CINXE.COM

Search results for: margin-based softmax

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: margin-based softmax</title> <meta name="description" content="Search results for: margin-based softmax"> <meta name="keywords" content="margin-based softmax"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="margin-based softmax" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="margin-based softmax"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: margin-based softmax</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umair%20Rashid">Umair Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20convolutional%20neural%20networks" title="deep convolutional neural networks">deep convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=cosine%20margin%20face%20recognition" title=" cosine margin face recognition"> cosine margin face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=softmax%20loss" title=" softmax loss"> softmax loss</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonically%20decreasing%20parameter" title=" monotonically decreasing parameter"> monotonically decreasing parameter</a> </p> <a href="https://publications.waset.org/abstracts/169302/effect-of-monotonically-decreasing-parameters-on-margin-softmax-for-deep-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Modified Form of Margin Based Angular Softmax Loss for Speaker Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamshaid%20ul%20Rahman">Jamshaid ul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhter%20Ali"> Akhter Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Manzoor"> Adnan Manzoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20parameter" title="additive parameter">additive parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20softmax" title=" angular softmax"> angular softmax</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20verification" title=" speaker verification"> speaker verification</a>, <a href="https://publications.waset.org/abstracts/search?q=PLDA" title=" PLDA"> PLDA</a> </p> <a href="https://publications.waset.org/abstracts/152915/modified-form-of-margin-based-angular-softmax-loss-for-speaker-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svitov%20David">Svitov David</a>, <a href="https://publications.waset.org/abstracts/search?q=Alyamkin%20Sergey"> Alyamkin Sergey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ArcFace" title="ArcFace">ArcFace</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=margin-based%20softmax" title=" margin-based softmax"> margin-based softmax</a> </p> <a href="https://publications.waset.org/abstracts/127812/margindistillation-distillation-for-face-recognition-neural-networks-with-margin-based-softmax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Robust Noisy Speech Identification Using Frame Classifier Derived Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punnoose%20A.%20K.">Punnoose A. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noisy%20speech%20identification" title="noisy speech identification">noisy speech identification</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20pre-processing" title=" speech pre-processing"> speech pre-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20robustness" title=" noise robustness"> noise robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20engineering" title=" feature engineering"> feature engineering</a> </p> <a href="https://publications.waset.org/abstracts/144694/robust-noisy-speech-identification-using-frame-classifier-derived-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Nabaei">Armin Nabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Omair%20Ahmad"> M. Omair Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20S.%20Swamy"> M. N. S. Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20expression%20recognition" title=" facial expression recognition"> facial expression recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=depp%20learning" title=" depp learning"> depp learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/158634/enhanced-multi-scale-feature-extraction-using-a-dcnn-by-proposing-dynamic-soft-margin-softmax-for-face-emotion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouha%20Khediri">Nouha Khediri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ben%20Ammar"> Mohammed Ben Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Monji%20Kherallah"> Monji Kherallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN" title="CNN">CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-learning" title=" deep-learning"> deep-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20emotion%20recognition" title=" facial emotion recognition"> facial emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/150291/deep-learning-based-approach-to-facial-emotion-recognition-through-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayyaz%20Hussain">Ayyaz Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Sadad"> Tariq Sadad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=DCNN" title=" DCNN"> DCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a> </p> <a href="https://publications.waset.org/abstracts/118200/identification-of-breast-anomalies-based-on-deep-convolutional-neural-networks-and-k-nearest-neighbors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Recognition Method of Ancient Yi Script Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanxiong%20Chen">Shanxiong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Han"> Xu Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Wang"> Xiaolong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Ma"> Hui Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recognition" title="recognition">recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20character" title=" Yi character"> Yi character</a>, <a href="https://publications.waset.org/abstracts/search?q=divergence" title=" divergence "> divergence </a> </p> <a href="https://publications.waset.org/abstracts/103578/a-recognition-method-of-ancient-yi-script-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Classification of Echo Signals Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisulu%20Tileukulova">Aisulu Tileukulova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhexebay%20Dauren"> Zhexebay Dauren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=echo%20signals" title=" echo signals"> echo signals</a> </p> <a href="https://publications.waset.org/abstracts/147596/classification-of-echo-signals-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossain%20A.">Hossain A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chowdhury%20S.%20I."> Chowdhury S. I.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=glomerular%20filtration%20rate" title=" glomerular filtration rate"> glomerular filtration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=stages%20of%20the%20kidney" title=" stages of the kidney"> stages of the kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20camera" title=" gamma camera"> gamma camera</a> </p> <a href="https://publications.waset.org/abstracts/153994/an-automated-procedure-for-estimating-the-glomerular-filtration-rate-and-determining-the-normality-or-abnormality-of-the-kidney-stages-using-an-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophia%20Shi">Sophia Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acute%20kidney%20injury" title="Acute kidney injury">Acute kidney injury</a>, <a href="https://publications.waset.org/abstracts/search?q=Convolutional%20neural%20network" title=" Convolutional neural network"> Convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20deep%20learning" title=" Hybrid deep learning"> Hybrid deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Patient%20record%20data" title=" Patient record data"> Patient record data</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=Ultrasound%20kidney%20images" title=" Ultrasound kidney images"> Ultrasound kidney images</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG" title=" VGG"> VGG</a> </p> <a href="https://publications.waset.org/abstracts/137226/a-novel-hybrid-deep-learning-architecture-for-predicting-acute-kidney-injury-using-patient-record-data-and-ultrasound-kidney-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Mansour">Parisa Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HRCT" title="HRCT">HRCT</a>, <a href="https://publications.waset.org/abstracts/search?q=CF" title=" CF"> CF</a>, <a href="https://publications.waset.org/abstracts/search?q=cystic%20fibrosis" title=" cystic fibrosis"> cystic fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=chest%20CT" title=" chest CT"> chest CT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/179628/lung-hrct-pattern-classification-for-cystic-fibrosis-using-a-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Hedyehzadeh">Mohammadreza Hedyehzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Yousefi"> Mahdi Yousefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title="colon cancer">colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG-16" title=" VGG-16"> VGG-16</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20size" title=" tumor size"> tumor size</a>, <a href="https://publications.waset.org/abstracts/search?q=lymph%20node%20metastasis" title=" lymph node metastasis"> lymph node metastasis</a> </p> <a href="https://publications.waset.org/abstracts/168164/tumor-size-and-lymph-node-metastasis-detection-in-colon-cancer-patients-using-mr-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulfam%20Haider">Gulfam Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=sana%20danish"> sana danish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title="deep neural network">deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizers" title=" optimizers"> optimizers</a>, <a href="https://publications.waset.org/abstracts/search?q=RMsprop" title=" RMsprop"> RMsprop</a>, <a href="https://publications.waset.org/abstracts/search?q=ReLU" title=" ReLU"> ReLU</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20gradient%20descent" title=" stochastic gradient descent"> stochastic gradient descent</a> </p> <a href="https://publications.waset.org/abstracts/169078/investigating-the-influence-of-activation-functions-on-image-classification-accuracy-via-deep-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupalli%20Roja%20Rani">Anupalli Roja Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavithra%20Dasari"> Pavithra Dasari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coleus%20barbatus" title="coleus barbatus">coleus barbatus</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLC" title=" MPLC"> MPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20chromatograph" title=" flash chromatograph"> flash chromatograph</a>, <a href="https://publications.waset.org/abstracts/search?q=ESI-MS" title=" ESI-MS"> ESI-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=FACS" title=" FACS"> FACS</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA." title=" ELISA."> ELISA.</a> </p> <a href="https://publications.waset.org/abstracts/169291/anti-proliferative-activity-and-her2-receptor-expression-analysis-of-mcf-7-breast-cancer-cell-cells-by-plant-extract-coleus-barbatus-andrew" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Li">Jia Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing%20Wei"> Xing Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Hong"> Yuchen Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Lu"> Yang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20behavior%20detection" title="vehicle behavior detection">vehicle behavior detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/112029/vehicle-timing-motion-detection-based-on-multi-dimensional-dynamic-detection-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10