CINXE.COM
Euler's totient function - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Euler's totient function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7092431c-3d8c-456c-9f73-c32096700191","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Euler's_totient_function","wgTitle":"Euler's totient function","wgCurRevisionId":1251680404,"wgRevisionId":1251680404,"wgArticleId":53452,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","Articles with short description","Short description is different from Wikidata","Webarchive template wayback links","Articles containing proofs","Modular arithmetic","Multiplicative functions","Algebra","Number theory","Leonhard Euler"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Euler's_totient_function","wgRelevantArticleId":53452,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q190026","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/EulerPhi.svg/1200px-EulerPhi.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="905"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/EulerPhi.svg/800px-EulerPhi.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="603"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/EulerPhi.svg/640px-EulerPhi.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="482"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Euler's totient function - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Euler%27s_totient_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Euler%27s_totient_function&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Euler%27s_totient_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Euler_s_totient_function rootpage-Euler_s_totient_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Euler%27s+totient+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Euler%27s+totient+function" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Euler%27s+totient+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Euler%27s+totient+function" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History,_terminology,_and_notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History,_terminology,_and_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History, terminology, and notation</span> </div> </a> <ul id="toc-History,_terminology,_and_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computing_Euler's_totient_function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computing_Euler's_totient_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Computing Euler's totient function</span> </div> </a> <button aria-controls="toc-Computing_Euler's_totient_function-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computing Euler's totient function subsection</span> </button> <ul id="toc-Computing_Euler's_totient_function-sublist" class="vector-toc-list"> <li id="toc-Euler's_product_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Euler's_product_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Euler's product formula</span> </div> </a> <ul id="toc-Euler's_product_formula-sublist" class="vector-toc-list"> <li id="toc-Phi_is_a_multiplicative_function" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Phi_is_a_multiplicative_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Phi is a multiplicative function</span> </div> </a> <ul id="toc-Phi_is_a_multiplicative_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Value_of_phi_for_a_prime_power_argument" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Value_of_phi_for_a_prime_power_argument"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Value of phi for a prime power argument</span> </div> </a> <ul id="toc-Value_of_phi_for_a_prime_power_argument-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_of_Euler's_product_formula" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Proof_of_Euler's_product_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.3</span> <span>Proof of Euler's product formula</span> </div> </a> <ul id="toc-Proof_of_Euler's_product_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.4</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fourier_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Fourier transform</span> </div> </a> <ul id="toc-Fourier_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Divisor_sum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Divisor_sum"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Divisor sum</span> </div> </a> <ul id="toc-Divisor_sum-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Some_values" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Some_values"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Some values</span> </div> </a> <ul id="toc-Some_values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Euler's_theorem" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Euler's_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Euler's theorem</span> </div> </a> <ul id="toc-Euler's_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_formulae" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_formulae"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Other formulae</span> </div> </a> <button aria-controls="toc-Other_formulae-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other formulae subsection</span> </button> <ul id="toc-Other_formulae-sublist" class="vector-toc-list"> <li id="toc-Menon's_identity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Menon's_identity"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Menon's identity</span> </div> </a> <ul id="toc-Menon's_identity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Divisibility_by_any_fixed_positive_integer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Divisibility_by_any_fixed_positive_integer"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Divisibility by any fixed positive integer</span> </div> </a> <ul id="toc-Divisibility_by_any_fixed_positive_integer-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generating_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Generating functions</span> </div> </a> <ul id="toc-Generating_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Growth_rate" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Growth_rate"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Growth rate</span> </div> </a> <ul id="toc-Growth_rate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ratio_of_consecutive_values" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Ratio_of_consecutive_values"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Ratio of consecutive values</span> </div> </a> <ul id="toc-Ratio_of_consecutive_values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Totient_numbers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Totient_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Totient numbers</span> </div> </a> <button aria-controls="toc-Totient_numbers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Totient numbers subsection</span> </button> <ul id="toc-Totient_numbers-sublist" class="vector-toc-list"> <li id="toc-Ford's_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ford's_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Ford's theorem</span> </div> </a> <ul id="toc-Ford's_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Perfect_totient_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Perfect_totient_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Perfect totient numbers</span> </div> </a> <ul id="toc-Perfect_totient_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Cyclotomy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cyclotomy"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Cyclotomy</span> </div> </a> <ul id="toc-Cyclotomy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prime_number_theorem_for_arithmetic_progressions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prime_number_theorem_for_arithmetic_progressions"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Prime number theorem for arithmetic progressions</span> </div> </a> <ul id="toc-Prime_number_theorem_for_arithmetic_progressions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_RSA_cryptosystem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_RSA_cryptosystem"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>The RSA cryptosystem</span> </div> </a> <ul id="toc-The_RSA_cryptosystem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Unsolved_problems" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Unsolved_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Unsolved problems</span> </div> </a> <button aria-controls="toc-Unsolved_problems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Unsolved problems subsection</span> </button> <ul id="toc-Unsolved_problems-sublist" class="vector-toc-list"> <li id="toc-Lehmer's_conjecture" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lehmer's_conjecture"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Lehmer's conjecture</span> </div> </a> <ul id="toc-Lehmer's_conjecture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Carmichael's_conjecture" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Carmichael's_conjecture"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Carmichael's conjecture</span> </div> </a> <ul id="toc-Carmichael's_conjecture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemann_hypothesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemann_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>Riemann hypothesis</span> </div> </a> <ul id="toc-Riemann_hypothesis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Euler's totient function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 41 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-41" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">41 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%A4%D8%B4%D8%B1_%D8%A3%D9%88%D9%8A%D9%84%D8%B1" title="مؤشر أويلر – Arabic" lang="ar" hreflang="ar" data-title="مؤشر أويلر" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%AF%E0%A6%BC%E0%A6%B2%E0%A6%BE%E0%A6%B0_%E0%A6%9F%E0%A7%8B%E0%A6%B6%E0%A7%87%E0%A6%A8%E0%A7%8D%E0%A6%9F_%E0%A6%AB%E0%A6%BE%E0%A6%82%E0%A6%B6%E0%A6%A8" title="অয়লার টোশেন্ট ফাংশন – Bangla" lang="bn" hreflang="bn" data-title="অয়লার টোশেন্ট ফাংশন" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%9E%D0%B9%D0%BB%D0%B5%D1%80" title="Функция на Ойлер – Bulgarian" lang="bg" hreflang="bg" data-title="Функция на Ойлер" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3_%CF%86_d%27Euler" title="Funció φ d'Euler – Catalan" lang="ca" hreflang="ca" data-title="Funció φ d'Euler" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Eulerova_funkce" title="Eulerova funkce – Czech" lang="cs" hreflang="cs" data-title="Eulerova funkce" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Ffwythiant_%CF%86_Euler" title="Ffwythiant φ Euler – Welsh" lang="cy" hreflang="cy" data-title="Ffwythiant φ Euler" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Eulers_totientfunktion" title="Eulers totientfunktion – Danish" lang="da" hreflang="da" data-title="Eulers totientfunktion" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Eulersche_Phi-Funktion" title="Eulersche Phi-Funktion – German" lang="de" hreflang="de" data-title="Eulersche Phi-Funktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7_%CE%8C%CE%B9%CE%BB%CE%B5%CF%81" title="Συνάρτηση Όιλερ – Greek" lang="el" hreflang="el" data-title="Συνάρτηση Όιλερ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_%CF%86_de_Euler" title="Función φ de Euler – Spanish" lang="es" hreflang="es" data-title="Función φ de Euler" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Funkcio_%CF%86" title="Funkcio φ – Esperanto" lang="eo" hreflang="eo" data-title="Funkcio φ" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Eulerren_%CF%86_funtzioa" title="Eulerren φ funtzioa – Basque" lang="eu" hreflang="eu" data-title="Eulerren φ funtzioa" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D9%81%DB%8C_%D8%A7%D9%88%DB%8C%D9%84%D8%B1" title="تابع فی اویلر – Persian" lang="fa" hreflang="fa" data-title="تابع فی اویلر" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Indicatrice_d%27Euler" title="Indicatrice d'Euler – French" lang="fr" hreflang="fr" data-title="Indicatrice d'Euler" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n_totiente_de_Euler" title="Función totiente de Euler – Galician" lang="gl" hreflang="gl" data-title="Función totiente de Euler" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%ED%94%BC_%ED%95%A8%EC%88%98" title="오일러 피 함수 – Korean" lang="ko" hreflang="ko" data-title="오일러 피 함수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Eulerova_funkcija" title="Eulerova funkcija – Croatian" lang="hr" hreflang="hr" data-title="Eulerova funkcija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_phi_Euler" title="Fungsi phi Euler – Indonesian" lang="id" hreflang="id" data-title="Fungsi phi Euler" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_%CF%86_di_Eulero" title="Funzione φ di Eulero – Italian" lang="it" hreflang="it" data-title="Funzione φ di Eulero" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%99%D7%AA_%D7%90%D7%95%D7%99%D7%9C%D7%A8" title="פונקציית אוילר – Hebrew" lang="he" hreflang="he" data-title="פונקציית אוילר" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F%D1%81%D1%8B" title="Эйлер функциясы – Kazakh" lang="kk" hreflang="kk" data-title="Эйлер функциясы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Fonksyon_phi_Euler" title="Fonksyon phi Euler – Haitian Creole" lang="ht" hreflang="ht" data-title="Fonksyon phi Euler" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Euler-f%C3%BCggv%C3%A9ny" title="Euler-függvény – Hungarian" lang="hu" hreflang="hu" data-title="Euler-függvény" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%93%E0%B4%AF%E0%B5%8D%E0%B4%B2%E0%B4%B1%E0%B5%81%E0%B4%9F%E0%B5%86_%E0%B4%9F%E0%B5%8B%E0%B4%B7%E0%B5%8D%E0%B4%AF%E0%B4%A8%E0%B5%8D%E0%B4%B1%E0%B5%8D_%E0%B4%AB%E0%B4%B2%E0%B4%A8%E0%B4%82" title="ഓയ്ലറുടെ ടോഷ്യന്റ് ഫലനം – Malayalam" lang="ml" hreflang="ml" data-title="ഓയ്ലറുടെ ടോഷ്യന്റ് ഫലനം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Indicator_(getaltheorie)" title="Indicator (getaltheorie) – Dutch" lang="nl" hreflang="nl" data-title="Indicator (getaltheorie)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%CF%86%E9%96%A2%E6%95%B0" title="オイラーのφ関数 – Japanese" lang="ja" hreflang="ja" data-title="オイラーのφ関数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Eulers_totientfunksjon" title="Eulers totientfunksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Eulers totientfunksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja_%CF%86" title="Funkcja φ – Polish" lang="pl" hreflang="pl" data-title="Funkcja φ" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_totiente_de_Euler" title="Função totiente de Euler – Portuguese" lang="pt" hreflang="pt" data-title="Função totiente de Euler" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Indicatorul_lui_Euler" title="Indicatorul lui Euler – Romanian" lang="ro" hreflang="ro" data-title="Indicatorul lui Euler" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0" title="Функция Эйлера – Russian" lang="ru" hreflang="ru" data-title="Функция Эйлера" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Euler%27s_totient_function" title="Euler's totient function – Simple English" lang="en-simple" hreflang="en-simple" data-title="Euler's totient function" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Eulerjeva_funkcija_fi" title="Eulerjeva funkcija fi – Slovenian" lang="sl" hreflang="sl" data-title="Eulerjeva funkcija fi" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9E%D1%98%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D1%84%D0%B8_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Ојлерова фи функција – Serbian" lang="sr" hreflang="sr" data-title="Ојлерова фи функција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Eulerin_%CF%86-funktio" title="Eulerin φ-funktio – Finnish" lang="fi" hreflang="fi" data-title="Eulerin φ-funktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Eulers_fi-funktion" title="Eulers fi-funktion – Swedish" lang="sv" hreflang="sv" data-title="Eulers fi-funktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%86%E0%AE%AF%E0%AF%8D%E0%AE%B2%E0%AE%B0%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%9F%E0%AF%8B%E0%AE%B7%E0%AE%A3%E0%AF%8D%E0%AE%9F%E0%AF%8D_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81" title="ஆய்லரின் டோஷண்ட் சார்பு – Tamil" lang="ta" hreflang="ta" data-title="ஆய்லரின் டோஷண்ட் சார்பு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Totient" title="Totient – Turkish" lang="tr" hreflang="tr" data-title="Totient" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_%D0%95%D0%B9%D0%BB%D0%B5%D1%80%D0%B0" title="Функція Ейлера – Ukrainian" lang="uk" hreflang="uk" data-title="Функція Ейлера" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_phi_Euler" title="Hàm phi Euler – Vietnamese" lang="vi" hreflang="vi" data-title="Hàm phi Euler" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0" title="欧拉函数 – Chinese" lang="zh" hreflang="zh" data-title="欧拉函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190026#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euler%27s_totient_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Euler%27s_totient_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euler%27s_totient_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Euler%27s_totient_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Euler%27s_totient_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Euler%27s_totient_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&oldid=1251680404" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Euler%27s_totient_function&id=1251680404&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEuler%2527s_totient_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEuler%2527s_totient_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Euler%27s_totient_function&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Euler%27s_totient_function&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Totient_function" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190026" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Number of integers coprime to and less than n</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable"><span>"φ(n)" redirects here. For other uses, see <a href="/wiki/Phi" title="Phi">Phi</a>.</span> <span>Not to be confused with <a href="/wiki/Euler_function" title="Euler function">Euler function</a>.</span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:EulerPhi.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/EulerPhi.svg/220px-EulerPhi.svg.png" decoding="async" width="220" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/EulerPhi.svg/330px-EulerPhi.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/EulerPhi.svg/440px-EulerPhi.svg.png 2x" data-file-width="731" data-file-height="551" /></a><figcaption>The first thousand values of <span class="texhtml"><i>φ</i>(<i>n</i>)</span>. The points on the top line represent <span class="texhtml"><i>φ</i>(<i>p</i>)</span> when <span class="texhtml mvar" style="font-style:italic;">p</span> is a prime number, which is <span class="texhtml"><i>p</i> − 1.</span><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>In <a href="/wiki/Number_theory" title="Number theory">number theory</a>, <b>Euler's totient function</b> counts the positive integers up to a given integer <span class="texhtml mvar" style="font-style:italic;">n</span> that are <a href="/wiki/Relatively_prime" class="mw-redirect" title="Relatively prime">relatively prime</a> to <span class="texhtml mvar" style="font-style:italic;">n</span>. It is written using the Greek letter <a href="/wiki/Phi" title="Phi">phi</a> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f067864064667dd5f8b2508b9cbf983d89788629" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.724ex; height:2.843ex;" alt="{\displaystyle \varphi (n)}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbb3dbe542ca7d51c4f32e32cefb8572edb26ab3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.589ex; height:2.843ex;" alt="{\displaystyle \phi (n)}"></span>, and may also be called <b>Euler's phi function</b>. In other words, it is the number of integers <span class="texhtml mvar" style="font-style:italic;">k</span> in the range <span class="texhtml">1 ≤ <i>k</i> ≤ <i>n</i></span> for which the <a href="/wiki/Greatest_common_divisor" title="Greatest common divisor">greatest common divisor</a> <span class="texhtml">gcd(<i>n</i>, <i>k</i>)</span> is equal to 1.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> The integers <span class="texhtml mvar" style="font-style:italic;">k</span> of this form are sometimes referred to as <a href="/wiki/Totative" title="Totative">totatives</a> of <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>For example, the totatives of <span class="texhtml"><i>n</i> = 9</span> are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since <span class="texhtml">gcd(9, 3) = gcd(9, 6) = 3</span> and <span class="texhtml">gcd(9, 9) = 9</span>. Therefore, <span class="texhtml"><i>φ</i>(9) = 6</span>. As another example, <span class="texhtml"><i>φ</i>(1) = 1</span> since for <span class="texhtml"><i>n</i> = 1</span> the only integer in the range from 1 to <span class="texhtml mvar" style="font-style:italic;">n</span> is 1 itself, and <span class="texhtml">gcd(1, 1) = 1</span>. </p><p>Euler's totient function is a <a href="/wiki/Multiplicative_function" title="Multiplicative function">multiplicative function</a>, meaning that if two numbers <span class="texhtml mvar" style="font-style:italic;">m</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are relatively prime, then <span class="texhtml"><i>φ</i>(<i>mn</i>) = <i>φ</i>(<i>m</i>)<i>φ</i>(<i>n</i>)</span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> This function gives the <a href="/wiki/Order_(group_theory)" title="Order (group theory)">order</a> of the <a href="/wiki/Multiplicative_group_of_integers_modulo_n" title="Multiplicative group of integers modulo n">multiplicative group of integers modulo <span class="texhtml mvar" style="font-style:italic;">n</span></a> (the <a href="/wiki/Multiplicative_group_of_integers_modulo_n" title="Multiplicative group of integers modulo n">group</a> of <a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">units</a> of the <a href="/wiki/Ring_(algebra)" class="mw-redirect" title="Ring (algebra)">ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /n\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /n\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2120ebbc85f91df66c6de5446367bf9fd620844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.658ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /n\mathbb {Z} }"></span>).<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> It is also used for defining the <a href="/wiki/RSA_(cryptosystem)" title="RSA (cryptosystem)">RSA encryption system</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History,_terminology,_and_notation"><span id="History.2C_terminology.2C_and_notation"></span>History, terminology, and notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=1" title="Edit section: History, terminology, and notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> introduced the function in 1763.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Sandifer,_p._203_8-0" class="reference"><a href="#cite_note-Sandifer,_p._203-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> However, he did not at that time choose any specific symbol to denote it. In a 1784 publication, Euler studied the function further, choosing the Greek letter <span class="texhtml mvar" style="font-style:italic;">π</span> to denote it: he wrote <span class="texhtml"><i>πD</i></span> for "the multitude of numbers less than <span class="texhtml mvar" style="font-style:italic;">D</span>, and which have no common divisor with it".<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> This definition varies from the current definition for the totient function at <span class="texhtml"><i>D</i> = 1</span> but is otherwise the same. The now-standard notation<sup id="cite_ref-Sandifer,_p._203_8-1" class="reference"><a href="#cite_note-Sandifer,_p._203-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> <span class="texhtml"><i>φ</i>(<i>A</i>)</span> comes from <a href="/wiki/Gauss" class="mw-redirect" title="Gauss">Gauss</a>'s 1801 treatise <i><a href="/wiki/Disquisitiones_Arithmeticae" title="Disquisitiones Arithmeticae">Disquisitiones Arithmeticae</a></i>,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> although Gauss did not use parentheses around the argument and wrote <span class="texhtml"><i>φA</i></span>. Thus, it is often called <b>Euler's phi function</b> or simply the <b>phi function</b>. </p><p>In 1879, <a href="/wiki/James_Joseph_Sylvester" title="James Joseph Sylvester">J. J. Sylvester</a> coined the term <b>totient</b> for this function,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> so it is also referred to as <b>Euler's totient function</b>, the <b>Euler totient</b>, or <b>Euler's totient</b>. <a href="/wiki/Jordan%27s_totient_function" title="Jordan's totient function">Jordan's totient</a> is a generalization of Euler's. </p><p>The <b>cototient</b> of <span class="texhtml mvar" style="font-style:italic;">n</span> is defined as <span class="texhtml"><i>n</i> − <i>φ</i>(<i>n</i>)</span>. It counts the number of positive integers less than or equal to <span class="texhtml mvar" style="font-style:italic;">n</span> that have at least one <a href="/wiki/Prime_number" title="Prime number">prime factor</a> in common with <span class="texhtml mvar" style="font-style:italic;">n</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Computing_Euler's_totient_function"><span id="Computing_Euler.27s_totient_function"></span>Computing Euler's totient function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=2" title="Edit section: Computing Euler's totient function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are several formulae for computing <span class="texhtml"><i>φ</i>(<i>n</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Euler's_product_formula"><span id="Euler.27s_product_formula"></span>Euler's product formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=3" title="Edit section: Euler's product formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It states </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)=n\prod _{p\mid n}\left(1-{\frac {1}{p}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <munder> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)=n\prod _{p\mid n}\left(1-{\frac {1}{p}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb6b6388ded7d1e160a3bd82b60c5b593947088a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:23.424ex; height:7.176ex;" alt="{\displaystyle \varphi (n)=n\prod _{p\mid n}\left(1-{\frac {1}{p}}\right),}"></span></dd></dl> <p>where the product is over the distinct <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> dividing <span class="texhtml mvar" style="font-style:italic;">n</span>. (For notation, see <a href="/wiki/Arithmetical_function#Notation" class="mw-redirect" title="Arithmetical function">Arithmetical function</a>.) </p><p>An equivalent formulation is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)=p_{1}^{k_{1}-1}(p_{1}{-}1)\,p_{2}^{k_{2}-1}(p_{2}{-}1)\cdots p_{r}^{k_{r}-1}(p_{r}{-}1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)=p_{1}^{k_{1}-1}(p_{1}{-}1)\,p_{2}^{k_{2}-1}(p_{2}{-}1)\cdots p_{r}^{k_{r}-1}(p_{r}{-}1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a2a86c67900e498a71aa14b7dd0179bc2069260" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.79ex; height:3.509ex;" alt="{\displaystyle \varphi (n)=p_{1}^{k_{1}-1}(p_{1}{-}1)\,p_{2}^{k_{2}-1}(p_{2}{-}1)\cdots p_{r}^{k_{r}-1}(p_{r}{-}1),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52f9538221d0fcae917b57da97b72ef3fca710ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.194ex; height:3.509ex;" alt="{\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}}"></span> is the <a href="/wiki/Prime_factorization" class="mw-redirect" title="Prime factorization">prime factorization</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},p_{2},\ldots ,p_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},p_{2},\ldots ,p_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/534311dd876691edb53d98d5762a239435a82072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:12.892ex; height:2.009ex;" alt="{\displaystyle p_{1},p_{2},\ldots ,p_{r}}"></span> are distinct prime numbers). </p><p>The proof of these formulae depends on two important facts. </p> <div class="mw-heading mw-heading4"><h4 id="Phi_is_a_multiplicative_function">Phi is a multiplicative function</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=4" title="Edit section: Phi is a multiplicative function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This means that if <span class="texhtml">gcd(<i>m</i>, <i>n</i>) = 1</span>, then <span class="texhtml"><i>φ</i>(<i>m</i>) <i>φ</i>(<i>n</i>) = <i>φ</i>(<i>mn</i>)</span>. <i>Proof outline:</i> Let <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span>, <span class="texhtml mvar" style="font-style:italic;">C</span> be the sets of positive integers which are <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">coprime</a> to and less than <span class="texhtml mvar" style="font-style:italic;">m</span>, <span class="texhtml mvar" style="font-style:italic;">n</span>, <span class="texhtml mvar" style="font-style:italic;">mn</span>, respectively, so that <span class="texhtml">|<i>A</i>| = <i>φ</i>(<i>m</i>)</span>, etc. Then there is a <a href="/wiki/Bijection" title="Bijection">bijection</a> between <span class="texhtml"><i>A</i> × <i>B</i></span> and <span class="texhtml mvar" style="font-style:italic;">C</span> by the <a href="/wiki/Chinese_remainder_theorem" title="Chinese remainder theorem">Chinese remainder theorem</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Value_of_phi_for_a_prime_power_argument">Value of phi for a prime power argument</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=5" title="Edit section: Value of phi for a prime power argument"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml mvar" style="font-style:italic;">p</span> is prime and <span class="texhtml"><i>k</i> ≥ 1</span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)=p^{k}\left(1-{\tfrac {1}{p}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)=p^{k}\left(1-{\tfrac {1}{p}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a123bcd1c5c3214b80f4eeaa5d7f2e3e0700255" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:48.509ex; height:4.843ex;" alt="{\displaystyle \varphi \left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)=p^{k}\left(1-{\tfrac {1}{p}}\right).}"></span></dd></dl> <p><i>Proof</i>: Since <span class="texhtml mvar" style="font-style:italic;">p</span> is a prime number, the only possible values of <span class="texhtml">gcd(<i>p</i><sup><i>k</i></sup>, <i>m</i>)</span> are <span class="texhtml">1, <i>p</i>, <i>p</i><sup>2</sup>, ..., <i>p</i><sup><i>k</i></sup></span>, and the only way to have <span class="texhtml">gcd(<i>p</i><sup><i>k</i></sup>, <i>m</i>) > 1</span> is if <span class="texhtml mvar" style="font-style:italic;">m</span> is a multiple of <span class="texhtml mvar" style="font-style:italic;">p</span>, that is, <span class="texhtml"><i>m</i> ∈ {<i>p</i>, 2<i>p</i>, 3<i>p</i>, ..., <i>p</i><sup><i>k</i> − 1</sup><i>p</i> = <i>p</i><sup><i>k</i></sup>}</span>, and there are <span class="texhtml"><i>p</i><sup><i>k</i> − 1</sup></span> such multiples not greater than <span class="texhtml"><i>p</i><sup><i>k</i></sup></span>. Therefore, the other <span class="texhtml"><i>p</i><sup><i>k</i></sup> − <i>p</i><sup><i>k</i> − 1</sup></span> numbers are all relatively prime to <span class="texhtml"><i>p</i><sup><i>k</i></sup></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Proof_of_Euler's_product_formula"><span id="Proof_of_Euler.27s_product_formula"></span>Proof of Euler's product formula</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=6" title="Edit section: Proof of Euler's product formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a> states that if <span class="texhtml"><i>n</i> > 1</span> there is a unique expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a24829d66bca81858264ebea940213d5fab1ca27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.841ex; height:3.509ex;" alt="{\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}},}"></span> where <span class="texhtml"><i>p</i><sub>1</sub> < <i>p</i><sub>2</sub> < ... < <i>p</i><sub><i>r</i></sub></span> are <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> and each <span class="texhtml"><i>k</i><sub><i>i</i></sub> ≥ 1</span>. (The case <span class="texhtml"><i>n</i> = 1</span> corresponds to the empty product.) Repeatedly using the multiplicative property of <span class="texhtml mvar" style="font-style:italic;">φ</span> and the formula for <span class="texhtml"><i>φ</i>(<i>p</i><sup><i>k</i></sup>)</span> gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rcl}\varphi (n)&=&\varphi (p_{1}^{k_{1}})\,\varphi (p_{2}^{k_{2}})\cdots \varphi (p_{r}^{k_{r}})\\[.1em]&=&p_{1}^{k_{1}}\left(1-{\frac {1}{p_{1}}}\right)p_{2}^{k_{2}}\left(1-{\frac {1}{p_{2}}}\right)\cdots p_{r}^{k_{r}}\left(1-{\frac {1}{p_{r}}}\right)\\[.1em]&=&p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}\left(1-{\frac {1}{p_{1}}}\right)\left(1-{\frac {1}{p_{2}}}\right)\cdots \left(1-{\frac {1}{p_{r}}}\right)\\[.1em]&=&n\left(1-{\frac {1}{p_{1}}}\right)\left(1-{\frac {1}{p_{2}}}\right)\cdots \left(1-{\frac {1}{p_{r}}}\right).\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center left" rowspacing="0.5em 0.5em 0.5em 0.4em" columnspacing="1em"> <mtr> <mtd> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>⋯<!-- ⋯ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>⋯<!-- ⋯ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>⋯<!-- ⋯ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{rcl}\varphi (n)&=&\varphi (p_{1}^{k_{1}})\,\varphi (p_{2}^{k_{2}})\cdots \varphi (p_{r}^{k_{r}})\\[.1em]&=&p_{1}^{k_{1}}\left(1-{\frac {1}{p_{1}}}\right)p_{2}^{k_{2}}\left(1-{\frac {1}{p_{2}}}\right)\cdots p_{r}^{k_{r}}\left(1-{\frac {1}{p_{r}}}\right)\\[.1em]&=&p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}\left(1-{\frac {1}{p_{1}}}\right)\left(1-{\frac {1}{p_{2}}}\right)\cdots \left(1-{\frac {1}{p_{r}}}\right)\\[.1em]&=&n\left(1-{\frac {1}{p_{1}}}\right)\left(1-{\frac {1}{p_{2}}}\right)\cdots \left(1-{\frac {1}{p_{r}}}\right).\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7447918f84f4509322dda0b4aa4384ab8072a93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.171ex; width:56.655ex; height:19.509ex;" alt="{\displaystyle {\begin{array}{rcl}\varphi (n)&=&\varphi (p_{1}^{k_{1}})\,\varphi (p_{2}^{k_{2}})\cdots \varphi (p_{r}^{k_{r}})\\[.1em]&=&p_{1}^{k_{1}}\left(1-{\frac {1}{p_{1}}}\right)p_{2}^{k_{2}}\left(1-{\frac {1}{p_{2}}}\right)\cdots p_{r}^{k_{r}}\left(1-{\frac {1}{p_{r}}}\right)\\[.1em]&=&p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}\left(1-{\frac {1}{p_{1}}}\right)\left(1-{\frac {1}{p_{2}}}\right)\cdots \left(1-{\frac {1}{p_{r}}}\right)\\[.1em]&=&n\left(1-{\frac {1}{p_{1}}}\right)\left(1-{\frac {1}{p_{2}}}\right)\cdots \left(1-{\frac {1}{p_{r}}}\right).\end{array}}}"></span></dd></dl> <p>This gives both versions of Euler's product formula. </p><p>An alternative proof that does not require the multiplicative property instead uses the <a href="/wiki/Inclusion-exclusion_principle" class="mw-redirect" title="Inclusion-exclusion principle">inclusion-exclusion principle</a> applied to the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,2,\ldots ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,2,\ldots ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ebfec86b3f22a18f086275390917d5aaa2d8c22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.257ex; height:2.843ex;" alt="{\displaystyle \{1,2,\ldots ,n\}}"></span>, excluding the sets of integers divisible by the prime divisors. </p> <div class="mw-heading mw-heading4"><h4 id="Example">Example</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=7" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (20)=\varphi (2^{2}5)=20\,(1-{\tfrac {1}{2}})\,(1-{\tfrac {1}{5}})=20\cdot {\tfrac {1}{2}}\cdot {\tfrac {4}{5}}=8.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>20</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>20</mn> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>20</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mn>8.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (20)=\varphi (2^{2}5)=20\,(1-{\tfrac {1}{2}})\,(1-{\tfrac {1}{5}})=20\cdot {\tfrac {1}{2}}\cdot {\tfrac {4}{5}}=8.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9050fb7b46a26bcf6baab7e6051db0a8122258d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:53.605ex; height:3.676ex;" alt="{\displaystyle \varphi (20)=\varphi (2^{2}5)=20\,(1-{\tfrac {1}{2}})\,(1-{\tfrac {1}{5}})=20\cdot {\tfrac {1}{2}}\cdot {\tfrac {4}{5}}=8.}"></span></dd></dl> <p>In words: the distinct prime factors of 20 are 2 and 5; half of the twenty integers from 1 to 20 are divisible by 2, leaving ten; a fifth of those are divisible by 5, leaving eight numbers coprime to 20; these are: 1, 3, 7, 9, 11, 13, 17, 19. </p><p>The alternative formula uses only integers:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (20)=\varphi (2^{2}5^{1})=2^{2-1}(2{-}1)\,5^{1-1}(5{-}1)=2\cdot 1\cdot 1\cdot 4=8.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>20</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>=</mo> <mn>8.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (20)=\varphi (2^{2}5^{1})=2^{2-1}(2{-}1)\,5^{1-1}(5{-}1)=2\cdot 1\cdot 1\cdot 4=8.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8047a8435e85e108c8ebbc39b46bf89fcb45378" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.214ex; height:3.176ex;" alt="{\displaystyle \varphi (20)=\varphi (2^{2}5^{1})=2^{2-1}(2{-}1)\,5^{1-1}(5{-}1)=2\cdot 1\cdot 1\cdot 4=8.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Fourier_transform">Fourier transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=8" title="Edit section: Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The totient is the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> of the <a href="/wiki/Greatest_common_divisor" title="Greatest common divisor">gcd</a>, evaluated at 1.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Let </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{\mathbf {x} \}[m]=\sum \limits _{k=1}^{n}x_{k}\cdot e^{{-2\pi i}{\frac {mk}{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>k</mi> </mrow> <mi>n</mi> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{\mathbf {x} \}[m]=\sum \limits _{k=1}^{n}x_{k}\cdot e^{{-2\pi i}{\frac {mk}{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44406da8bf27ff396599d35e91d4328c3f961a81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.563ex; height:6.843ex;" alt="{\displaystyle {\mathcal {F}}\{\mathbf {x} \}[m]=\sum \limits _{k=1}^{n}x_{k}\cdot e^{{-2\pi i}{\frac {mk}{n}}}}"></span></dd></dl> <p>where <span class="texhtml"><i>x<sub>k</sub></i> = gcd(<i>k</i>,<i>n</i>)</span> for <span class="texhtml"><i>k</i> ∈ {1, ..., <i>n</i>}</span>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)={\mathcal {F}}\{\mathbf {x} \}[1]=\sum \limits _{k=1}^{n}\gcd(k,n)e^{-2\pi i{\frac {k}{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)={\mathcal {F}}\{\mathbf {x} \}[1]=\sum \limits _{k=1}^{n}\gcd(k,n)e^{-2\pi i{\frac {k}{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a88a09856ce4f73559b80fb01e44bdd70af8309" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.928ex; height:6.843ex;" alt="{\displaystyle \varphi (n)={\mathcal {F}}\{\mathbf {x} \}[1]=\sum \limits _{k=1}^{n}\gcd(k,n)e^{-2\pi i{\frac {k}{n}}}.}"></span></dd></dl> <p>The real part of this formula is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)=\sum \limits _{k=1}^{n}\gcd(k,n)\cos {\tfrac {2\pi k}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mi>k</mi> </mrow> <mi>n</mi> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)=\sum \limits _{k=1}^{n}\gcd(k,n)\cos {\tfrac {2\pi k}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b7161db454cc257febbdbc867f677adac31177" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.49ex; height:6.843ex;" alt="{\displaystyle \varphi (n)=\sum \limits _{k=1}^{n}\gcd(k,n)\cos {\tfrac {2\pi k}{n}}.}"></span></dd></dl> <p>For example, using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {\tfrac {\pi }{5}}={\tfrac {{\sqrt {5}}+1}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>π<!-- π --></mi> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {\tfrac {\pi }{5}}={\tfrac {{\sqrt {5}}+1}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd70ef072849c9b02aa5a881dda9687930ede301" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:13.502ex; height:4.343ex;" alt="{\displaystyle \cos {\tfrac {\pi }{5}}={\tfrac {{\sqrt {5}}+1}{4}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {\tfrac {2\pi }{5}}={\tfrac {{\sqrt {5}}-1}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {\tfrac {2\pi }{5}}={\tfrac {{\sqrt {5}}-1}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32d35d3029792574ea52bd150b8b48fc6583088b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.324ex; height:4.343ex;" alt="{\displaystyle \cos {\tfrac {2\pi }{5}}={\tfrac {{\sqrt {5}}-1}{4}}}"></span>:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rcl}\varphi (10)&=&\gcd(1,10)\cos {\tfrac {2\pi }{10}}+\gcd(2,10)\cos {\tfrac {4\pi }{10}}+\gcd(3,10)\cos {\tfrac {6\pi }{10}}+\cdots +\gcd(10,10)\cos {\tfrac {20\pi }{10}}\\&=&1\cdot ({\tfrac {{\sqrt {5}}+1}{4}})+2\cdot ({\tfrac {{\sqrt {5}}-1}{4}})+1\cdot (-{\tfrac {{\sqrt {5}}-1}{4}})+2\cdot (-{\tfrac {{\sqrt {5}}+1}{4}})+5\cdot (-1)\\&&+\ 2\cdot (-{\tfrac {{\sqrt {5}}+1}{4}})+1\cdot (-{\tfrac {{\sqrt {5}}-1}{4}})+2\cdot ({\tfrac {{\sqrt {5}}-1}{4}})+1\cdot ({\tfrac {{\sqrt {5}}+1}{4}})+10\cdot (1)\\&=&4.\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> </mrow> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>6</mn> <mi>π<!-- π --></mi> </mrow> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>20</mn> <mi>π<!-- π --></mi> </mrow> <mn>10</mn> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd /> <mtd> <mo>+</mo> <mtext> </mtext> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <mn>4.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{rcl}\varphi (10)&=&\gcd(1,10)\cos {\tfrac {2\pi }{10}}+\gcd(2,10)\cos {\tfrac {4\pi }{10}}+\gcd(3,10)\cos {\tfrac {6\pi }{10}}+\cdots +\gcd(10,10)\cos {\tfrac {20\pi }{10}}\\&=&1\cdot ({\tfrac {{\sqrt {5}}+1}{4}})+2\cdot ({\tfrac {{\sqrt {5}}-1}{4}})+1\cdot (-{\tfrac {{\sqrt {5}}-1}{4}})+2\cdot (-{\tfrac {{\sqrt {5}}+1}{4}})+5\cdot (-1)\\&&+\ 2\cdot (-{\tfrac {{\sqrt {5}}+1}{4}})+1\cdot (-{\tfrac {{\sqrt {5}}-1}{4}})+2\cdot ({\tfrac {{\sqrt {5}}-1}{4}})+1\cdot ({\tfrac {{\sqrt {5}}+1}{4}})+10\cdot (1)\\&=&4.\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2346b5c022a38efdee490d21f1512172996bee3d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:94.141ex; height:16.176ex;" alt="{\displaystyle {\begin{array}{rcl}\varphi (10)&=&\gcd(1,10)\cos {\tfrac {2\pi }{10}}+\gcd(2,10)\cos {\tfrac {4\pi }{10}}+\gcd(3,10)\cos {\tfrac {6\pi }{10}}+\cdots +\gcd(10,10)\cos {\tfrac {20\pi }{10}}\\&=&1\cdot ({\tfrac {{\sqrt {5}}+1}{4}})+2\cdot ({\tfrac {{\sqrt {5}}-1}{4}})+1\cdot (-{\tfrac {{\sqrt {5}}-1}{4}})+2\cdot (-{\tfrac {{\sqrt {5}}+1}{4}})+5\cdot (-1)\\&&+\ 2\cdot (-{\tfrac {{\sqrt {5}}+1}{4}})+1\cdot (-{\tfrac {{\sqrt {5}}-1}{4}})+2\cdot ({\tfrac {{\sqrt {5}}-1}{4}})+1\cdot ({\tfrac {{\sqrt {5}}+1}{4}})+10\cdot (1)\\&=&4.\end{array}}}"></span>Unlike the Euler product and the divisor sum formula, this one does not require knowing the factors of <span class="texhtml mvar" style="font-style:italic;">n</span>. However, it does involve the calculation of the greatest common divisor of <span class="texhtml mvar" style="font-style:italic;">n</span> and every positive integer less than <span class="texhtml mvar" style="font-style:italic;">n</span>, which suffices to provide the factorization anyway. </p> <div class="mw-heading mw-heading3"><h3 id="Divisor_sum">Divisor sum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=9" title="Edit section: Divisor sum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The property established by Gauss,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{d\mid n}\varphi (d)=n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{d\mid n}\varphi (d)=n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5704a6180e7a29fee9eeed4e7da4fa49c281b8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:13.427ex; height:6.009ex;" alt="{\displaystyle \sum _{d\mid n}\varphi (d)=n,}"></span></dd></dl> <p>where the sum is over all positive divisors <span class="texhtml mvar" style="font-style:italic;">d</span> of <span class="texhtml mvar" style="font-style:italic;">n</span>, can be proven in several ways. (See <a href="/wiki/Arithmetical_function#Notation" class="mw-redirect" title="Arithmetical function">Arithmetical function</a> for notational conventions.) </p><p>One proof is to note that <span class="texhtml"><i>φ</i>(<i>d</i>)</span> is also equal to the number of possible generators of the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> <span class="texhtml"><i>C</i><sub><i>d</i></sub></span> ; specifically, if <span class="texhtml"><i>C</i><sub><i>d</i></sub> = ⟨<i>g</i>⟩</span> with <span class="texhtml"><i>g</i><sup><i>d</i></sup> = 1</span>, then <span class="texhtml"><i>g</i><sup><i>k</i></sup></span> is a generator for every <span class="texhtml mvar" style="font-style:italic;">k</span> coprime to <span class="texhtml mvar" style="font-style:italic;">d</span>. Since every element of <span class="texhtml"><i>C</i><sub><i>n</i></sub></span> generates a cyclic <a href="/wiki/Subgroup" title="Subgroup">subgroup</a>, and each subgroup <span class="texhtml"><i>C</i><sub><i>d</i></sub> ⊆ <i>C</i><sub><i>n</i></sub></span> is generated by precisely <span class="texhtml"><i>φ</i>(<i>d</i>)</span> elements of <span class="texhtml"><i>C</i><sub><i>n</i></sub></span>, the formula follows.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Equivalently, the formula can be derived by the same argument applied to the <a href="/wiki/Root_of_unity#Group_of_nth_roots_of_unity" title="Root of unity">multiplicative group of the <span class="texhtml mvar" style="font-style:italic;">n</span>th roots of unity</a> and the <a href="/wiki/Primitive_root_of_unity" class="mw-redirect" title="Primitive root of unity">primitive <span class="texhtml mvar" style="font-style:italic;">d</span>th roots of unity</a>. </p><p>The formula can also be derived from elementary arithmetic.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> For example, let <span class="texhtml"><i>n</i> = 20</span> and consider the positive fractions up to 1 with denominator 20: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{20}},\,{\tfrac {2}{20}},\,{\tfrac {3}{20}},\,{\tfrac {4}{20}},\,{\tfrac {5}{20}},\,{\tfrac {6}{20}},\,{\tfrac {7}{20}},\,{\tfrac {8}{20}},\,{\tfrac {9}{20}},\,{\tfrac {10}{20}},\,{\tfrac {11}{20}},\,{\tfrac {12}{20}},\,{\tfrac {13}{20}},\,{\tfrac {14}{20}},\,{\tfrac {15}{20}},\,{\tfrac {16}{20}},\,{\tfrac {17}{20}},\,{\tfrac {18}{20}},\,{\tfrac {19}{20}},\,{\tfrac {20}{20}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>6</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>7</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>8</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>9</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>10</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>11</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>12</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>13</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>14</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>15</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>16</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>17</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>18</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>19</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>20</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{20}},\,{\tfrac {2}{20}},\,{\tfrac {3}{20}},\,{\tfrac {4}{20}},\,{\tfrac {5}{20}},\,{\tfrac {6}{20}},\,{\tfrac {7}{20}},\,{\tfrac {8}{20}},\,{\tfrac {9}{20}},\,{\tfrac {10}{20}},\,{\tfrac {11}{20}},\,{\tfrac {12}{20}},\,{\tfrac {13}{20}},\,{\tfrac {14}{20}},\,{\tfrac {15}{20}},\,{\tfrac {16}{20}},\,{\tfrac {17}{20}},\,{\tfrac {18}{20}},\,{\tfrac {19}{20}},\,{\tfrac {20}{20}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e37e85e9a842dd016d657a1e56abc8c21cde048" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:77.248ex; height:3.843ex;" alt="{\displaystyle {\tfrac {1}{20}},\,{\tfrac {2}{20}},\,{\tfrac {3}{20}},\,{\tfrac {4}{20}},\,{\tfrac {5}{20}},\,{\tfrac {6}{20}},\,{\tfrac {7}{20}},\,{\tfrac {8}{20}},\,{\tfrac {9}{20}},\,{\tfrac {10}{20}},\,{\tfrac {11}{20}},\,{\tfrac {12}{20}},\,{\tfrac {13}{20}},\,{\tfrac {14}{20}},\,{\tfrac {15}{20}},\,{\tfrac {16}{20}},\,{\tfrac {17}{20}},\,{\tfrac {18}{20}},\,{\tfrac {19}{20}},\,{\tfrac {20}{20}}.}"></span></dd></dl> <p>Put them into lowest terms: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{20}},\,{\tfrac {1}{10}},\,{\tfrac {3}{20}},\,{\tfrac {1}{5}},\,{\tfrac {1}{4}},\,{\tfrac {3}{10}},\,{\tfrac {7}{20}},\,{\tfrac {2}{5}},\,{\tfrac {9}{20}},\,{\tfrac {1}{2}},\,{\tfrac {11}{20}},\,{\tfrac {3}{5}},\,{\tfrac {13}{20}},\,{\tfrac {7}{10}},\,{\tfrac {3}{4}},\,{\tfrac {4}{5}},\,{\tfrac {17}{20}},\,{\tfrac {9}{10}},\,{\tfrac {19}{20}},\,{\tfrac {1}{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>7</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>9</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>11</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>13</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>7</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>17</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>9</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>19</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{20}},\,{\tfrac {1}{10}},\,{\tfrac {3}{20}},\,{\tfrac {1}{5}},\,{\tfrac {1}{4}},\,{\tfrac {3}{10}},\,{\tfrac {7}{20}},\,{\tfrac {2}{5}},\,{\tfrac {9}{20}},\,{\tfrac {1}{2}},\,{\tfrac {11}{20}},\,{\tfrac {3}{5}},\,{\tfrac {13}{20}},\,{\tfrac {7}{10}},\,{\tfrac {3}{4}},\,{\tfrac {4}{5}},\,{\tfrac {17}{20}},\,{\tfrac {9}{10}},\,{\tfrac {19}{20}},\,{\tfrac {1}{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11220f898366625c2e6ec73891a7d188b00e2458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:70.026ex; height:3.843ex;" alt="{\displaystyle {\tfrac {1}{20}},\,{\tfrac {1}{10}},\,{\tfrac {3}{20}},\,{\tfrac {1}{5}},\,{\tfrac {1}{4}},\,{\tfrac {3}{10}},\,{\tfrac {7}{20}},\,{\tfrac {2}{5}},\,{\tfrac {9}{20}},\,{\tfrac {1}{2}},\,{\tfrac {11}{20}},\,{\tfrac {3}{5}},\,{\tfrac {13}{20}},\,{\tfrac {7}{10}},\,{\tfrac {3}{4}},\,{\tfrac {4}{5}},\,{\tfrac {17}{20}},\,{\tfrac {9}{10}},\,{\tfrac {19}{20}},\,{\tfrac {1}{1}}}"></span></dd></dl> <p>These twenty fractions are all the positive <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num"><i>k</i></span><span class="sr-only">/</span><span class="den"><i>d</i></span></span>⁠</span> ≤ 1 whose denominators are the divisors <span class="texhtml"><i>d</i> = 1, 2, 4, 5, 10, 20</span>. The fractions with 20 as denominator are those with numerators relatively prime to 20, namely <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">9</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">11</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">13</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">17</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">19</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span>; by definition this is <span class="texhtml"><i>φ</i>(20)</span> fractions. Similarly, there are <span class="texhtml"><i>φ</i>(10)</span> fractions with denominator 10, and <span class="texhtml"><i>φ</i>(5)</span> fractions with denominator 5, etc. Thus the set of twenty fractions is split into subsets of size <span class="texhtml"><i>φ</i>(<i>d</i>)</span> for each <span class="texhtml"><i>d</i></span> dividing 20. A similar argument applies for any <i>n.</i> </p><p><a href="/wiki/M%C3%B6bius_inversion" class="mw-redirect" title="Möbius inversion">Möbius inversion</a> applied to the divisor sum formula gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)=\sum _{d\mid n}\mu \left(d\right)\cdot {\frac {n}{d}}=n\sum _{d\mid n}{\frac {\mu (d)}{d}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mi>μ<!-- μ --></mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>d</mi> </mfrac> </mrow> <mo>=</mo> <mi>n</mi> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mi>d</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)=\sum _{d\mid n}\mu \left(d\right)\cdot {\frac {n}{d}}=n\sum _{d\mid n}{\frac {\mu (d)}{d}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22c03f0125cef739ded96195e0059a5a374f9b65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:34.821ex; height:7.343ex;" alt="{\displaystyle \varphi (n)=\sum _{d\mid n}\mu \left(d\right)\cdot {\frac {n}{d}}=n\sum _{d\mid n}{\frac {\mu (d)}{d}},}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">μ</span> is the <a href="/wiki/M%C3%B6bius_function" title="Möbius function">Möbius function</a>, the <a href="/wiki/Multiplicative_function" title="Multiplicative function">multiplicative function</a> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (p)=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (p)=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf6236076e559d85a495344c4295d29414949416" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.449ex; height:2.843ex;" alt="{\displaystyle \mu (p)=-1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (p^{k})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (p^{k})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d0690dd8247ceb4713a5074b12f17886d020451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.73ex; height:3.176ex;" alt="{\displaystyle \mu (p^{k})=0}"></span> for each prime <span class="texhtml"><i>p</i></span> and <span class="texhtml"><i>k</i> ≥ 2</span>. This formula may also be derived from the product formula by multiplying out <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \prod _{p\mid n}(1-{\frac {1}{p}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \prod _{p\mid n}(1-{\frac {1}{p}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a593ab2f9e824265547ce762739389288d3c5ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.172ex; height:3.676ex;" alt="{\textstyle \prod _{p\mid n}(1-{\frac {1}{p}})}"></span> to get <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{d\mid n}{\frac {\mu (d)}{d}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mi>d</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{d\mid n}{\frac {\mu (d)}{d}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2561daaf4eeb4fe72ca86ff14dec062a95fbbdea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.99ex; height:4.343ex;" alt="{\textstyle \sum _{d\mid n}{\frac {\mu (d)}{d}}.}"></span> </p><p>An example:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\varphi (20)&=\mu (1)\cdot 20+\mu (2)\cdot 10+\mu (4)\cdot 5+\mu (5)\cdot 4+\mu (10)\cdot 2+\mu (20)\cdot 1\\[.5em]&=1\cdot 20-1\cdot 10+0\cdot 5-1\cdot 4+1\cdot 2+0\cdot 1=8.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>20</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>20</mn> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>10</mn> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mn>20</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>20</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>10</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>=</mo> <mn>8.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\varphi (20)&=\mu (1)\cdot 20+\mu (2)\cdot 10+\mu (4)\cdot 5+\mu (5)\cdot 4+\mu (10)\cdot 2+\mu (20)\cdot 1\\[.5em]&=1\cdot 20-1\cdot 10+0\cdot 5-1\cdot 4+1\cdot 2+0\cdot 1=8.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a4ce2d54734e410d4eea1d1a6b0d62ad7fbfed9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:71.646ex; height:7.176ex;" alt="{\displaystyle {\begin{aligned}\varphi (20)&=\mu (1)\cdot 20+\mu (2)\cdot 10+\mu (4)\cdot 5+\mu (5)\cdot 4+\mu (10)\cdot 2+\mu (20)\cdot 1\\[.5em]&=1\cdot 20-1\cdot 10+0\cdot 5-1\cdot 4+1\cdot 2+0\cdot 1=8.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Some_values">Some values</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=10" title="Edit section: Some values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first 100 values (sequence <span class="nowrap external"><a href="//oeis.org/A000010" class="extiw" title="oeis:A000010">A000010</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) are shown in the table and graph below: </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:EulerPhi100.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/EulerPhi100.svg/220px-EulerPhi100.svg.png" decoding="async" width="220" height="163" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/EulerPhi100.svg/330px-EulerPhi100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f3/EulerPhi100.svg/440px-EulerPhi100.svg.png 2x" data-file-width="703" data-file-height="521" /></a><figcaption>Graph of the first 100 values</figcaption></figure> <dl><dd><table class="wikitable" style="text-align: right"> <caption><span class="texhtml"><i>φ</i>(<i>n</i>)</span> for <span class="texhtml">1 ≤ <i>n</i> ≤ 100</span> </caption> <tbody><tr> <th>+ </th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10 </th></tr> <tr> <th>0 </th> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>4</td> <td>2</td> <td>6</td> <td>4</td> <td>6</td> <td>4 </td></tr> <tr> <th>10 </th> <td>10</td> <td>4</td> <td>12</td> <td>6</td> <td>8</td> <td>8</td> <td>16</td> <td>6</td> <td>18</td> <td>8 </td></tr> <tr> <th>20 </th> <td>12</td> <td>10</td> <td>22</td> <td>8</td> <td>20</td> <td>12</td> <td>18</td> <td>12</td> <td>28</td> <td>8 </td></tr> <tr> <th>30 </th> <td>30</td> <td>16</td> <td>20</td> <td>16</td> <td>24</td> <td>12</td> <td>36</td> <td>18</td> <td>24</td> <td>16 </td></tr> <tr> <th>40 </th> <td>40</td> <td>12</td> <td>42</td> <td>20</td> <td>24</td> <td>22</td> <td>46</td> <td>16</td> <td>42</td> <td>20 </td></tr> <tr> <th>50 </th> <td>32</td> <td>24</td> <td>52</td> <td>18</td> <td>40</td> <td>24</td> <td>36</td> <td>28</td> <td>58</td> <td>16 </td></tr> <tr> <th>60 </th> <td>60</td> <td>30</td> <td>36</td> <td>32</td> <td>48</td> <td>20</td> <td>66</td> <td>32</td> <td>44</td> <td>24 </td></tr> <tr> <th>70 </th> <td>70</td> <td>24</td> <td>72</td> <td>36</td> <td>40</td> <td>36</td> <td>60</td> <td>24</td> <td>78</td> <td>32 </td></tr> <tr> <th>80 </th> <td>54</td> <td>40</td> <td>82</td> <td>24</td> <td>64</td> <td>42</td> <td>56</td> <td>40</td> <td>88</td> <td>24 </td></tr> <tr> <th>90 </th> <td>72</td> <td>44</td> <td>60</td> <td>46</td> <td>72</td> <td>32</td> <td>96</td> <td>42</td> <td>60</td> <td>40 </td></tr></tbody></table></dd></dl> <p>In the graph at right the top line <span class="texhtml"><i>y</i> = <i>n</i> − 1</span> is an <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> valid for all <span class="texhtml mvar" style="font-style:italic;">n</span> other than one, and attained if and only if <span class="texhtml mvar" style="font-style:italic;">n</span> is a prime number. A simple lower bound is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)\geq {\sqrt {n/2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)\geq {\sqrt {n/2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60aa32e1775a3004aa91a683ca28b73ffd150306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.866ex; height:4.843ex;" alt="{\displaystyle \varphi (n)\geq {\sqrt {n/2}}}"></span>, which is rather loose: in fact, the <a href="/wiki/Limit_superior_and_limit_inferior" class="mw-redirect" title="Limit superior and limit inferior">lower limit</a> of the graph is proportional to <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>n</i></span><span class="sr-only">/</span><span class="den">log log <i>n</i></span></span>⁠</span></span>.<sup id="cite_ref-hw328_20-0" class="reference"><a href="#cite_note-hw328-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Euler's_theorem"><span id="Euler.27s_theorem"></span>Euler's theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=11" title="Edit section: Euler's theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Euler%27s_theorem" title="Euler's theorem">Euler's theorem</a></div> <p>This states that if <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are <a href="/wiki/Relatively_prime" class="mw-redirect" title="Relatively prime">relatively prime</a> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{\varphi (n)}\equiv 1\mod n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mspace width="1em" /> <mi>mod</mi> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{\varphi (n)}\equiv 1\mod n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5590d33336e9f15ac4d7592ca23e074f440a1051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:19.367ex; height:2.843ex;" alt="{\displaystyle a^{\varphi (n)}\equiv 1\mod n.}"></span></dd></dl> <p>The special case where <span class="texhtml mvar" style="font-style:italic;">n</span> is prime is known as <a href="/wiki/Fermat%27s_little_theorem" title="Fermat's little theorem">Fermat's little theorem</a>. </p><p>This follows from <a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange's theorem (group theory)">Lagrange's theorem</a> and the fact that <span class="texhtml"><i>φ</i>(<i>n</i>)</span> is the <a href="/wiki/Order_(group_theory)" title="Order (group theory)">order</a> of the <a href="/wiki/Multiplicative_group_of_integers_modulo_n" title="Multiplicative group of integers modulo n">multiplicative group of integers modulo <span class="texhtml mvar" style="font-style:italic;">n</span></a>. </p><p>The <a href="/wiki/RSA_(algorithm)" class="mw-redirect" title="RSA (algorithm)">RSA cryptosystem</a> is based on this theorem: it implies that the <a href="/wiki/Inverse_function" title="Inverse function">inverse</a> of the function <span class="texhtml"><i>a</i> ↦ <i>a<sup>e</sup></i> mod <i>n</i></span>, where <span class="texhtml mvar" style="font-style:italic;">e</span> is the (public) encryption exponent, is the function <span class="texhtml"><i>b</i> ↦ <i>b<sup>d</sup></i> mod <i>n</i></span>, where <span class="texhtml mvar" style="font-style:italic;">d</span>, the (private) decryption exponent, is the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> of <span class="texhtml mvar" style="font-style:italic;">e</span> modulo <span class="texhtml"><i>φ</i>(<i>n</i>)</span>. The difficulty of computing <span class="texhtml"><i>φ</i>(<i>n</i>)</span> without knowing the factorization of <span class="texhtml mvar" style="font-style:italic;">n</span> is thus the difficulty of computing <span class="texhtml mvar" style="font-style:italic;">d</span>: this is known as the <a href="/wiki/RSA_problem" title="RSA problem">RSA problem</a> which can be solved by factoring <span class="texhtml mvar" style="font-style:italic;">n</span>. The owner of the private key knows the factorization, since an RSA private key is constructed by choosing <span class="texhtml mvar" style="font-style:italic;">n</span> as the product of two (randomly chosen) large primes <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span>. Only <span class="texhtml mvar" style="font-style:italic;">n</span> is publicly disclosed, and given the <a href="/wiki/Integer_factorization" title="Integer factorization">difficulty to factor large numbers</a> we have the guarantee that no one else knows the factorization. </p> <div class="mw-heading mw-heading2"><h2 id="Other_formulae">Other formulae</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=12" title="Edit section: Other formulae"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\mid b\implies \varphi (a)\mid \varphi (b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∣<!-- ∣ --></mo> <mi>b</mi> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>∣<!-- ∣ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\mid b\implies \varphi (a)\mid \varphi (b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f87b161831921ef03a45e796d94fe903da8b6082" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.374ex; height:2.843ex;" alt="{\displaystyle a\mid b\implies \varphi (a)\mid \varphi (b)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\mid \varphi (a^{m}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>∣<!-- ∣ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\mid \varphi (a^{m}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5258fffd25e4ab850c1b5eb7cf13dc52f7ed63b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.215ex; height:2.843ex;" alt="{\displaystyle m\mid \varphi (a^{m}-1)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (mn)=\varphi (m)\varphi (n)\cdot {\frac {d}{\varphi (d)}}\quad {\text{where }}d=\operatorname {gcd} (m,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>where </mtext> </mrow> <mi>d</mi> <mo>=</mo> <mi>gcd</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (mn)=\varphi (m)\varphi (n)\cdot {\frac {d}{\varphi (d)}}\quad {\text{where }}d=\operatorname {gcd} (m,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3a395aedf638cf2903002d51598c8c1f477c52f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.948ex; height:6.176ex;" alt="{\displaystyle \varphi (mn)=\varphi (m)\varphi (n)\cdot {\frac {d}{\varphi (d)}}\quad {\text{where }}d=\operatorname {gcd} (m,n)}"></span> <p>In particular:</p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (2m)={\begin{cases}2\varphi (m)&{\text{ if }}m{\text{ is even}}\\\varphi (m)&{\text{ if }}m{\text{ is odd}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>2</mn> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is even</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is odd</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (2m)={\begin{cases}2\varphi (m)&{\text{ if }}m{\text{ is even}}\\\varphi (m)&{\text{ if }}m{\text{ is odd}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69a4a6f67d705dd054657cef3d1fba6882d5dfc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.85ex; height:6.176ex;" alt="{\displaystyle \varphi (2m)={\begin{cases}2\varphi (m)&{\text{ if }}m{\text{ is even}}\\\varphi (m)&{\text{ if }}m{\text{ is odd}}\end{cases}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \left(n^{m}\right)=n^{m-1}\varphi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \left(n^{m}\right)=n^{m-1}\varphi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/982dff02a451ef8353a9d17f2b346f7d83bbc900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.779ex; height:3.176ex;" alt="{\displaystyle \varphi \left(n^{m}\right)=n^{m-1}\varphi (n)}"></span></li></ul> </li><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (\operatorname {lcm} (m,n))\cdot \varphi (\operatorname {gcd} (m,n))=\varphi (m)\cdot \varphi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>lcm</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>gcd</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (\operatorname {lcm} (m,n))\cdot \varphi (\operatorname {gcd} (m,n))=\varphi (m)\cdot \varphi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90c2e2f7938febf6d3aea0bb24bb45416c45e6e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.869ex; height:2.843ex;" alt="{\displaystyle \varphi (\operatorname {lcm} (m,n))\cdot \varphi (\operatorname {gcd} (m,n))=\varphi (m)\cdot \varphi (n)}"></span> <p>Compare this to the formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {lcm} (m,n)\cdot \operatorname {gcd} (m,n)=m\cdot n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>lcm</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>gcd</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>m</mi> <mo>⋅<!-- ⋅ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {lcm} (m,n)\cdot \operatorname {gcd} (m,n)=m\cdot n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/415bc6f0929577fcf25d3f465d0161c0d714eeeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.551ex; height:2.843ex;" alt="{\textstyle \operatorname {lcm} (m,n)\cdot \operatorname {gcd} (m,n)=m\cdot n}"></span> (see <a href="/wiki/Least_common_multiple" title="Least common multiple">least common multiple</a>).</p> </li> <li><span class="texhtml"><i>φ</i>(<i>n</i>)</span> is even for <span class="texhtml"><i>n</i> ≥ 3</span>. <p>Moreover, if <span class="texhtml mvar" style="font-style:italic;">n</span> has <span class="texhtml mvar" style="font-style:italic;">r</span> distinct odd prime factors, <span class="texhtml">2<sup><i>r</i></sup> | <i>φ</i>(<i>n</i>)</span></p></li> <li> For any <span class="texhtml"><i>a</i> > 1</span> and <span class="texhtml"><i>n</i> > 6</span> such that <span class="texhtml">4 ∤ <i>n</i></span> there exists an <span class="texhtml"><i>l</i> ≥ 2<i>n</i></span> such that <span class="texhtml"><i>l</i> | <i>φ</i>(<i>a<sup>n</sup></i> − 1)</span>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\varphi (n)}{n}}={\frac {\varphi (\operatorname {rad} (n))}{\operatorname {rad} (n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>rad</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>rad</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\varphi (n)}{n}}={\frac {\varphi (\operatorname {rad} (n))}{\operatorname {rad} (n)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d43e5a214d351a784804c49c708f93a64dfd8d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.395ex; height:6.509ex;" alt="{\displaystyle {\frac {\varphi (n)}{n}}={\frac {\varphi (\operatorname {rad} (n))}{\operatorname {rad} (n)}}}"></span> <p>where <span class="texhtml">rad(<i>n</i>)</span> is the <a href="/wiki/Radical_of_an_integer" title="Radical of an integer">radical of <span class="texhtml mvar" style="font-style:italic;">n</span></a> (the product of all distinct primes dividing <span class="texhtml mvar" style="font-style:italic;"><a href="/wiki/Radical_of_an_integer" title="Radical of an integer">n</a></span>).</p></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{d\mid n}{\frac {\mu ^{2}(d)}{\varphi (d)}}={\frac {n}{\varphi (n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>∣<!-- ∣ --></mo> <mi>n</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{d\mid n}{\frac {\mu ^{2}(d)}{\varphi (d)}}={\frac {n}{\varphi (n)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a910cb8792ad63d84754b85bbf7beeb19c2c43f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:18.718ex; height:7.509ex;" alt="{\displaystyle \sum _{d\mid n}{\frac {\mu ^{2}(d)}{\varphi (d)}}={\frac {n}{\varphi (n)}}}"></span> <sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{1\leq k\leq n-1 \atop gcd(k,n)=1}\!\!k={\tfrac {1}{2}}n\varphi (n)\quad {\text{for }}n>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>k</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>g</mi> <mi>c</mi> <mi>d</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </munder> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>n</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>n</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{1\leq k\leq n-1 \atop gcd(k,n)=1}\!\!k={\tfrac {1}{2}}n\varphi (n)\quad {\text{for }}n>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06b83f957f11ec754a24e79f1eb2f5cd365a92c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:30.13ex; height:7.343ex;" alt="{\displaystyle \sum _{1\leq k\leq n-1 \atop gcd(k,n)=1}\!\!k={\tfrac {1}{2}}n\varphi (n)\quad {\text{for }}n>1}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}\varphi (k)={\tfrac {1}{2}}\left(1+\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}\right)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>⌋</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}\varphi (k)={\tfrac {1}{2}}\left(1+\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}\right)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1013b804a82e91ba6cafe2cd6ab0c1c43d591d1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:73.56ex; height:7.509ex;" alt="{\displaystyle \sum _{k=1}^{n}\varphi (k)={\tfrac {1}{2}}\left(1+\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor ^{2}\right)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)}"></span> (<sup id="cite_ref-Wal1963_22-0" class="reference"><a href="#cite_note-Wal1963-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> cited in<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}\varphi (k)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {1}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}\varphi (k)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {1}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd484521b084cfae8554c6a1501c97e477176a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.827ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}\varphi (k)={\frac {3}{\pi ^{2}}}n^{2}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {1}{3}}\right)}"></span> [Liu (2016)] </li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k}}\left\lfloor {\frac {n}{k}}\right\rfloor ={\frac {6}{\pi ^{2}}}n+O\left((\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mi>k</mi> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mi>k</mi> </mfrac> </mrow> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>⌋</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>n</mi> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k}}\left\lfloor {\frac {n}{k}}\right\rfloor ={\frac {6}{\pi ^{2}}}n+O\left((\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/771ae00bb94d7b7620659ac090015dea93fd57bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:62.386ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}=\sum _{k=1}^{n}{\frac {\mu (k)}{k}}\left\lfloor {\frac {n}{k}}\right\rfloor ={\frac {6}{\pi ^{2}}}n+O\left((\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)}"></span> <sup id="cite_ref-Wal1963_22-1" class="reference"><a href="#cite_note-Wal1963-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{\frac {k}{\varphi (k)}}={\frac {315\,\zeta (3)}{2\pi ^{4}}}n-{\frac {\log n}{2}}+O\left((\log n)^{\frac {2}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>315</mn> <mspace width="thinmathspace" /> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{\frac {k}{\varphi (k)}}={\frac {315\,\zeta (3)}{2\pi ^{4}}}n-{\frac {\log n}{2}}+O\left((\log n)^{\frac {2}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d61e0dd1e45d522a51ca916a4cb606af07136c30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.54ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{\frac {k}{\varphi (k)}}={\frac {315\,\zeta (3)}{2\pi ^{4}}}n-{\frac {\log n}{2}}+O\left((\log n)^{\frac {2}{3}}\right)}"></span> <sup id="cite_ref-Sita_24-0" class="reference"><a href="#cite_note-Sita-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{\frac {1}{\varphi (k)}}={\frac {315\,\zeta (3)}{2\pi ^{4}}}\left(\log n+\gamma -\sum _{p{\text{ prime}}}{\frac {\log p}{p^{2}-p+1}}\right)+O\left({\frac {(\log n)^{\frac {2}{3}}}{n}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>315</mn> <mspace width="thinmathspace" /> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> prime</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>p</mi> </mrow> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{\frac {1}{\varphi (k)}}={\frac {315\,\zeta (3)}{2\pi ^{4}}}\left(\log n+\gamma -\sum _{p{\text{ prime}}}{\frac {\log p}{p^{2}-p+1}}\right)+O\left({\frac {(\log n)^{\frac {2}{3}}}{n}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27625122446f6d1d4eb2ddd05c18991266037d2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:71.944ex; height:8.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{\frac {1}{\varphi (k)}}={\frac {315\,\zeta (3)}{2\pi ^{4}}}\left(\log n+\gamma -\sum _{p{\text{ prime}}}{\frac {\log p}{p^{2}-p+1}}\right)+O\left({\frac {(\log n)^{\frac {2}{3}}}{n}}\right)}"></span> <sup id="cite_ref-Sita_24-1" class="reference"><a href="#cite_note-Sita-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><p>(where <span class="texhtml mvar" style="font-style:italic;">γ</span> is the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a>).</p></li> </ul> <div class="mw-heading mw-heading3"><h3 id="Menon's_identity"><span id="Menon.27s_identity"></span>Menon's identity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=13" title="Edit section: Menon's identity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Arithmetic_function#Menon.27s_identity" title="Arithmetic function">Menon's identity</a></div> <p>In 1965 P. Kesava Menon proved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\!\!\!\!\gcd(k-1,n)=\varphi (n)d(n),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>k</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </mover> </mrow> </mrow> </munder> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\!\!\!\!\gcd(k-1,n)=\varphi (n)d(n),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf7c271a3cfbc0cb0ecfb8c9c17465d8fa7919e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:32.813ex; height:7.676ex;" alt="{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\!\!\!\!\gcd(k-1,n)=\varphi (n)d(n),}"></span></dd></dl> <p>where <span class="texhtml"><a href="/wiki/Divisor_function" title="Divisor function"><i>d</i>(<i>n</i>) = <i>σ</i><sub>0</sub>(<i>n</i>)</a></span> is the number of divisors of <span class="texhtml mvar" style="font-style:italic;">n</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Divisibility_by_any_fixed_positive_integer">Divisibility by any fixed positive integer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=14" title="Edit section: Divisibility by any fixed positive integer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following property, which is part of the « folklore » (i.e., apparently unpublished as a specific result:<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> see the introduction of this article in which it is stated as having « long been known ») has important consequences. For instance it rules out uniform distribution of the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f067864064667dd5f8b2508b9cbf983d89788629" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.724ex; height:2.843ex;" alt="{\displaystyle \varphi (n)}"></span> in the arithmetic progressions modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> for any integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe3606e1cf4480eb39e5ddcd46d4dae2067c0b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q>1}"></span>. </p> <ul><li>For every fixed positive integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>, the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q|\varphi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q|\varphi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a37ffa257e3083809aaf1aad4869db5e59908d75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.441ex; height:2.843ex;" alt="{\displaystyle q|\varphi (n)}"></span> holds for almost all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, meaning for all but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>o</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/893488c26042998c6368d70fd28334ba7ccfc7f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.267ex; height:2.843ex;" alt="{\displaystyle o(x)}"></span> values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\leq x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≤<!-- ≤ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\leq x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/629e475fed09acb4b4b49c94d9ea781619ade867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.823ex; height:2.176ex;" alt="{\displaystyle n\leq x}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02579e74e2ef1ca0befceba816b311fe5bfd6844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.268ex; height:1.843ex;" alt="{\displaystyle x\rightarrow \infty }"></span>.</li></ul> <p>This is an elementary consequence of the fact that the sum of the reciprocals of the primes congruent to 1 modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> diverges, which itself is a corollary of the proof of <a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Dirichlet's theorem on arithmetic progressions</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Generating_functions">Generating functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=15" title="Edit section: Generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a> for <span class="texhtml"><i>φ</i>(<i>n</i>)</span> may be written in terms of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> as:<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {\varphi (n)}{n^{s}}}={\frac {\zeta (s-1)}{\zeta (s)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {\varphi (n)}{n^{s}}}={\frac {\zeta (s-1)}{\zeta (s)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/503a149acd9f861d3db81875ce98fcb458afbf9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.235ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {\varphi (n)}{n^{s}}}={\frac {\zeta (s-1)}{\zeta (s)}}}"></span></dd></dl> <p>where the left-hand side converges for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Re (s)>2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">ℜ<!-- ℜ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Re (s)>2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f75c84c17f43158d1f7fc4c3e8ece0e0bb3f8140" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.085ex; height:2.843ex;" alt="{\displaystyle \Re (s)>2}"></span>. </p><p>The <a href="/wiki/Lambert_series" title="Lambert series">Lambert series</a> generating function is<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {\varphi (n)q^{n}}{1-q^{n}}}={\frac {q}{(1-q)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>q</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {\varphi (n)q^{n}}{1-q^{n}}}={\frac {q}{(1-q)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/995c90fce0364c2acd4bc66fd92bab5683eb1ff5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.471ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {\varphi (n)q^{n}}{1-q^{n}}}={\frac {q}{(1-q)^{2}}}}"></span></dd></dl> <p>which converges for <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>q</i></span>| < 1</span>. </p><p>Both of these are proved by elementary series manipulations and the formulae for <span class="texhtml"><i>φ</i>(<i>n</i>)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Growth_rate">Growth rate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=16" title="Edit section: Growth rate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the words of Hardy & Wright, the order of <span class="texhtml"><i>φ</i>(<i>n</i>)</span> is "always 'nearly <span class="texhtml mvar" style="font-style:italic;">n</span>'."<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>First<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim \sup {\frac {\varphi (n)}{n}}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">lim</mo> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim \sup {\frac {\varphi (n)}{n}}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae70ed67dfdbe2c8653cdff5e9d78a1ec90cd55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.973ex; height:5.676ex;" alt="{\displaystyle \lim \sup {\frac {\varphi (n)}{n}}=1,}"></span></dd></dl> <p>but as <i>n</i> goes to infinity,<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> for all <span class="texhtml"><i>δ</i> > 0</span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\varphi (n)}{n^{1-\delta }}}\rightarrow \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\varphi (n)}{n^{1-\delta }}}\rightarrow \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e1e00f421006da595cde383bc5d8af3d089196c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.145ex; height:6.009ex;" alt="{\displaystyle {\frac {\varphi (n)}{n^{1-\delta }}}\rightarrow \infty .}"></span></dd></dl> <p>These two formulae can be proved by using little more than the formulae for <span class="texhtml"><i>φ</i>(<i>n</i>)</span> and the <a href="/wiki/Divisor_function" title="Divisor function">divisor sum function</a> <span class="texhtml"><i>σ</i>(<i>n</i>)</span>. </p><p>In fact, during the proof of the second formula, the inequality </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {6}{\pi ^{2}}}<{\frac {\varphi (n)\sigma (n)}{n^{2}}}<1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo><</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {6}{\pi ^{2}}}<{\frac {\varphi (n)\sigma (n)}{n^{2}}}<1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6499edd9d3d2f8a3ae19afa85aae7e349d08fae5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.325ex; height:6.009ex;" alt="{\displaystyle {\frac {6}{\pi ^{2}}}<{\frac {\varphi (n)\sigma (n)}{n^{2}}}<1,}"></span></dd></dl> <p>true for <span class="texhtml"><i>n</i> > 1</span>, is proved. </p><p>We also have<sup id="cite_ref-hw328_20-1" class="reference"><a href="#cite_note-hw328-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}\log \log n=e^{-\gamma }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">lim</mo> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}\log \log n=e^{-\gamma }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae055282dae94c3579d0c12e0bbbba4f24d2d0ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.947ex; height:5.676ex;" alt="{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}\log \log n=e^{-\gamma }.}"></span></dd></dl> <p>Here <span class="texhtml mvar" style="font-style:italic;">γ</span> is <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler's constant</a>, <span class="texhtml"><i>γ</i> = 0.577215665...</span>, so <span class="texhtml"><i>e<sup>γ</sup></i> = 1.7810724...</span> and <span class="texhtml"><i>e</i><sup>−<i>γ</i></sup> = 0.56145948...</span>. </p><p>Proving this does not quite require the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> Since <span class="texhtml">log log <i>n</i></span> goes to infinity, this formula shows that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">lim</mo> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca38585ab052056e9f1783c20579a84a5444d5fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.123ex; height:5.676ex;" alt="{\displaystyle \lim \inf {\frac {\varphi (n)}{n}}=0.}"></span></dd></dl> <p>In fact, more is true.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Rib320_35-0" class="reference"><a href="#cite_note-Rib320-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)>{\frac {n}{e^{\gamma }\;\log \log n+{\frac {3}{\log \log n}}}}\quad {\text{for }}n>2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msup> <mspace width="thickmathspace" /> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mrow> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>n</mi> <mo>></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)>{\frac {n}{e^{\gamma }\;\log \log n+{\frac {3}{\log \log n}}}}\quad {\text{for }}n>2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54a7df0105c4627f91ce307dfe4fbeee1a065a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:40.996ex; height:6.676ex;" alt="{\displaystyle \varphi (n)>{\frac {n}{e^{\gamma }\;\log \log n+{\frac {3}{\log \log n}}}}\quad {\text{for }}n>2}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (n)<{\frac {n}{e^{\gamma }\log \log n}}\quad {\text{for infinitely many }}n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msup> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for infinitely many </mtext> </mrow> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (n)<{\frac {n}{e^{\gamma }\log \log n}}\quad {\text{for infinitely many }}n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99a466e8c7a7e709529c358f0891f6afe18f50c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.926ex; height:5.176ex;" alt="{\displaystyle \varphi (n)<{\frac {n}{e^{\gamma }\log \log n}}\quad {\text{for infinitely many }}n.}"></span></dd></dl> <p>The second inequality was shown by <a href="/wiki/Jean-Louis_Nicolas" title="Jean-Louis Nicolas">Jean-Louis Nicolas</a>. Ribenboim says "The method of proof is interesting, in that the inequality is shown first under the assumption that the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a> is true, secondly under the contrary assumption."<sup id="cite_ref-Rib320_35-1" class="reference"><a href="#cite_note-Rib320-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 173">: 173 </span></sup> </p><p>For the average order, we have<sup id="cite_ref-Wal1963_22-2" class="reference"><a href="#cite_note-Wal1963-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SMC2425_36-0" class="reference"><a href="#cite_note-SMC2425-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (1)+\varphi (2)+\cdots +\varphi (n)={\frac {3n^{2}}{\pi ^{2}}}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)\quad {\text{as }}n\rightarrow \infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>as </mtext> </mrow> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (1)+\varphi (2)+\cdots +\varphi (n)={\frac {3n^{2}}{\pi ^{2}}}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)\quad {\text{as }}n\rightarrow \infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7850d2f689e3d7a105765e63bd07c55cf543fe27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:75.619ex; height:6.343ex;" alt="{\displaystyle \varphi (1)+\varphi (2)+\cdots +\varphi (n)={\frac {3n^{2}}{\pi ^{2}}}+O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {4}{3}}\right)\quad {\text{as }}n\rightarrow \infty ,}"></span></dd></dl> <p>due to <a href="/wiki/Arnold_Walfisz" title="Arnold Walfisz">Arnold Walfisz</a>, its proof exploiting estimates on exponential sums due to <a href="/wiki/Ivan_Matveevich_Vinogradov" class="mw-redirect" title="Ivan Matveevich Vinogradov">I. M. Vinogradov</a> and <a href="/wiki/N._M._Korobov" class="mw-redirect" title="N. M. Korobov">N. M. Korobov</a>. By a combination of van der Corput's and Vinogradov's methods, H.-Q. Liu (On Euler's function.Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 4, 769–775) improved the error term to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {1}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {1}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/154cbacb8bd69d2f4df18a1f498918f74377214b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.932ex; height:6.176ex;" alt="{\displaystyle O\left(n(\log n)^{\frac {2}{3}}(\log \log n)^{\frac {1}{3}}\right)}"></span></dd></dl> <p>(this is currently the best known estimate of this type). The <a href="/wiki/Big_O_notation" title="Big O notation">"Big <span class="texhtml mvar" style="font-style:italic;">O</span>"</a> stands for a quantity that is bounded by a constant times the function of <span class="texhtml mvar" style="font-style:italic;">n</span> inside the parentheses (which is small compared to <span class="texhtml"><i>n</i><sup>2</sup></span>). </p><p>This result can be used to prove<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> that <a href="/wiki/Coprime_integers#Probability_of_coprimality" title="Coprime integers">the probability of two randomly chosen numbers being relatively prime</a> is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">6</span><span class="sr-only">/</span><span class="den"><span class="texhtml mvar" style="font-style:italic;">π</span><sup>2</sup></span></span>⁠</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Ratio_of_consecutive_values">Ratio of consecutive values</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=17" title="Edit section: Ratio of consecutive values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1950 Somayajulu proved<sup id="cite_ref-Rib38_38-0" class="reference"><a href="#cite_note-Rib38-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SMC16_39-0" class="reference"><a href="#cite_note-SMC16-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim \inf {\frac {\varphi (n+1)}{\varphi (n)}}&=0\quad {\text{and}}\\[5px]\lim \sup {\frac {\varphi (n+1)}{\varphi (n)}}&=\infty .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo movablelimits="true" form="prefix">lim</mo> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mo movablelimits="true" form="prefix">lim</mo> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim \inf {\frac {\varphi (n+1)}{\varphi (n)}}&=0\quad {\text{and}}\\[5px]\lim \sup {\frac {\varphi (n+1)}{\varphi (n)}}&=\infty .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc005e44784aa197220263d20f9a495ee655b528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:28.151ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\lim \inf {\frac {\varphi (n+1)}{\varphi (n)}}&=0\quad {\text{and}}\\[5px]\lim \sup {\frac {\varphi (n+1)}{\varphi (n)}}&=\infty .\end{aligned}}}"></span></dd></dl> <p>In 1954 <a href="/wiki/Andrzej_Schinzel" title="Andrzej Schinzel">Schinzel</a> and <a href="/wiki/Wac%C5%82aw_Sierpi%C5%84ski" title="Wacław Sierpiński">Sierpiński</a> strengthened this, proving<sup id="cite_ref-Rib38_38-1" class="reference"><a href="#cite_note-Rib38-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SMC16_39-1" class="reference"><a href="#cite_note-SMC16-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> that the set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\frac {\varphi (n+1)}{\varphi (n)}},\;\;n=1,2,\ldots \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\frac {\varphi (n+1)}{\varphi (n)}},\;\;n=1,2,\ldots \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c9cecc224f1d9d7312c6cd97006a15fb8f51bef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.983ex; height:6.509ex;" alt="{\displaystyle \left\{{\frac {\varphi (n+1)}{\varphi (n)}},\;\;n=1,2,\ldots \right\}}"></span></dd></dl> <p>is <a href="/wiki/Dense_set" title="Dense set">dense</a> in the positive real numbers. They also proved<sup id="cite_ref-Rib38_38-2" class="reference"><a href="#cite_note-Rib38-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> that the set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\frac {\varphi (n)}{n}},\;\;n=1,2,\ldots \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\frac {\varphi (n)}{n}},\;\;n=1,2,\ldots \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93cab0a62bd81ed29dfa211d862b73529eb8ddc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.98ex; height:6.343ex;" alt="{\displaystyle \left\{{\frac {\varphi (n)}{n}},\;\;n=1,2,\ldots \right\}}"></span></dd></dl> <p>is dense in the interval (0,1). </p> <div class="mw-heading mw-heading2"><h2 id="Totient_numbers">Totient numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=18" title="Edit section: Totient numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>totient number</b> is a value of Euler's totient function: that is, an <span class="texhtml mvar" style="font-style:italic;">m</span> for which there is at least one <span class="texhtml mvar" style="font-style:italic;">n</span> for which <span class="texhtml"><i>φ</i>(<i>n</i>) = <i>m</i></span>. The <i>valency</i> or <i>multiplicity</i> of a totient number <span class="texhtml mvar" style="font-style:italic;">m</span> is the number of solutions to this equation.<sup id="cite_ref-Guy144_40-0" class="reference"><a href="#cite_note-Guy144-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> A <i><a href="/wiki/Nontotient" title="Nontotient">nontotient</a></i> is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient. There are also infinitely many even nontotients,<sup id="cite_ref-SC230_41-0" class="reference"><a href="#cite_note-SC230-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> and indeed every positive integer has a multiple which is an even nontotient.<sup id="cite_ref-Zha1993_42-0" class="reference"><a href="#cite_note-Zha1993-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p>The number of totient numbers up to a given limit <span class="texhtml mvar" style="font-style:italic;">x</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x}{\log x}}e^{{\big (}C+o(1){\big )}(\log \log \log x)^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>C</mi> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x}{\log x}}e^{{\big (}C+o(1){\big )}(\log \log \log x)^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83eb2835d46f2734d1a1de492b70eb731b1591cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.746ex; height:5.843ex;" alt="{\displaystyle {\frac {x}{\log x}}e^{{\big (}C+o(1){\big )}(\log \log \log x)^{2}}}"></span></dd></dl> <p>for a constant <span class="texhtml"><i>C</i> = 0.8178146...</span>.<sup id="cite_ref-Ford1998_43-0" class="reference"><a href="#cite_note-Ford1998-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>If counted accordingly to multiplicity, the number of totient numbers up to a given limit <span class="texhtml mvar" style="font-style:italic;">x</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\Big \vert }\{n:\varphi (n)\leq x\}{\Big \vert }={\frac {\zeta (2)\zeta (3)}{\zeta (6)}}\cdot x+R(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>n</mi> <mo>:</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>x</mi> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\Big \vert }\{n:\varphi (n)\leq x\}{\Big \vert }={\frac {\zeta (2)\zeta (3)}{\zeta (6)}}\cdot x+R(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1c25e83be96c10ab760e1badf4924ec3429b902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.923ex; height:6.509ex;" alt="{\displaystyle {\Big \vert }\{n:\varphi (n)\leq x\}{\Big \vert }={\frac {\zeta (2)\zeta (3)}{\zeta (6)}}\cdot x+R(x)}"></span></dd></dl> <p>where the error term <span class="texhtml mvar" style="font-style:italic;">R</span> is of order at most <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>x</i></span><span class="sr-only">/</span><span class="den">(log <i>x</i>)<sup><i>k</i></sup></span></span>⁠</span></span> for any positive <span class="texhtml mvar" style="font-style:italic;">k</span>.<sup id="cite_ref-SMC22_44-0" class="reference"><a href="#cite_note-SMC22-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p><p>It is known that the multiplicity of <span class="texhtml mvar" style="font-style:italic;">m</span> exceeds <span class="texhtml"><i>m</i><sup><i>δ</i></sup></span> infinitely often for any <span class="texhtml"><i>δ</i> < 0.55655</span>.<sup id="cite_ref-SMC21_45-0" class="reference"><a href="#cite_note-SMC21-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Guy145_46-0" class="reference"><a href="#cite_note-Guy145-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ford's_theorem"><span id="Ford.27s_theorem"></span>Ford's theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=19" title="Edit section: Ford's theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="#CITEREFFord1999">Ford (1999)</a> proved that for every integer <span class="texhtml"><i>k</i> ≥ 2</span> there is a totient number <span class="texhtml mvar" style="font-style:italic;">m</span> of multiplicity <span class="texhtml mvar" style="font-style:italic;">k</span>: that is, for which the equation <span class="texhtml"><i>φ</i>(<i>n</i>) = <i>m</i></span> has exactly <span class="texhtml mvar" style="font-style:italic;">k</span> solutions; this result had previously been conjectured by <a href="/wiki/Wac%C5%82aw_Sierpi%C5%84ski" title="Wacław Sierpiński">Wacław Sierpiński</a>,<sup id="cite_ref-SC229_47-0" class="reference"><a href="#cite_note-SC229-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> and it had been obtained as a consequence of <a href="/wiki/Schinzel%27s_hypothesis_H" title="Schinzel's hypothesis H">Schinzel's hypothesis H</a>.<sup id="cite_ref-Ford1998_43-1" class="reference"><a href="#cite_note-Ford1998-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> Indeed, each multiplicity that occurs, does so infinitely often.<sup id="cite_ref-Ford1998_43-2" class="reference"><a href="#cite_note-Ford1998-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Guy145_46-1" class="reference"><a href="#cite_note-Guy145-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>However, no number <span class="texhtml mvar" style="font-style:italic;">m</span> is known with multiplicity <span class="texhtml"><i>k</i> = 1</span>. <a href="/wiki/Carmichael%27s_totient_function_conjecture" title="Carmichael's totient function conjecture">Carmichael's totient function conjecture</a> is the statement that there is no such <span class="texhtml mvar" style="font-style:italic;">m</span>.<sup id="cite_ref-SC228_48-0" class="reference"><a href="#cite_note-SC228-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Perfect_totient_numbers">Perfect totient numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=20" title="Edit section: Perfect totient numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Perfect_totient_number" title="Perfect totient number">Perfect totient number</a></div> <p>A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number <i>n</i>, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals <i>n</i>, then <i>n</i> is a perfect totient number. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=21" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Cyclotomy">Cyclotomy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=22" title="Edit section: Cyclotomy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Constructible_polygon" title="Constructible polygon">Constructible polygon</a></div> <p>In the last section of the <a href="/wiki/Disquisitiones_Arithmeticae" title="Disquisitiones Arithmeticae"><i>Disquisitiones</i></a><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Gauss proves<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> that a regular <span class="texhtml mvar" style="font-style:italic;">n</span>-gon can be constructed with straightedge and compass if <span class="texhtml"><i>φ</i>(<i>n</i>)</span> is a power of 2. If <span class="texhtml mvar" style="font-style:italic;">n</span> is a power of an odd prime number the formula for the totient says its totient can be a power of two only if <span class="texhtml mvar" style="font-style:italic;">n</span> is a first power and <span class="texhtml"><i>n</i> − 1</span> is a power of 2. The primes that are one more than a power of 2 are called <a href="/wiki/Fermat_prime" class="mw-redirect" title="Fermat prime">Fermat primes</a>, and only five are known: 3, 5, 17, 257, and 65537. Fermat and Gauss knew of these. Nobody has been able to prove whether there are any more. </p><p>Thus, a regular <span class="texhtml mvar" style="font-style:italic;">n</span>-gon has a straightedge-and-compass construction if <i>n</i> is a product of distinct Fermat primes and any power of 2. The first few such <span class="texhtml mvar" style="font-style:italic;">n</span> are<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p> <dl><dd>2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40,... (sequence <span class="nowrap external"><a href="//oeis.org/A003401" class="extiw" title="oeis:A003401">A003401</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>).</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Prime_number_theorem_for_arithmetic_progressions">Prime number theorem for arithmetic progressions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=23" title="Edit section: Prime number theorem for arithmetic progressions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Prime_number_theorem#Prime_number_theorem_for_arithmetic_progressions" title="Prime number theorem">Prime number theorem § Prime number theorem for arithmetic progressions</a></div> <div class="mw-heading mw-heading3"><h3 id="The_RSA_cryptosystem">The RSA cryptosystem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=24" title="Edit section: The RSA cryptosystem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/RSA_(algorithm)" class="mw-redirect" title="RSA (algorithm)">RSA (algorithm)</a></div> <p>Setting up an RSA system involves choosing large prime numbers <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span>, computing <span class="texhtml"><i>n</i> = <i>pq</i></span> and <span class="texhtml"><i>k</i> = <i>φ</i>(<i>n</i>)</span>, and finding two numbers <span class="texhtml mvar" style="font-style:italic;">e</span> and <span class="texhtml mvar" style="font-style:italic;">d</span> such that <span class="texhtml"><i>ed</i> ≡ 1 (mod <i>k</i>)</span>. The numbers <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">e</span> (the "encryption key") are released to the public, and <span class="texhtml mvar" style="font-style:italic;">d</span> (the "decryption key") is kept private. </p><p>A message, represented by an integer <span class="texhtml mvar" style="font-style:italic;">m</span>, where <span class="texhtml">0 < <i>m</i> < <i>n</i></span>, is encrypted by computing <span class="texhtml"><i>S</i> = <i>m</i><sup><i>e</i></sup> (mod <i>n</i>)</span>. </p><p>It is decrypted by computing <span class="texhtml"><i>t</i> = <i>S</i><sup><i>d</i></sup> (mod <i>n</i>)</span>. Euler's Theorem can be used to show that if <span class="texhtml">0 < <i>t</i> < <i>n</i></span>, then <span class="texhtml"><i>t</i> = <i>m</i></span>. </p><p>The security of an RSA system would be compromised if the number <span class="texhtml mvar" style="font-style:italic;">n</span> could be efficiently factored or if <span class="texhtml"><i>φ</i>(<i>n</i>)</span> could be efficiently computed without factoring <span class="texhtml mvar" style="font-style:italic;">n</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Unsolved_problems">Unsolved problems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=25" title="Edit section: Unsolved problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Lehmer's_conjecture"><span id="Lehmer.27s_conjecture"></span>Lehmer's conjecture</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=26" title="Edit section: Lehmer's conjecture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lehmer%27s_totient_problem" title="Lehmer's totient problem">Lehmer's totient problem</a></div> <p>If <span class="texhtml mvar" style="font-style:italic;">p</span> is prime, then <span class="texhtml"><i>φ</i>(<i>p</i>) = <i>p</i> − 1</span>. In 1932 <a href="/wiki/D._H._Lehmer" title="D. H. Lehmer">D. H. Lehmer</a> asked if there are any composite numbers <span class="texhtml mvar" style="font-style:italic;">n</span> such that <span class="texhtml"><i>φ</i>(<i>n</i>) </span> divides <span class="texhtml"><i>n</i> − 1</span>. None are known.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p><p>In 1933 he proved that if any such <span class="texhtml mvar" style="font-style:italic;">n</span> exists, it must be odd, square-free, and divisible by at least seven primes (i.e. <span class="texhtml"><i>ω</i>(<i>n</i>) ≥ 7</span>). In 1980 Cohen and Hagis proved that <span class="texhtml"><i>n</i> > 10<sup>20</sup></span> and that <span class="texhtml"><i>ω</i>(<i>n</i>) ≥ 14</span>.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> Further, Hagis showed that if 3 divides <span class="texhtml mvar" style="font-style:italic;">n</span> then <span class="texhtml"><i>n</i> > 10<sup>1937042</sup></span> and <span class="texhtml"><i>ω</i>(<i>n</i>) ≥ 298848</span>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Guy142_56-0" class="reference"><a href="#cite_note-Guy142-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Carmichael's_conjecture"><span id="Carmichael.27s_conjecture"></span>Carmichael's conjecture</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=27" title="Edit section: Carmichael's conjecture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Carmichael%27s_totient_function_conjecture" title="Carmichael's totient function conjecture">Carmichael's totient function conjecture</a></div> <p>This states that there is no number <span class="texhtml mvar" style="font-style:italic;">n</span> with the property that for all other numbers <span class="texhtml mvar" style="font-style:italic;">m</span>, <span class="texhtml"><i>m</i> ≠ <i>n</i></span>, <span class="texhtml"><i>φ</i>(<i>m</i>) ≠ <i>φ</i>(<i>n</i>)</span>. See <a href="#Ford's_theorem">Ford's theorem</a> above. </p><p>As stated in the main article, if there is a single counterexample to this conjecture, there must be infinitely many counterexamples, and the smallest one has at least ten billion digits in base 10.<sup id="cite_ref-Guy144_40-1" class="reference"><a href="#cite_note-Guy144-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Riemann_hypothesis">Riemann hypothesis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=28" title="Edit section: Riemann hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a> is true if and only if the inequality </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{\varphi (n)}}<e^{\gamma }\log \log n+{\frac {e^{\gamma }(4+\gamma -\log 4\pi )}{\sqrt {\log n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo><</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msup> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>4</mn> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{\varphi (n)}}<e^{\gamma }\log \log n+{\frac {e^{\gamma }(4+\gamma -\log 4\pi )}{\sqrt {\log n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fee6f34ce047c953cc5a99479e5c587642abdc12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.02ex; height:7.009ex;" alt="{\displaystyle {\frac {n}{\varphi (n)}}<e^{\gamma }\log \log n+{\frac {e^{\gamma }(4+\gamma -\log 4\pi )}{\sqrt {\log n}}}}"></span></dd></dl> <p>is true for all <span class="texhtml"><i>n</i> ≥ <i>p</i><sub>120569</sub>#</span> where <span class="texhtml mvar" style="font-style:italic;">γ</span> is <a href="/wiki/Euler%27s_constant" title="Euler's constant">Euler's constant</a> and <span class="texhtml"><i>p</i><sub>120569</sub>#</span> is the <a href="/wiki/Primorial" title="Primorial">product of the first</a> <span class="texhtml">120569</span> primes.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=29" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Carmichael_function" title="Carmichael function">Carmichael function (λ)</a></li> <li><a href="/wiki/Dedekind_psi_function" title="Dedekind psi function">Dedekind psi function (𝜓)</a></li> <li><a href="/wiki/Divisor_function" title="Divisor function">Divisor function (σ)</a></li></ul> <ul><li><a href="/wiki/Duffin%E2%80%93Schaeffer_conjecture" class="mw-redirect" title="Duffin–Schaeffer conjecture">Duffin–Schaeffer conjecture</a></li> <li><a href="/wiki/Fermat%27s_little_theorem#Generalizations" title="Fermat's little theorem">Generalizations of Fermat's little theorem</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite number</a></li></ul> <ul><li><a href="/wiki/Multiplicative_group_of_integers_modulo_n" title="Multiplicative group of integers modulo n">Multiplicative group of integers modulo <span class="texhtml mvar" style="font-style:italic;">n</span></a></li> <li><a href="/wiki/Ramanujan_sum" class="mw-redirect" title="Ramanujan sum">Ramanujan sum</a></li> <li><a href="/wiki/Totient_summatory_function" title="Totient summatory function">Totient summatory function (𝛷)</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=30" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/euler-s-totient-function-phi-function">"Euler's totient function"</a>. <i>Khan Academy</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2016-02-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Khan+Academy&rft.atitle=Euler%27s+totient+function&rft_id=https%3A%2F%2Fwww.khanacademy.org%2Fcomputing%2Fcomputer-science%2Fcryptography%2Fmodern-crypt%2Fv%2Feuler-s-totient-function-phi-function&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFLong1972">Long (1972</a>, p. 85)</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFPettofrezzoByrkit1970">Pettofrezzo & Byrkit (1970</a>, p. 72)</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFLong1972">Long (1972</a>, p. 162)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFPettofrezzoByrkit1970">Pettofrezzo & Byrkit (1970</a>, p. 80)</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">See <a href="#Euler's_theorem">Euler's theorem</a>.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">L. Euler "<a rel="nofollow" class="external text" href="http://eulerarchive.maa.org/pages/E271.html">Theoremata arithmetica nova methodo demonstrata</a>" (An arithmetic theorem proved by a new method), <i>Novi commentarii academiae scientiarum imperialis Petropolitanae</i> (New Memoirs of the Saint-Petersburg Imperial Academy of Sciences), <b>8</b> (1763), 74–104. (The work was presented at the Saint-Petersburg Academy on October 15, 1759. A work with the same title was presented at the Berlin Academy on June 8, 1758). Available on-line in: <a href="/wiki/Ferdinand_Rudio" title="Ferdinand Rudio">Ferdinand Rudio</a>, <abbr title="editor">ed.</abbr>, <i>Leonhardi Euleri Commentationes Arithmeticae</i>, volume 1, in: <i>Leonhardi Euleri Opera Omnia</i>, series 1, volume 2 (Leipzig, Germany, B. G. Teubner, 1915), <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k6952c/f571.image">pages 531–555</a>. On page 531, Euler defines <span class="texhtml mvar" style="font-style:italic;">n</span> as the number of integers that are smaller than <span class="texhtml mvar" style="font-style:italic;">N</span> and relatively prime to <span class="texhtml mvar" style="font-style:italic;">N</span> (... aequalis sit multitudini numerorum ipso N minorum, qui simul ad eum sint primi, ...), which is the phi function, φ(N).</span> </li> <li id="cite_note-Sandifer,_p._203-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sandifer,_p._203_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sandifer,_p._203_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Sandifer, p. 203</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Graham et al. p. 133 note 111</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">L. Euler, <i><a rel="nofollow" class="external text" href="http://math.dartmouth.edu/~euler/docs/originals/E564.pdf">Speculationes circa quasdam insignes proprietates numerorum</a></i>, Acta Academiae Scientarum Imperialis Petropolitinae, vol. 4, (1784), pp. 18–30, or Opera Omnia, Series 1, volume 4, pp. 105–115. (The work was presented at the Saint-Petersburg Academy on October 9, 1775).</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Both <span class="texhtml"><i>φ</i>(<i>n</i>)</span> and <span class="texhtml"><i>ϕ</i>(<i>n</i>)</span> are seen in the literature. These are two forms of the lower-case Greek letter <a href="/wiki/Phi" title="Phi">phi</a>.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Gauss, <i>Disquisitiones Arithmeticae</i> article 38</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1929" class="citation book cs1"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1929). <i>A History Of Mathematical Notations Volume II</i>. Open Court Publishing Company. §409.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+Of+Mathematical+Notations+Volume+II&rft.pages=%C2%A7409&rft.pub=Open+Court+Publishing+Company&rft.date=1929&rft.aulast=Cajori&rft.aufirst=Florian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">J. J. Sylvester (1879) "On certain ternary cubic-form equations", <i>American Journal of Mathematics</i>, <b>2</b> : 357-393; Sylvester coins the term "totient" on <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-AcPAAAAIAAJ&pg=PA361">page 361</a>.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReference-OED2-totient" class="citation book cs1">"totient". <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i> (2nd ed.). <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. 1989.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=totient&rft.btitle=Oxford+English+Dictionary&rft.edition=2nd&rft.pub=Oxford+University+Press&rft.date=1989&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchramm2008">Schramm (2008)</a></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Gauss, DA, art 39</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Gauss, DA art. 39, arts. 52-54</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Graham et al. pp. 134-135</span> </li> <li id="cite_note-hw328-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-hw328_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hw328_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 328</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Dineva (in external refs), prop. 1</span> </li> <li id="cite_note-Wal1963-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wal1963_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wal1963_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Wal1963_22-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWalfisz1963" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Arnold_Walfisz" title="Arnold Walfisz">Walfisz, Arnold</a> (1963). <i>Weylsche Exponentialsummen in der neueren Zahlentheorie</i>. Mathematische Forschungsberichte (in German). Vol. 16. Berlin: <a href="/wiki/VEB_Deutscher_Verlag_der_Wissenschaften" class="mw-redirect" title="VEB Deutscher Verlag der Wissenschaften">VEB Deutscher Verlag der Wissenschaften</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0146.06003">0146.06003</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Weylsche+Exponentialsummen+in+der+neueren+Zahlentheorie&rft.place=Berlin&rft.series=Mathematische+Forschungsberichte&rft.pub=VEB+Deutscher+Verlag+der+Wissenschaften&rft.date=1963&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0146.06003%23id-name%3DZbl&rft.aulast=Walfisz&rft.aufirst=Arnold&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLomadse1964" class="citation cs2">Lomadse, G. (1964), <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/aa/aa10/aa10111.pdf">"The scientific work of Arnold Walfisz"</a> <span class="cs1-format">(PDF)</span>, <i>Acta Arithmetica</i>, <b>10</b> (3): 227–237, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Faa-10-3-227-237">10.4064/aa-10-3-227-237</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Arithmetica&rft.atitle=The+scientific+work+of+Arnold+Walfisz&rft.volume=10&rft.issue=3&rft.pages=227-237&rft.date=1964&rft_id=info%3Adoi%2F10.4064%2Faa-10-3-227-237&rft.aulast=Lomadse&rft.aufirst=G.&rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Faa%2Faa10%2Faa10111.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-Sita-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sita_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sita_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSitaramachandrarao1985" class="citation journal cs1">Sitaramachandrarao, R. (1985). <a rel="nofollow" class="external text" href="https://doi.org/10.1216%2FRMJ-1985-15-2-579">"On an error term of Landau II"</a>. <i>Rocky Mountain J. Math</i>. <b>15</b> (2): 579–588. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1216%2FRMJ-1985-15-2-579">10.1216/RMJ-1985-15-2-579</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Rocky+Mountain+J.+Math.&rft.atitle=On+an+error+term+of+Landau+II&rft.volume=15&rft.issue=2&rft.pages=579-588&rft.date=1985&rft_id=info%3Adoi%2F10.1216%2FRMJ-1985-15-2-579&rft.aulast=Sitaramachandrarao&rft.aufirst=R.&rft_id=https%3A%2F%2Fdoi.org%2F10.1216%252FRMJ-1985-15-2-579&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPollack2023" class="citation cs2">Pollack, P. (2023), "Two problems on the distribution of Carmichael's lambda function", <i>Mathematika</i>, <b>69</b>: 1195–1220, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2303.14043">2303.14043</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fmtk.12222">10.1112/mtk.12222</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematika&rft.atitle=Two+problems+on+the+distribution+of+Carmichael%27s+lambda+function&rft.volume=69&rft.pages=1195-1220&rft.date=2023&rft_id=info%3Aarxiv%2F2303.14043&rft_id=info%3Adoi%2F10.1112%2Fmtk.12222&rft.aulast=Pollack&rft.aufirst=P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 288</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 309</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, intro to § 18.4</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 326</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 327</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">In fact Chebyshev's theorem (<a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm.7) and Mertens' third theorem is all that is needed.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 436</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Theorem 15 of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosserSchoenfeld1962" class="citation journal cs1">Rosser, J. Barkley; Schoenfeld, Lowell (1962). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.ijm/1255631807">"Approximate formulas for some functions of prime numbers"</a>. <i>Illinois J. Math</i>. <b>6</b> (1): 64–94. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1215%2Fijm%2F1255631807">10.1215/ijm/1255631807</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Illinois+J.+Math.&rft.atitle=Approximate+formulas+for+some+functions+of+prime+numbers&rft.volume=6&rft.issue=1&rft.pages=64-94&rft.date=1962&rft_id=info%3Adoi%2F10.1215%2Fijm%2F1255631807&rft.aulast=Rosser&rft.aufirst=J.+Barkley&rft.au=Schoenfeld%2C+Lowell&rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.ijm%2F1255631807&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Bach & Shallit, thm. 8.8.7</span> </li> <li id="cite_note-Rib320-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rib320_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rib320_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibenboim1989" class="citation book cs1">Ribenboim (1989). "How are the Prime Numbers Distributed? §I.C The Distribution of Values of Euler's Function". <i>The Book of Prime Number Records</i> (2nd ed.). New York: Springer-Verlag. pp. 172–175. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4684-0507-1_5">10.1007/978-1-4684-0507-1_5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4684-0509-5" title="Special:BookSources/978-1-4684-0509-5"><bdi>978-1-4684-0509-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=How+are+the+Prime+Numbers+Distributed%3F+%C2%A7I.C+The+Distribution+of+Values+of+Euler%27s+Function&rft.btitle=The+Book+of+Prime+Number+Records&rft.place=New+York&rft.pages=172-175&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1989&rft_id=info%3Adoi%2F10.1007%2F978-1-4684-0507-1_5&rft.isbn=978-1-4684-0509-5&rft.au=Ribenboim&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-SMC2425-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-SMC2425_36-0">^</a></b></span> <span class="reference-text">Sándor, Mitrinović & Crstici (2006) pp.24–25</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWright1979">Hardy & Wright 1979</a>, thm. 332</span> </li> <li id="cite_note-Rib38-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rib38_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rib38_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Rib38_38-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Ribenboim, p.38</span> </li> <li id="cite_note-SMC16-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-SMC16_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SMC16_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Sándor, Mitrinović & Crstici (2006) p.16</span> </li> <li id="cite_note-Guy144-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-Guy144_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Guy144_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Guy (2004) p.144</span> </li> <li id="cite_note-SC230-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-SC230_41-0">^</a></b></span> <span class="reference-text">Sándor & Crstici (2004) p.230</span> </li> <li id="cite_note-Zha1993-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zha1993_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang1993" class="citation journal cs1">Zhang, Mingzhi (1993). <a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjnth.1993.1014">"On nontotients"</a>. <i><a href="/wiki/Journal_of_Number_Theory" title="Journal of Number Theory">Journal of Number Theory</a></i>. <b>43</b> (2): 168–172. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjnth.1993.1014">10.1006/jnth.1993.1014</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-314X">0022-314X</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0772.11001">0772.11001</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Number+Theory&rft.atitle=On+nontotients&rft.volume=43&rft.issue=2&rft.pages=168-172&rft.date=1993&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0772.11001%23id-name%3DZbl&rft.issn=0022-314X&rft_id=info%3Adoi%2F10.1006%2Fjnth.1993.1014&rft.aulast=Zhang&rft.aufirst=Mingzhi&rft_id=https%3A%2F%2Fdoi.org%2F10.1006%252Fjnth.1993.1014&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-Ford1998-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ford1998_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ford1998_43-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ford1998_43-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFord1998" class="citation journal cs1">Ford, Kevin (1998). "The distribution of totients". <i>Ramanujan J</i>. Developments in Mathematics. <b>2</b> (1–2): 67–151. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1104.3264">1104.3264</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-4507-8_8">10.1007/978-1-4757-4507-8_8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-5058-1" title="Special:BookSources/978-1-4419-5058-1"><bdi>978-1-4419-5058-1</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1382-4090">1382-4090</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0914.11053">0914.11053</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ramanujan+J.&rft.atitle=The+distribution+of+totients&rft.volume=2&rft.issue=1%E2%80%932&rft.pages=67-151&rft.date=1998&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0914.11053%23id-name%3DZbl&rft_id=info%3Adoi%2F10.1007%2F978-1-4757-4507-8_8&rft_id=info%3Aarxiv%2F1104.3264&rft.issn=1382-4090&rft.isbn=978-1-4419-5058-1&rft.aulast=Ford&rft.aufirst=Kevin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-SMC22-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-SMC22_44-0">^</a></b></span> <span class="reference-text">Sándor et al (2006) p.22</span> </li> <li id="cite_note-SMC21-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-SMC21_45-0">^</a></b></span> <span class="reference-text">Sándor et al (2006) p.21</span> </li> <li id="cite_note-Guy145-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Guy145_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Guy145_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Guy (2004) p.145</span> </li> <li id="cite_note-SC229-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-SC229_47-0">^</a></b></span> <span class="reference-text">Sándor & Crstici (2004) p.229</span> </li> <li id="cite_note-SC228-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-SC228_48-0">^</a></b></span> <span class="reference-text">Sándor & Crstici (2004) p.228</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">Gauss, DA. The 7th § is arts. 336–366</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text">Gauss proved if <span class="texhtml mvar" style="font-style:italic;">n</span> satisfies certain conditions then the <span class="texhtml mvar" style="font-style:italic;">n</span>-gon can be constructed. In 1837 <a href="/wiki/Pierre_Wantzel" title="Pierre Wantzel">Pierre Wantzel</a> proved the converse, if the <span class="texhtml mvar" style="font-style:italic;">n</span>-gon is constructible, then <span class="texhtml mvar" style="font-style:italic;">n</span> must satisfy Gauss's conditions</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">Gauss, DA, art 366</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">Gauss, DA, art. 366. This list is the last sentence in the <i>Disquisitiones</i></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Ribenboim, pp. 36–37.</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohenHagis1980" class="citation journal cs1">Cohen, Graeme L.; Hagis, Peter Jr. (1980). "On the number of prime factors of <span class="texhtml mvar" style="font-style:italic;">n</span> if <span class="texhtml"><i>φ</i>(<i>n</i>)</span> divides <span class="texhtml"><i>n</i> − 1</span>". <i>Nieuw Arch. Wiskd</i>. III Series. <b>28</b>: 177–185. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-9825">0028-9825</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0436.10002">0436.10002</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nieuw+Arch.+Wiskd.&rft.atitle=On+the+number+of+prime+factors+of+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3En%3C%2Fspan%3E+if+%3Cspan+class%3D%22texhtml+%22+%3E%CF%86%28n%29%3C%2Fspan%3E+divides+%3Cspan+class%3D%22texhtml+%22+%3En+%E2%88%92+1%3C%2Fspan%3E&rft.volume=28&rft.pages=177-185&rft.date=1980&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0436.10002%23id-name%3DZbl&rft.issn=0028-9825&rft.aulast=Cohen&rft.aufirst=Graeme+L.&rft.au=Hagis%2C+Peter+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHagis1988" class="citation journal cs1">Hagis, Peter Jr. (1988). "On the equation <span class="texhtml"><i>M</i>·φ(<i>n</i>) = <i>n</i> − 1</span>". <i>Nieuw Arch. Wiskd</i>. IV Series. <b>6</b> (3): 255–261. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0028-9825">0028-9825</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0668.10006">0668.10006</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nieuw+Arch.+Wiskd.&rft.atitle=On+the+equation+%3Cspan+class%3D%22texhtml+%22+%3EM%C2%B7%CF%86%28n%29+%3D+n+%E2%88%92+1%3C%2Fspan%3E&rft.volume=6&rft.issue=3&rft.pages=255-261&rft.date=1988&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0668.10006%23id-name%3DZbl&rft.issn=0028-9825&rft.aulast=Hagis&rft.aufirst=Peter+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></span> </li> <li id="cite_note-Guy142-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-Guy142_56-0">^</a></b></span> <span class="reference-text">Guy (2004) p.142</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBroughan2017" class="citation book cs1">Broughan, Kevin (2017). <i>Equivalents of the Riemann Hypothesis, Volume One: Arithmetic Equivalents</i> (First ed.). Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-19704-6" title="Special:BookSources/978-1-107-19704-6"><bdi>978-1-107-19704-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Equivalents+of+the+Riemann+Hypothesis%2C+Volume+One%3A+Arithmetic+Equivalents&rft.edition=First&rft.pub=Cambridge+University+Press&rft.date=2017&rft.isbn=978-1-107-19704-6&rft.aulast=Broughan&rft.aufirst=Kevin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span> Corollary 5.35</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=31" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <p>The <i><a href="/wiki/Disquisitiones_Arithmeticae" title="Disquisitiones Arithmeticae">Disquisitiones Arithmeticae</a></i> has been translated from Latin into English and German. The German edition includes all of Gauss's papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes. </p><p>References to the <i>Disquisitiones</i> are of the form Gauss, DA, art. <i>nnn</i>. </p> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbramowitzStegun1964" class="citation cs2"><a href="/wiki/Milton_Abramowitz" title="Milton Abramowitz">Abramowitz, M.</a>; <a href="/wiki/Irene_A._Stegun" class="mw-redirect" title="Irene A. Stegun">Stegun, I. A.</a> (1964), <a rel="nofollow" class="external text" href="https://archive.org/details/handbookofmathe000abra"><i>Handbook of Mathematical Functions</i></a>, New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-61272-4" title="Special:BookSources/0-486-61272-4"><bdi>0-486-61272-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+Mathematical+Functions&rft.place=New+York&rft.pub=Dover+Publications&rft.date=1964&rft.isbn=0-486-61272-4&rft.aulast=Abramowitz&rft.aufirst=M.&rft.au=Stegun%2C+I.+A.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbookofmathe000abra&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span>. See paragraph 24.3.2.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachShallit1996" class="citation cs2"><a href="/wiki/Eric_Bach" title="Eric Bach">Bach, Eric</a>; <a href="/wiki/Jeffrey_Shallit" title="Jeffrey Shallit">Shallit, Jeffrey</a> (1996), <i>Algorithmic Number Theory (Vol I: Efficient Algorithms)</i>, MIT Press Series in the Foundations of Computing, Cambridge, MA: <a href="/wiki/The_MIT_Press" class="mw-redirect" title="The MIT Press">The MIT Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-262-02405-5" title="Special:BookSources/0-262-02405-5"><bdi>0-262-02405-5</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0873.11070">0873.11070</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algorithmic+Number+Theory+%28Vol+I%3A+Efficient+Algorithms%29&rft.place=Cambridge%2C+MA&rft.series=MIT+Press+Series+in+the+Foundations+of+Computing&rft.pub=The+MIT+Press&rft.date=1996&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0873.11070%23id-name%3DZbl&rft.isbn=0-262-02405-5&rft.aulast=Bach&rft.aufirst=Eric&rft.au=Shallit%2C+Jeffrey&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li>Dickson, Leonard Eugene, "History Of The Theory Of Numbers", vol 1, chapter 5 "Euler's Function, Generalizations; Farey Series", Chelsea Publishing 1952</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFord1999" class="citation cs2">Ford, Kevin (1999), "The number of solutions of φ(<i>x</i>) = <i>m</i>", <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>, <b>150</b> (1): 283–311, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F121103">10.2307/121103</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-486X">0003-486X</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/121103">121103</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1715326">1715326</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0978.11053">0978.11053</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+number+of+solutions+of+%CF%86%28x%29+%3D+m&rft.volume=150&rft.issue=1&rft.pages=283-311&rft.date=1999&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0978.11053%23id-name%3DZbl&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F121103%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F121103&rft.issn=0003-486X&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1715326%23id-name%3DMR&rft.aulast=Ford&rft.aufirst=Kevin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGauss1986" class="citation cs2"><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss, Carl Friedrich</a> (1986), <i>Disquisitiones Arithmeticae (Second, corrected edition)</i>, translated by Clarke, Arthur A., New York: <a href="/wiki/Springer_Publishing" title="Springer Publishing">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-96254-9" title="Special:BookSources/0-387-96254-9"><bdi>0-387-96254-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Disquisitiones+Arithmeticae+%28Second%2C+corrected+edition%29&rft.place=New+York&rft.pub=Springer&rft.date=1986&rft.isbn=0-387-96254-9&rft.aulast=Gauss&rft.aufirst=Carl+Friedrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGauss1965" class="citation cs2"><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss, Carl Friedrich</a> (1965), <i>Untersuchungen uber hohere Arithmetik (Disquisitiones Arithmeticae & other papers on number theory) (Second edition)</i>, translated by Maser, H., New York: Chelsea, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8284-0191-8" title="Special:BookSources/0-8284-0191-8"><bdi>0-8284-0191-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Untersuchungen+uber+hohere+Arithmetik+%28Disquisitiones+Arithmeticae+%26+other+papers+on+number+theory%29+%28Second+edition%29&rft.place=New+York&rft.pub=Chelsea&rft.date=1965&rft.isbn=0-8284-0191-8&rft.aulast=Gauss&rft.aufirst=Carl+Friedrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrahamKnuthPatashnik1994" class="citation cs2"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ronald</a>; <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a>; <a href="/wiki/Oren_Patashnik" title="Oren Patashnik">Patashnik, Oren</a> (1994), <i><a href="/wiki/Concrete_Mathematics" title="Concrete Mathematics">Concrete Mathematics</a>: a foundation for computer science</i> (2nd ed.), Reading, MA: Addison-Wesley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-55802-5" title="Special:BookSources/0-201-55802-5"><bdi>0-201-55802-5</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0836.00001">0836.00001</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Concrete+Mathematics%3A+a+foundation+for+computer+science&rft.place=Reading%2C+MA&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1994&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0836.00001%23id-name%3DZbl&rft.isbn=0-201-55802-5&rft.aulast=Graham&rft.aufirst=Ronald&rft.au=Knuth%2C+Donald&rft.au=Patashnik%2C+Oren&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy2004" class="citation cs2"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (2004), <i>Unsolved Problems in Number Theory</i>, Problem Books in Mathematics (3rd ed.), New York, NY: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-20860-7" title="Special:BookSources/0-387-20860-7"><bdi>0-387-20860-7</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1058.11001">1058.11001</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+in+Number+Theory&rft.place=New+York%2C+NY&rft.series=Problem+Books+in+Mathematics&rft.edition=3rd&rft.pub=Springer-Verlag&rft.date=2004&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1058.11001%23id-name%3DZbl&rft.isbn=0-387-20860-7&rft.aulast=Guy&rft.aufirst=Richard+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyWright1979" class="citation cs2"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a>; <a href="/wiki/E._M._Wright" title="E. M. Wright">Wright, E. M.</a> (1979), <i><a href="/wiki/An_Introduction_to_the_Theory_of_Numbers" title="An Introduction to the Theory of Numbers">An Introduction to the Theory of Numbers</a></i> (Fifth ed.), Oxford: <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-853171-5" title="Special:BookSources/978-0-19-853171-5"><bdi>978-0-19-853171-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+the+Theory+of+Numbers&rft.place=Oxford&rft.edition=Fifth&rft.pub=Oxford+University+Press&rft.date=1979&rft.isbn=978-0-19-853171-5&rft.aulast=Hardy&rft.aufirst=G.+H.&rft.au=Wright%2C+E.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiu2016" class="citation cs2">Liu, H.-Q. (2016), "On Euler's function", <i>Proc. Roy. Soc. Edinburgh Sect. A</i>, <b>146</b> (4)</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+Roy.+Soc.+Edinburgh+Sect.+A&rft.atitle=On+Euler%27s+function&rft.volume=146&rft.issue=4&rft.date=2016&rft.aulast=Liu&rft.aufirst=H.-Q.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLong1972" class="citation cs2">Long, Calvin T. (1972), <i>Elementary Introduction to Number Theory</i> (2nd ed.), Lexington: <a href="/wiki/D._C._Heath_and_Company" title="D. C. Heath and Company">D. C. Heath and Company</a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/77-171950">77-171950</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Introduction+to+Number+Theory&rft.place=Lexington&rft.edition=2nd&rft.pub=D.+C.+Heath+and+Company&rft.date=1972&rft_id=info%3Alccn%2F77-171950&rft.aulast=Long&rft.aufirst=Calvin+T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPettofrezzoByrkit1970" class="citation cs2">Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), <i>Elements of Number Theory</i>, Englewood Cliffs: <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/77-81766">77-81766</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+Number+Theory&rft.place=Englewood+Cliffs&rft.pub=Prentice+Hall&rft.date=1970&rft_id=info%3Alccn%2F77-81766&rft.aulast=Pettofrezzo&rft.aufirst=Anthony+J.&rft.au=Byrkit%2C+Donald+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibenboim1996" class="citation cs2"><a href="/wiki/Paulo_Ribenboim" title="Paulo Ribenboim">Ribenboim, Paulo</a> (1996), <i>The New Book of Prime Number Records</i> (3rd ed.), New York: <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94457-5" title="Special:BookSources/0-387-94457-5"><bdi>0-387-94457-5</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0856.11001">0856.11001</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+New+Book+of+Prime+Number+Records&rft.place=New+York&rft.edition=3rd&rft.pub=Springer&rft.date=1996&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0856.11001%23id-name%3DZbl&rft.isbn=0-387-94457-5&rft.aulast=Ribenboim&rft.aufirst=Paulo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandifer2007" class="citation cs2">Sandifer, Charles (2007), <i>The early mathematics of Leonhard Euler</i>, MAA, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-559-1" title="Special:BookSources/978-0-88385-559-1"><bdi>978-0-88385-559-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+early+mathematics+of+Leonhard+Euler&rft.pub=MAA&rft.date=2007&rft.isbn=978-0-88385-559-1&rft.aulast=Sandifer&rft.aufirst=Charles&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSándorMitrinovićCrstici2006" class="citation cs2">Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006), <i>Handbook of number theory I</i>, Dordrecht: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, pp. 9–36, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-4020-4215-9" title="Special:BookSources/1-4020-4215-9"><bdi>1-4020-4215-9</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1151.11300">1151.11300</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+number+theory+I&rft.place=Dordrecht&rft.pages=9-36&rft.pub=Springer-Verlag&rft.date=2006&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1151.11300%23id-name%3DZbl&rft.isbn=1-4020-4215-9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSándorCrstici2004" class="citation book cs1">Sándor, Jozsef; Crstici, Borislav (2004). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/handbooknumberth00sand_741"><i>Handbook of number theory II</i></a></span>. Dordrecht: Kluwer Academic. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/handbooknumberth00sand_741/page/n179">179</a>–327. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-4020-2546-7" title="Special:BookSources/1-4020-2546-7"><bdi>1-4020-2546-7</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1079.11001">1079.11001</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+number+theory+II&rft.place=Dordrecht&rft.pages=179-327&rft.pub=Kluwer+Academic&rft.date=2004&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1079.11001%23id-name%3DZbl&rft.isbn=1-4020-2546-7&rft.aulast=S%C3%A1ndor&rft.aufirst=Jozsef&rft.au=Crstici%2C+Borislav&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbooknumberth00sand_741&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchramm2008" class="citation cs2">Schramm, Wolfgang (2008), <a rel="nofollow" class="external text" href="http://www.integers-ejcnt.org/vol8.html">"The Fourier transform of functions of the greatest common divisor"</a>, <i>Electronic Journal of Combinatorial Number Theory</i>, <b>A50</b> (8(1))</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronic+Journal+of+Combinatorial+Number+Theory&rft.atitle=The+Fourier+transform+of+functions+of+the+greatest+common+divisor&rft.volume=A50&rft.issue=8%281%29&rft.date=2008&rft.aulast=Schramm&rft.aufirst=Wolfgang&rft_id=http%3A%2F%2Fwww.integers-ejcnt.org%2Fvol8.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span>.</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler%27s_totient_function&action=edit&section=32" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Totient_function">"Totient function"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Totient+function&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DTotient_function&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuler%27s+totient+function" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://mathcenter.oxford.emory.edu/site/math125/chineseRemainderTheorem/">Euler's Phi Function and the Chinese Remainder Theorem — proof that <span class="texhtml"><i>φ</i>(<i>n</i>)</span> is multiplicative</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210228071226/http://mathcenter.oxford.emory.edu/site/math125/chineseRemainderTheorem/">Archived</a> 2021-02-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://www.javascripter.net/math/calculators/eulertotientfunction.htm">Euler's totient function calculator in JavaScript — up to 20 digits</a></li> <li>Dineva, Rosica, <a rel="nofollow" class="external text" href="http://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf">The Euler Totient, the Möbius, and the Divisor Functions</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210116061553/https://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf">Archived</a> 2021-01-16 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li>Plytage, Loomis, Polhill <a rel="nofollow" class="external text" href="http://facstaff.bloomu.edu/jpolhill/cmj034-042.pdf">Summing Up The Euler Phi Function</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Totient_function" style="padding:3px"><table class="nowraplinks mw-collapsible uncollapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Totient" title="Template:Totient"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Totient" title="Template talk:Totient"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Totient" title="Special:EditPage/Template:Totient"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Totient_function" style="font-size:114%;margin:0 4em">Totient function</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Euler's totient function</a> <span class="texhtml"><i>φ</i>(<i>n</i>)</span></li> <li><a href="/wiki/Jordan%27s_totient_function" title="Jordan's totient function">Jordan's totient function</a> <span class="texhtml"><i>J<sub>k</sub></i>(<i>n</i>)</span></li> <li><a href="/wiki/Carmichael_function" title="Carmichael function">Carmichael function</a> (reduced totient function) <span class="texhtml"><i>λ</i>(<i>n</i>)</span></li> <li><a href="/wiki/Nontotient" title="Nontotient">Nontotient</a></li> <li><a href="/wiki/Noncototient" title="Noncototient">Noncototient</a></li> <li><a href="/wiki/Highly_totient_number" title="Highly totient number">Highly totient number</a></li> <li><a href="/wiki/Highly_cototient_number" title="Highly cototient number">Highly cototient number</a></li> <li><a href="/wiki/Sparsely_totient_number" title="Sparsely totient number">Sparsely totient number</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7pnpd Cached time: 20241124160816 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.091 seconds Real time usage: 1.330 seconds Preprocessor visited node count: 10679/1000000 Post‐expand include size: 107013/2097152 bytes Template argument size: 12493/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 12/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 132144/5000000 bytes Lua time usage: 0.539/10.000 seconds Lua memory usage: 8064765/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1015.644 1 -total 24.29% 246.681 1 Template:Reflist 18.93% 192.287 130 Template:Math 10.44% 106.049 1 Template:Totient 10.08% 102.371 1 Template:Navbox 9.63% 97.823 1 Template:Short_description 9.34% 94.854 1 Template:Cite_web 8.82% 89.616 17 Template:Citation 6.89% 69.952 6 Template:Harvtxt 6.84% 69.500 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:53452-0!canonical and timestamp 20241124160816 and revision id 1251680404. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Euler%27s_totient_function&oldid=1251680404">https://en.wikipedia.org/w/index.php?title=Euler%27s_totient_function&oldid=1251680404</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Modular_arithmetic" title="Category:Modular arithmetic">Modular arithmetic</a></li><li><a href="/wiki/Category:Multiplicative_functions" title="Category:Multiplicative functions">Multiplicative functions</a></li><li><a href="/wiki/Category:Algebra" title="Category:Algebra">Algebra</a></li><li><a href="/wiki/Category:Number_theory" title="Category:Number theory">Number theory</a></li><li><a href="/wiki/Category:Leonhard_Euler" title="Category:Leonhard Euler">Leonhard Euler</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 17 October 2024, at 13:18<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Euler%27s_totient_function&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-9s56p","wgBackendResponseTime":145,"wgPageParseReport":{"limitreport":{"cputime":"1.091","walltime":"1.330","ppvisitednodes":{"value":10679,"limit":1000000},"postexpandincludesize":{"value":107013,"limit":2097152},"templateargumentsize":{"value":12493,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":132144,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1015.644 1 -total"," 24.29% 246.681 1 Template:Reflist"," 18.93% 192.287 130 Template:Math"," 10.44% 106.049 1 Template:Totient"," 10.08% 102.371 1 Template:Navbox"," 9.63% 97.823 1 Template:Short_description"," 9.34% 94.854 1 Template:Cite_web"," 8.82% 89.616 17 Template:Citation"," 6.89% 69.952 6 Template:Harvtxt"," 6.84% 69.500 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.539","limit":"10.000"},"limitreport-memusage":{"value":8064765,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbramowitzStegun1964\"] = 1,\n [\"CITEREFBachShallit1996\"] = 1,\n [\"CITEREFBroughan2017\"] = 1,\n [\"CITEREFCajori1929\"] = 1,\n [\"CITEREFCohenHagis1980\"] = 1,\n [\"CITEREFFord1998\"] = 1,\n [\"CITEREFFord1999\"] = 1,\n [\"CITEREFGauss1965\"] = 1,\n [\"CITEREFGauss1986\"] = 1,\n [\"CITEREFGrahamKnuthPatashnik1994\"] = 1,\n [\"CITEREFGuy2004\"] = 1,\n [\"CITEREFHagis1988\"] = 1,\n [\"CITEREFHardyWright1979\"] = 1,\n [\"CITEREFLiu2016\"] = 1,\n [\"CITEREFLomadse1964\"] = 1,\n [\"CITEREFLong1972\"] = 1,\n [\"CITEREFPettofrezzoByrkit1970\"] = 1,\n [\"CITEREFPollack2023\"] = 1,\n [\"CITEREFRibenboim1989\"] = 1,\n [\"CITEREFRibenboim1996\"] = 1,\n [\"CITEREFRosserSchoenfeld1962\"] = 1,\n [\"CITEREFSandifer2007\"] = 1,\n [\"CITEREFSchramm2008\"] = 1,\n [\"CITEREFSitaramachandrarao1985\"] = 1,\n [\"CITEREFSándorCrstici2004\"] = 1,\n [\"CITEREFSándorMitrinovićCrstici2006\"] = 1,\n [\"CITEREFWalfisz1963\"] = 1,\n [\"CITEREFZhang1993\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 4,\n [\"-2\\\\pi i\"] = 1,\n [\"=\"] = 20,\n [\"Abbr\"] = 1,\n [\"Abs\"] = 1,\n [\"Citation\"] = 17,\n [\"Cite OED2\"] = 1,\n [\"Cite book\"] = 5,\n [\"Cite journal\"] = 6,\n [\"Cite web\"] = 1,\n [\"Clear\"] = 1,\n [\"Distinguish\"] = 1,\n [\"Harvnb\"] = 9,\n [\"Harvtxt\"] = 6,\n [\"Hatnote group\"] = 1,\n [\"Main article\"] = 8,\n [\"Math\"] = 127,\n [\"Mset\"] = 1,\n [\"Mvar\"] = 108,\n [\"OEIS\"] = 2,\n [\"Pi\"] = 1,\n [\"Redirect\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 1,\n [\"Sfrac\"] = 12,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Totient\"] = 1,\n [\"Webarchive\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7pnpd","timestamp":"20241124160816","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Euler's totient function","url":"https:\/\/en.wikipedia.org\/wiki\/Euler%27s_totient_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190026","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190026","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-08T15:27:38Z","dateModified":"2024-10-17T13:18:21Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/9b\/EulerPhi.svg","headline":"function which gives the number of integers relatively prime to and not greater than its input"}</script> </body> </html>