A., Confidence intervals and hypothesis testing for high-dimensional regression, The Journal of Machine Learning Research, 15, 1, 2869-2909 (2014) &middot; <a href="/1319.62145" class="nowrap">Zbl 1319.62145</a></td> </tr><tr> <td>[24]</td> <td class="space">Jordan, M. I.; Lee, J. D.; Yang, Y., Communication-efficient distributed statistical inference, Journal of the American Statistical Association, 114, 526, 668-681 (2019) &middot; <a href="/1420.62097" class="nowrap">Zbl 1420.62097</a>&nbsp;&middot; <a href="https://doi.org/10.1080/01621459.2018.1429274" class="nowrap">doi:10.1080/01621459.2018.1429274</a></td> </tr><tr> <td>[25]</td> <td class="space">Kaplan, D. M. (2019). Optimal smoothing in divide-and-conquer for big data. Technical report, working paper available at https://faculty.missouri.edu/kaplandm.</td> </tr><tr> <td>[26]</td> <td class="space">Kleiner, A.; Talwalkar, A.; Sarkar, P.; Jordan, M. I., A scalable bootstrap for massive data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 4, 795-816 (2014) &middot; <a href="/07555464" class="nowrap">Zbl 07555464</a>&nbsp;&middot; <a href="https://doi.org/10.1111/rssb.2014.76.issue-4" class="nowrap">doi:10.1111/rssb.2014.76.issue-4</a></td> </tr><tr> <td>[27]</td> <td class="space">Koenker, Quantile Regression (Econometric Society Monographs; No. 38) (2005), Cambridge University Press &middot; <a href="/1111.62037" class="nowrap">Zbl 1111.62037</a></td> </tr><tr> <td>[28]</td> <td class="space">Lee, J. D.; Liu, Q.; Sun, Y.; Taylor, J. E., Communication-efficient sparse regression, The Journal of Machine Learning Research, 18, 1, 115-144 (2017) &middot; <a href="/1434.62157" class="nowrap">Zbl 1434.62157</a></td> </tr><tr> <td>[29]</td> <td class="space">Lehmann, E. L.; Casella, G., Theory of Point Estimation (2006), Springer Science &amp; Business Media</td> </tr><tr> <td>[30]</td> <td class="space">Li, R.; Lin, D. K.; Li, B., Statistical inference in massive data sets, Applied Stochastic Models in Business and Industry, 29, 5, 399-409 (2013) &middot; <a href="/07879676" class="nowrap">Zbl 07879676</a>&nbsp;&middot; <a href="https://doi.org/10.1002/asmb.1927" class="nowrap">doi:10.1002/asmb.1927</a></td> </tr><tr> <td>[31]</td> <td class="space">Li, X.; Li, R.; Xia, Z.; Xu, C., Distributed feature screening via componentwise debiasing, Journal of Machine Learning Research, 21, 24, 1-32 (2020) &middot; <a href="/1498.68286" class="nowrap">Zbl 1498.68286</a></td> </tr><tr> <td>[32]</td> <td class="space">Lian, H.; Fan, Z., Divide-and-conquer for debiased l1-norm support vector machine in ultra-high dimensions, Journal of Machine Learning Research, 18, 1, 1-26 (2018) &middot; <a href="/1468.68158" class="nowrap">Zbl 1468.68158</a></td> </tr><tr> <td>[33]</td> <td class="space">Lian, H.; Zhao, K.; Lv, S., Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data, Annals of Statistics, 47, 5, 2922-2949 (2019) &middot; <a href="/1436.62145" class="nowrap">Zbl 1436.62145</a>&nbsp;&middot; <a href="https://doi.org/10.1214/18-AOS1769" class="nowrap">doi:10.1214/18-AOS1769</a></td> </tr><tr> <td>[34]</td> <td class="space">Lin, S.-B.; Guo, X.; Zhou, D.-X., Distributed learning with regularized least squares, The Journal of Machine Learning Research, 18, 1, 3202-3232 (2017) &middot; <a href="/1435.68273" class="nowrap">Zbl 1435.68273</a></td> </tr><tr> <td>[35]</td> <td class="space">Lin, S.-B., Wang, D., &amp; Zhou, D.-X. (2020). Distributed kernel ridge regression with communications. arXiv preprint arXiv:2003.12210. &middot; <a href="/1502.68259" class="nowrap">Zbl 1502.68259</a></td> </tr><tr> <td>[36]</td> <td class="space">Lin, S.-B.; Zhou, D.-X., Distributed kernel-based gradient descent algorithms, Constructive Approximation, 47, 2, 249-276 (2018) &middot; <a href="/1390.68542" class="nowrap">Zbl 1390.68542</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s00365-017-9379-1" class="nowrap">doi:10.1007/s00365-017-9379-1</a></td> </tr><tr> <td>[37]</td> <td class="space">Liu, D.; Liu, R. Y.; Xie, M., Multivariate meta-analysis of heterogeneous studies using only summary statistics: efficiency and robustness, Journal of the American Statistical Association, 110, 509, 326-340 (2015) &middot; <a href="/1373.62135" class="nowrap">Zbl 1373.62135</a>&nbsp;&middot; <a href="https://doi.org/10.1080/01621459.2014.899235" class="nowrap">doi:10.1080/01621459.2014.899235</a></td> </tr><tr> <td>[38]</td> <td class="space">Liu, Q., &amp; Ihler, A. T. (2014). Distributed estimation, information loss and exponential families. In Advances in Neural Information Processing Systems (pp. 1098-1106). MIT Press.</td> </tr><tr> <td>[39]</td> <td class="space">Lv, S., &amp; Lian, H. (2017). Debiased distributed learning for sparse partial linear models in high dimensions. arXiv preprint arXiv:1708.05487. &middot; <a href="/07625155" class="nowrap">Zbl 07625155</a></td> </tr><tr> <td>[40]</td> <td class="space">Minsker, S., Distributed statistical estimation and rates of convergence in normal approximation, Electronic Journal of Statistics, 13, 2, 5213-5252 (2019) &middot; <a href="/1434.62046" class="nowrap">Zbl 1434.62046</a>&nbsp;&middot; <a href="https://doi.org/10.1214/19-EJS1647" class="nowrap">doi:10.1214/19-EJS1647</a></td> </tr><tr> <td>[41]</td> <td class="space">Mücke, N.; Blanchard, G., Parallelizing spectrally regularized kernel algorithms, The Journal of Machine Learning Research, 19, 1, 1069-1097 (2018) &middot; <a href="/1461.68189" class="nowrap">Zbl 1461.68189</a></td> </tr><tr> <td>[42]</td> <td class="space">Politis, D. N.; Romano, J. P.; Wolf, M., Subsampling (1999), Springer Science &amp; Business Media &middot; <a href="/0931.62035" class="nowrap">Zbl 0931.62035</a></td> </tr><tr> <td>[43]</td> <td class="space">Qiao, X., Duan, J., &amp; Cheng, G. (2019). Rates of convergence for large-scale nearest neighbor classification. In Advances in Neural Information Processing Systems (pp. 10768-10779). Curran Associates Inc.</td> </tr><tr> <td>[44]</td> <td class="space">Rosenblatt, J. D.; Nadler, B., On the optimality of averaging in distributed statistical learning, Information and Inference: A Journal of the IMA, 5, 4, 379-404 (2016) &middot; <a href="/1426.68241" class="nowrap">Zbl 1426.68241</a>&nbsp;&middot; <a href="https://doi.org/10.1093/imaiai/iaw013" class="nowrap">doi:10.1093/imaiai/iaw013</a></td> </tr><tr> <td>[45]</td> <td class="space">Saunders, C., Gammerman, A., &amp; Vovk, V. (1998). Ridge regression learning algorithm in dual variables. In International Conference on Machine Learning (pp. 515-521).</td> </tr><tr> <td>[46]</td> <td class="space">Shamir, O., Srebro, N., &amp; Zhang, T. (2014). Communication-efficient distributed optimization using an approximate newton-type method. In International Conference on Machine Learning (pp. 1000-1008). JMLR.org.</td> </tr><tr> <td>[47]</td> <td class="space">Shang, Z.; Cheng, G., Computational limits of a distributed algorithm for smoothing spline, Journal of Machine Learning Research, 18, 108, 1-37 (2017) &middot; <a href="/1442.90055" class="nowrap">Zbl 1442.90055</a></td> </tr><tr> <td>[48]</td> <td class="space">Song, Q.; Liang, F., A split-and-merge bayesian variable selection approach for ultrahigh dimensional regression, Journal of the Royal Statistical Society: Series B: Statistical Methodology, 77, 5, 947-972 (2015) &middot; <a href="/1414.62322" class="nowrap">Zbl 1414.62322</a>&nbsp;&middot; <a href="https://doi.org/10.1111/rssb.12095" class="nowrap">doi:10.1111/rssb.12095</a></td> </tr><tr> <td>[49]</td> <td class="space">Steinwart, I., Hush, D. R., &amp; Scovel, C. (2009). Optimal rates for regularized least squares regression. In COLT (pp. 79-93). https://www.cs.mcgill.ca/∼colt2009/papers/038.pdf</td> </tr><tr> <td>[50]</td> <td class="space">Tibshirani, R., Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58, 1, 267-288 (1996) &middot; <a href="/0850.62538" class="nowrap">Zbl 0850.62538</a>&nbsp;&middot; <a href="https://doi.org/10.1111/j.2517-6161.1996.tb02080.x" class="nowrap">doi:10.1111/j.2517-6161.1996.tb02080.x</a></td> </tr><tr> <td>[51]</td> <td class="space">Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R., &amp; Zhou, Y. (2019). A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security (pp. 1-11). Association for Computing Machinery.</td> </tr><tr> <td>[52]</td> <td class="space">Vapnik, V., The Nature of Statistical Learning Theory (2013), Springer Science &amp; Business Media &middot; <a href="/0934.62009" class="nowrap">Zbl 0934.62009</a></td> </tr><tr> <td>[53]</td> <td class="space">Volgushev, S.; Chao, S.-K.; Cheng, G., Distributed inference for quantile regression processes, The Annals of Statistics, 47, 3, 1634-1662 (2019) &middot; <a href="/1418.62174" class="nowrap">Zbl 1418.62174</a>&nbsp;&middot; <a href="https://doi.org/10.1214/18-AOS1730" class="nowrap">doi:10.1214/18-AOS1730</a></td> </tr><tr> <td>[54]</td> <td class="space">Wahba, G., Spline Models for Observational Data, Vol. 59 (1990), Siam &middot; <a href="/0813.62001" class="nowrap">Zbl 0813.62001</a></td> </tr><tr> <td>[55]</td> <td class="space">Wang, F., Huang, D., Zhu, Y., &amp; Wang, H. (2020). Efficient estimation for generalized linear models on a distributed system with nonrandomly distributed data. arXiv preprint arXiv:2004.02414.</td> </tr><tr> <td>[56]</td> <td class="space">Wang, J., Kolar, M., Srebro, N., &amp; Zhang, T. (2017). Efficient distributed learning with sparsity. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 3636-3645). JMLR.org.</td> </tr><tr> <td>[57]</td> <td class="space">Wang, S. (2019). A sharper generalization bound for divide-and-conquer ridge regression. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 5305-5312). AAAI Press.</td> </tr><tr> <td>[58]</td> <td class="space">Wang, X., Ishii, H., Du, L., Cheng, P., &amp; Chen, J. (2019). Differential privacy-preserving distributed machine learning. In 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 7339-7344). IEEE.</td> </tr><tr> <td>[59]</td> <td class="space">Wang, X.; Yang, Z.; Chen, X.; Liu, W., Distributed inference for linear support vector machine, Journal of Machine Learning Research, 20, 113, 1-41 (2019) &middot; <a href="/1434.68468" class="nowrap">Zbl 1434.68468</a></td> </tr><tr> <td>[60]</td> <td class="space">Xu, C.; Zhang, Y.; Li, R.; Wu, X., On the feasibility of distributed kernel regression for big data, IEEE Transactions on Knowledge and Data Engineering, 28, 11, 3041-3052 (2016)&nbsp;&middot; <a href="https://doi.org/10.1109/TKDE.2016.2594060" class="nowrap">doi:10.1109/TKDE.2016.2594060</a></td> </tr><tr> <td>[61]</td> <td class="space">Xu, G., Shang, Z., &amp; Cheng, G. (2018). Optimal tuning for divide-and-conquer kernel ridge regression with massive data. In Proceedings of Machine Learning Research. PMLR.</td> </tr><tr> <td>[62]</td> <td class="space">Xu, M.; Shao, J., Meta-analysis of independent datasets using constrained generalised method of moments, Statistical Theory and Related Fields, 4, 1, 109-116 (2020) &middot; <a href="/07660228" class="nowrap">Zbl 07660228</a>&nbsp;&middot; <a href="https://doi.org/10.1080/24754269.2019.1630545" class="nowrap">doi:10.1080/24754269.2019.1630545</a></td> </tr><tr> <td>[63]</td> <td class="space">Yang, J., Mahoney, M. W., Saunders, M. A., &amp; Sun, Y. (2016). Feature-distributed sparse regression: A screen-and-clean approach. In NIPS (pp. 2712-2720). Curran Associates, Inc.</td> </tr><tr> <td>[64]</td> <td class="space">Zhang, C.-H.; Zhang, T., A general theory of concave regularization for high-dimensional sparse estimation problems, Statistical Science, 27, 4, 576-593 (2012) &middot; <a href="/1331.62353" class="nowrap">Zbl 1331.62353</a>&nbsp;&middot; <a href="https://doi.org/10.1214/12-STS399" class="nowrap">doi:10.1214/12-STS399</a></td> </tr><tr> <td>[65]</td> <td class="space">Zhang, T., Learning bounds for kernel regression using effective data dimensionality, Neural Computation, 17, 9, 2077-2098 (2005) &middot; <a href="/1080.68044" class="nowrap">Zbl 1080.68044</a>&nbsp;&middot; <a href="https://doi.org/10.1162/0899766054323008" class="nowrap">doi:10.1162/0899766054323008</a></td> </tr><tr> <td>[66]</td> <td class="space">Zhang, Y.; Duchi, J.; Wainwright, M., Divide and conquer kernel ridge regression: A distributed algorithm with minimax optimal rates, The Journal of Machine Learning Research, 16, 1, 3299-3340 (2015) &middot; <a href="/1351.62142" class="nowrap">Zbl 1351.62142</a></td> </tr><tr> <td>[67]</td> <td class="space">Zhang, Y.; Duchi, J. C.; Wainwright, M. J., Communication-efficient algorithms for statistical optimization, The Journal of Machine Learning Research, 14, 1, 3321-3363 (2013) &middot; <a href="/1318.62016" class="nowrap">Zbl 1318.62016</a></td> </tr><tr> <td>[68]</td> <td class="space">Zhao, T.; Cheng, G.; Liu, H., A partially linear framework for massive heterogeneous data, Annals of Statistics, 44, 4, 1400 (2016) &middot; <a href="/1358.62050" class="nowrap">Zbl 1358.62050</a>&nbsp;&middot; <a href="https://doi.org/10.1214/15-AOS1410" class="nowrap">doi:10.1214/15-AOS1410</a></td> </tr><tr> <td>[69]</td> <td class="space">Zhao, T., Kolar, M., &amp; Liu, H. (2014). A general framework for robust testing and confidence regions in high-dimensional quantile regression. arXiv preprint arXiv:1412.8724.</td> </tr><tr> <td>[70]</td> <td class="space">Zhao, W.; Zhang, F.; Lian, H., Debiasing and distributed estimation for high-dimensional quantile regression, IEEE Transactions on Neural Networks and Learning Systems, 31, 7, 2569-2577 (2019)&nbsp;&middot; <a href="https://doi.org/10.1109/TNNLS.2019.2933467" class="nowrap">doi:10.1109/TNNLS.2019.2933467</a></td> </tr><tr> <td>[71]</td> <td class="space">Zhou, L., &amp; Song, P. X.-K. (2017). Scalable and efficient statistical inference with estimating functions in the mapreduce paradigm for big data. arXiv preprint arXiv:1709.04389.</td> </tr><tr> <td>[72]</td> <td class="space">Zhu, L.-P.; Li, L.; Li, R.; Zhu, L.-X., Model-free feature screening for ultrahigh-dimensional data, Journal of the American Statistical Association, 106, 496, 1464-1475 (2011) &middot; <a href="/1233.62195" class="nowrap">Zbl 1233.62195</a>&nbsp;&middot; <a href="https://doi.org/10.1198/jasa.2011.tm10563" class="nowrap">doi:10.1198/jasa.2011.tm10563</a></td> </tr><tr> <td>[73]</td> <td class="space">Zhu, X., Li, F., &amp; Wang, H. (2019). Least squares approximation for a distributed system. arXiv preprint arXiv:1908.04904.</td> </tr></table> <div class="reference_disclaimer"> This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH&nbsp;Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching. </div> </div></article> </div></div> </div> </div> <div class="clearfix"></div> </div> </div> <div id="foot"><div class="copyright"> &copy; 2025 <a target="fiz" href="https://www.fiz-karlsruhe.de/en">FIZ Karlsruhe GmbH</a> <a href="/privacy-policy/">Privacy Policy</a> <a href="/legal-notices/">Legal Notices</a> <a href="/terms-conditions/">Terms &amp; Conditions</a> <div class="info"> <ul class="nav"> <li class="mastodon"> <a href="https://mathstodon.xyz/@zbMATH" target="_blank" class="no-new-tab-icon"> <img src="/static/mastodon.png" title="zbMATH at Mathstodon (opens in new tab)" alt="Mastodon logo"> </a> </li> </ul> </div> </div> <div class="clearfix" style="height: 0px;"></div> </div> </div> <script src="https://static.zbmath.org/contrib/jquery/1.9.1/jquery.min.js"></script> <script src="https://static.zbmath.org/contrib/jquery-caret/1.5.2/jquery.caret.min.js"></script> <script src="/static/js/jquery-ui-1.10.1.custom.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap/v3.3.7zb1/js/bootstrap.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.js"></script> <script src="https://static.zbmath.org/contrib/retina/unknown/retina.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/js/bootstrap-select.min.js"></script> <script> var SCRIPT_ROOT = ""; </script> <script src="/static/scripts.js?v=20240926"> </script> <script src="https://static.zbmath.org/contrib/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { preferredFont: "TeX", availableFonts: [ "STIX", "TeX" ], linebreaks: { automatic: true }, EqnChunk: (MathJax.Hub.Browser.isMobile ? 10 : 50) }, tex2jax: { processEscapes: true, ignoreClass: "tex2jax_ignore|dno" }, TeX: { Macros: { Aut: "\\operatorname{Aut}", Hom: "\\operatorname{Hom}" }, noUndefined: { attributes: { mathcolor: "#039", //"red", mathbackground: "white", //"#FFEEEE", mathsize: "90%" } } }, messageStyle: "none" }); </script> <script type="text/javascript"> $(document).ready(function() { $("#MathInput").stop(true, true).keyup(function() { $.ajax({ url: "/mwsq/", type: "POST", data: { query : $("#MathInput").val() }, dataType: "text" }) .done(function(xml) { $("#MathPreview").html(xml); $(window).resize(); }); }); var press = jQuery.Event("keyup"); press.ctrlKey = false; press.which = 40; $("#MathInput").trigger(press); }); </script> <div id="new_tab_icon" style="display: none">&nbsp;<span class="glyphicon glyphicon-new-window" aria-hidden="true"></span><span class="sr-only">(opens in new tab)</span></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10