CINXE.COM

Search results for: small spacecraft

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: small spacecraft</title> <meta name="description" content="Search results for: small spacecraft"> <meta name="keywords" content="small spacecraft"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="small spacecraft" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="small spacecraft"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4881</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: small spacecraft</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4881</span> An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20V.%20Doroshin">Anton V. Doroshin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title="spacecraft">spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20dynamics" title=" attitude dynamics"> attitude dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a> </p> <a href="https://publications.waset.org/abstracts/3503/an-implementation-of-a-dual-spin-spacecraft-attitude-reorientation-using-properties-of-its-chaotic-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4880</span> Multiband Fractal Patch Antenna for Small Spacecraft of Earth Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beibit%20Karibayev">Beibit Karibayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Imanbayeva"> Akmaral Imanbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Namazbayev"> Timur Namazbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the small spacecraft (SSC) industry is experiencing a big boom in popularity. This is primarily due to ease of use, low cost and mobility. In addition, these programs can be implemented not only at the state level but also at the level of companies, universities and other organizations. For remote sensing of the Earth (ERS), small spacecraft with an orientation system is used. It is important to take into account here that a remote sensing device, for example, a camera for photographing the Earth's surface, must be directed at the Earth's surface. But this, at first glance, the limitation can be turned into an advantage using a patch antenna. This work proposed to use a patch antenna based on a unidirectional fractal in the SSC. The CST Microwave Studio software package was used for simulation and research. Copper (ε = 1.0) was chosen as the emitting element and reflector. The height of the substrate was 1.6 mm, the type of substrate material was FR-4 (ε = 4.3). The simulation was performed in the frequency range of 0 – 6 GHz. As a result of the research, a patch antenna based on fractal geometry was developed for ERS nanosatellites. The capabilities of these antennas are modeled and investigated. A method for calculating and modeling fractal geometry for patch antennas has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20remote%20sensing" title=" earth remote sensing"> earth remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20spacecraft" title=" small spacecraft"> small spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/135034/multiband-fractal-patch-antenna-for-small-spacecraft-of-earth-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4879</span> Analysis the Trajectory of the Spacecraft during the Transition to the Planet&#039;s Orbit Using Aerobraking in the Atmosphere of the Planet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaw%20Min%20Tun">Zaw Min Tun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper focuses on the spacecraft’s trajectory transition from interplanetary hyperbolic orbit to the planet’s orbit using the aerobraking in the atmosphere of the planet. A considerable mass of fuel is consumed during the spacecraft transition from the planet’s gravitation assist trajectory into the planet’s satellite orbit. To reduce the fuel consumption in this transition need to slow down the spacecraft’s velocity in the planet’s atmosphere and reduce its orbital transition time. The paper is devoted to the use of the planet’s atmosphere for slowing down the spacecraft during its transition into the satellite orbit with uncertain atmospheric parameters. To reduce the orbital transition time of the spacecraft is controlled by the change of attack angles’ values at the aerodynamic deceleration path and adjusting the minimum flight altitude of the spacecraft at the pericenter of the planet’s upper atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobraking" title="aerobraking">aerobraking</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere%20of%20the%20planet" title=" atmosphere of the planet"> atmosphere of the planet</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20transition%20time" title=" orbital transition time"> orbital transition time</a>, <a href="https://publications.waset.org/abstracts/search?q=Spacecraft%E2%80%99s%20trajectory" title=" Spacecraft’s trajectory"> Spacecraft’s trajectory</a> </p> <a href="https://publications.waset.org/abstracts/46717/analysis-the-trajectory-of-the-spacecraft-during-the-transition-to-the-planets-orbit-using-aerobraking-in-the-atmosphere-of-the-planet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4878</span> Failure Statistics Analysis of China’s Spacecraft in Full-Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin-Yan%20Ji">Xin-Yan Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The historical failures data of the spacecraft is very useful to improve the spacecraft design and the test philosophies and reduce the spacecraft flight risk. A study of spacecraft failures data was performed, which is the most comprehensive statistics of spacecrafts in China. 2593 on-orbit failures data and 1298 ground data that occurred on 150 spacecraft launched from 2000 to 2016 were identified and collected, which covered the navigation satellites, communication satellites, remote sensing deep space exploration manned spaceflight platforms. In this paper, the failures were analyzed to compare different spacecraft subsystem and estimate their impact on the mission, then the development of spacecraft in China was evaluated from design, software, workmanship, management, parts, and materials. Finally, the lessons learned from the past years show that electrical and mechanical failures are responsible for the largest parts, and the key solution to reduce in-orbit failures is improving design technology, enough redundancy, adequate space environment protection measures, and adequate ground testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20anomalies" title="spacecraft anomalies">spacecraft anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=anomalies%20mechanism" title=" anomalies mechanism"> anomalies mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20cause" title=" failure cause"> failure cause</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20testing" title=" spacecraft testing"> spacecraft testing</a> </p> <a href="https://publications.waset.org/abstracts/103058/failure-statistics-analysis-of-chinas-spacecraft-in-full-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4877</span> Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuitao%20Zhang">Cuitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongwen%20He"> Xiongwen He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Consultative%20Committee%20for%20Space%20Data%20Systems%20%28CCSDS%29%20standards" title="Consultative Committee for Space Data Systems (CCSDS) standards">Consultative Committee for Space Data Systems (CCSDS) standards</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20flow" title=" information flow"> information flow</a>, <a href="https://publications.waset.org/abstracts/search?q=non-cable" title=" non-cable"> non-cable</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a> </p> <a href="https://publications.waset.org/abstracts/67990/research-and-application-of-consultative-committee-for-space-data-systems-wireless-communications-standards-for-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4876</span> The LIP’s Electric Propulsion Development for Chinese Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tianping">Zhang Tianping</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yanhui"> Jia Yanhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Juan"> Li Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Le"> Yang Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Hao"> Yang Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Wei"> Yang Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Xiaojing"> Sun Xiaojing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Kai"> Shi Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xingda"> Li Xingda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Yunkui"> Sun Yunkui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanzhou Institute of Physics (LIP) is the major supplier of electric propulsion subsystems for Chinese satellite platforms. The development statuses of these electric propulsion subsystems were summarized including the LIPS-200 ion electric propulsion subsystem (IEPS) for DFH-3B platform, the LIPS-300 IEPS for DFH-5 and DFH-4SP platform, the LIPS-200+ IEPS for DFH-4E platform and near-earth asteroid exploration spacecraft, the LIPS-100 IEPS for small satellite platform, the LHT-100 hall electric propulsion subsystem (HEPS) for flight test on XY-2 satellite, the LHT-140 HEPS for large LEO spacecraft, the LIPS-400 IEPS for deep space exploration mission and other EPS for other Chinese spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20electric%20propulsion" title="ion electric propulsion">ion electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20electric%20propulsion" title=" hall electric propulsion"> hall electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20platform" title=" satellite platform"> satellite platform</a>, <a href="https://publications.waset.org/abstracts/search?q=LIP" title=" LIP"> LIP</a> </p> <a href="https://publications.waset.org/abstracts/39136/the-lips-electric-propulsion-development-for-chinese-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4875</span> Simulation Study on Spacecraft Surface Charging Induced by Jovian Plasma Environment with Particle in Cell Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipan%20Guo"> Yipan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Tian"> Pengyu Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space plasma caused spacecraft surface charging is the major space environment hazard. Particle in cell (PIC) method can be used to simulate the interaction between space plasma and spacecraft. It was proved that surface charging level of spacecraft in Jupiter’s orbits was high for its’ electron-heavy plasma environment. In this paper, Jovian plasma environment is modeled and surface charging analysis is carried out by PIC based software Spacecraft Plasma Interaction System (SPIS). The results show that the spacecraft charging potentials exceed 1000V at 2Rj, 15Rj and 25Rj polar orbits in the dark side at worst case plasma model. Furthermore, the simulation results indicate that the large Jovian magnetic field increases the surface charging level for secondary electron gyration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jupiter" title="Jupiter">Jupiter</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC" title=" PIC"> PIC</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasma" title=" space plasma"> space plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charging" title=" surface charging"> surface charging</a> </p> <a href="https://publications.waset.org/abstracts/106455/simulation-study-on-spacecraft-surface-charging-induced-by-jovian-plasma-environment-with-particle-in-cell-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4874</span> Autonomous Rendezvous for Underactuated Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Espen%20Oland">Espen Oland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude%20control" title="attitude control">attitude control</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20rendezvous" title=" spacecraft rendezvous"> spacecraft rendezvous</a>, <a href="https://publications.waset.org/abstracts/search?q=translational%20control" title=" translational control"> translational control</a>, <a href="https://publications.waset.org/abstracts/search?q=underactuated%20rigid%20body" title=" underactuated rigid body"> underactuated rigid body</a> </p> <a href="https://publications.waset.org/abstracts/52337/autonomous-rendezvous-for-underactuated-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4873</span> A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qi">Lei Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongxin%20Yan"> Rongxin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lichen%20Sun"> Lichen Sun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor%20array" title="acoustic sensor array">acoustic sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20location" title=" leakage location"> leakage location</a> </p> <a href="https://publications.waset.org/abstracts/68599/a-study-of-structural-damage-detection-for-spacecraft-in-orbit-based-on-acoustic-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4872</span> Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansa%20Radhakrishnan">Mansa Radhakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Ali"> Anwar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan%20Mughal"> Muhammad Rizwan Mughal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20satellites" title="small satellites">small satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20subsystem" title=" power subsystem"> power subsystem</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a> </p> <a href="https://publications.waset.org/abstracts/181442/design-and-thermal-analysis-of-power-harvesting-system-of-a-hexagonal-shaped-small-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4871</span> Innovative Design Considerations for Adaptive Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Parandhama%20Gowd">K. Parandhama Gowd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation &amp; Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellites" title="satellites">satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20earth%20orbit%20%28LEO%29" title=" low earth orbit (LEO)"> low earth orbit (LEO)</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20earth%20orbit%20%28MEO%29" title=" medium earth orbit (MEO)"> medium earth orbit (MEO)</a>, <a href="https://publications.waset.org/abstracts/search?q=geostationary%20earth%20orbit%20%28GEO%29" title=" geostationary earth orbit (GEO)"> geostationary earth orbit (GEO)</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20control%20system" title=" self-organizing control system"> self-organizing control system</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-satellite%20weapons%20%28ASAT%29" title=" anti-satellite weapons (ASAT)"> anti-satellite weapons (ASAT)</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20control" title=" orbital control"> orbital control</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20warning%20receiver" title=" radar warning receiver"> radar warning receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=missile%20warning%20receiver" title=" missile warning receiver"> missile warning receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20warning%20receiver" title=" laser warning receiver"> laser warning receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20and%20orbit%20control%20systems%20%28AOCS%29" title=" attitude and orbit control systems (AOCS)"> attitude and orbit control systems (AOCS)</a>, <a href="https://publications.waset.org/abstracts/search?q=command%20and%20data%20handling%20%28CDH%29" title=" command and data handling (CDH)"> command and data handling (CDH)</a> </p> <a href="https://publications.waset.org/abstracts/48866/innovative-design-considerations-for-adaptive-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4870</span> Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Rongxin">Yan Rongxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Wei"> Sun Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Weidan"> Li Weidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10<sup>-1</sup> Pa&middot;m<sup>3</sup>/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leak%20testing" title="leak testing">leak testing</a>, <a href="https://publications.waset.org/abstracts/search?q=manned%20spacecraft" title=" manned spacecraft"> manned spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20transmitting" title=" sound transmitting"> sound transmitting</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/68666/research-and-design-on-a-portable-intravehicular-ultrasonic-leak-detector-for-manned-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4869</span> Material Properties Evolution Affecting Demisability for Space Debris Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetan%20Mahawar">Chetan Mahawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarath%20Chandran"> Sarath Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20Panigrahi"> Sridhar Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Shaji"> V. P. Shaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demisability" title="demisability">demisability</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entry" title=" re-entry"> re-entry</a>, <a href="https://publications.waset.org/abstracts/search?q=survivability" title=" survivability"> survivability</a> </p> <a href="https://publications.waset.org/abstracts/155073/material-properties-evolution-affecting-demisability-for-space-debris-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4868</span> Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junichiro%20Kawaguchi">Junichiro Kawaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballute" title="ballute">ballute</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20removal" title=" debris removal"> debris removal</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20satellite" title=" echo satellite"> echo satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=gossamer" title=" gossamer"> gossamer</a>, <a href="https://publications.waset.org/abstracts/search?q=gun-net" title=" gun-net"> gun-net</a>, <a href="https://publications.waset.org/abstracts/search?q=inflatable%20space%20structure" title=" inflatable space structure"> inflatable space structure</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20satellite" title=" small satellite"> small satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=un-cooperated%20target" title=" un-cooperated target"> un-cooperated target</a> </p> <a href="https://publications.waset.org/abstracts/154096/contactless-and-multiple-space-debris-removal-by-micro-to-nanno-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4867</span> Research on Level Adjusting Mechanism System of Large Space Environment Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Hai"> Huang Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng"> Lv Shizeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title="space environment simulator">space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20vacuum%20test" title=" thermal vacuum test"> thermal vacuum test</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20adjusting" title=" level adjusting"> level adjusting</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20mechanism" title=" parallel mechanism"> parallel mechanism</a> </p> <a href="https://publications.waset.org/abstracts/69565/research-on-level-adjusting-mechanism-system-of-large-space-environment-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4866</span> Electro Magnetic Tractor (E. M. Tractor)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sijo%20Varghese">Sijo Varghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A space craft (E. M. Tractor) which is intended to deflect or tug the asteroids which possesses threat towards the planets is the whole idea behind this paper. In this case "Electro Magnetic Induction" is used where it is known that when two separate circuits are connected to the electro magnet and on application of electric current through the one circuit in to the coil induces magnetic fields which repels the other circuit.( Faraday's law of Electromagnetic Induction). Basically a Spacecraft is used to attach a large sheet of aluminum on to the surface of the asteroid, the Spacecraft acts as an electro magnet and the induced magnetic field would eventually repel the aluminum intern repelling the asteroid. This method would take less time as compared to use of gravity( which requires a larger spacecraft and process will take a long time). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asteroids" title="asteroids">asteroids</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20magnetic%20induction" title=" electro magnetic induction"> electro magnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20magnetic%20tractor" title=" electro magnetic tractor "> electro magnetic tractor </a> </p> <a href="https://publications.waset.org/abstracts/20948/electro-magnetic-tractor-e-m-tractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4865</span> Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Qi"> Ruan Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Yan"> Qi Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20vessel" title="vacuum vessel">vacuum vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20opening" title=" large opening"> large opening</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title=" space environment simulator"> space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20design" title=" structure design"> structure design</a> </p> <a href="https://publications.waset.org/abstracts/10540/structure-design-of-vacuum-vessel-with-large-openings-for-spacecraft-thermal-vacuum-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4864</span> Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Billy%20Moore">Billy Moore</a>, <a href="https://publications.waset.org/abstracts/search?q=Izaiah%20Smith"> Izaiah Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Mckinney"> Dominic Mckinney</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Cisco"> Andrew Cisco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Kabir"> Mehdi Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title="heat sink">heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20foams" title=" porous foams"> porous foams</a>, <a href="https://publications.waset.org/abstracts/search?q=phase-change%20material%20%28PCM%29" title=" phase-change material (PCM)"> phase-change material (PCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20thermal%20management" title=" spacecraft thermal management"> spacecraft thermal management</a> </p> <a href="https://publications.waset.org/abstracts/193580/experimental-investigation-of-nano-enhanced-pcm-based-heat-sinks-for-passive-thermal-management-of-small-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4863</span> Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineddine%20Bouyahiaoui">Zineddine Bouyahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Haoui"> Rabah Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blunt%20body" title="blunt body">blunt body</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic%20flow" title=" hypersonic flow"> hypersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a> </p> <a href="https://publications.waset.org/abstracts/85387/hypersonic-flow-of-co2-n2-mixture-around-a-spacecraft-during-the-atmospheric-reentry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4862</span> Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20Ng">W. M. Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Iskender"> O. B. Iskender</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Simonini"> L. Simonini</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Gonzalez"> J. M. Gonzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude%20control" title="attitude control">attitude control</a>, <a href="https://publications.waset.org/abstracts/search?q=detumbling" title=" detumbling"> detumbling</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20satellites" title=" small satellites"> small satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20autonomy" title=" spacecraft autonomy"> spacecraft autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20optimal%20control" title=" time optimal control"> time optimal control</a> </p> <a href="https://publications.waset.org/abstracts/108761/time-optimal-control-mode-switching-between-detumbling-and-pointing-in-the-early-orbit-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4861</span> Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jijun%20Shi">Jijun Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lichen%20Sun"> Lichen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchao%20Zhao"> Jianchao Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lizhi%20Sun"> Lizhi Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Enjun%20Liu"> Enjun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongwu%20Guo"> Chongwu Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leak%20testing" title="leak testing">leak testing</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20parts" title=" spacecraft parts"> spacecraft parts</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20error" title=" relative error"> relative error</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20control" title=" error control"> error control</a> </p> <a href="https://publications.waset.org/abstracts/62233/charging-vacuum-helium-mass-spectrometer-leak-detection-technology-in-the-application-of-space-products-leak-testing-and-error-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4860</span> Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Herrera">Leonardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Shield%20B.%20Lin"> Shield B. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20J.%20Montgomery-Smith"> Stephen J. Montgomery-Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziraguen%20O.%20Williams"> Ziraguen O. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controller" title="controller">controller</a>, <a href="https://publications.waset.org/abstracts/search?q=Stewart%20platform" title=" Stewart platform"> Stewart platform</a>, <a href="https://publications.waset.org/abstracts/search?q=docking%20operation" title=" docking operation"> docking operation</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/185802/control-of-a-stewart-platform-for-minimizing-impact-energy-in-simulating-spacecraft-docking-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4859</span> Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Herrera">Leonardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Shield%20B.%20Lin"> Shield B. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20J.%20Montgomery-Smith"> Stephen J. Montgomery-Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziraguen%20O.%20Williams"> Ziraguen O. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stewart%20platform" title="stewart platform">stewart platform</a>, <a href="https://publications.waset.org/abstracts/search?q=docking%20operation" title=" docking operation"> docking operation</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20constant" title=" spring constant"> spring constant</a> </p> <a href="https://publications.waset.org/abstracts/170471/modeling-of-a-stewart-platform-for-analyzing-one-directional-dynamics-for-spacecraft-docking-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4858</span> Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Madheswaran">M. Madheswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Prashant"> A. R. Prashant</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ramakrishna"> S. Ramakrishna</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramesh%20Naidu"> V. Ramesh Naidu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Govindan"> P. Govindan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Aravindakshan"> P. Aravindakshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maxi-max%20spectrum" title="maxi-max spectrum">maxi-max spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=SRS%20%28shock%20response%20spectrum%29" title=" SRS (shock response spectrum)"> SRS (shock response spectrum)</a>, <a href="https://publications.waset.org/abstracts/search?q=SDOf%20%28single%20degree%20of%20freedom%29" title=" SDOf (single degree of freedom)"> SDOf (single degree of freedom)</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20synthesis" title=" wavelet synthesis"> wavelet synthesis</a> </p> <a href="https://publications.waset.org/abstracts/60660/controlled-shock-response-spectrum-test-on-spacecraft-subsystem-using-electrodynamic-shaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4857</span> Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Kuramitsu">Yusuke Kuramitsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokazu%20Tahara"> Hirokazu Tahara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20control" title="spacecraft control">spacecraft control</a>, <a href="https://publications.waset.org/abstracts/search?q=quantized%20control" title=" quantized control"> quantized control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither%20method" title=" random dither method"> random dither method</a> </p> <a href="https://publications.waset.org/abstracts/99540/stabilization-of-rotational-motion-of-spacecrafts-using-quantized-two-torque-inputs-based-on-random-dither" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4856</span> Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shield%20B.%20Lin">Shield B. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziraguen%20O.%20Williams"> Ziraguen O. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=counterweight" title=" counterweight"> counterweight</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/138810/simulation-with-uncertainties-of-active-controlled-vibration-isolation-system-for-astronauts-exercise-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4855</span> Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarath%20Chandran%20Nair%20S">Sarath Chandran Nair S</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Kodati"> Srinivas Kodati</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasudevan%20R"> Vasudevan R</a>, <a href="https://publications.waset.org/abstracts/search?q=Asraff%20A.%20K"> Asraff A. K</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20stability" title="control stability">control stability</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20tanks" title=" propellant tanks"> propellant tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=slosh" title=" slosh"> slosh</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=slosh%20spacecraft" title=" slosh spacecraft"> slosh spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/138510/slosh-investigations-on-a-spacecraft-propellant-tank-for-control-stability-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4854</span> Space Debris: An Environmental Hazard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwesha%20Pathak">Anwesha Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space law refers to all legal provisions that may regulate or apply to space travel, as well as to space-related activity. Although there is undoubtedly a core corpus of “space law,” rather than designating a conceptually distinct single kind of law, the phrase can be seen as a label applied to a bucket that includes a variety of different laws and regulations. Similar to ‘family law' or ‘environmental law' "space law" refers to a variety of laws that are identified by the subject matter they address rather than by the logical extension of a single legal concept. The word "space law" refers to the Law of Space, which can cover anything from the specifics of an insurance agreement for a specific space launch to the most general guidelines that direct state behaviour in space. Space debris, often referred to as space junk, space pollution, space waste, space trash, or space garbage, is a term used to describe abandoned human-made objects in space, primarily in Earth orbit. These include disused spacecraft, discarded launch vehicle stages, mission-related detritus, and fragmentation material from the destruction of disused rocket bodies and spacecraft, which is particularly prevalent in Earth orbit. Other types of space debris, besides abandoned human-made objects in orbit, include pieces left over from collisions, erosion, and disintegration, or even paint specks, solidified liquids ejected from spacecraft, and unburned components from solid rocket engines. The initial action of launching or using a spacecraft in near-Earth orbit imposes an external cost on others that is typically not taken into account or fully accounted for in the cost by the launcher or payload owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space" title="space">space</a>, <a href="https://publications.waset.org/abstracts/search?q=outer%20space%20treaty" title=" outer space treaty"> outer space treaty</a>, <a href="https://publications.waset.org/abstracts/search?q=geostationary%20orbit" title=" geostationary orbit"> geostationary orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=satellites" title=" satellites"> satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecrafts" title=" spacecrafts"> spacecrafts</a> </p> <a href="https://publications.waset.org/abstracts/165735/space-debris-an-environmental-hazard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4853</span> Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vabya%20Kumar%20Pandit">Vabya Kumar Pandit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudit%20Mittal"> Mudit Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Prahlad%20Rao"> N. Prahlad Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramnath%20Babu"> Ramnath Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title="electromagnetic compatibility">electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20discharge" title=" electrostatic discharge"> electrostatic discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20systems" title=" electrical distribution systems"> electrical distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20schemes" title=" grounding schemes"> grounding schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20harnessing" title=" light weight harnessing"> light weight harnessing</a> </p> <a href="https://publications.waset.org/abstracts/71198/noise-mitigation-techniques-to-minimize-electromagnetic-interferenceelectrostatic-discharge-effects-for-the-lunar-mission-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4852</span> Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Borja%20de%20Lara">Francisco Borja de Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ravanbakhsh"> Ali Ravanbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20F.%20Wimmer-Schweingruber"> Robert F. Wimmer-Schweingruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Seimetz"> Lars Seimetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferm%C3%ADn%20Navarro"> Fermín Navarro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%E2%80%99E4" title="Chang’E4">Chang’E4</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20national%20space%20administration" title=" Chinese national space administration"> Chinese national space administration</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander%20neutron%20dosimetry" title=" lunar lander neutron dosimetry"> lunar lander neutron dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=nastran-patran" title=" nastran-patran"> nastran-patran</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/71329/study-case-of-spacecraft-instruments-in-structural-modelling-with-nastran-patran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=162">162</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=163">163</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small%20spacecraft&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10