CINXE.COM
{"title":"A Survey on Lossless Compression of Bayer Color Filter Array Images","authors":"Alina Trifan, Ant\u00f3nio J. R. Neves","volume":112,"journal":"International Journal of Computer and Information Engineering","pagesStart":729,"pagesEnd":735,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10004205","abstract":"Although most digital cameras acquire images in a raw<br \/>\r\nformat, based on a Color Filter Array that arranges RGB color<br \/>\r\nfilters on a square grid of photosensors, most image compression<br \/>\r\ntechniques do not use the raw data; instead, they use the rgb result<br \/>\r\nof an interpolation algorithm of the raw data. This approach is<br \/>\r\ninefficient and by performing a lossless compression of the raw data,<br \/>\r\nfollowed by pixel interpolation, digital cameras could be more power<br \/>\r\nefficient and provide images with increased resolution given that the<br \/>\r\ninterpolation step could be shifted to an external processing unit. In<br \/>\r\nthis paper, we conduct a survey on the use of lossless compression<br \/>\r\nalgorithms with raw Bayer images. Moreover, in order to reduce the<br \/>\r\neffect of the transition between colors that increase the entropy of<br \/>\r\nthe raw Bayer image, we split the image into three new images<br \/>\r\ncorresponding to each channel (red, green and blue) and we study<br \/>\r\nthe same compression algorithms applied to each one individually.<br \/>\r\nThis simple pre-processing stage allows an improvement of more than<br \/>\r\n15% in predictive based methods.","references":"[1] B. Bayer, \u201cColor imaging array,\u201d Jul. 20 1976, uS Patent 3,971,065.\r\n(Online). Available: http:\/\/www.google.pt\/patents\/US3971065\r\n[2] R. Kimmel, \u201cDemosaicing: image reconstruction from color ccd\r\nsamples,\u201d IMAGE PROCESSING, IEEE TRANSACTIONS ON, 1999.\r\n[3] X. Xie, G. Li, Z. Wang, C. Zhang, D. Li, and X. Li, \u201cA novel method\r\nof lossy image compression for digital image sensors with bayer color\r\nfilter arrays.\u201d in ISCAS (5). IEEE, 2005, pp. 4995\u20134998.\r\n[4] K. Chin Chye, M. Jayanta, and M. Sanjit K., \u201cNew efficient methods\r\nof image compression in digital cameras with color filter array,\u201d IEEE\r\nTransactions on Consumer Electronics, vol. 49, no. 4, 2003.\r\n[5] B. Arcangelo, V. Filippo, B. Antonio, and C. Salvatore, \u201cPredictive\r\ndifferential modulation for cfa compression.\u201d in Proceedings of the 6th\r\nNordic Signal Processing Symposium - NORSIG, 2004.\r\n[6] G. K. Wallace, \u201cThe jpeg still picture compression standard,\u201d Commun.\r\nACM, vol. 34, no. 4, pp. 30\u201344, Apr. 1991.\r\n[7] L. Sang-Yong and O. Antonio, \u201cA novel approach of image compression\r\nin digital cameras with a bayer color filter array.\u201d in Proceedings of ICIP\r\n2001 \u2013 International Conference on Image Processing, 2001.\r\n[8] Y. Tsai, K. Parulski, and M. Rabbani, \u201cCompression method and\r\napparatus for single-sensor color imaging systems,\u201d Oct. 1991, uS Patent\r\n5,053,861.\r\n[9] Z. Ning and W. Xiaolin, \u201cLossless compression of color mosaic images.\u201d\r\nin Proceedings of ICIP 2004 \u2013 International Conference on Image\r\nProcessing, 2004.\r\n[10] K.-H. Chung, Y.-H. Chan, C.-H. Fu, and Y.-L. Chan, \u201cA high\r\nperformance lossless bayer image compression scheme.\u201d in ICIP (2).\r\nIEEE, 2007, pp. 353\u2013356.\r\n[11] K.-H. Chung and Y.-H. Chan, \u201cA lossless compression scheme for bayer\r\ncolor filter array images.\u201d IEEE Transactions on Image Processing,\r\nvol. 17, no. 2, pp. 134\u2013144, 2008.\r\n[12] M. J. Weinberger, G. Seroussi, and G. Sapiro, \u201cThe loco-i lossless image\r\ncompression algorithm: Principles and standardization into jpeg-ls,\u201d\r\nIEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 9, no. 8, pp.\r\n1309\u20131324, 2000.\r\n[13] A. Skodras, C. Christopoulos, and T. Ebrahimi, \u201cThe jpeg2000 still\r\nimage compression standard,\u201d IEEE Signal Proc. Mag, 2001.\r\n[14] V. Kyrki, \u201cJbig image compression standard,\u201d 1999.\r\n[15] T. Boutell, \u201cPNG (Portable Network Graphics) Specification Version\r\n1.0,\u201d RFC 2083 (Informational), Internet Engineering Task Force, March\r\n1997.\r\n[16] M. J. Weinberger, G. Seroussi, and G. Sapiro, \u201cLoco-i: A low\r\ncomplexity, context-based, lossless image compression algorithm,\u201d 1996.\r\n[17] M. J. Weinberger, G. Seroussi, I. Ueno, and F. Ono, \u201cEmbedded block\r\ncoding in jpeg 2000.\u201d in ICIP, 2000, pp. 33\u201336.\r\n[18] X. Wu and N. Memon, \u201cContext-based, adaptive, lossless image coding,\u201d\r\nvol. 45, no. 4, pp. 437\u2013444, Apr. 1997.\r\n[19] A. J. R. Neves and A. J. Pinho, \u201cLossless compression of microarray\r\nimages using image-dependent finite-context models,\u201d IEEE Trans. on\r\nMedical Imaging, vol. 28, no. 2, pp. 194\u2013201, Feb. 2009.\r\n[20] Y. Yoo, Y. G. Kwon, and A. Ortega, \u201cEmbedded image-domain\r\ncompression using context models,\u201d in Proc. of the IEEE Int. Conf. on\r\nImage Processing, ICIP-99, vol. I, Kobe, Japan, Oct. 1999, pp. 477\u2013481.\r\n[21] A. J. Pinho and A. J. R. Neves, \u201cProgressive lossless compression of\r\nmedical images,\u201d in Proc. of the IEEE Int. Conf. on Acoustics, Speech,\r\nand Signal Processing, ICASSP-2009, Taipei, Taiwan, Apr. 2009.\r\n[22] L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, \u201cCompression of\r\nmicroarrays images using a binary tree decomposition,\u201d in Proc. of\r\nthe 22th European Signal Processing Conf., EUSIPCO-2014, Lisbon,\r\nPortugal, Sep. 2014, pp. 531\u2013535.\r\n[23] \u201cKodak image set,\u201d http:\/\/r0k.us\/graphics\/kodak\/, accessed: 2015-10-5.\r\n[24] \u201cJbig kit,\u201d http:\/\/www.cl.cam.ac.uk\/\u223cmgk25\/jbigkit, accessed:\r\n2015-10-5.\r\n[25] \u201cJpeg-ls software,\u201d http:\/\/sweet.ua.pt\/luismatos\/codecs\/jpeg ls v2.2.tar.\r\ngz, accessed: 2015-10-5.\r\n[26] \u201cPng software,\u201d urlhttp:\/\/netpbm.sourceforge.net\/, accessed: 2015-10-5.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 112, 2016"}