CINXE.COM
Search results for: 2D nanomaterials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: 2D nanomaterials</title> <meta name="description" content="Search results for: 2D nanomaterials"> <meta name="keywords" content="2D nanomaterials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="2D nanomaterials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="2D nanomaterials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 229</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: 2D nanomaterials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20W.%20Oda">Ahmed W. Oda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Desouky"> Ahmed El-Desouky</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mahdy"> Hassan Mahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Moussa"> Osama M. Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index(PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5%NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20bitumen" title=" modified bitumen"> modified bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=aged" title=" aged"> aged</a>, <a href="https://publications.waset.org/abstracts/search?q=stored" title="stored">stored</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/146856/effects-of-asphalt-modification-with-nanomaterials-on-fresh-and-stored-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Evaluation of the Efficiency of Nanomaterials in the Consolidation of Limestone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Saad%20Gad%20Elzoghby">Mohamed Saad Gad Elzoghby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. It is exposed to different weathering processes that cause degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols, and nano-silica, i.e., dispersions of silica nanoparticles in water, promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass, and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes an evaluation of some nanomaterials in consolidation limestone stone in comparison with traditional consolidants. These consolidation materials are nano calcium hydroxide nanolime, and nanosilica. The latter is known commercially as Nano Estel and the former Known as Nanorestore compared to traditional consolidants Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidants by using followed methods, characterization of physical properties of stone, scanning electron microscopy (SEM), X-ray diffractometry, Fourier transforms infrared spectroscopy, and mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results could be achieved through mixtures of nanomaterials and traditional consolidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolime" title=" nanolime"> nanolime</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilica" title=" nanosilica"> nanosilica</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/157311/evaluation-of-the-efficiency-of-nanomaterials-in-the-consolidation-of-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Saad%20Gad%20Eloghby">Mohamed Saad Gad Eloghby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolime" title=" nanolime"> nanolime</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilica" title=" nanosilica"> nanosilica</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/166195/evaluation-of-the-efficiency-of-nanomaterials-in-consolidation-of-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew%20Tefery">Temesgen Geremew Tefery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/190956/functionalization-of-nanomaterials-for-bio-sensing-applications-current-progress-and-future-prospective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20K.%20De">Dilip K. De</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20C.%20Olawole"> Olukunle C. Olawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20S.%20Joel"> Emmanuel S. Joel</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Emetere"> Moses Emetere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20carrier%20density" title="charge carrier density">charge carrier density</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20materials" title=" nano materials"> nano materials</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technique" title=" new technique"> new technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/42562/new-technique-of-estimation-of-charge-carrier-density-of-nanomaterials-from-thermionic-emission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Catalytic Nanomaterials for Energy Conversion and Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yijin%20Kang">Yijin Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical-electrical energy conversion and storage are greatly attractive for the development of sustainable energy. Catalytic processes are heavily involved in such energy conversion and storage. Development of high-performance catalyst nanomaterials relies on tuning material structures at nanoscale. This is in particular manifested in the design of catalysts demanding both high activity and durability. Here, a research system will be presented that connects fundamental investigation on well-defined extended surfaces (e.g. single crystal surfaces), extrapolation onto nanocrystals with highly controlled shape and size, exploration of interfacial interaction using novel nanocrystal superlattices as platform, and finally design of high performance catalysts in which all the possible beneficial properties from complex functional structures are implemented. Using recently published results, it will be demonstrated that optimal and fine balanced activity and durability, as well as tunable functionality, can be achieved by carefully tailoring the nanostructure of catalytic nanomaterials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/56700/catalytic-nanomaterials-for-energy-conversion-and-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Effect of Carbon Nanotubes Functionalization with Nitrogen Groups on Pollutant Emissions in an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Gamboa">David Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Herrera"> Bernardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Cacua"> Karen Cacua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have been explored as alternatives to reduce particulate matter from diesel engines, which is one of the most common pollutants of the air in urban centers. However, the use of nanomaterials as additives for diesel has to overcome the instability of the dispersions to be considered viable for commercial use. In this work, functionalization of carbon nanotubes with amide groups was performed to improve the stability of these nanomaterials in a mix of 90% petroleum diesel and 10% palm oil biodiesel (B10) in concentrations of 50 and 100 ppm. The resulting nano fuel was used as the fuel for a stationary internal combustion engine, where the particulate matter, NOx, and CO were measured. The results showed that the use of amide groups significantly enhances the time for the carbon nanotubes to remain suspended in the fuel, and at the same time, these nanomaterials helped to reduce the particulate matter and NOx emissions. However, the CO emissions with nano fuel were higher than those ones with the combustion of B10. These results suggest that carbon nanotubes have thermal and catalytic effects on the combustion of B10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/156085/effect-of-carbon-nanotubes-functionalization-with-nitrogen-groups-on-pollutant-emissions-in-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Advanced Nanomaterials in Catalysis: Bridging the Gap Between Pollution Control and Renewable Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abonyi%20Matthew%20Ndubuisi">Abonyi Matthew Ndubuisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Chiedozie%20Obi"> Christopher Chiedozie Obi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Tagbo%20Nwabanne"> Joseph Tagbo Nwabanne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review focuses on the application of advanced nanomaterials in catalysis for pollution control and renewable energy solutions. This review provides a comprehensive examination of the latest developments in nanocatalysts, highlighting their role in addressing environmental challenges and facilitating sustainable energy solutions. The unique properties of nanomaterials, including high surface area, tunable electronic properties, and enhanced reactivity, make them ideal candidates for catalytic applications. This review explores various types of nanomaterials, such as metal nanoparticles, carbon-based nanostructures, and metal-organic frameworks, and their effectiveness in processes like photocatalysis, electrocatalysis, and hydrogen production. Additionally, the review discusses the environmental benefits of using nanocatalysts in pollution control, focusing on the degradation of pollutants in water and air. The potential of these materials to bridge the gap between environmental remediation and clean energy production is emphasized, showcasing their dual role in mitigating pollution and advancing renewable energy technologies. In conclusion, the review analyzes the current challenges and future directions in the field, highlighting the need for continued research to improve the design and application of nanocatalysts for a sustainable future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20control" title=" pollution control"> pollution control</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20technology" title=" sustainable technology"> sustainable technology</a> </p> <a href="https://publications.waset.org/abstracts/190022/advanced-nanomaterials-in-catalysis-bridging-the-gap-between-pollution-control-and-renewable-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ORR" title="ORR">ORR</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=batteries" title=" batteries"> batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/172619/orr-electrocatalyst-for-batteries-and-fuel-cells-development-with-sio2carbon-black-based-composite-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxygen%20reduction%20reaction" title="oxygen reduction reaction">oxygen reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=batteries" title=" batteries"> batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=electrrocatalyst" title=" electrrocatalyst"> electrrocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/172606/orr-electrocatalyst-for-batteries-and-fuel-cells-development-with-sio2carbon-black-based-composite-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensors%20and%20actuators" title="sensors and actuators">sensors and actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title=" MEMS/NEMS devices"> MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20nanomechanical%20testing%20device" title=" fatigue and fracture nanomechanical testing device"> fatigue and fracture nanomechanical testing device</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20cyclic%20nanomechanical%20testing%20device" title=" static and cyclic nanomechanical testing device"> static and cyclic nanomechanical testing device</a> </p> <a href="https://publications.waset.org/abstracts/78711/designing-and-analyzing-sensor-and-actuator-of-a-nanomicro-system-for-fatigue-and-fracture-characterization-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Pumera">Martin Pumera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials" title=" 2D nanomaterials"> 2D nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=chip%20design" title=" chip design"> chip design</a> </p> <a href="https://publications.waset.org/abstracts/28959/graphene-based-nanobiosensors-and-lab-on-chip-for-sensitive-pesticide-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Precise Electrochemical Metal Recovery from Emerging Waste Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Jin">Wei Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title="electrochemistry">electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20steams" title=" waste steams"> waste steams</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/193870/precise-electrochemical-metal-recovery-from-emerging-waste-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debesh%20R.%20Roy">Debesh R. Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP as proposed by A. D. Becke along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20clusters" title="atomic clusters">atomic clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=jellium%20model" title=" jellium model"> jellium model</a>, <a href="https://publications.waset.org/abstracts/search?q=magic%20clusters" title=" magic clusters"> magic clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20nanomaterials" title=" smart nanomaterials"> smart nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/32430/atomic-clusters-a-unique-building-motif-for-future-smart-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Electrical Properties of Cement-Based Piezoelectric Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Shawkey">Moustafa Shawkey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20G.%20El-Deen"> Ahmed G. El-Deen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mahmoud"> H. M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashad"> M. M. Rashad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20nanomaterials" title="piezoelectric nanomaterials">piezoelectric nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20technology" title=" cement technology"> cement technology</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth%20ferrite%20nanoparticles" title=" bismuth ferrite nanoparticles"> bismuth ferrite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a> </p> <a href="https://publications.waset.org/abstracts/84654/electrical-properties-of-cement-based-piezoelectric-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Removal of Chromium (VI) from Contaminated Synthetic Groundwater Using Functionalized Carbon Nanomaterials Modified with Zinc and Potassium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Ibikunle">P. D. Ibikunle</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20O.%20Bala"> D. O. Bala</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Olawolu"> A. P. Olawolu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Adebayo"> A. A. Adebayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium has been discovered as a significant contributor to water pollution that causes cancer. Modified carbon nanotubes' (CNTs) potential as an adsorbent hasn't been thoroughly investigated. The study aimed at investigating the potentials of various functionalized carbon nanomaterials for Cr (VI) removal from contaminated synthetic groundwater. Functionalized carbon nanomaterials with layered and tube-like structures were designed based on thermal (KOH-activated micrographite sheets) and impregnation methods by anchoring K and Zn on carbon nanotubes (CNTs), respectively for the removal of Cr (VI) from contaminated synthetic groundwater. Zinc acetate modified carbon nanotubes (Zn-CNTs) and potassium hydroxide modified carbon nanotubes (K-CNTs) exhibited greater adsorption capacity for the Cr (VI) adsorbate compared to KOH-activated graphite (AC-1 and AC-0). Maximum removal efficiency for both adsorbents occurred at pH 2. Omu Aran Hand dug wells can therefore be treated with K–CNTs, since the experimental outcomes showed that CNTs adsorbent could operate well in a range of the experimental scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromium%20%28VI%29" title=" Chromium (VI)"> Chromium (VI)</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitic%20carbon" title=" graphitic carbon"> graphitic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/188568/removal-of-chromium-vi-from-contaminated-synthetic-groundwater-using-functionalized-carbon-nanomaterials-modified-with-zinc-and-potassium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Production of Energetic Nanomaterials by Spray Flash Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Klaum%C3%BCnzer">Martin Klaumünzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20H%C3%BCbner"> Jakob Hübner</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Spitzer"> Denis Spitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20synthesis" title="continuous synthesis">continuous synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=energetic%20material" title=" energetic material"> energetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoscale" title=" nanoscale"> nanoscale</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoexplosive" title=" nanoexplosive"> nanoexplosive</a>, <a href="https://publications.waset.org/abstracts/search?q=nanothermite" title=" nanothermite"> nanothermite</a> </p> <a href="https://publications.waset.org/abstracts/53394/production-of-energetic-nanomaterials-by-spray-flash-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anza-Vhudziki%20Mboyi">Anza-Vhudziki Mboyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilunga%20Kamika"> Ilunga Kamika</a>, <a href="https://publications.waset.org/abstracts/search?q=Maggy%20Momba"> Maggy Momba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand%20%28COD%29%20and%20nanomaterials" title=" chemical oxygen demand (COD) and nanomaterials"> chemical oxygen demand (COD) and nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=consortium" title=" consortium"> consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoan" title=" protozoan"> protozoan</a> </p> <a href="https://publications.waset.org/abstracts/72175/the-ability-of-consortium-wastewater-protozoan-and-bacterial-species-to-remove-chemical-oxygen-demand-in-the-presence-of-nanomaterials-under-varying-ph-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saji%20George">Saji George</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Khuan%20Seng"> Eng Khuan Seng</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20Luda"> Christof Luda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=fish-vaccine" title=" fish-vaccine"> fish-vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=drug-delivery" title=" drug-delivery"> drug-delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=halloysite-chitosan" title=" halloysite-chitosan"> halloysite-chitosan</a> </p> <a href="https://publications.waset.org/abstracts/52592/chitosan-modified-halloysite-nanomaterials-for-efficient-and-effective-vaccine-delivery-in-farmed-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Nanotechnology Innovations for the Sustainable Buildings of the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fin%20Sev">Ayşin Sev</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Ezel"> Meltem Ezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability, being the urgent issue of our time, is closely related with the innovations in technology. Nanotechnology (NT), although not a new science, can be regarded relatively a new science for buildings with brand new materials and applications. This paper tends to give a research review of current and near future applications of nanotechnology (NT) for achieving high-performance and healthy buildings for a sustainable future. In the introduction, the driving forces for the sustainability of construction industry are explained. Then, the term NT is defined, and significance of innovations in NT for a sustainable construction industry is revealed. After presenting the application areas of NT and nanomaterials for buildings with a number of cases, challenges in the adoption of this technology are put forward, and finally the impacts of nanoparticles and nanomaterials on human health and environment are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterial" title="nanomaterial">nanomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing%20concrete" title=" self-healing concrete"> self-healing concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20cleaning%20sensor" title=" self cleaning sensor"> self cleaning sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosensor" title=" nanosensor"> nanosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=aerogel" title=" aerogel"> aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20solar%20panel" title=" flexible solar panel "> flexible solar panel </a> </p> <a href="https://publications.waset.org/abstracts/12560/nanotechnology-innovations-for-the-sustainable-buildings-of-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syue-Liang%20Lin">Syue-Liang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Allen%20Chang"> C. Allen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Near%20Infrared%20%28NIR%29" title="Near Infrared (NIR)">Near Infrared (NIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title=" lanthanide"> lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20structure" title=" core-shell structure"> core-shell structure</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion" title=" upconversion"> upconversion</a>, <a href="https://publications.waset.org/abstracts/search?q=theranostics" title=" theranostics"> theranostics</a> </p> <a href="https://publications.waset.org/abstracts/71701/synthesis-and-surface-engineering-of-lanthanide-nanoparticles-for-nir-luminescence-imaging-and-photodynamic-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Drug Residues Disposal from Wastewater Using Carbon Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Nicolae">Stefan Nicolae</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Cirtoaje"> Cristina Cirtoaje</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Petrescu"> Emil Petrescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Florin-Razvan%20Duca"> Florin-Razvan Duca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of the accelerated expansion of urban agglomerations and the exponential development of industry, a huge amount of water is used, and a crisis of drinking water may occur any time. Classic wastewater treatment removes most pollutants but, for some chemical residues, special methods are needed. Carbon nanotubes and other carbon materials might be used in many cases [1-2], especially for heavy metals removal but also on pharmaceutical products such as paracetamol [3]. Our research has confirmed the better efficiency of nanotubes compared to graphene on paracetamol removal from water, but even better results were obtained on single-walled nanotubes (SWCNTs) and graphene nanoplatelets. This can be due to their better dispersion in water which leads to an increased contact surface, so we propose a filtration system of membranes and carbon materials that can be used for paracetamol removal from wastewater but also for other drugs that affect the aquatic life as well as terrestrial animals and people who use this contaminated water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=applied%20physics" title="applied physics">applied physics</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=enviromental%20science" title=" enviromental science"> enviromental science</a> </p> <a href="https://publications.waset.org/abstracts/142289/drug-residues-disposal-from-wastewater-using-carbon-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Design, Synthesis, and Catalytic Applications of Functionalized Metal Complexes and Nanomaterials for Selective Oxidation and Coupling Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghaye%20Behroozi">Roghaye Behroozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of functionalized metal complexes and nanomaterials has gained significant attention due to their potential in catalyzing selective oxidation and coupling reactions. These catalysts play a crucial role in various industrial and pharmaceutical processes, enhancing the efficiency, selectivity, and sustainability of chemical reactions. This research aims to design and synthesize new functionalized metal complexes and nanomaterials to explore their catalytic applications in the selective oxidation of alcohols and coupling reactions, focusing on improving yield, selectivity, and catalyst reusability. The study involves the synthesis of a nickel Schiff base complex stabilized within 41-MCM as a heterogeneous catalyst. A Schiff base ligand derived from glycine was used to create a tin (IV) metal complex characterized through spectroscopic techniques and computational analysis. Additionally, iron-based magnetic nanoparticles functionalized with melamine were synthesized for catalytic evaluation. Lastly, a palladium (IV) complex was prepared, and its oxidative stability was analyzed. The nickel Schiff base catalyst showed high selectivity in converting primary and secondary alcohols to aldehydes and ketones, with yields ranging from 73% to 90%. The tin (IV) complex demonstrated accurate structural and electronic properties, with consistent results between experimental and computational data. The melamine-functionalized iron nanoparticles exhibited efficient catalytic activity in producing triazoles, with enhanced reaction speed and reusability. The palladium (IV) complex displayed remarkable stability and low reactivity towards C–C bond formation due to its symmetrical structure. The synthesized metal complexes and nanomaterials demonstrated significant potential as efficient, selective, and reusable catalysts for oxidation and coupling reactions. These findings pave the way for developing environmentally friendly and cost-effective catalytic systems for industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysts" title="catalysts">catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base%20complexes" title=" Schiff base complexes"> Schiff base complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20reactions" title=" oxidation reactions"> oxidation reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=reusability" title=" reusability"> reusability</a> </p> <a href="https://publications.waset.org/abstracts/192967/design-synthesis-and-catalytic-applications-of-functionalized-metal-complexes-and-nanomaterials-for-selective-oxidation-and-coupling-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Nanofluid based on Zinc Oxide/Ferric Oxide Nanocomposite as Additive for Geothermal Drilling Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwaar%20O.%20Ali">Anwaar O. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Fathy%20Mubarak"> Mahmoud Fathy Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Ibrahim%20Abdou"> Mahmoud Ibrahim Abdou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Cano%20Esteban"> Hector Cano Esteban</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20A.%20Aboulrous"> Amany A. Aboulrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion resistance and lubrication are crucial characteristics required for geothermal drilling fluids. In this study, a ZnO/Fe₂O₃ nanocomposite was fabricated and incorporated into the structure of Cetyltrimethylammonium bromide (CTAB). Several physicochemical techniques were utilized to analyze and describe the synthesized nanomaterials. The surface morphology of the composite was assessed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX). The corrosion inhibition capabilities of these materials were explored across various corrosive environments. The weight loss and electrochemical methods were utilized to determine the corrosion inhibition activity of the prepared nanomaterials. The results demonstrate a high level of protection achieved by the composite. Additionally, the lubricant coefficient and extreme pressure properties were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20drilling%20fluids" title=" geothermal drilling fluids"> geothermal drilling fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%2FFe2O3" title=" ZnO/Fe2O3"> ZnO/Fe2O3</a> </p> <a href="https://publications.waset.org/abstracts/182247/nanofluid-based-on-zinc-oxideferric-oxide-nanocomposite-as-additive-for-geothermal-drilling-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Development of Bioactive Medical Textiles by Immobilizing Nanoparticles at Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munir%20Ashraf">Munir Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Riaz"> Shagufta Riaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Personal protective equipment (PPE) and bioactive textiles are highly important for the health care of front line hospital workers, patients, and the general population to be safe from highly infectious diseases. This was even more critical in the wake of COVID-19 outbreak. Most of the medical textiles are inactive against various viruses and bacteria, hence there is a need to wash them frequently to avoid the spread of microorganisms. According to survey conducted by the world health organization, more than 500 million people get infected from hospitals, and more than 13 million died due to these hospitals’ acquired deadly diseases. The market available PPE are though effective against the penetration of pathogens and to kill bacteria but, they are not breathable and active against different viruses. Therefore, there was a great need to develop textiles that are not only effective against bacteria, fungi, and viruses but also are comfortable to the medical personnel and patients. In the present study, waterproof breathable, and biologically active textiles were developed using antiviral and antibacterial nanomaterials. These nanomaterials like TiO₂, ZnO, Cu, and Ag were immobilized at the surface of cotton fabric by using different silane coupling agents and electroless deposition that they retained their functionality even after 30 industrial laundering cycles. Afterwards, the treated fabrics were coated with a waterproof breathable film to prevent the permeation of liquid droplets, any particle or microorganisms greater than 80 nm. The developed cotton fabric was highly active against bacteria and viruses. The good durability of nanomaterials at the cotton surface after several industrial washing cycles makes this fabric an ideal candidate for bioactive textiles used in the medical field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=durable" title=" durable"> durable</a> </p> <a href="https://publications.waset.org/abstracts/145734/development-of-bioactive-medical-textiles-by-immobilizing-nanoparticles-at-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Boukhatem">H. Boukhatem</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Djouadi"> L. Djouadi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khalaf"> H. Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Navarro"> R. M. Navarro</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20V.%20Ganzalez"> F. V. Ganzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title="heterogeneous photocatalysis">heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterial" title=" nanomaterial"> nanomaterial</a> </p> <a href="https://publications.waset.org/abstracts/30272/synthesis-of-montmorillonitecuxcd1-xs-nanocomposites-and-their-application-to-the-photodegradation-of-methylene-blue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Characterization Techniques for Studying Properties of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandini%20Sharma">Nandini Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterial" title=" nanomaterial"> nanomaterial</a> </p> <a href="https://publications.waset.org/abstracts/133270/characterization-techniques-for-studying-properties-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipali%20Nagaonkar">Dipali Nagaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Rai"> Mahendra Rai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bimetallic%20nanoparticles" title="bimetallic nanoparticles">bimetallic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20arrangement" title=" core-shell arrangement"> core-shell arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=mycosynthesis" title=" mycosynthesis"> mycosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20reduction" title=" sequential reduction"> sequential reduction</a> </p> <a href="https://publications.waset.org/abstracts/23740/anticandidal-and-antibacterial-silver-and-silvercore-goldshell-bimetallic-nanoparticles-by-fusarium-graminearum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> A Review on Applications of Nanotechnology in Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshata%20S.%20Malani">Akshata S. Malani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anagha%20D.%20Chaudhari"> Anagha D. Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeshkumar%20U.%20Sambhe"> Rajeshkumar U. Sambhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology in pristine sense refers to building of structures at atomic and molecular scale. Meticulously nanotechnology encompasses the nanomaterials with atleast one dimension size ranging from 1 to 100 nanometres.Unlike the literal meaning of its name, nanotechnology is a massive concept beyond imagination. This paper predominantly deals with relevance of nanotechnology in automotive industries. New generation of automotives looks at nanotechnology as an emerging trend of manufacturing revolution. Intricate shapes can be made out of fairly inexpensive raw materials instead of conventional fabrication process. Though the current era have enough technology to face competition, nanotechnology can give futuristic implications to pick up the modern pace. Nanotechnology intends to bridge the gap between automotives with superior technical performance and their cost fluctuation. Preliminarily, it is an area of great scientific interest and a major shaper of many new technologies. Nanotechnology can be an ideal building block for automotive industries, under constant evolution offering a very wide scope of activity. It possesses huge potential and is still in the embryonic form of research and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a> </p> <a href="https://publications.waset.org/abstracts/35253/a-review-on-applications-of-nanotechnology-in-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katielly%20Vianna%20Polkowski">Katielly Vianna Polkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Denizarte%20de%20Oliveira%20Polkowski"> Rodrigo Denizarte de Oliveira Polkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Grings%20Herbert"> Cristiano Grings Herbert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title=" shape memory"> shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20materials" title=" smart materials"> smart materials</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/157621/influence-of-nanomaterials-on-the-properties-of-shape-memory-polymeric-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2D%20nanomaterials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>