CINXE.COM

Search results for: pressure control

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pressure control</title> <meta name="description" content="Search results for: pressure control"> <meta name="keywords" content="pressure control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pressure control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pressure control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14223</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pressure control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14223</span> The Effects of “Never Pressure Injury” on the Incidence of Pressure Injuries in Critically Ill Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuchjaree%20Kidjawan">Nuchjaree Kidjawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Orapan%20Thosingha"> Orapan Thosingha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawinee%20Vaipatama"> Pawinee Vaipatama</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakrankiat%20Youngkong"> Prakrankiat Youngkong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirinapha%20Malangputhong"> Sirinapha Malangputhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kitti%20Thamrongaphichartkul"> Kitti Thamrongaphichartkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatcharaporn%20Phetcharat"> Phatcharaporn Phetcharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NPI uses technology sensorization of things and processed by AI system. The main features are an individual interface pressure sensor system in contact with the mattress and a position management system where the sensor detects the determined pressure with automatic pressure reduction and distribution. The role of NPI is to monitor, identify the risk and manage the interface pressure automatically when the determined pressure is detected. This study aims to evaluate the effects of “Never Pressure Injury (NPI),” an innovative mattress, on the incidence of pressure injuries in critically ill patients. An observational case-control study was employed to compare the incidence of pressure injury between the case and the control group. The control group comprised 80 critically ill patients admitted to a critical care unit of Phyathai3 Hospital, receiving standard care with the use of memory foam according to intensive care unit guidelines. The case group comprised 80 critically ill patients receiving standard care and with the use of the Never Pressure Injury (NPI) innovation mattress. The patients who were over 20 years old and showed scores of less than 18 on the Risk Assessment Pressure Ulcer Scale – ICU and stayed in ICU for more than 24 hours were selected for the study. The patients’ skin was assessed for the occurrence of pressure injury once a day for five consecutive days or until the patients were discharged from ICU. The sample comprised 160 patients with ages ranging from 30-102 (mean = 70.1 years), and the Body Mass Index ranged from 13.69- 49.01 (mean = 24.63). The case and the control group were not different in their sex, age, Body Mass Index, Pressure Ulcer Risk Scores, and length of ICU stay. Twenty-two patients (27.5%) in the control group had pressure injuries, while no pressure injury was found in the case group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20injury" title="pressure injury">pressure injury</a>, <a href="https://publications.waset.org/abstracts/search?q=never%20pressure%20injury" title=" never pressure injury"> never pressure injury</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20mattress" title=" innovation mattress"> innovation mattress</a>, <a href="https://publications.waset.org/abstracts/search?q=critically%20ill%20patients" title=" critically ill patients"> critically ill patients</a>, <a href="https://publications.waset.org/abstracts/search?q=prevent%20pressure%20injury" title=" prevent pressure injury"> prevent pressure injury</a> </p> <a href="https://publications.waset.org/abstracts/161134/the-effects-of-never-pressure-injury-on-the-incidence-of-pressure-injuries-in-critically-ill-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14222</span> Cascade Control for Pressure Calibration by Fieldbus Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chatchaval%20Pornpatkul">Chatchaval Pornpatkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wipawan%20Suksathid"> Wipawan Suksathid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is to study and control the pressure of the water inside the open tank using a cascade control with the communication in the process by fieldbus system for the pressure calibration. The plant model is to be used in experiments to control the level and flow process of the water by using Syscon program to create functions. We used to control by Intouch runtime program to create the graphic display on the screen. In this case we used PI control the level and the flow process of water in the open tank in the range of 0 – 10 L/m. The output signal of the level and the flow transmitter are the digital standard signal by fieldbus system. And all information displayed on the computer with the communication between the computer and plant model can be communication to each other through just one cable pair. And in this paper, the PI tuning, we used calculate by Ziegler-Nichols reaction curve method to control the plant model by PI controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=fieldbus%20system" title=" fieldbus system"> fieldbus system</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20calibration" title=" pressure calibration"> pressure calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectronics%20systems" title=" microelectronics systems"> microelectronics systems</a> </p> <a href="https://publications.waset.org/abstracts/6419/cascade-control-for-pressure-calibration-by-fieldbus-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14221</span> Pressure Regulator Optimization in LPG Fuel Injection Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Akif%20Ceviz">M. Akif Ceviz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alir%C4%B1za%20Kaleli"> Alirıza Kaleli</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20G%C3%BCner"> Erdoğan Güner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20regulator" title=" pressure regulator"> pressure regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG" title=" LPG"> LPG</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/21944/pressure-regulator-optimization-in-lpg-fuel-injection-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14220</span> Supply Air Pressure Control of HVAC System Using MPC Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Javid">P. Javid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aeenmehr"> A. Aeenmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Taghavifar"> J. Taghavifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20system" title="air conditioning system">air conditioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=GPC" title=" GPC"> GPC</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20time" title=" dead time"> dead time</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20supply%20control" title=" air supply control"> air supply control</a> </p> <a href="https://publications.waset.org/abstracts/4103/supply-air-pressure-control-of-hvac-system-using-mpc-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14219</span> Blood Pressure Level, Targeted Blood Pressure Control Rate, and Factors Related to Blood Pressure Control in Post-Acute Ischemic Stroke Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nannapus%20Saramad">Nannapus Saramad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rewwadee%20Petsirasan"> Rewwadee Petsirasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jom%20Suwanno"> Jom Suwanno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: This retrospective study design was to describe average blood pressure, blood pressure level, target blood pressure control rate post-stroke BP control in the year following discharge from Sichon hospital, Sichon District, Nakhon Si Thammarat province. The secondary data analysis was employed from the patient’s health records with patient or caregiver interview. A total of 232 eligible post-acute ischemic strokes in the year following discharge (2017-2018) were recruited. Methods: Data analyses were applied to identify the relationship values of single variables were determined through univariate analyses: The Chi-square test, Fisher exact test, the variables found to have a p-value < 0.2 were analyzed by the binary logistic regression Results: Most of the patients in this study were men 61.6%, an average age of 65.4 ± 14.8 years. Systolic blood pressure levels were in the grade 1-2 hypertension and diastolic pressure at optimal and normal at all times during the initial treatment through the present. The results revealed 25% among the groups under the age of 60 achieved BP control; 36.3% for older than 60 years group; and 27.9% for diabetic group. The multivariate analysis revealed the final relationship of four significant variables: 1) receiving calcium-channel blocker (p =.027); 2) medication adherence of antihypertensive (p = .024) 3) medication adherence of antiplatelet ( p = .020); and 4) medication behavior ( p = . 010) . Conclusion: The medical nurse and health care provider should promote their adherence to behavior to improve their blood pressure control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20ischemic%20stroke" title="acute ischemic stroke">acute ischemic stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20blood%20pressure%20control" title=" target blood pressure control"> target blood pressure control</a>, <a href="https://publications.waset.org/abstracts/search?q=medication%20adherence" title=" medication adherence"> medication adherence</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrence%20stroke" title=" recurrence stroke"> recurrence stroke</a> </p> <a href="https://publications.waset.org/abstracts/113590/blood-pressure-level-targeted-blood-pressure-control-rate-and-factors-related-to-blood-pressure-control-in-post-acute-ischemic-stroke-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14218</span> Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20Golubkov">Anton Golubkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Gleb%20Ermachkov"> Gleb Ermachkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Smerdin"> Aleksandr Smerdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Sidorov"> Oleg Sidorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Philippov"> Victor Philippov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector&rsquo;s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20strip" title="contact strip">contact strip</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20collector" title=" current collector"> current collector</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20running" title=" high-speed running"> high-speed running</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20control" title=" program control"> program control</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/128597/increasing-the-forecasting-fidelity-of-current-collection-system-operating-capability-by-means-of-contact-pressure-simulation-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14217</span> Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zara%20L.%20Sheady">Zara L. Sheady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title="ANSYS CFX">ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillators" title=" fluidic oscillators"> fluidic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/86615/computational-fluid-dynamic-investigation-into-the-relationship-between-pressure-and-velocity-distributions-within-a-microfluidic-feedback-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14216</span> The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Behtash">Reza Behtash</a>, <a href="https://publications.waset.org/abstracts/search?q=Enayat%20Enayati"> Enayat Enayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiler" title="boiler">boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20condenser" title=" pool condenser"> pool condenser</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20plate" title=" partition plate"> partition plate</a> </p> <a href="https://publications.waset.org/abstracts/28750/the-mainspring-of-controlling-of-low-pressure-steam-drum-at-lower-pressure-than-its-design-for-adjusting-the-urea-synthesis-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14215</span> Effect of Downstream Pressure in Tuning the Flow Control Orifices of Pressure Fed Reaction Control System Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20M.N">Prakash M.N</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20G"> Mahesh G</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Rafi%20K.M"> Muhammed Rafi K.M</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiju%20P.%20Nair"> Shiju P. Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In launch vehicle missions, Reaction Control thrusters are being used for the three-axis stabilization of the vehicle during the coasting phases. A pressure-fed propulsion system is used for the operation of these thrusters due to its less complexity. In liquid stages, these thrusters are designed to draw propellant from the same tank used for the main propulsion system. So in order to regulate the propellant flow rates of these thrusters, flow control orifices are used in feed lines. These orifices are calibrated separately as per the flow rate requirement of individual thrusters for the nominal operating conditions. In some missions, it was observed that the thrusters were operated at higher thrust than nominal. This point was addressed through a series of cold flow and hot tests carried out in-ground and this paper elaborates the details of the same. Discussion: In order to find out the exact reason for this phenomenon, two flight configuration thrusters were identified and hot tested in the ground with calibrated orifices and feed lines. During these tests, the chamber pressure, which is directly proportional to the thrust, is measured. In both cases, chamber pressures higher than the nominal by 0.32bar to 0.7bar were recorded. The increase in chamber pressure is due to an increase in the oxidizer flow rate of both the thrusters. Upon further investigation, it is observed that the calibration of the feed line is done with ambient pressure downstream. But in actual flight conditions, the orifices will be subjected to operate with 10 to 11bar pressure downstream. Due to this higher downstream pressure, the flow through the orifices increases and thereby, the thrusters operate with higher chamber pressure values. Conclusion: As part of further investigatory tests, two numbers of fresh thrusters were realized. Orifice tuning of these thrusters was carried out in three different ways. In the first trial, the orifice tuning was done by simulating 1bar pressure downstream. The second trial was done with the injector assembled downstream. In the third trial, the downstream pressure equal to the flight injection pressure was simulated downstream. Using these calibrated orifices, hot tests were carried out in simulated vacuum conditions. Chamber pressure and flow rate values were exactly matching with the prediction for the second and third trials. But for the first trial, the chamber pressure values obtained in the hot test were more than the prediction. This clearly shows that the flow is detached in the 1st trial and attached for the 2nd & 3rd trials. Hence, the error in tuning the flow control orifices is pinpointed as the reason for this higher chamber pressure observed in flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reaction%20control%20thruster" title="reaction control thruster">reaction control thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=propellent" title=" propellent"> propellent</a>, <a href="https://publications.waset.org/abstracts/search?q=orifice" title=" orifice"> orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=chamber%20pressure" title=" chamber pressure"> chamber pressure</a> </p> <a href="https://publications.waset.org/abstracts/138581/effect-of-downstream-pressure-in-tuning-the-flow-control-orifices-of-pressure-fed-reaction-control-system-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14214</span> Prevalence, Awareness and Control of Hypertension among the University of Venda Academic Staff, South Africa </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thizwilondi%20Madzaga">Thizwilondi Madzaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Jabu%20Tsakani%20Mabunda"> Jabu Tsakani Mabunda</a>, <a href="https://publications.waset.org/abstracts/search?q=Takalani%20Tshitangano"> Takalani Tshitangano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypertension is a global public health problem. In most cases, hypertension individuals are not aware of their condition, and they only detected it accidentally during public awareness programmes. The aim of the study was to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. UNIVEN is situated in Thohoyandou, South Africa. A cross-sectional study was conducted to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. Slovin’s formula was used to randomly select 179 academic staff (male=104 and female=75). WHO stepwise Questionnaire version 23.0 was used to get information on demographic information. Blood pressure was measured twice after five minutes rest using electronic blood pressure monitor. In this study, hypertension referred to self-reported to be on hypertension medication or having blood pressure equal or exceeding 140 over 90 mmHg. Statistical Package of Social Sciences version 23.0 was used to analyse data. Prevalence of hypertension was 20% and 46% prehypertension. Only 34% had a normal blood pressure. About 34% were not sure of their current blood pressure status (within 12 months). About 10% of the total respondents had been previously diagnosed with hypertension and half of them who were hypertensive were not aware that they had it. Among those who were aware that they are hypertensive, about 90% were on treatment whereas 10% had stopped taking treatment. About 13% of those who were on treatment had controlled blood pressure. There is a need for health education programmes to increase hypertension awareness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20staff" title="academic staff">academic staff</a>, <a href="https://publications.waset.org/abstracts/search?q=awareness" title=" awareness"> awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a> </p> <a href="https://publications.waset.org/abstracts/64881/prevalence-awareness-and-control-of-hypertension-among-the-university-of-venda-academic-staff-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14213</span> Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mirhosseini">Morteza Mirhosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20B.%20Khoshnevis"> Amir B. Khoshnevis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12<sup>o</sup> and this has due to the jet energized, while the angle of attack 20<sup>o</sup> has different. The airfoil cord based Reynolds number has 10<sup>5</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20pressure%20gradient" title="adverse pressure gradient">adverse pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuating%20velocity" title=" fluctuating velocity"> fluctuating velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20jet" title=" wall jet"> wall jet</a>, <a href="https://publications.waset.org/abstracts/search?q=co-flow%20jet%20airfoil" title=" co-flow jet airfoil"> co-flow jet airfoil</a> </p> <a href="https://publications.waset.org/abstracts/37038/effect-of-adverse-pressure-gradient-on-a-fluctuating-velocity-over-the-co-flow-jet-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14212</span> Effects of Self-Management Programs on Blood Pressure Control, Self-Efficacy, Medication Adherence, and Body Mass Index among Older Adult Patients with Hypertension: Meta-Analysis of Randomized Controlled Trials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Truong%20Pham">Van Truong Pham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Self-management was described as a potential strategy for blood pressure control in patients with hypertension. However, the effects of self-management interventions on blood pressure, self-efficacy, medication adherence, and body mass index (BMI) in older adults with hypertension have not been systematically evaluated. We evaluated the effects of self-management interventions on systolic blood pressure (SBP) and diastolic blood pressure (DBP), self-efficacy, medication adherence, and BMI in hypertensive older adults. Methods: We followed the recommended guidelines of preferred reporting items for systematic reviews and meta-analyses. Searches in electronic databases including CINAHL, Cochrane Library, Embase, Ovid-Medline, PubMed, Scopus, Web of Science, and other sources were performed to include all relevant studies up to April 2019. Studies selection, data extraction, and quality assessment were performed by two reviewers independently. We summarized intervention effects as Hedges' g values and 95% confidence intervals (CI) using a random-effects model. Data were analyzed using Comprehensive Meta-Analysis software 2.0. Results: Twelve randomized controlled trials met our inclusion criteria. The results revealed that self-management interventions significantly improved blood pressure control, self-efficacy, medication adherence, whereas the effect of self-management on BMI was not significant in older adult patients with hypertension. The following Hedges' g (effect size) values were obtained: SBP, -0.34 (95% CI, -0.51 to -0.17, p < 0.001); DBP, -0.18 (95% CI, -0.30 to -0.05, p < 0.001); self-efficacy, 0.93 (95%CI, 0.50 to 1.36, p < 0.001); medication adherence, 1.72 (95%CI, 0.44 to 3.00, p=0.008); and BMI, -0.57 (95%CI, -1.62 to 0.48, p = 0.286). Conclusions: Self-management interventions significantly improved blood pressure control, self-efficacy, and medication adherence. However, the effects of self-management on obesity control were not supported by the evidence. Healthcare providers should implement self-management interventions to strengthen patients' role in managing their health care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-management" title="self-management">self-management</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure%20control" title=" blood pressure control"> blood pressure control</a>, <a href="https://publications.waset.org/abstracts/search?q=self-efficacy" title=" self-efficacy"> self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=medication%20adherence" title=" medication adherence"> medication adherence</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a> </p> <a href="https://publications.waset.org/abstracts/126810/effects-of-self-management-programs-on-blood-pressure-control-self-efficacy-medication-adherence-and-body-mass-index-among-older-adult-patients-with-hypertension-meta-analysis-of-randomized-controlled-trials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14211</span> Valuation on MEMS Pressure Sensors and Device Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Kai%20Sheng"> Ong Kai Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title="pressure sensor">pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm" title=" diaphragm"> diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20application" title=" automotive application"> automotive application</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a> </p> <a href="https://publications.waset.org/abstracts/28395/valuation-on-mems-pressure-sensors-and-device-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14210</span> Development of an Automatic Control System for ex vivo Heart Perfusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengzhou%20Lu">Pengzhou Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liming%20Xin"> Liming Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Tavakoli"> Payam Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhonghua%20Lin"> Zhonghua Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20V.%20P.%20Ribeiro"> Roberto V. P. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitesh%20V.%20Badiwala"> Mitesh V. Badiwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20control%20system" title="automatic control system">automatic control system</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=ex-vivo%20heart%20perfusion" title=" ex-vivo heart perfusion"> ex-vivo heart perfusion</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interface" title=" human-machine interface"> human-machine interface</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20logic%20controller" title=" programmable logic controller"> programmable logic controller</a> </p> <a href="https://publications.waset.org/abstracts/86767/development-of-an-automatic-control-system-for-ex-vivo-heart-perfusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14209</span> Effects of Aerobic Dance Circuit Training Programme on Blood Pressure Variables of Obese Female College Students in Oyo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isiaka%20Oladele%20Oladipo">Isiaka Oladele Oladipo</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Adewale%20Ajayi"> Olusegun Adewale Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blood pressure fitness of female college students has been implicated in sedentary lifestyles. This study was designed to determine the effects of the Aerobic Dance Circuit Training Programme (ADCT) on blood pressure variables (Diastolic Blood Pressure (DBP) and Systolic Blood Pressure (SBP). Participants’ Pretest-Posttest control group quasi-experimental design using a 2x2x4 factorial matrix was adopted, while one (1) research question and two (2) research hypotheses were formulated. Seventy (70) untrained obese students-volunteers age 21.10±2.46 years were purposively selected from Oyo town, Nigeria; Emmanuel Alayande College of Education (experimental group and Federal College of Education (special) control group. The participants’ BMI, weight (kg), height (m), systolic bp(mmHg), and diastolic bp (mmHg) were measured before and completion of ADCT. Data collected were analysed using a pie chart, graph, percentage, mean, frequency, and standard deviation, while a t-test was used to analyse the stated hypotheses set at the critical level of 0.05. There were significant mean differences in baseline and post-treatment values of blood pressure variables in terms of SBP among the experimental group 136.49mmHg and 131.66mmHg; control group 130.82mmHg and 130.56mmHg (crit-t=2.00, cal.t=3.02, df=69, p<.0, the hypothesis was rejected; while DBP experimental group 88.65mmHg and 82.21mmHg; control group 69.91mmHg and 72.66mmHg (crit-t=2.00, cal.t=1.437, df=69, p>.05) in which the hypothesis was accepted). It was revealed from the findings that participants’ SBP decrease from week 4 to week 12 of ADCT indicated an effective reduction in blood pressure variables of obese female students. Therefore, the study confirmed that the use of ADCT is safe and effective in the management of blood pressure for the healthy benefit of obesity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20dance%20circuit%20training" title="aerobic dance circuit training">aerobic dance circuit training</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness%20lifestyles" title=" fitness lifestyles"> fitness lifestyles</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20college%20female%20students" title=" obese college female students"> obese college female students</a>, <a href="https://publications.waset.org/abstracts/search?q=systolic%20blood%20pressure" title=" systolic blood pressure"> systolic blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=diastolic%20blood%20pressure" title=" diastolic blood pressure"> diastolic blood pressure</a> </p> <a href="https://publications.waset.org/abstracts/158585/effects-of-aerobic-dance-circuit-training-programme-on-blood-pressure-variables-of-obese-female-college-students-in-oyo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14208</span> Effect of Endurance Exercise Training on Blood Pressure in Elderly Female Patients with Hypertension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Ahmadi">Elham Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is conducted with the aim of investigating the effect of moderate physical activity (60% of maximal heart rate-MHR) on blood pressure in an elderly female with hypertension. Hypertension is considered a modifiable risk factor for cardiovascular disease through physical activity. The purpose and significance of this study were to investigate the role of exercise as an alternative therapy since some patients exhibit sensitivity/intolerance to some drugs. Initially, 65 hypertensive females (average age = 49.7 years) (systolic blood pressure, SBP >140 mmHg and/or diastolic blood pressure, DBP>85 mmHg) and 25 hypertensive females as a control group (average age = 50.3 years and systolic blood pressure, SBP >140 mmHg and/or diastolic blood pressure, DBP>85 mmHg) were selected. The subjects were divided based on their age, duration of disease, physical activity, and drug consumption. Then, blood pressure and heart rate (HR) were measured in all of the patients using a sphygmomanometer (pre-test). The exercise sessions consisted of warm-up, aerobic activity, and cooling down (total duration of 20 minutes for the first session up to 55 minutes in the last session). At the end of the 12th session (mid-test) and final session (24th session), blood pressure was measured for the last time (post-test). The control group was without any exercise during the study. The results were analyzed using a t-test. Our results indicated that moderate physical activity was effective in lowering blood pressure by 6.4/5.6–mm Hg for SBP and 2.4/4.3mm Hg for DBP in hypertensive patients, irrespective of age, duration of disease, and drug consumption ( P<.005). The control group indicates no changes in BP. Physical activity programs with moderate intensity (approximately at 60% MHR), three days per week, can be used not only as a preventive measure for diastolic hypertension (DBP>90 mmHg high blood pressure) but also as an alternative to drug therapy in the treatment of hypertension, as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endurance%20exercise" title="endurance exercise">endurance exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20female" title=" elderly female"> elderly female</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a> </p> <a href="https://publications.waset.org/abstracts/164657/effect-of-endurance-exercise-training-on-blood-pressure-in-elderly-female-patients-with-hypertension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14207</span> Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mashud">Mohammad Mashud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Nahid%20Hasan"> S. M. Nahid Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20injection" title=" momentum injection"> momentum injection</a>, <a href="https://publications.waset.org/abstracts/search?q=flap" title=" flap"> flap</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20distribution" title=" pressure distribution"> pressure distribution</a> </p> <a href="https://publications.waset.org/abstracts/106872/surface-pressure-distribution-of-a-flapped-airfoil-for-different-momentum-injection-at-the-leading-edge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14206</span> Effect of Inulin-Substituted Ice Cream on Waist Circumference and Blood Pressure of Adolescents with Abdominal Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20H.%20Ahmad">Nur H. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20S.%20Inge"> Silvia S. Inge</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20A.%20Julliete"> Vanessa A. Julliete</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Veraditias"> A. Veraditias</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20F.%20Febinda"> Laila F. Febinda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abdominal obesity is a risk factor for metabolic syndrome and mostly found in adolescents. Waist circumference is related to abdominal obesity which has a significant effect on the increase of blood pressure. Inulin is one of prebiotic, that has health benefits by offering the potential for lipid management, that can be useful to decrease the risk factor of metabolic syndrome. The aim of the research is to evaluate the effect of 10 gram inulin-substituted ice cream in waist circumference and blood pressure of abdominal obesity adolescents. Inulin had the ability to produce Short Chain Fatty Acid which can improve blood pressure and waist circumference. Systolic blood pressure was significantly decreased in the treatment group (p=0.028) with the mean of reduction 7.35 ± 11.59 mmHg. However, diastolic blood pressure and waist circumference showed no significant effect. Waist circumference, systolic blood pressure and diastolic blood pressure was decreased in control group. These results suggest that inulin-substituted ice cream used as therapeutics and prevention for the early onset of metabolic syndrome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=inulin" title=" inulin"> inulin</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=waist%20circumference" title=" waist circumference"> waist circumference</a> </p> <a href="https://publications.waset.org/abstracts/66625/effect-of-inulin-substituted-ice-cream-on-waist-circumference-and-blood-pressure-of-adolescents-with-abdominal-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14205</span> A Method for Calculating Dew Point Temperature in the Humidity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Sa">Wu Sa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Qian"> Zhang Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Qi"> Li Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Ye"> Wang Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently in humidity tests having not put the Dew point temperature as a control parameter, this paper selects wet and dry bulb thermometer to measure the vapor pressure, and introduces several the saturation vapor pressure formulas easily calculated on the controller. Then establish the Dew point temperature calculation model to obtain the relationship between the Dew point temperature and vapor pressure. Finally check through the 100 groups of sample in the range of 0-100 ℃ from "Psychrometric handbook", find that the average error is small. This formula can be applied to calculate the Dew point temperature in the humidity test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dew%20point%20temperature" title="dew point temperature">dew point temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=psychrometric%20handbook" title=" psychrometric handbook"> psychrometric handbook</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20vapor%20pressure" title=" saturation vapor pressure"> saturation vapor pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20and%20dry%20bulb%20thermometer" title=" wet and dry bulb thermometer"> wet and dry bulb thermometer</a> </p> <a href="https://publications.waset.org/abstracts/30022/a-method-for-calculating-dew-point-temperature-in-the-humidity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14204</span> Trends in Blood Pressure Control and Associated Risk Factors Among US Adults with Hypertension from 2013 to 2020: Insights from NHANES Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwafunmibi%20Omotayo%20Fasanya">Oluwafunmibi Omotayo Fasanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Kena%20Adjei"> Augustine Kena Adjei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlling blood pressure is critical to reducing the risk of cardiovascular disease. However, BP control rates (systolic BP < 140 mm Hg and diastolic BP < 90 mm Hg) have declined since 2013, warranting further analysis to identify contributing factors and potential interventions. This study investigates the factors associated with the decline in blood pressure (BP) control among U.S. adults with hypertension over the past decade. Data from the U.S. National Health and Nutrition Examination Survey (NHANES) were used to assess BP control trends between 2013 and 2020. The analysis included 18,927 U.S. adults with hypertension aged 18 years and older who completed study interviews and examinations. The dataset, obtained from the cardioStatsUSA and RNHANES R packages, was merged based on survey IDs. Key variables analyzed included demographic factors, lifestyle behaviors, hypertension status, BMI, comorbidities, antihypertensive medication use, and cardiovascular disease history. The prevalence of BP control declined from 78.0% in 2013-2014 to 71.6% in 2017-2020. Non-Hispanic Whites had the highest BP control prevalence (33.6% in 2013-2014), but this declined to 26.5% by 2017-2020. In contrast, BP control among Non-Hispanic Blacks increased slightly. Younger adults (aged 18-44) exhibited better BP control, but control rates declined over time. Obesity prevalence increased, contributing to poorer BP control. Antihypertensive medication use rose from 26.1% to 29.2% across the study period. Lifestyle behaviors, such as smoking and diet, also affected BP control, with nonsmokers and those with better diets showing higher control rates. Key findings indicate significant disparities in blood pressure control across racial/ethnic groups. Non-Hispanic Black participants had consistently higher odds (OR ranging from 1.84 to 2.33) of poor blood pressure control compared to Non-Hispanic Whites, while odds among Non-Hispanic Asians varied by cycle. Younger age groups (18-44 and 45-64) showed significantly lower odds of poor blood pressure control compared to those aged 75+, highlighting better control in younger populations. Men had consistently higher odds of poor control compared to women, though this disparity slightly decreased in 2017-2020. Medical comorbidities such as diabetes and chronic kidney disease were associated with significantly higher odds of poor blood pressure control across all cycles. Participants with chronic kidney disease had particularly elevated odds (OR=5.54 in 2015-2016), underscoring the challenge of managing hypertension in these populations. Antihypertensive medication use was also linked with higher odds of poor control, suggesting potential difficulties in achieving target blood pressure despite treatment. Lifestyle factors such as alcohol consumption and physical activity showed no consistent association with blood pressure control. However, dietary quality appeared protective, with those reporting an excellent diet showing lower odds (OR=0.64) of poor control in the overall sample. Increased BMI was associated with higher odds of poor blood pressure control, particularly in the 30-35 and 35+ BMI categories during 2015-2016. The study highlights a significant decline in BP control among U.S. adults with hypertension, particularly among certain demographic groups and those with increasing obesity rates. Lifestyle behaviors, antihypertensive medication use, and socioeconomic factors all played a role in these trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=odd%20ratio" title=" odd ratio"> odd ratio</a> </p> <a href="https://publications.waset.org/abstracts/194138/trends-in-blood-pressure-control-and-associated-risk-factors-among-us-adults-with-hypertension-from-2013-to-2020-insights-from-nhanes-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14203</span> Effects of Pore-Water Pressure on the Motion of Debris Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Yu%20Lin">Meng-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Ju%20Lee"> Wan-Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title="debris flow">debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20particle%20method" title=" Lagrangian particle method"> Lagrangian particle method</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-pressure%20diffusivity" title=" pore-pressure diffusivity"> pore-pressure diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-water%20pressure" title=" pore-water pressure"> pore-water pressure</a> </p> <a href="https://publications.waset.org/abstracts/98059/effects-of-pore-water-pressure-on-the-motion-of-debris-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14202</span> Optimal Design of 3-Way Reversing Valve Considering Cavitation Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myeong-Gon%20Lee">Myeong-Gon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Gyun%20Kim"> Yang-Gyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Young%20Kim"> Tae-Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Han"> Seung-Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-pressure valve uses one set of 2-way valves for the purpose of reversing fluid direction. If there is no accurate control device for the 2-way valves, lots of surging can be generated. The surging is a kind of pressure ripple that occurs in rapid changes of fluid motions under inaccurate valve control. To reduce the surging effect, a 3-way reversing valve can be applied which provides a rapid and precise change of water flow directions without any accurate valve control system. However, a cavitation occurs due to a complicated internal trim shape of the 3-way reversing valve. The cavitation causes not only noise and vibration but also decreasing the efficiency of valve-operation, in which the bubbles generated below the saturated vapor pressure are collapsed rapidly at higher pressure zone. The shape optimization of the 3-way reversing valve to minimize the cavitation effect is necessary. In this study, the cavitation index according to the international standard ISA was introduced to estimate macroscopically the occurrence of the cavitation effect. Computational fluid dynamic analysis was carried out, and the cavitation effect was quantified by means of the percent of cavitation converted from calculated results of vapor volume fraction. In addition, the shape optimization of the 3-way reversing valve was performed by taking into account of the percent of cavitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-Way%20reversing%20valve" title="3-Way reversing valve">3-Way reversing valve</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title=" shape optimization"> shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20volume%20fraction" title=" vapor volume fraction"> vapor volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/17230/optimal-design-of-3-way-reversing-valve-considering-cavitation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14201</span> Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wooseok%20Song">Wooseok Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunjung%20Park"> Sunjung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongkwon%20Lee"> Jongkwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaye%20Koo"> Jaye Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket%20engine" title="liquid rocket engine">liquid rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20structure" title=" flame structure"> flame structure</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20instability" title=" combustion instability"> combustion instability</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pressure" title=" dynamic pressure"> dynamic pressure</a> </p> <a href="https://publications.waset.org/abstracts/90887/effects-of-injection-conditions-on-flame-structures-in-gas-centered-swirl-coaxial-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14200</span> Improving the Design of Blood Pressure and Blood Saturation Monitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Parisi">L. Parisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20saturation" title=" blood saturation"> blood saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=actuators" title=" actuators"> actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20improvement" title=" design improvement"> design improvement</a> </p> <a href="https://publications.waset.org/abstracts/14649/improving-the-design-of-blood-pressure-and-blood-saturation-monitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14199</span> Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Negm">Ahmed Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Aggidis"> George Aggidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiandong%20Ma"> Xiandong Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title="deep reinforcement learning">deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20management" title=" pressure management"> pressure management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distribution%20networks" title=" water distribution networks"> water distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20management" title=" leakage management"> leakage management</a> </p> <a href="https://publications.waset.org/abstracts/176527/deep-reinforcement-learning-for-advanced-pressure-management-in-water-distribution-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14198</span> Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bara%C5%84ski">G. Barański</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kacejko"> P. Kacejko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wendeker"> M. Wendeker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20process" title=" combustion process"> combustion process</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20engine" title=" radial engine"> radial engine</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plug" title=" spark plug"> spark plug</a> </p> <a href="https://publications.waset.org/abstracts/50051/individual-cylinder-ignition-advance-control-algorithms-of-the-aircraft-piston-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14197</span> Using Pump as Turbine in Drinking Water Networks to Monitor and Control Water Processes Remotely</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Bahariderakhshan">Sara Bahariderakhshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Ahmadifar"> Morteza Ahmadifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. In the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PaT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and, therefore, more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore due to increasing the area of the network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PaT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20energies" title="new energies">new energies</a>, <a href="https://publications.waset.org/abstracts/search?q=pump%20as%20turbine" title=" pump as turbine"> pump as turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control%20equipments" title=" remote control equipments"> remote control equipments</a> </p> <a href="https://publications.waset.org/abstracts/23408/using-pump-as-turbine-in-drinking-water-networks-to-monitor-and-control-water-processes-remotely" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14196</span> Using Pump as Turbine in Urban Water Networks to Control, Monitor, and Simulate Water Processes Remotely</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Ahmadifar">Morteza Ahmadifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Bahari%20Derakhshan"> Sarah Bahari Derakhshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. On the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables, therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PAT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and therefore more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore, due to increasing the area of network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PAT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20energies" title="clean energies">clean energies</a>, <a href="https://publications.waset.org/abstracts/search?q=pump%20as%20turbine" title=" pump as turbine"> pump as turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control" title=" remote control"> remote control</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20distribution%20network" title=" urban water distribution network "> urban water distribution network </a> </p> <a href="https://publications.waset.org/abstracts/18826/using-pump-as-turbine-in-urban-water-networks-to-control-monitor-and-simulate-water-processes-remotely" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14195</span> Signal Processing of the Blood Pressure and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Abd%20El%20Kader%20Benghenia">Hadj Abd El Kader Benghenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bereksi%20Reguig"> Fethi Bereksi Reguig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=SBP" title=" SBP"> SBP</a>, <a href="https://publications.waset.org/abstracts/search?q=DBP" title=" DBP"> DBP</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20algorithm" title=" detection algorithm"> detection algorithm</a> </p> <a href="https://publications.waset.org/abstracts/9946/signal-processing-of-the-blood-pressure-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14194</span> Experimental Support for the District Metered Areas/Pressure Management Areas Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ilicic">K. Ilicic</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Smoljan"> D. Smoljan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the paper is to present and verify a methodology of decreasing water losses by introducing and managing District Metered Areas (DMA) and Pressure Management Areas (PMA) by analyzing the results of the application of the methodology to the water supply system of the city of Zagreb. Since it is a relatively large system that has been expanding rapidly, approach to addressing water losses was possible only by splitting the system to smaller flow and pressure zones. Besides, the geographical and technical limitations had imposed the necessity of high pressure in the system that needed to be reduced to the technically optimal level. Results of activities were monitored on a general and local level by establishing, monitoring, and controlling indicators that had been established by the International Water Association (IWA), among which the most recognizable were non-revenue water, water losses and real losses as presented in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20metered%20area" title="district metered area">district metered area</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20metered%20area" title=" pressure metered area"> pressure metered area</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20leakage%20control" title=" active leakage control"> active leakage control</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20losses" title=" water losses "> water losses </a> </p> <a href="https://publications.waset.org/abstracts/121024/experimental-support-for-the-district-metered-areaspressure-management-areas-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=474">474</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=475">475</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pressure%20control&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10