CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Pruthi, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Pruthi%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pruthi, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pruthi%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pruthi, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16487">arXiv:2502.16487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16487">pdf</a>, <a href="https://arxiv.org/format/2502.16487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> All That Glitters is Not Novel: Plagiarism in AI Generated Research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gupta%2C+T">Tarun Gupta</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16487v1-abstract-short" style="display: inline;"> Automating scientific research is considered the final frontier of science. Recently, several papers claim autonomous research agents can generate novel research ideas. Amidst the prevailing optimism, we document a critical concern: a considerable fraction of such research documents are smartly plagiarized. Unlike past efforts where experts evaluate the novelty and feasibility of research ideas, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16487v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16487v1-abstract-full" style="display: none;"> Automating scientific research is considered the final frontier of science. Recently, several papers claim autonomous research agents can generate novel research ideas. Amidst the prevailing optimism, we document a critical concern: a considerable fraction of such research documents are smartly plagiarized. Unlike past efforts where experts evaluate the novelty and feasibility of research ideas, we request $13$ experts to operate under a different situational logic: to identify similarities between LLM-generated research documents and existing work. Concerningly, the experts identify $24\%$ of the $50$ evaluated research documents to be either paraphrased (with one-to-one methodological mapping), or significantly borrowed from existing work. These reported instances are cross-verified by authors of the source papers. Problematically, these LLM-generated research documents do not acknowledge original sources, and bypass inbuilt plagiarism detectors. Lastly, through controlled experiments we show that automated plagiarism detectors are inadequate at catching deliberately plagiarized ideas from an LLM. We recommend a careful assessment of LLM-generated research, and discuss the implications of our findings on research and academic publishing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16487v1-abstract-full').style.display = 'none'; document.getElementById('2502.16487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07430">arXiv:2412.07430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07430">pdf</a>, <a href="https://arxiv.org/format/2412.07430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Knowledge Graph Guided Evaluation of Abstention Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Vasisht%2C+K">Kinshuk Vasisht</a>, <a href="/search/cs?searchtype=author&amp;query=Kaur%2C+N">Navreet Kaur</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07430v2-abstract-short" style="display: inline;"> To deploy language models safely, it is crucial that they abstain from responding to inappropriate requests. Several prior studies test the safety promises of models based on their effectiveness in blocking malicious requests. In this work, we focus on evaluating the underlying techniques that cause models to abstain. We create SELECT, a benchmark derived from a set of benign concepts (e.g., &#34;rive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07430v2-abstract-full').style.display = 'inline'; document.getElementById('2412.07430v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07430v2-abstract-full" style="display: none;"> To deploy language models safely, it is crucial that they abstain from responding to inappropriate requests. Several prior studies test the safety promises of models based on their effectiveness in blocking malicious requests. In this work, we focus on evaluating the underlying techniques that cause models to abstain. We create SELECT, a benchmark derived from a set of benign concepts (e.g., &#34;rivers&#34;) from a knowledge graph. Focusing on benign concepts isolates the effect of safety training, and grounding these concepts in a knowledge graph allows us to study the generalization and specificity of abstention techniques. Using SELECT, we benchmark different abstention techniques over six open-weight and closed-source models. We find that the examined techniques indeed cause models to abstain with over $80\%$ abstention rates. However, these techniques are not as effective for descendants of the target concepts, where abstention rates drop by $19\%$. We also characterize the generalization-specificity trade-offs for different techniques. Overall, no single technique is invariably better than others, and our findings inform practitioners of the various trade-offs involved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07430v2-abstract-full').style.display = 'none'; document.getElementById('2412.07430v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NAACL 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07320">arXiv:2411.07320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07320">pdf</a>, <a href="https://arxiv.org/format/2411.07320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Richer Output for Richer Countries: Uncovering Geographical Disparities in Generated Stories and Travel Recommendations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bhagat%2C+K">Kirti Bhagat</a>, <a href="/search/cs?searchtype=author&amp;query=Vasisht%2C+K">Kinshuk Vasisht</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07320v2-abstract-short" style="display: inline;"> While a large body of work inspects language models for biases concerning gender, race, occupation and religion, biases of geographical nature are relatively less explored. Some recent studies benchmark the degree to which large language models encode geospatial knowledge. However, the impact of the encoded geographical knowledge (or lack thereof) on real-world applications has not been documented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07320v2-abstract-full').style.display = 'inline'; document.getElementById('2411.07320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07320v2-abstract-full" style="display: none;"> While a large body of work inspects language models for biases concerning gender, race, occupation and religion, biases of geographical nature are relatively less explored. Some recent studies benchmark the degree to which large language models encode geospatial knowledge. However, the impact of the encoded geographical knowledge (or lack thereof) on real-world applications has not been documented. In this work, we examine large language models for two common scenarios that require geographical knowledge: (a) travel recommendations and (b) geo-anchored story generation. Specifically, we study five popular language models, and across about $100$K travel requests, and $200$K story generations, we observe that travel recommendations corresponding to poorer countries are less unique with fewer location references, and stories from these regions more often convey emotions of hardship and sadness compared to those from wealthier nations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07320v2-abstract-full').style.display = 'none'; document.getElementById('2411.07320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Findings of NAACL (2025)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05277">arXiv:2411.05277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05277">pdf</a>, <a href="https://arxiv.org/format/2411.05277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Revisiting the Robustness of Watermarking to Paraphrasing Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Rastogi%2C+S">Saksham Rastogi</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05277v1-abstract-short" style="display: inline;"> Amidst rising concerns about the internet being proliferated with content generated from language models (LMs), watermarking is seen as a principled way to certify whether text was generated from a model. Many recent watermarking techniques slightly modify the output probabilities of LMs to embed a signal in the generated output that can later be detected. Since early proposals for text watermarki&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05277v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05277v1-abstract-full" style="display: none;"> Amidst rising concerns about the internet being proliferated with content generated from language models (LMs), watermarking is seen as a principled way to certify whether text was generated from a model. Many recent watermarking techniques slightly modify the output probabilities of LMs to embed a signal in the generated output that can later be detected. Since early proposals for text watermarking, questions about their robustness to paraphrasing have been prominently discussed. Lately, some techniques are deliberately designed and claimed to be robust to paraphrasing. However, such watermarking schemes do not adequately account for the ease with which they can be reverse-engineered. We show that with access to only a limited number of generations from a black-box watermarked model, we can drastically increase the effectiveness of paraphrasing attacks to evade watermark detection, thereby rendering the watermark ineffective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05277v1-abstract-full').style.display = 'none'; document.getElementById('2411.05277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">EMNLP 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06563">arXiv:2405.06563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06563">pdf</a>, <a href="https://arxiv.org/format/2405.06563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> What Can Natural Language Processing Do for Peer Review? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kuznetsov%2C+I">Ilia Kuznetsov</a>, <a href="/search/cs?searchtype=author&amp;query=Afzal%2C+O+M">Osama Mohammed Afzal</a>, <a href="/search/cs?searchtype=author&amp;query=Dercksen%2C+K">Koen Dercksen</a>, <a href="/search/cs?searchtype=author&amp;query=Dycke%2C+N">Nils Dycke</a>, <a href="/search/cs?searchtype=author&amp;query=Goldberg%2C+A">Alexander Goldberg</a>, <a href="/search/cs?searchtype=author&amp;query=Hope%2C+T">Tom Hope</a>, <a href="/search/cs?searchtype=author&amp;query=Hovy%2C+D">Dirk Hovy</a>, <a href="/search/cs?searchtype=author&amp;query=Kummerfeld%2C+J+K">Jonathan K. Kummerfeld</a>, <a href="/search/cs?searchtype=author&amp;query=Lauscher%2C+A">Anne Lauscher</a>, <a href="/search/cs?searchtype=author&amp;query=Leyton-Brown%2C+K">Kevin Leyton-Brown</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+S">Sheng Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Mausam"> Mausam</a>, <a href="/search/cs?searchtype=author&amp;query=Mieskes%2C+M">Margot Mieskes</a>, <a href="/search/cs?searchtype=author&amp;query=N%C3%A9v%C3%A9ol%2C+A">Aur茅lie N茅v茅ol</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Qu%2C+L">Lizhen Qu</a>, <a href="/search/cs?searchtype=author&amp;query=Schwartz%2C+R">Roy Schwartz</a>, <a href="/search/cs?searchtype=author&amp;query=Smith%2C+N+A">Noah A. Smith</a>, <a href="/search/cs?searchtype=author&amp;query=Solorio%2C+T">Thamar Solorio</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingyan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+X">Xiaodan Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Rogers%2C+A">Anna Rogers</a>, <a href="/search/cs?searchtype=author&amp;query=Shah%2C+N+B">Nihar B. Shah</a>, <a href="/search/cs?searchtype=author&amp;query=Gurevych%2C+I">Iryna Gurevych</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06563v1-abstract-short" style="display: inline;"> The number of scientific articles produced every year is growing rapidly. Providing quality control over them is crucial for scientists and, ultimately, for the public good. In modern science, this process is largely delegated to peer review -- a distributed procedure in which each submission is evaluated by several independent experts in the field. Peer review is widely used, yet it is hard, time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06563v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06563v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06563v1-abstract-full" style="display: none;"> The number of scientific articles produced every year is growing rapidly. Providing quality control over them is crucial for scientists and, ultimately, for the public good. In modern science, this process is largely delegated to peer review -- a distributed procedure in which each submission is evaluated by several independent experts in the field. Peer review is widely used, yet it is hard, time-consuming, and prone to error. Since the artifacts involved in peer review -- manuscripts, reviews, discussions -- are largely text-based, Natural Language Processing has great potential to improve reviewing. As the emergence of large language models (LLMs) has enabled NLP assistance for many new tasks, the discussion on machine-assisted peer review is picking up the pace. Yet, where exactly is help needed, where can NLP help, and where should it stand aside? The goal of our paper is to provide a foundation for the future efforts in NLP for peer-reviewing assistance. We discuss peer review as a general process, exemplified by reviewing at AI conferences. We detail each step of the process from manuscript submission to camera-ready revision, and discuss the associated challenges and opportunities for NLP assistance, illustrated by existing work. We then turn to the big challenges in NLP for peer review as a whole, including data acquisition and licensing, operationalization and experimentation, and ethical issues. To help consolidate community efforts, we create a companion repository that aggregates key datasets pertaining to peer review. Finally, we issue a detailed call for action for the scientific community, NLP and AI researchers, policymakers, and funding bodies to help bring the research in NLP for peer review forward. We hope that our work will help set the agenda for research in machine-assisted scientific quality control in the age of AI, within the NLP community and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06563v1-abstract-full').style.display = 'none'; document.getElementById('2405.06563v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08800">arXiv:2312.08800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08800">pdf</a>, <a href="https://arxiv.org/format/2312.08800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Evaluating Large Language Models for Health-related Queries with Presuppositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kaur%2C+N">Navreet Kaur</a>, <a href="/search/cs?searchtype=author&amp;query=Choudhury%2C+M">Monojit Choudhury</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08800v3-abstract-short" style="display: inline;"> As corporations rush to integrate large language models (LLMs) to their search offerings, it is critical that they provide factually accurate information that is robust to any presuppositions that a user may express. In this work, we introduce UPHILL, a dataset consisting of health-related queries with varying degrees of presuppositions. Using UPHILL, we evaluate the factual accuracy and consisten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08800v3-abstract-full').style.display = 'inline'; document.getElementById('2312.08800v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08800v3-abstract-full" style="display: none;"> As corporations rush to integrate large language models (LLMs) to their search offerings, it is critical that they provide factually accurate information that is robust to any presuppositions that a user may express. In this work, we introduce UPHILL, a dataset consisting of health-related queries with varying degrees of presuppositions. Using UPHILL, we evaluate the factual accuracy and consistency of InstructGPT, ChatGPT, and BingChat models. We find that while model responses rarely disagree with true health claims (posed as questions), they often fail to challenge false claims: responses from InstructGPT agree with 32% of the false claims, ChatGPT 26% and BingChat 23%. As we increase the extent of presupposition in input queries, the responses from InstructGPT and ChatGPT agree with the claim considerably more often, regardless of its veracity. Responses from BingChat, which rely on retrieved webpages, are not as susceptible. Given the moderate factual accuracy, and the inability of models to consistently correct false assumptions, our work calls for a careful assessment of current LLMs for use in high-stakes scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08800v3-abstract-full').style.display = 'none'; document.getElementById('2312.08800v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Findings of ACL 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09816">arXiv:2311.09816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09816">pdf</a>, <a href="https://arxiv.org/format/2311.09816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Downstream Trade-offs of a Family of Text Watermarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ajith%2C+A">Anirudh Ajith</a>, <a href="/search/cs?searchtype=author&amp;query=Singh%2C+S">Sameer Singh</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09816v2-abstract-short" style="display: inline;"> Watermarking involves implanting an imperceptible signal into generated text that can later be detected via statistical tests. A prominent family of watermarking strategies for LLMs embeds this signal by upsampling a (pseudorandomly-chosen) subset of tokens at every generation step. However, such signals alter the model&#39;s output distribution and can have unintended effects on its downstream perfor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09816v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09816v2-abstract-full" style="display: none;"> Watermarking involves implanting an imperceptible signal into generated text that can later be detected via statistical tests. A prominent family of watermarking strategies for LLMs embeds this signal by upsampling a (pseudorandomly-chosen) subset of tokens at every generation step. However, such signals alter the model&#39;s output distribution and can have unintended effects on its downstream performance. In this work, we evaluate the performance of LLMs watermarked using three different strategies over a diverse suite of tasks including those cast as k-class classification (CLS), multiple choice question answering (MCQ), short-form generation (e.g., open-ended question answering) and long-form generation (e.g., translation) tasks. We find that watermarks (under realistic hyperparameters) can cause significant drops in LLMs&#39; effective utility across all tasks. We observe drops of 10 to 20% in CLS tasks in the average case, which shoot up to 100% in the worst case. We notice degradations of about 7% in MCQ tasks, 10-15% in short-form generation, and 5-15% in long-form generation tasks. Our findings highlight the trade-offs that users should be cognizant of when using watermarked models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09816v2-abstract-full').style.display = 'none'; document.getElementById('2311.09816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at EMNLP Findings 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14777">arXiv:2310.14777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14777">pdf</a>, <a href="https://arxiv.org/format/2310.14777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Geographical Erasure in Language Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Schw%C3%B6bel%2C+P">Pola Schw枚bel</a>, <a href="/search/cs?searchtype=author&amp;query=Golebiowski%2C+J">Jacek Golebiowski</a>, <a href="/search/cs?searchtype=author&amp;query=Donini%2C+M">Michele Donini</a>, <a href="/search/cs?searchtype=author&amp;query=Archambeau%2C+C">C茅dric Archambeau</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14777v1-abstract-short" style="display: inline;"> Large language models (LLMs) encode vast amounts of world knowledge. However, since these models are trained on large swaths of internet data, they are at risk of inordinately capturing information about dominant groups. This imbalance can propagate into generated language. In this work, we study and operationalise a form of geographical erasure, wherein language models underpredict certain countr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14777v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14777v1-abstract-full" style="display: none;"> Large language models (LLMs) encode vast amounts of world knowledge. However, since these models are trained on large swaths of internet data, they are at risk of inordinately capturing information about dominant groups. This imbalance can propagate into generated language. In this work, we study and operationalise a form of geographical erasure, wherein language models underpredict certain countries. We demonstrate consistent instances of erasure across a range of LLMs. We discover that erasure strongly correlates with low frequencies of country mentions in the training corpus. Lastly, we mitigate erasure by finetuning using a custom objective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14777v1-abstract-full').style.display = 'none'; document.getElementById('2310.14777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">EMNLP 2023 Findings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14272">arXiv:2308.14272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14272">pdf</a>, <a href="https://arxiv.org/format/2308.14272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Goodhart&#39;s Law Applies to NLP&#39;s Explanation Benchmarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hsia%2C+J">Jennifer Hsia</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Singh%2C+A">Aarti Singh</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14272v1-abstract-short" style="display: inline;"> Despite the rising popularity of saliency-based explanations, the research community remains at an impasse, facing doubts concerning their purpose, efficacy, and tendency to contradict each other. Seeking to unite the community&#39;s efforts around common goals, several recent works have proposed evaluation metrics. In this paper, we critically examine two sets of metrics: the ERASER metrics (comprehe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14272v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14272v1-abstract-full" style="display: none;"> Despite the rising popularity of saliency-based explanations, the research community remains at an impasse, facing doubts concerning their purpose, efficacy, and tendency to contradict each other. Seeking to unite the community&#39;s efforts around common goals, several recent works have proposed evaluation metrics. In this paper, we critically examine two sets of metrics: the ERASER metrics (comprehensiveness and sufficiency) and the EVAL-X metrics, focusing our inquiry on natural language processing. First, we show that we can inflate a model&#39;s comprehensiveness and sufficiency scores dramatically without altering its predictions or explanations on in-distribution test inputs. Our strategy exploits the tendency for extracted explanations and their complements to be &#34;out-of-support&#34; relative to each other and in-distribution inputs. Next, we demonstrate that the EVAL-X metrics can be inflated arbitrarily by a simple method that encodes the label, even though EVAL-X is precisely motivated to address such exploits. Our results raise doubts about the ability of current metrics to guide explainability research, underscoring the need for a broader reassessment of what precisely these metrics are intended to capture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14272v1-abstract-full').style.display = 'none'; document.getElementById('2308.14272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11080">arXiv:2305.11080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11080">pdf</a>, <a href="https://arxiv.org/format/2305.11080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Inspecting the Geographical Representativeness of Images from Text-to-Image Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Basu%2C+A">Abhipsa Basu</a>, <a href="/search/cs?searchtype=author&amp;query=Babu%2C+R+V">R. Venkatesh Babu</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11080v1-abstract-short" style="display: inline;"> Recent progress in generative models has resulted in models that produce both realistic as well as relevant images for most textual inputs. These models are being used to generate millions of images everyday, and hold the potential to drastically impact areas such as generative art, digital marketing and data augmentation. Given their outsized impact, it is important to ensure that the generated c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11080v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11080v1-abstract-full" style="display: none;"> Recent progress in generative models has resulted in models that produce both realistic as well as relevant images for most textual inputs. These models are being used to generate millions of images everyday, and hold the potential to drastically impact areas such as generative art, digital marketing and data augmentation. Given their outsized impact, it is important to ensure that the generated content reflects the artifacts and surroundings across the globe, rather than over-representing certain parts of the world. In this paper, we measure the geographical representativeness of common nouns (e.g., a house) generated through DALL.E 2 and Stable Diffusion models using a crowdsourced study comprising 540 participants across 27 countries. For deliberately underspecified inputs without country names, the generated images most reflect the surroundings of the United States followed by India, and the top generations rarely reflect surroundings from all other countries (average score less than 3 out of 5). Specifying the country names in the input increases the representativeness by 1.44 points on average for DALL.E 2 and 0.75 for Stable Diffusion, however, the overall scores for many countries still remain low, highlighting the need for future models to be more geographically inclusive. Lastly, we examine the feasibility of quantifying the geographical representativeness of generated images without conducting user studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11080v1-abstract-full').style.display = 'none'; document.getElementById('2305.11080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint, 15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07320">arXiv:2303.07320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07320">pdf</a>, <a href="https://arxiv.org/format/2303.07320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Model-tuning Via Prompts Makes NLP Models Adversarially Robust </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Raman%2C+M">Mrigank Raman</a>, <a href="/search/cs?searchtype=author&amp;query=Maini%2C+P">Pratyush Maini</a>, <a href="/search/cs?searchtype=author&amp;query=Kolter%2C+J+Z">J. Zico Kolter</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07320v2-abstract-short" style="display: inline;"> In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token&#39;s hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07320v2-abstract-full').style.display = 'inline'; document.getElementById('2303.07320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07320v2-abstract-full" style="display: none;"> In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token&#39;s hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but these models remain brittle, even to mild adversarial perturbations. In this work, we demonstrate surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP), an alternative method of adapting to downstream tasks. Rather than appending an MLP head to make output prediction, MVP appends a prompt template to the input, and makes prediction via text infilling/completion. Across 5 NLP datasets, 4 adversarial attacks, and 3 different models, MVP improves performance against adversarial substitutions by an average of 8% over standard methods and even outperforms adversarial training-based state-of-art defenses by 3.5%. By combining MVP with adversarial training, we achieve further improvements in adversarial robustness while maintaining performance on unperturbed examples. Finally, we conduct ablations to investigate the mechanism underlying these gains. Notably, we find that the main causes of vulnerability of MLP-FT can be attributed to the misalignment between pre-training and fine-tuning tasks, and the randomly initialized MLP parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07320v2-abstract-full').style.display = 'none'; document.getElementById('2303.07320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to the EMNLP 2023 Conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05077">arXiv:2303.05077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05077">pdf</a>, <a href="https://arxiv.org/format/2303.05077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning the Legibility of Visual Text Perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Seth%2C+D">Dev Seth</a>, <a href="/search/cs?searchtype=author&amp;query=Stureborg%2C+R">Rickard Stureborg</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Dhingra%2C+B">Bhuwan Dhingra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05077v2-abstract-short" style="display: inline;"> Many adversarial attacks in NLP perturb inputs to produce visually similar strings (&#39;ergo&#39; $\rightarrow$ &#39;$蔚$rgo&#39;) which are legible to humans but degrade model performance. Although preserving legibility is a necessary condition for text perturbation, little work has been done to systematically characterize it; instead, legibility is typically loosely enforced via intuitions around the nature and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05077v2-abstract-full').style.display = 'inline'; document.getElementById('2303.05077v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05077v2-abstract-full" style="display: none;"> Many adversarial attacks in NLP perturb inputs to produce visually similar strings (&#39;ergo&#39; $\rightarrow$ &#39;$蔚$rgo&#39;) which are legible to humans but degrade model performance. Although preserving legibility is a necessary condition for text perturbation, little work has been done to systematically characterize it; instead, legibility is typically loosely enforced via intuitions around the nature and extent of perturbations. Particularly, it is unclear to what extent can inputs be perturbed while preserving legibility, or how to quantify the legibility of a perturbed string. In this work, we address this gap by learning models that predict the legibility of a perturbed string, and rank candidate perturbations based on their legibility. To do so, we collect and release LEGIT, a human-annotated dataset comprising the legibility of visually perturbed text. Using this dataset, we build both text- and vision-based models which achieve up to $0.91$ F1 score in predicting whether an input is legible, and an accuracy of $0.86$ in predicting which of two given perturbations is more legible. Additionally, we discover that legible perturbations from the LEGIT dataset are more effective at lowering the performance of NLP models than best-known attack strategies, suggesting that current models may be vulnerable to a broad range of perturbations beyond what is captured by existing visual attacks. Data, code, and models are available at https://github.com/dvsth/learning-legibility-2023. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05077v2-abstract-full').style.display = 'none'; document.getElementById('2303.05077v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures. Accepted at EACL 2023 (main, long)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08450">arXiv:2302.08450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.08450">pdf</a>, <a href="https://arxiv.org/format/2302.08450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Assisting Human Decisions in Document Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kim%2C+J+S">Joon Sik Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+V">Valerie Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Shah%2C+N+B">Nihar B. Shah</a>, <a href="/search/cs?searchtype=author&amp;query=Talwalkar%2C+A">Ameet Talwalkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08450v1-abstract-short" style="display: inline;"> Many practical applications, ranging from paper-reviewer assignment in peer review to job-applicant matching for hiring, require human decision makers to identify relevant matches by combining their expertise with predictions from machine learning models. In many such model-assisted document matching tasks, the decision makers have stressed the need for assistive information about the model output&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08450v1-abstract-full').style.display = 'inline'; document.getElementById('2302.08450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08450v1-abstract-full" style="display: none;"> Many practical applications, ranging from paper-reviewer assignment in peer review to job-applicant matching for hiring, require human decision makers to identify relevant matches by combining their expertise with predictions from machine learning models. In many such model-assisted document matching tasks, the decision makers have stressed the need for assistive information about the model outputs (or the data) to facilitate their decisions. In this paper, we devise a proxy matching task that allows us to evaluate which kinds of assistive information improve decision makers&#39; performance (in terms of accuracy and time). Through a crowdsourced (N=271 participants) study, we find that providing black-box model explanations reduces users&#39; accuracy on the matching task, contrary to the commonly-held belief that they can be helpful by allowing better understanding of the model. On the other hand, custom methods that are designed to closely attend to some task-specific desiderata are found to be effective in improving user performance. Surprisingly, we also find that the users&#39; perceived utility of assistive information is misaligned with their objective utility (measured through their task performance). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08450v1-abstract-full').style.display = 'none'; document.getElementById('2302.08450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09404">arXiv:2210.09404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09404">pdf</a>, <a href="https://arxiv.org/format/2210.09404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Measures of Information Reflect Memorization Patterns </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bansal%2C+R">Rachit Bansal</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Belinkov%2C+Y">Yonatan Belinkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09404v4-abstract-short" style="display: inline;"> Neural networks are known to exploit spurious artifacts (or shortcuts) that co-occur with a target label, exhibiting heuristic memorization. On the other hand, networks have been shown to memorize training examples, resulting in example-level memorization. These kinds of memorization impede generalization of networks beyond their training distributions. Detecting such memorization could be challen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09404v4-abstract-full').style.display = 'inline'; document.getElementById('2210.09404v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09404v4-abstract-full" style="display: none;"> Neural networks are known to exploit spurious artifacts (or shortcuts) that co-occur with a target label, exhibiting heuristic memorization. On the other hand, networks have been shown to memorize training examples, resulting in example-level memorization. These kinds of memorization impede generalization of networks beyond their training distributions. Detecting such memorization could be challenging, often requiring researchers to curate tailored test sets. In this work, we hypothesize -- and subsequently show -- that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization. We quantify the diversity in the neural activations through information-theoretic measures and find support for our hypothesis on experiments spanning several natural language and vision tasks. Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples. Lastly, we demonstrate the utility of our findings for the problem of model selection. The associated code and other resources for this work are available at https://rachitbansal.github.io/information-measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09404v4-abstract-full').style.display = 'none'; document.getElementById('2210.09404v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages; NeurIPS 2022. Code and data at https://rachitbansal.github.io/information-measures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10810">arXiv:2204.10810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10810">pdf</a>, <a href="https://arxiv.org/format/2204.10810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning to Scaffold: Optimizing Model Explanations for Teaching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fernandes%2C+P">Patrick Fernandes</a>, <a href="/search/cs?searchtype=author&amp;query=Treviso%2C+M">Marcos Treviso</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Martins%2C+A+F+T">Andr茅 F. T. Martins</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10810v2-abstract-short" style="display: inline;"> Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield on methods that explain these models&#39; behavior. However, what is the precise goal of providing such explanations, and how can we demonstrate that explanations achieve this goal? Some research argues that explanations should help teach a student (either human or machine) to simulate the model being ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10810v2-abstract-full').style.display = 'inline'; document.getElementById('2204.10810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10810v2-abstract-full" style="display: none;"> Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield on methods that explain these models&#39; behavior. However, what is the precise goal of providing such explanations, and how can we demonstrate that explanations achieve this goal? Some research argues that explanations should help teach a student (either human or machine) to simulate the model being explained, and that the quality of explanations can be measured by the simulation accuracy of students on unexplained examples. In this work, leveraging meta-learning techniques, we extend this idea to improve the quality of the explanations themselves, specifically by optimizing explanations such that student models more effectively learn to simulate the original model. We train models on three natural language processing and computer vision tasks, and find that students trained with explanations extracted with our framework are able to simulate the teacher significantly more effectively than ones produced with previous methods. Through human annotations and a user study, we further find that these learned explanations more closely align with how humans would explain the required decisions in these tasks. Our code is available at https://github.com/coderpat/learning-scaffold <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10810v2-abstract-full').style.display = 'none'; document.getElementById('2204.10810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages. NeurIPS 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09669">arXiv:2112.09669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09669">pdf</a>, <a href="https://arxiv.org/format/2112.09669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Arora%2C+S">Siddhant Arora</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Sadeh%2C+N">Norman Sadeh</a>, <a href="/search/cs?searchtype=author&amp;query=Cohen%2C+W+W">William W. Cohen</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09669v2-abstract-short" style="display: inline;"> In attempts to &#34;explain&#34; predictions of machine learning models, researchers have proposed hundreds of techniques for attributing predictions to features that are deemed important. While these attributions are often claimed to hold the potential to improve human &#34;understanding&#34; of the models, surprisingly little work explicitly evaluates progress towards this aspiration. In this paper, we conduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09669v2-abstract-full').style.display = 'inline'; document.getElementById('2112.09669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09669v2-abstract-full" style="display: none;"> In attempts to &#34;explain&#34; predictions of machine learning models, researchers have proposed hundreds of techniques for attributing predictions to features that are deemed important. While these attributions are often claimed to hold the potential to improve human &#34;understanding&#34; of the models, surprisingly little work explicitly evaluates progress towards this aspiration. In this paper, we conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews. They are challenged both to simulate the model on fresh reviews, and to edit reviews with the goal of lowering the probability of the originally predicted class. Successful manipulations would lead to an adversarial example. During the training (but not the test) phase, input spans are highlighted to communicate salience. Through our evaluation, we observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control. For the BERT-based classifier, popular local explanations do not improve their ability to reduce the model confidence over the no-explanation case. Remarkably, when the explanation for the BERT model is given by the (global) attributions of a linear model trained to imitate the BERT model, people can effectively manipulate the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09669v2-abstract-full').style.display = 'none'; document.getElementById('2112.09669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">AAAI 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06977">arXiv:2105.06977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.06977">pdf</a>, <a href="https://arxiv.org/format/2105.06977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Do Context-Aware Translation Models Pay the Right Attention? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yin%2C+K">Kayo Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Fernandes%2C+P">Patrick Fernandes</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Chaudhary%2C+A">Aditi Chaudhary</a>, <a href="/search/cs?searchtype=author&amp;query=Martins%2C+A+F+T">Andr茅 F. T. Martins</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06977v3-abstract-short" style="display: inline;"> Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask several questions: What contexts do human translators use to resolve ambiguous words? Are models paying large amounts of attention to the same context?&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06977v3-abstract-full').style.display = 'inline'; document.getElementById('2105.06977v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06977v3-abstract-full" style="display: none;"> Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask several questions: What contexts do human translators use to resolve ambiguous words? Are models paying large amounts of attention to the same context? What if we explicitly train them to do so? To answer these questions, we introduce SCAT (Supporting Context for Ambiguous Translations), a new English-French dataset comprising supporting context words for 14K translations that professional translators found useful for pronoun disambiguation. Using SCAT, we perform an in-depth analysis of the context used to disambiguate, examining positional and lexical characteristics of the supporting words. Furthermore, we measure the degree of alignment between the model&#39;s attention scores and the supporting context from SCAT, and apply a guided attention strategy to encourage agreement between the two. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06977v3-abstract-full').style.display = 'none'; document.getElementById('2105.06977v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ACL 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00893">arXiv:2012.00893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.00893">pdf</a>, <a href="https://arxiv.org/format/2012.00893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Evaluating Explanations: How much do explanations from the teacher aid students? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Bansal%2C+R">Rachit Bansal</a>, <a href="/search/cs?searchtype=author&amp;query=Dhingra%2C+B">Bhuwan Dhingra</a>, <a href="/search/cs?searchtype=author&amp;query=Soares%2C+L+B">Livio Baldini Soares</a>, <a href="/search/cs?searchtype=author&amp;query=Collins%2C+M">Michael Collins</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a>, <a href="/search/cs?searchtype=author&amp;query=Cohen%2C+W+W">William W. Cohen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00893v2-abstract-short" style="display: inline;"> While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the stude&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00893v2-abstract-full').style.display = 'inline'; document.getElementById('2012.00893v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00893v2-abstract-full" style="display: none;"> While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the student during training, but are not available at test time. Compared to prior proposals, our approach is less easily gamed, enabling principled, automatic, model-agnostic evaluation of attributions. Using our framework, we compare numerous attribution methods for text classification and question answering, and observe quantitative differences that are consistent (to a moderate to high degree) across different student model architectures and learning strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00893v2-abstract-full').style.display = 'none'; document.getElementById('2012.00893v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">TACL 2021 (pre-MIT Press publication version)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01459">arXiv:2011.01459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01459">pdf</a>, <a href="https://arxiv.org/format/2011.01459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Weakly- and Semi-supervised Evidence Extraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Dhingra%2C+B">Bhuwan Dhingra</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01459v1-abstract-short" style="display: inline;"> For many prediction tasks, stakeholders desire not only predictions but also supporting evidence that a human can use to verify its correctness. However, in practice, additional annotations marking supporting evidence may only be available for a minority of training examples (if available at all). In this paper, we propose new methods to combine few evidence annotations (strong semi-supervision) w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01459v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01459v1-abstract-full" style="display: none;"> For many prediction tasks, stakeholders desire not only predictions but also supporting evidence that a human can use to verify its correctness. However, in practice, additional annotations marking supporting evidence may only be available for a minority of training examples (if available at all). In this paper, we propose new methods to combine few evidence annotations (strong semi-supervision) with abundant document-level labels (weak supervision) for the task of evidence extraction. Evaluating on two classification tasks that feature evidence annotations, we find that our methods outperform baselines adapted from the interpretability literature to our task. Our approach yields substantial gains with as few as hundred evidence annotations. Code and datasets to reproduce our work are available at https://github.com/danishpruthi/evidence-extraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01459v1-abstract-full').style.display = 'none'; document.getElementById('2011.01459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to the Findings of EMNLP 2020, to be presented at BlackBoxNLP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.11085">arXiv:2010.11085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.11085">pdf</a>, <a href="https://arxiv.org/format/2010.11085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> NeuSpell: A Neural Spelling Correction Toolkit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jayanthi%2C+S+M">Sai Muralidhar Jayanthi</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.11085v1-abstract-short" style="display: inline;"> We introduce NeuSpell, an open-source toolkit for spelling correction in English. Our toolkit comprises ten different models, and benchmarks them on naturally occurring misspellings from multiple sources. We find that many systems do not adequately leverage the context around the misspelt token. To remedy this, (i) we train neural models using spelling errors in context, synthetically constructed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11085v1-abstract-full').style.display = 'inline'; document.getElementById('2010.11085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.11085v1-abstract-full" style="display: none;"> We introduce NeuSpell, an open-source toolkit for spelling correction in English. Our toolkit comprises ten different models, and benchmarks them on naturally occurring misspellings from multiple sources. We find that many systems do not adequately leverage the context around the misspelt token. To remedy this, (i) we train neural models using spelling errors in context, synthetically constructed by reverse engineering isolated misspellings; and (ii) use contextual representations. By training on our synthetic examples, correction rates improve by 9% (absolute) compared to the case when models are trained on randomly sampled character perturbations. Using richer contextual representations boosts the correction rate by another 3%. Our toolkit enables practitioners to use our proposed and existing spelling correction systems, both via a unified command line, as well as a web interface. Among many potential applications, we demonstrate the utility of our spell-checkers in combating adversarial misspellings. The toolkit can be accessed at neuspell.github.io. Code and pretrained models are available at http://github.com/neuspell/neuspell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11085v1-abstract-full').style.display = 'none'; document.getElementById('2010.11085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at EMNLP 2020 (system demonstrations)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00159">arXiv:2005.00159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.00159">pdf</a>, <a href="https://arxiv.org/format/2005.00159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Why and when should you pool? Analyzing Pooling in Recurrent Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Maini%2C+P">Pratyush Maini</a>, <a href="/search/cs?searchtype=author&amp;query=Kolluru%2C+K">Keshav Kolluru</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Mausam"> Mausam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00159v2-abstract-short" style="display: inline;"> Pooling-based recurrent neural architectures consistently outperform their counterparts without pooling. However, the reasons for their enhanced performance are largely unexamined. In this work, we examine three commonly used pooling techniques (mean-pooling, max-pooling, and attention), and propose max-attention, a novel variant that effectively captures interactions among predictive tokens in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00159v2-abstract-full').style.display = 'inline'; document.getElementById('2005.00159v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00159v2-abstract-full" style="display: none;"> Pooling-based recurrent neural architectures consistently outperform their counterparts without pooling. However, the reasons for their enhanced performance are largely unexamined. In this work, we examine three commonly used pooling techniques (mean-pooling, max-pooling, and attention), and propose max-attention, a novel variant that effectively captures interactions among predictive tokens in a sentence. We find that pooling-based architectures substantially differ from their non-pooling equivalents in their learning ability and positional biases--which elucidate their performance benefits. By analyzing the gradient propagation, we discover that pooling facilitates better gradient flow compared to BiLSTMs. Further, we expose how BiLSTMs are positionally biased towards tokens in the beginning and the end of a sequence. Pooling alleviates such biases. Consequently, we identify settings where pooling offers large benefits: (i) in low resource scenarios, and (ii) when important words lie towards the middle of the sentence. Among the pooling techniques studied, max-attention is the most effective, resulting in significant performance gains on several text classification tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00159v2-abstract-full').style.display = 'none'; document.getElementById('2005.00159v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Findings of EMNLP 2020, to be presented at BlackBoxNLP. Updated Version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07913">arXiv:1909.07913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07913">pdf</a>, <a href="https://arxiv.org/format/1909.07913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning to Deceive with Attention-Based Explanations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Gupta%2C+M">Mansi Gupta</a>, <a href="/search/cs?searchtype=author&amp;query=Dhingra%2C+B">Bhuwan Dhingra</a>, <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07913v2-abstract-short" style="display: inline;"> Attention mechanisms are ubiquitous components in neural architectures applied to natural language processing. In addition to yielding gains in predictive accuracy, attention weights are often claimed to confer interpretability, purportedly useful both for providing insights to practitioners and for explaining why a model makes its decisions to stakeholders. We call the latter use of attention mec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07913v2-abstract-full').style.display = 'inline'; document.getElementById('1909.07913v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07913v2-abstract-full" style="display: none;"> Attention mechanisms are ubiquitous components in neural architectures applied to natural language processing. In addition to yielding gains in predictive accuracy, attention weights are often claimed to confer interpretability, purportedly useful both for providing insights to practitioners and for explaining why a model makes its decisions to stakeholders. We call the latter use of attention mechanisms into question by demonstrating a simple method for training models to produce deceptive attention masks. Our method diminishes the total weight assigned to designated impermissible tokens, even when the models can be shown to nevertheless rely on these features to drive predictions. Across multiple models and tasks, our approach manipulates attention weights while paying surprisingly little cost in accuracy. Through a human study, we show that our manipulated attention-based explanations deceive people into thinking that predictions from a model biased against gender minorities do not rely on the gender. Consequently, our results cast doubt on attention&#39;s reliability as a tool for auditing algorithms in the context of fairness and accountability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07913v2-abstract-full').style.display = 'none'; document.getElementById('1909.07913v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ACL 2020 as a long paper. Updated version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11268">arXiv:1905.11268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.11268">pdf</a>, <a href="https://arxiv.org/format/1905.11268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Combating Adversarial Misspellings with Robust Word Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Dhingra%2C+B">Bhuwan Dhingra</a>, <a href="/search/cs?searchtype=author&amp;query=Lipton%2C+Z+C">Zachary C. Lipton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11268v2-abstract-short" style="display: inline;"> To combat adversarial spelling mistakes, we propose placing a word recognition model in front of the downstream classifier. Our word recognition models build upon the RNN semi-character architecture, introducing several new backoff strategies for handling rare and unseen words. Trained to recognize words corrupted by random adds, drops, swaps, and keyboard mistakes, our method achieves 32% relativ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11268v2-abstract-full').style.display = 'inline'; document.getElementById('1905.11268v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11268v2-abstract-full" style="display: none;"> To combat adversarial spelling mistakes, we propose placing a word recognition model in front of the downstream classifier. Our word recognition models build upon the RNN semi-character architecture, introducing several new backoff strategies for handling rare and unseen words. Trained to recognize words corrupted by random adds, drops, swaps, and keyboard mistakes, our method achieves 32% relative (and 3.3% absolute) error reduction over the vanilla semi-character model. Notably, our pipeline confers robustness on the downstream classifier, outperforming both adversarial training and off-the-shelf spell checkers. Against a BERT model fine-tuned for sentiment analysis, a single adversarially-chosen character attack lowers accuracy from 90.3% to 45.8%. Our defense restores accuracy to 75%. Surprisingly, better word recognition does not always entail greater robustness. Our analysis reveals that robustness also depends upon a quantity that we denote the sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11268v2-abstract-full').style.display = 'none'; document.getElementById('1905.11268v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ACL 2019, long paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.07926">arXiv:1903.07926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.07926">pdf</a>, <a href="https://arxiv.org/format/1903.07926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> compare-mt: A Tool for Holistic Comparison of Language Generation Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Neubig%2C+G">Graham Neubig</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zi-Yi Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+J">Junjie Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Michel%2C+P">Paul Michel</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wieting%2C+J">John Wieting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.07926v2-abstract-short" style="display: inline;"> In this paper, we describe compare-mt, a tool for holistic analysis and comparison of the results of systems for language generation tasks such as machine translation. The main goal of the tool is to give the user a high-level and coherent view of the salient differences between systems that can then be used to guide further analysis or system improvement. It implements a number of tools to do so,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07926v2-abstract-full').style.display = 'inline'; document.getElementById('1903.07926v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.07926v2-abstract-full" style="display: none;"> In this paper, we describe compare-mt, a tool for holistic analysis and comparison of the results of systems for language generation tasks such as machine translation. The main goal of the tool is to give the user a high-level and coherent view of the salient differences between systems that can then be used to guide further analysis or system improvement. It implements a number of tools to do so, such as analysis of accuracy of generation of particular types of words, bucketed histograms of sentence accuracies or counts based on salient characteristics, and extraction of characteristic $n$-grams for each system. It also has a number of advanced features such as use of linguistic labels, source side data, or comparison of log likelihoods for probabilistic models, and also aims to be easily extensible by users to new types of analysis. The code is available at https://github.com/neulab/compare-mt <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07926v2-abstract-full').style.display = 'none'; document.getElementById('1903.07926v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated and longer version of NAACL 2019 Demo Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.00720">arXiv:1804.00720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.00720">pdf</a>, <a href="https://arxiv.org/format/1804.00720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Simple and Effective Semi-Supervised Question Answering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dhingra%2C+B">Bhuwan Dhingra</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Rajagopal%2C+D">Dheeraj Rajagopal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.00720v1-abstract-short" style="display: inline;"> Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.00720v1-abstract-full').style.display = 'inline'; document.getElementById('1804.00720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.00720v1-abstract-full" style="display: none;"> Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.00720v1-abstract-full').style.display = 'none'; document.getElementById('1804.00720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Short paper, NAACL 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.08792">arXiv:1711.08792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.08792">pdf</a>, <a href="https://arxiv.org/format/1711.08792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> SPINE: SParse Interpretable Neural Embeddings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Subramanian%2C+A">Anant Subramanian</a>, <a href="/search/cs?searchtype=author&amp;query=Pruthi%2C+D">Danish Pruthi</a>, <a href="/search/cs?searchtype=author&amp;query=Jhamtani%2C+H">Harsh Jhamtani</a>, <a href="/search/cs?searchtype=author&amp;query=Berg-Kirkpatrick%2C+T">Taylor Berg-Kirkpatrick</a>, <a href="/search/cs?searchtype=author&amp;query=Hovy%2C+E">Eduard Hovy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.08792v1-abstract-short" style="display: inline;"> Prediction without justification has limited utility. Much of the success of neural models can be attributed to their ability to learn rich, dense and expressive representations. While these representations capture the underlying complexity and latent trends in the data, they are far from being interpretable. We propose a novel variant of denoising k-sparse autoencoders that generates highly effic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08792v1-abstract-full').style.display = 'inline'; document.getElementById('1711.08792v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.08792v1-abstract-full" style="display: none;"> Prediction without justification has limited utility. Much of the success of neural models can be attributed to their ability to learn rich, dense and expressive representations. While these representations capture the underlying complexity and latent trends in the data, they are far from being interpretable. We propose a novel variant of denoising k-sparse autoencoders that generates highly efficient and interpretable distributed word representations (word embeddings), beginning with existing word representations from state-of-the-art methods like GloVe and word2vec. Through large scale human evaluation, we report that our resulting word embedddings are much more interpretable than the original GloVe and word2vec embeddings. Moreover, our embeddings outperform existing popular word embeddings on a diverse suite of benchmark downstream tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08792v1-abstract-full').style.display = 'none'; document.getElementById('1711.08792v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">AAAI 2018</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10